
MAS4010 ADVANCED TOPICS IN ALGEBRA

SOLUTIONS TO EXERCISE SHEET 4

Question 1

Let G be the alternating group A6. For each prime p dividing |G|, give one
example of a Sylow p-subgroup of G, and find the number of such subgroups.

Solution:

A6 = 1
2
× 6! = 360 = 23 · 32 · 5. So we need to consider the primes p = 2, 3, 5.

p = 2: One Sylow 2-subgroup is 〈(1234)(56), (13)(56)〉 ∼= D4. (Notice we
need the (56) contribution to get even permutations). Every conjugate of
this contains two elements of order 4, with cycle type t4t2, and every element
of this type occurs in exactly one Sylow 2-subgroup. So the number of Sylow
2-subgroups is

1

2
× number of elements of cycle type t4t2 =

1

2
× 6 · 5 · 4 · 3

4
= 45.

p = 3: One Sylow 3-subgroup is 〈(123), (456)〉 ∼= C3 × C3. Any Sylow 3-
subgroup contains 4 elements of cycle type t23, each element with this cycle
type occurring in exactly one Sylow 3-subgroup. So the number of Sylow
3-subgroups is

1

4
× number of elements of cycle type t23 =

1

4
× (6 · 5 · 4)(3 · 2 · 1)

3 · 3 · 2
= 10.

p = 5: One Sylow 5-subgroup is 〈12345〉 ∼= C5. Each Sylow 5-subgroup
contains 4 5-cycles, and every 5-cycle is contained in exactly one Sylow 5-
subgroup. So the number of Sylow 5-subgroups is

1

4
× 6 · 5 · 4 · 3 · 2

5
= 36.

[5 marks]
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Question 2

Let G be a group, and, for any prime p, let np be the number of Sylow p-
subgroups of G. Find the values of np permitted by Sylow’s Theorems, for
each p dividing |G|, in the following cases. Are there any conclusions about
G that you can easily draw? (You do not have to show that groups with
these values of np actually exist).

(i) |G| = 35;

(ii) |G| = 155;

(iii) |G| = 240;

(iv) |G| = 72;

(v) |G| = 105.

Solution:

(i) |G| = 35: n7 ≡ 1 (mod 7) and n7 divides 35, so n7 = 1. Similarly
n5 = 1. So G has only 6 elements of order 7 and only 4 elements of
order 5. Thus there are some elements of order 35 (in fact 24 of them),
so G must be cyclic. [3 marks]

(ii) |G| = 155 = 5×31: n31 ≡ 1 (mod 31) and n31 divides 155, so n31 = 1.
On the other hand n5 divides 155 and satisfies n5 ≡ 1 (mod 5), which
gives two possibilities n5 = 1 or n5 = 31. Thus G always has a normal
subgroup of order 31, but might or might not be cyclic. [3 marks]

(iii) |G| = 240 = 24 · 3 · 5. Here we have n2 = 1 or 3 or 5 or 15; n3 = 1, 4,
10, 16 or 40 and n5 = 1, 6 or 16. [4 marks]

(iv) |G| = 72 = 23 · 32. Here n2 = 1, 3 or 9 and n3 = 1 or 4. We can’t easily
calculate the number of elements of 2-power or 3-power order, since we
do not know the orders of the intersections of two Sylow 2-subgroups
(or 3-subgroups). [ marks]

(v) |G| = 105 = 3 · 5 · 7. We have n3 = 1 or 7; n5 = 1 or 21; n7 = 1 or 15.

If n3 = 7 then G has 15 elements of order 3. If n5 = 21 then G has 84
elements of order 5. If n7 = 15 then G has 90 elements of order 7.

Thus if n7 = 15 we must have n5 = n3 = 1. Thus we can conclude that
either G has a normal subgroup of order 7, or G has both a normal
subgroup of order 3 and a normal subgroup of order 5. [4 marks]

[Total: 17 marks]
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Question 3

Let G be a group of order 351 = 27 × 13. By considering the number of
Sylow p-subgroups of G for appropriate primes G, show that G must have a
proper normal subgroup.

Solution:

The relevant primes are 3 and 13. (Note that 27 is not prime!) As n3 ≡ 1
(mod 3) and n3 divides 13, we have n3 = 1 or 13. Similarly n13 = 1 or 27.
If n13 = 27 then G contains 27× 12 elements of order 13, and hence only 27
other elements, so that n3 = 1 in this case. (Any Sylow 3-subgroup will have
order 13). Hence either G has a normal subgroup of order 13 (if n13 = 1) or
a normal subgroup of order 27 (if n13 = 27, so that n3 = 1). Either way, G
has a proper normal subgroup. [7 marks]

Question 4

Let G be a group of order pq, where p and q are primes and p > q. Show
that

(i) G has a proper normal subgroup;

(ii) if p 6≡ 1 (mod q) then G is cyclic.

Solution:

As np divides pq we have np = 1, p, q, or pq. But also np ≡ 1 (mod p).
Since 1 < q < p, the only possibility for np is 1. Thus G has a proper normal
subgroup of order p.
As nq divides pq but is not divisible by q we have nq = 1 or p. If p 6≡ 1
(mod q) then the second possibility is ruled out, so nq = np = 1. Then G
has only p− 1 elements of order p, only q − 1 elements of order q, and only
one element (the identity) of order 1. This leaves (p− 1)(q− 1) > 0 elements
which must have order pq, so that G is cyclic.

[12 marks]
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Question 5

Show that any p-subgroup of a finite group G is contained in some Sylow
p-subgroup of G. (Hint: Adapt the proof of the 2nd Sylow Theorem).

Solution:

Let P be a Sylow p-subgroup of G. (We know P exists by the 1st Sylow
Theorem.) Let Q be any p-subgroup in G, and let |G| = prm where p does
not divide m.
G acts by left multiplication on the set S = {gP | g ∈ G} of the m left cosets
of P . Hence Q also acts on this set, and each Q-orbit has size a power of p
(since it must divide |Q|). As these orbits partition S, and |S| = m is not
divisible by p, there must be at least one orbit of size p0 = 1. Thus, for some
g ∈ G we have QgP = gP . Then Qg ⊆ gP , so that Q ⊆ gPg−1. Now gPg−1

is a Sylow p-subgroup since it has the same order as P . So we have shown
that every p-subgroup Q of G is contained in some Sylow p-subgroup.

[8 marks]

Question 6

Show that a normal p-subgroup of a finite group G is contained in every
Sylow p-subgroup of G.

Solution:

Let Q be a normal p-subgroup of G. By Question 5, Q ⊆ P for some Sylow
p-subgroup of G. By Sylow’s 2nd Theorem, every Sylow p-subgroup of G has
the form gPg−1, and since Q is normal in G we have Q = gQg−1 ⊆ gPg−1.
Hence Q is contained in every Sylow p-subgroup of G.

[4 marks]
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Question 7

Let S be the subset of G = GLn(Fp) consisting of upper triangular matrices
with 1’s on the main diagonal. Verify that S is a subgroup of G, and deduce
that it is a Sylow p-subgroup.

Solution

We have that A = (aij) ∈ S if and only if aii = 1 for all i and aij = 0
whenever i > j.
Clearly I ∈ S. Given A = (aij) and B = (bij) in S, let C = AB = (cij).
Then

cij =
n∑

k=1

aikbkj.

Now aik = 0 if i > k and bjk = 0 if k > j. Thus if i > j then each term in the
sum is 0, so cij = 0. If i = j then cij = cii = aiibii = 1. Thus C = AB ∈ S,
so S is closed under multiplication.
Now each A ∈ S is an element of the finite group G, so it has some finite
order n. Since S is closed under multiplication, A−1 = An−1 ∈ S, so S is also
closed under taking inverses. Hence S is a subgroup of G.

[Alternative proof that S is closed under inverses, which works over infinite
fields as well:
Let A = (aij) ∈ S and let D = (dij) = A−1 ∈ G. Then

n∑
k=1

dikakj = δij =

{
1 if i = j;
0 if i 6= j.

We show by induction on m, 1 ≤ m ≤ n, that

dii = 1 if i ≤ m; dik = 0 if i > k and k ≤ m.

The case m = n shows D ∈ S.
Assuming this induction hypothesis holds for m−1 (no assumption for m = 1)
we have

δim =
n∑

k=1

dikakm =
∑

{k|i≤k<m}

dikakm + dim.

If i ≥ m, the last sum is 0, so dmm = δmm = 1 and if i > m then dim = 0.
This shows that the induction hypothesis also holds for m.]
Now we know

|G| =
n−1∏
j=0

(pn − pj) = p(n
2)

n−1∏
j=0

(pn−j − 1),

so any subgroup of G of order p(n
2) will be a Sylow p-subgroup, Now to specify

an element of S, we must choose aij whenever 1 ≤ i < j ≤ n. There are
(

n
2

)
such matrix entries, each of which can be any of the p elements of Fp. Hence

|S| = p(n
2). Thus S is a Sylow p-subgroup of G. [5 marks]
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Question 8

The normaliser of the group S in Question 7 is the group of all upper tri-
angular invertible matrices. Using this fact (which you should have already
proved in the case n = 2 in Question 5 on Sheet 3), determine the number
of Sylow p-subgroups of GLn(Fp).

Solution

The number of Sylow p-subgroups is the index of the normaliser of any one
of them, so we just need to find the index of the group N of upper triangular
invertible matrices in G = GLn(Fp). To specify an element of N we must
first choose all the above-diagonal entries, which amounts to choosing an
element of S, and then choose each of the n diagonal entries, which can be
any element of F×

p (but can’t be 0 since the matrix must be invertible). So

|N | = |S|(p− 1)n,

and the number of Sylow p-subgroups in G is

|G|
|N |

=
n−1∏
j=0

pn−j − 1

p− 1
=

n∏
k=2

pk − 1

p− 1
.

[5 marks]

Question 9

The special linear group SLn(Fp) is defined as the subgroup of GLn(Fp)
consisting of matrices whose determinant (as an element of Fp) is 1. Find a
Sylow p-subgroup of SLn(Fp), and determine the number of such subgroups.

Solution

The determinant is a surjective homomorphism det: GLn(Fp) −→ F×
p with

kernel SLn(Fp), so

|SLn(Fp)| =
|GLn(Fp)|

p− 1
.

Thus a Sylow p-subgroup of SLn(Fp) will have the same order as one of
GLn(Fp). Now the group S of upper triangular matrices with 1’s on the
main diagonal (Question 7) is a Sylow p-subgroup of GLn(Fp), and is clearly
contained in SLn(Fp). Thus S is also a Sylow p-subgroup of SLn(Fp).
The normaliser N ′ of S in SLn(Fp) is just SLn(Fp) ∩ N , where N is the
normaliser of S in GLn(Fp), as in Question 8. Thus the normaliser N ′ of S
in SLn(Fp) is just the group of upper triangular matrices with determinant
1, and N ′ has index p − 1 in N . This is the same as the index of SLn(Fp)
in GLn(Fp). So the index of N ′ in SLn(Fp) is the same as that of S in
GLn(Fp). Hence the number of Sylow p-subgroups in SLn(Fp) is the same as
in GLn(Fp), namely

n∏
k=2

pk − 1

p− 1
.

[5 marks]
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Question 10

The quaternion group Q8 of order 8 has presentation

Q8 = 〈a, b | a4 = e, b2 = a2, bab−1 = a−1〉.

Show that every element of Q8 can be written in the form arbs with r ∈
{0, 1, 2, 3} and s ∈ {0, 1}, but that Q8 is not isomorphic to D4.

Let A and B be the matrices

A =

(
i 0
0 −i

)
, B =

(
0 1

−1 0

)
.

Verify that Q8 has a representation ρ of degree 2 given by ρ(a) = A and
ρ(b) = B by checking that A and B satisfy A4 = I, A2 = B2, BAB−1 = A−1.

[Note that the question should refer to D4 not D8.]

Solution

Any element of Q8 can be written in the form ar1bs1 . . . artbst for some t and
some integers rj, sj. Using the properties a4 = e and b2 = a2, we can rewrite
this so that 0 ≤ rj ≤ 3 and 0 ≤ sj ≤ 1 for each j, From the property
bab−1 = a−1 we have ba = a−1b = a3b. Using this repeatedly, we can move
every occurrence of b to the right of every occurrence of a, so that we end up
with an expression arbs with 0 ≤ r ≤ 3 and 0 ≤ s ≤ 1. Thus every element
of Q8 can be written in this form.

Now in Q8 we have a2 = b2 6= e so that a, a3, b, b3 are 4 distinct elements of
order 4. (In fact ab and a3b also have order 4). However in D4 there are only
two elements of order 4 (the rotations by ±900), all other elements except
the identity having order 2. Thus the two nonabelian groups D4, Q8 of order
8 cannot be isomorphic.

To check that ρ is a representation, we just have to verify that the matrices
A, B satisfy the same relations as the generators a, b of Q8. Now

A2 =

(
−1 0
0 −1

)
= −I,

so that A4 = I, and

B2 =

(
0 1

−1 0

) (
0 1

−1 0

)
=

(
−1 0
0 −1

)
= A2.

Also

BAB−1 = −BAB = −
(

0 1
−1 0

) (
i 0
0 −i

) (
0 1

−1 0

)
= −

(
0 −i
−i 0

) (
0 1

−1 0

)
=

(
−i 0
0 i

)
= −A = A−1.

[8 marks]

7



Question 11

Let ρ1 be the degree 2 representation of S3 given by identifying S3 with the
group D3 of symmetries of an equilateral triangle. (This identification is
possible since all permutations of the vertices of the triangle are obtained by
rotations or reflections.) Write out the 6 matrices ρ1(g) for g ∈ S3. Check
that ρ1((12))ρ1((123)) = ρ1((23)).

[Note that the question should refer to D3 not D6.]

Solution

Number the vertices of the triangle 1, 2, 3 in anticlockwise order, with 1, 2
on the base. Then we have

ρ1(e) =

(
1 0
0 1

)
, ρ1((123)) =

 −1
2
−

√
3

2

√
3

2
−1

2

 , ρ1((132)) =

 −1
2

√
3

2

−
√

3
2

−1
2

 ,

ρ1((12) =

(
−1 0
0 1

)
, ρ1((23)) =

 1
2

√
3

2

√
3

2
−1

2

 , ρ1((13)) =

 1
2

−
√

3
2

−
√

3
2

−1
2

 .

We check

ρ1((12))ρ1((123)) =

(
−1 0
0 1

)  −1
2
−

√
3

2

√
3

2
−1

2

 =

 1
2

√
3

2

√
3

2
−1

2

 = ρ1((23)).

[8 marks]
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Question 12

Let ρ2 be the permutation representation of S3 (so ρ2 has degree 3). Write
out the 6 matrices ρ2(g) for g ∈ S3. Check that ρ2((12))ρ2((123)) = ρ2((23)).

Solution

We have

ρ2(e) =

 1 0 0
0 1 0
0 0 1

 , ρ2((123)) =

 0 0 1
1 0 0
0 1 0

 ,

ρ2((132)) =

 0 1 0
0 0 1
1 0 0

 , ρ2((12)) =

 0 1 0
1 0 0
0 0 1

 ,

ρ2((23)) =

 1 0 0
0 0 1
0 1 0

 , ρ2((13)) =

 0 0 1
0 1 0
1 0 0

 .

We check

ρ2((12))ρ2((123)) =

 0 1 0
1 0 0
0 0 1

  0 0 1
1 0 0
0 1 0


=

 1 0 0
0 0 1
0 1 0

 .

[8 marks]

9



Question 13

Let ρ1 and ρ2 be the representations of S3 in Questions 11 and 12 respectively.
What are the degrees of the representations ρ3 = ρ1 ⊕ ρ2 and ρ4 = ρ1 ⊗ ρ2?
Write out the 6 matrices ρi(g) for g ∈ S3, and check that ρi((12))ρi((123)) =
ρi((23)), for i = 3 and for i = 4.

Solution

Since ρ1 and ρ2 have degrees 2, 3 respectively, ρ3 = ρ1⊕ρ2 has degree 2+3 = 5
and ρ4 = ρ1 ⊗ ρ2 has degree 2× 3 = 6.
For ρ3, the matrices are

ρ3(e) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ;

ρ3((123)) =


−1

2
−

√
3

2
0 0 0

√
3

2
−1

2
0 0 0

0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 ,

ρ3((132)) =


−1

2

√
3

2
0 0 0

−
√

3
2

−1
2

0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

 ,

ρ3((12)) =


−1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 ,

ρ3((23)) =



1
2

√
3

2
0 0 0

√
3

2
−1

2
0 0 0

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 ,
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ρ3((13)) =



1
2

−
√

3
2

0 0 0

−
√

3
2

−1
2

0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

 .

We check

ρ3((12))ρ3((123)) =


−1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1




−1

2
−

√
3

2
0 0 0

√
3

2
−1

2
0 0 0

0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 ,

=



1
2

√
3

2
0 0 0

√
3

2
−1

2
0 0 0

0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 ,

= ρ3((23)).

For ρ4, the matrices are

ρ4(e) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ;

ρ4((123)) =



0 0 −1
2

0 0 −
√

3
2

−1
2

0 0 −
√

3
2

0 0

0 −1
2

0 0 −
√

3
2

0

0 0
√

3
2

0 0 −1
2

√
3

2
0 0 −1

2
0 0

0
√

3
2

0 0 −1
2

0



;
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ρ4((132)) =



0 −1
2

0 0
√

3
2

0

0 0 −1
2

0 0
√

3
2

−1
2

0 0
√

3
2

0 0

0
√

3
2

0 0 −1
2

0

0 0
√

3
2

0 0 −1
2

√
3

2
0 0 −1

2
0 0



;

ρ4((12)) =


0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 ;

ρ4((23)) =



1
2

0 0
√

3
2

0 0

0 0 1
2

0 0
√

3
2

0 1
2

0 0
√

3
2

0

√
3

2
0 0 −1

2
0 0

0 0
√

3
2

0 0 −1
2

0
√

3
2

0 0 −1
2

0



;

ρ4((13)) =



0 0 1
2

0 0 −
√

3
2

0 1
2

0 0 −
√

3
2

0

1
2

0 0 −
√

3
2

0 0

0 0 −
√

3
2

0 0 −1
2

0 −
√

3
2

0 0 −1
2

0

−
√

3
2

0 0 −1
2

0 0



.
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We check

ρ4((12))ρ4((123)) =


0 −1 0 0 0 0
−1 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1





0 0 −1
2

0 0 −
√

3
2

−1
2

0 0 −
√

3
2

0 0

0 −1
2

0 0 −
√

3
2

0

0 0
√

3
2

0 0 −1
2

√
3

2
0 0 −1

2
0 0

0
√

3
2

0 0 −1
2

0



=



0 0 1
2

0 0 −
√

3
2

0 1
2

0 0 −
√

3
2

0

1
2

0 0 −
√

3
2

0 0

0 0 −
√

3
2

0 0 −1
2

0 −
√

3
2

0 0 −1
2

0

−
√

3
2

0 0 −1
2

0 0


= ρ4((13)).

[8 marks]

Nigel Byott
May 2004
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