MAS4010 ADVANCED TOPICS IN ALGEBRA

SUMMARY OF PROPERTIES OF CHARACTERS

Here is a summary of facts which are useful in finding the character table of a finite group G.

1. The number of irreducible characters is the same as the number of conjugacy classes. (Convention: χ_1 is the trivial character $\chi_1(g) = 1$ for all $g \in G$. The first conjugacy class representative is $g_1 = e$.) It is useful to record

 $n_i = \text{size of conjugacy class of } g_i,$ $c_i = \text{order of centraliser of } g_i,$

for each conjugacy class representative g_i . (Thus $n_i c_i = |G|$).

2. (Character degrees). Let $d_i = \chi_i(e)$, the degree of the irreducible character χ_i . Then

$$\sum_{i=1}^{r} d_i^2 = |G|.$$

(Also, each d_i divides |G| – proof omitted.)

- 3. (Degree 1 characters). These are just homomorphisms $G \longrightarrow \mathbb{C}^{\times}$, and are necessarily irreducible. The product of any two degree 1 characters is a degree 1 character. For an abelian group G, all irreducible characters have degree 1, and there are |G| of them.
- 4. Orthogonality relations:

$$\sum_{k=1}^{r} n_k \chi_i(g_k) \overline{\chi_j(g_k)} = |G| \delta_{ij} \qquad \text{(Row Orthogonality);}$$
$$\sum_{k=1}^{r} \chi_k(g_i) \overline{\chi_k(g_i)} = c_i \delta_{ij} \qquad \text{(Column Orthogonality).}$$

5. (Inflating characters). If N is a normal subgroup of G, we get an irreducible character χ of G by taking an irreducible character $\hat{\chi}$ of G/N and setting $\chi(g) = \hat{\chi}(gN)$.(This is particularly useful if G/N is abelian, since we can then write down |G/N| degree 1 characters of G.)

- 6. $\chi(g^{-1}) = \chi(g)$. In particular, $\chi_i(g) \in \mathbb{R}$ for all irreducible characters χ_i if and only if g is conjugate to g^{-1} .
- 7. The complex conjugate of any row (column) in the character table must occur as a row (column).
- 8. The product of any irreducible character with a degree 1 character is an irreducible character.
- 9. The product $\psi = \chi_i \chi_j$ of any two irreducible characters χ_i and χ_j is again a character, but in general will not be irreducible. However, it can be written

$$\chi_i \chi_j = \sum_{k=1}^r m_k \chi_k$$

for some non-negative integers m_k . Using inner products, we have $\sum_k m_k^2 = \langle \psi, \psi \rangle$, and, for those irreducible characters χ_k that we already know, we can find $m_k = \langle \psi, \chi_k \rangle$. Subtracting off the $m_k \chi_k$ for all such k, we obtain from ψ a linear combination of the remaining irreducible characters. (If we are lucky, just one of these occurs in ψ , so we can fill in another row of the character table.)

10. (Permutation characters). If G acts on some set S of size n, we get a permutation character χ_S for G, of degree n. For each $g \in G$ we have that $\chi_S(g)$ is the number of points of S fixed by g. Again, χ_S need not be irreducible, but we can investigate its irreducible constituents as in 9.

We can obtain further permutation characters by considering actions of G on other sets, e.g. G will permute the collection of all 2-element subsets of S, and this gives a permutation character of degree $\binom{n}{2}$.

11. (The regular character). This is the special permutation character where G acts on itself by left multiplication. It has values

$$\chi_{\mathrm{reg}}(g) = \begin{cases} |G| & \text{if } g = e, \\ 0 & \text{if } g \neq e, \end{cases}$$

and its decomposition into irreducible characters is $\chi_{\text{reg}} = \sum_{i=1}^{r} d_i \chi_i$.

12. $\chi_i(g)$ is a sum of d_i *m*th roots of unity, where *g* has order *m*. In particular, character values are always algebraic integers.

Nigel Byott May 2004