MAS4010 ADVANCED TOPICS IN ALGEBRA SOLUTIONS TO EXERCISE SHEET 4

Question 1

Let G be the alternating group A_{6}. For each prime p dividing $|G|$, give one example of a Sylow p-subgroup of G, and find the number of such subgroups.

Solution:

$A_{6}=\frac{1}{2} \times 6!=360=2^{3} \cdot 3^{2} \cdot 5$. So we need to consider the primes $p=2,3,5$. $p=2$: One Sylow 2-subgroup is $\langle(1234)(56),(13)(56)\rangle \cong D_{4}$. (Notice we need the (56) contribution to get even permutations). Every conjugate of this contains two elements of order 4 , with cycle type $t_{4} t_{2}$, and every element of this type occurs in exactly one Sylow 2-subgroup. So the number of Sylow 2 -subgroups is

$$
\frac{1}{2} \times \text { number of elements of cycle type } t_{4} t_{2}=\frac{1}{2} \times \frac{6 \cdot 5 \cdot 4 \cdot 3}{4}=45
$$

$p=3$: One Sylow 3 -subgroup is $\langle(123),(456)\rangle \cong C_{3} \times C_{3}$. Any Sylow 3subgroup contains 4 elements of cycle type t_{3}^{2}, each element with this cycle type occurring in exactly one Sylow 3 -subgroup. So the number of Sylow 3 -subgroups is

$$
\frac{1}{4} \times \text { number of elements of cycle type } t_{3}^{2}=\frac{1}{4} \times \frac{(6 \cdot 5 \cdot 4)(3 \cdot 2 \cdot 1)}{3 \cdot 3 \cdot 2}=10
$$

$p=5$: One Sylow 5-subgroup is $\langle 12345\rangle \cong C_{5}$. Each Sylow 5-subgroup contains 45 -cycles, and every 5 -cycle is contained in exactly one Sylow 5subgroup. So the number of Sylow 5 -subgroups is

$$
\frac{1}{4} \times \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{5}=36
$$

Question 2

Let G be a group, and, for any prime p, let n_{p} be the number of Sylow p subgroups of G. Find the values of n_{p} permitted by Sylow's Theorems, for each p dividing $|G|$, in the following cases. Are there any conclusions about G that you can easily draw? (You do not have to show that groups with these values of n_{p} actually exist).
(i) $|G|=35$;
(ii) $|G|=155$;
(iii) $|G|=240$;
(iv) $|G|=72$;
(v) $|G|=105$.

Solution:

(i) $|G|=35: n_{7} \equiv 1 \quad(\bmod 7)$ and n_{7} divides 35 , so $n_{7}=1$. Similarly $n_{5}=1$. So G has only 6 elements of order 7 and only 4 elements of order 5. Thus there are some elements of order 35 (in fact 24 of them), so G must be cyclic.
(ii) $|G|=155=5 \times 31: n_{31} \equiv 1 \quad(\bmod 31)$ and n_{31} divides 155 , so $n_{31}=1$. On the other hand n_{5} divides 155 and satisfies $n_{5} \equiv 1(\bmod 5)$, which gives two possibilities $n_{5}=1$ or $n_{5}=31$. Thus G always has a normal subgroup of order 31 , but might or might not be cyclic. [3 marks]
(iii) $|G|=240=2^{4} \cdot 3 \cdot 5$. Here we have $n_{2}=1$ or 3 or 5 or $15 ; n_{3}=1,4$, 10,16 or 40 and $n_{5}=1,6$ or 16 .
[4 marks]
(iv) $|G|=72=2^{3} \cdot 3^{2}$. Here $n_{2}=1,3$ or 9 and $n_{3}=1$ or 4 . We can't easily calculate the number of elements of 2-power or 3-power order, since we do not know the orders of the intersections of two Sylow 2-subgroups (or 3 -subgroups).
[marks]
(v) $|G|=105=3 \cdot 5 \cdot 7$. We have $n_{3}=1$ or $7 ; n_{5}=1$ or $21 ; n_{7}=1$ or 15 .

If $n_{3}=7$ then G has 15 elements of order 3. If $n_{5}=21$ then G has 84 elements of order 5 . If $n_{7}=15$ then G has 90 elements of order 7 .
Thus if $n_{7}=15$ we must have $n_{5}=n_{3}=1$. Thus we can conclude that either G has a normal subgroup of order 7 , or G has both a normal subgroup of order 3 and a normal subgroup of order 5 . [4 marks]
[Total: 17 marks]

Question 3

Let G be a group of order $351=27 \times 13$. By considering the number of Sylow p-subgroups of G for appropriate primes G, show that G must have a proper normal subgroup.

Solution:

The relevant primes are 3 and 13. (Note that 27 is not prime!) As $n_{3} \equiv 1$ $(\bmod 3)$ and n_{3} divides 13 , we have $n_{3}=1$ or 13 . Similarly $n_{13}=1$ or 27 . If $n_{13}=27$ then G contains 27×12 elements of order 13 , and hence only 27 other elements, so that $n_{3}=1$ in this case. (Any Sylow 3 -subgroup will have order 13). Hence either G has a normal subgroup of order 13 (if $n_{13}=1$) or a normal subgroup of order 27 (if $n_{13}=27$, so that $n_{3}=1$). Either way, G has a proper normal subgroup.

Question 4

Let G be a group of order $p q$, where p and q are primes and $p>q$. Show that
(i) G has a proper normal subgroup;
(ii) if $p \not \equiv 1 \quad(\bmod q)$ then G is cyclic.

Solution:

As n_{p} divides $p q$ we have $n_{p}=1, p, q$, or $p q$. But also $n_{p} \equiv 1(\bmod p)$. Since $1<q<p$, the only possibility for n_{p} is 1 . Thus G has a proper normal subgroup of order p.
As n_{q} divides $p q$ but is not divisible by q we have $n_{q}=1$ or p. If $p \not \equiv 1$ $(\bmod q)$ then the second possibility is ruled out, so $n_{q}=n_{p}=1$. Then G has only $p-1$ elements of order p, only $q-1$ elements of order q, and only one element (the identity) of order 1 . This leaves $(p-1)(q-1)>0$ elements which must have order $p q$, so that G is cyclic.
[12 marks]

Question 5

Show that any p-subgroup of a finite group G is contained in some Sylow p-subgroup of G. (Hint: Adapt the proof of the 2nd Sylow Theorem).

Solution:

Let P be a Sylow p-subgroup of G. (We know P exists by the 1st Sylow Theorem.) Let Q be any p-subgroup in G, and let $|G|=p^{r} m$ where p does not divide m.
G acts by left multiplication on the set $S=\{g P \mid g \in G\}$ of the m left cosets of P. Hence Q also acts on this set, and each Q-orbit has size a power of p (since it must divide $|Q|$). As these orbits partition S, and $|S|=m$ is not divisible by p, there must be at least one orbit of size $p^{0}=1$. Thus, for some $g \in G$ we have $Q g P=g P$. Then $Q g \subseteq g P$, so that $Q \subseteq g P g^{-1}$. Now $g P g^{-1}$ is a Sylow p-subgroup since it has the same order as P. So we have shown that every p-subgroup Q of G is contained in some Sylow p-subgroup.
[8 marks]

Question 6

Show that a normal p-subgroup of a finite group G is contained in every Sylow p-subgroup of G.

Solution:

Let Q be a normal p-subgroup of G. By Question $5, Q \subseteq P$ for some Sylow p-subgroup of G. By Sylow's 2nd Theorem, every Sylow p-subgroup of G has the form $g \mathrm{Pg}^{-1}$, and since Q is normal in G we have $Q=g Q g^{-1} \subseteq g P g^{-1}$. Hence Q is contained in every Sylow p-subgroup of G.
[4 marks]

Question 7

Let S be the subset of $G=\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ consisting of upper triangular matrices with 1's on the main diagonal. Verify that S is a subgroup of G, and deduce that it is a Sylow p-subgroup.

Solution

We have that $A=\left(a_{i j}\right) \in S$ if and only if $a_{i i}=1$ for all i and $a_{i j}=0$ whenever $i>j$.
Clearly $I \in S$. Given $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ in S, let $C=A B=\left(c_{i j}\right)$. Then

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Now $a_{i k}=0$ if $i>k$ and $b_{j k}=0$ if $k>j$. Thus if $i>j$ then each term in the sum is 0 , so $c_{i j}=0$. If $i=j$ then $c_{i j}=c_{i i}=a_{i i} b_{i i}=1$. Thus $C=A B \in S$, so S is closed under multiplication.
Now each $A \in S$ is an element of the finite group G, so it has some finite order n. Since S is closed under multiplication, $A^{-1}=A^{n-1} \in S$, so S is also closed under taking inverses. Hence S is a subgroup of G.
[Alternative proof that S is closed under inverses, which works over infinite fields as well:
Let $A=\left(a_{i j}\right) \in S$ and let $D=\left(d_{i j}\right)=A^{-1} \in G$. Then

$$
\sum_{k=1}^{n} d_{i k} a_{k j}=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

We show by induction on $m, 1 \leq m \leq n$, that

$$
d_{i i}=1 \text { if } i \leq m ; \quad d_{i k}=0 \text { if } i>k \text { and } k \leq m .
$$

The case $m=n$ shows $D \in S$.
Assuming this induction hypothesis holds for $m-1$ (no assumption for $m=1$) we have

$$
\delta_{i m}=\sum_{k=1}^{n} d_{i k} a_{k m}=\sum_{\{k \mid i \leq k<m\}} d_{i k} a_{k m}+d_{i m} .
$$

If $i \geq m$, the last sum is 0 , so $d_{m m}=\delta_{m m}=1$ and if $i>m$ then $d_{i m}=0$. This shows that the induction hypothesis also holds for m.]
Now we know

$$
|G|=\prod_{j=0}^{n-1}\left(p^{n}-p^{j}\right)=p^{\binom{n}{2}} \prod_{j=0}^{n-1}\left(p^{n-j}-1\right)
$$

so any subgroup of G of order $p^{\binom{n}{2}}$ will be a Sylow p-subgroup, Now to specify an element of S, we must choose $a_{i j}$ whenever $1 \leq i<j \leq n$. There are $\binom{n}{2}$ such matrix entries, each of which can be any of the p elements of \mathbb{F}_{p}. Hence $|S|=p^{\binom{n}{2}}$. Thus S is a Sylow p-subgroup of G.

Question 8

The normaliser of the group S in Question 7 is the group of all upper triangular invertible matrices. Using this fact (which you should have already proved in the case $n=2$ in Question 5 on Sheet 3), determine the number of Sylow p-subgroups of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$.

Solution

The number of Sylow p-subgroups is the index of the normaliser of any one of them, so we just need to find the index of the group N of upper triangular invertible matrices in $G=\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. To specify an element of N we must first choose all the above-diagonal entries, which amounts to choosing an element of S, and then choose each of the n diagonal entries, which can be any element of \mathbb{F}_{p}^{\times}(but can't be 0 since the matrix must be invertible). So

$$
|N|=|S|(p-1)^{n},
$$

and the number of Sylow p-subgroups in G is

$$
\frac{|G|}{|N|}=\prod_{j=0}^{n-1} \frac{p^{n-j}-1}{p-1}=\prod_{k=2}^{n} \frac{p^{k}-1}{p-1} .
$$

Question 9

The special linear group $S L_{n}\left(\mathbb{F}_{p}\right)$ is defined as the subgroup of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$ consisting of matrices whose determinant (as an element of \mathbb{F}_{p}) is 1 . Find a Sylow p-subgroup of $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$, and determine the number of such subgroups.

Solution

The determinant is a surjective homomorphism det: $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right) \longrightarrow \mathbb{F}_{p}^{\times}$with kernel $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$, so

$$
\left|\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)\right|=\frac{\left|\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)\right|}{p-1}
$$

Thus a Sylow p-subgroup of $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$ will have the same order as one of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. Now the group S of upper triangular matrices with 1's on the main diagonal (Question 7) is a Sylow p-subgroup of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$, and is clearly contained in $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$. Thus S is also a Sylow p-subgroup of $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$.
The normaliser N^{\prime} of S in $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$ is just $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right) \cap N$, where N is the normaliser of S in $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$, as in Question 8. Thus the normaliser N^{\prime} of S in $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$ is just the group of upper triangular matrices with determinant 1 , and N^{\prime} has index $p-1$ in N. This is the same as the index of $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$ in $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. So the index of N^{\prime} in $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$ is the same as that of S in $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. Hence the number of Sylow p-subgroups in $\mathrm{SL}_{n}\left(\mathbb{F}_{p}\right)$ is the same as in $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$, namely

$$
\prod_{k=2}^{n} \frac{p^{k}-1}{p-1}
$$

Question 10

The quaternion group Q_{8} of order 8 has presentation

$$
Q_{8}=\left\langle a, b \mid a^{4}=e, b^{2}=a^{2}, b a b^{-1}=a^{-1}\right\rangle .
$$

Show that every element of Q_{8} can be written in the form $a^{r} b^{s}$ with $r \in$ $\{0,1,2,3\}$ and $s \in\{0,1\}$, but that Q_{8} is not isomorphic to D_{4}.
Let A and B be the matrices

$$
A=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), \quad B=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Verify that Q_{8} has a representation ρ of degree 2 given by $\rho(a)=A$ and $\rho(b)=B$ by checking that A and B satisfy $A^{4}=I, A^{2}=B^{2}, B A B^{-1}=A^{-1}$.
[Note that the question should refer to D_{4} not D_{8}.]

Solution

Any element of Q_{8} can be written in the form $a^{r_{1}} b^{s_{1}} \ldots a^{r_{t}} b^{s_{t}}$ for some t and some integers r_{j}, s_{j}. Using the properties $a^{4}=e$ and $b^{2}=a^{2}$, we can rewrite this so that $0 \leq r_{j} \leq 3$ and $0 \leq s_{j} \leq 1$ for each j, From the property $b a b^{-1}=a^{-1}$ we have $b a=a^{-1} b=a^{3} b$. Using this repeatedly, we can move every occurrence of b to the right of every occurrence of a, so that we end up with an expression $a^{r} b^{s}$ with $0 \leq r \leq 3$ and $0 \leq s \leq 1$. Thus every element of Q_{8} can be written in this form.
Now in Q_{8} we have $a^{2}=b^{2} \neq e$ so that a, a^{3}, b, b^{3} are 4 distinct elements of order 4. (In fact $a b$ and $a^{3} b$ also have order 4). However in D_{4} there are only two elements of order 4 (the rotations by $\pm 90^{\circ}$), all other elements except the identity having order 2 . Thus the two nonabelian groups D_{4}, Q_{8} of order 8 cannot be isomorphic.
To check that ρ is a representation, we just have to verify that the matrices A, B satisfy the same relations as the generators a, b of Q_{8}. Now

$$
A^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-I
$$

so that $A^{4}=I$, and

$$
B^{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=A^{2} .
$$

Also

$$
\begin{aligned}
B A B^{-1}=-B A B & =-\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& =-\left(\begin{array}{rr}
0 & -i \\
-i & 0
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
-i & 0 \\
0 & i
\end{array}\right)=-A=A^{-1} .
\end{aligned}
$$

Question 11

Let ρ_{1} be the degree 2 representation of S_{3} given by identifying S_{3} with the group D_{3} of symmetries of an equilateral triangle. (This identification is possible since all permutations of the vertices of the triangle are obtained by rotations or reflections.) Write out the 6 matrices $\rho_{1}(g)$ for $g \in S_{3}$. Check that $\rho_{1}((12)) \rho_{1}((123))=\rho_{1}((23))$.
[Note that the question should refer to D_{3} not D_{6}.]

Solution

Number the vertices of the triangle 1, 2, 3 in anticlockwise order, with 1,2 on the base. Then we have
$\rho_{1}(e)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad \rho_{1}((123))=\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right), \quad \rho_{1}((132))=\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$,
$\rho_{1}\left((12)=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right), \quad \rho_{1}((23))=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right), \quad \rho_{1}((13))=\left(\begin{array}{cc}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)\right.$.
We check
$\rho_{1}((12)) \rho_{1}((123))=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)=\rho_{1}((23))$.
[8 marks]

Question 12

Let ρ_{2} be the permutation representation of S_{3} (so ρ_{2} has degree 3). Write out the 6 matrices $\rho_{2}(g)$ for $g \in S_{3}$. Check that $\rho_{2}((12)) \rho_{2}((123))=\rho_{2}((23))$.

Solution

We have

$$
\begin{array}{rlrl}
\rho_{2}(e)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), & \rho_{2}((123))=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \\
\rho_{2}((132))=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), & \rho_{2}((12)) & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
\rho_{2}((23))=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & \rho_{2}((13))=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) .
\end{array}
$$

We check

$$
\begin{aligned}
\rho_{2}((12)) \rho_{2}((123)) & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

[8 marks]

Question 13

Let ρ_{1} and ρ_{2} be the representations of S_{3} in Questions 11 and 12 respectively. What are the degrees of the representations $\rho_{3}=\rho_{1} \oplus \rho_{2}$ and $\rho_{4}=\rho_{1} \otimes \rho_{2}$? Write out the 6 matrices $\rho_{i}(g)$ for $g \in S_{3}$, and check that $\rho_{i}((12)) \rho_{i}((123))=$ $\rho_{i}((23))$, for $i=3$ and for $i=4$.

Solution

Since ρ_{1} and ρ_{2} have degrees 2,3 respectively, $\rho_{3}=\rho_{1} \oplus \rho_{2}$ has degree $2+3=5$ and $\rho_{4}=\rho_{1} \otimes \rho_{2}$ has degree $2 \times 3=6$.
For ρ_{3}, the matrices are

$$
\begin{gathered}
\rho_{3}(e)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) ; \\
\rho_{3}((123))=\left(\begin{array}{ccccc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \\
\rho_{3}((132))=\left(\begin{array}{ccccc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \\
\rho_{3}((12))=\left(\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \\
\rho_{3}((23))=\left(\begin{array}{ccccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right),
\end{gathered}
$$

$$
\rho_{3}((13))=\left(\begin{array}{ccccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

We check

$$
\begin{aligned}
\rho_{3}((12)) \rho_{3}((123))= & \left(\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccccc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \\
& =\left(\begin{array}{ccccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \\
& =\rho_{3}((23)) .
\end{aligned}
$$

For ρ_{4}, the matrices are

$$
\rho_{4}((123))=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) ;
$$

$$
\rho_{4}((132))=\left(\begin{array}{cccccc}
0 & -\frac{1}{2} & 0 & 0 & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & -\frac{1}{2} & 0 & 0 & \frac{\sqrt{3}}{2} \\
-\frac{1}{2} & 0 & 0 & \frac{\sqrt{3}}{2} & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & \frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} \\
\frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} & 0 & 0
\end{array}\right) ; ~ ; ~ ; ~\left(\begin{array}{ccccccc}
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) ;
$$

We check

$$
\begin{aligned}
\rho_{4}((12)) \rho_{4}((123)) & =\left(\begin{array}{cccccc}
0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccccccc}
0 & 0 & -\frac{1}{2} & 0 & 0 & -\frac{\sqrt{3}}{2} \\
-\frac{1}{2} & 0 & 0 & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 & 0 & -\frac{\sqrt{3}}{2} & 0 \\
0 & 0 & \frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} \\
\frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} & 0
\end{array}\right) \\
& =\left(\begin{array}{ccccccc}
0 & 0 & \frac{1}{2} & 0 & 0 & -\frac{\sqrt{3}}{2} \\
0 & \frac{1}{2} & 0 & 0 & -\frac{\sqrt{3}}{2} & 0 \\
\frac{1}{2} & 0 & 0 & -\frac{\sqrt{3}}{2} & 0 & 0 \\
0 & 0 & -\frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} \\
0 & -\frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} & 0 \\
-\frac{\sqrt{3}}{2} & 0 & 0 & -\frac{1}{2} & 0 & 0
\end{array}\right) \\
& =\rho_{4}((13)) .
\end{aligned}
$$

[8 marks]

