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Introduction: Affordance
and Ecological Perception
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J. J. Gibson’s “Ecological” Theory of Perception

I The function of vision is not image formation but
information gathering.

I The retinal image is just a means to this end, and must be
understood in the context of a constantly varying succession
of retinal images linked to the motion of the eye, the head,
and the observer.

I The eye is an instrument for gathering information about the
layout of surfaces in the environment within which the
observer operates.

I It does this by detecting invariants underlying the constantly
shifting flux of light impinging on the eye.

I Motion is an essential element of this: without motion,
everything is an invariant.
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Affordance

I The term “affordance” was invented by Gibson to refer to a
potentiality for action (or inaction) offered to an agent by
some feature of the environment.

I Examples: For a human being,
I A firm, more or less horizontal surface supported about 50cm

above the surrounding ground, if sufficiently wide and deep,
affords sitting;

I A sufficiently high and wide aperture in a more or less vertical
solid surface affords entering.

I An affordance is a relation between an agent and its
environment. For a given agent, the affordance appears as an
intrinsic property of the surface layout of the environment.

I According to Gibson, we perceive surface layouts and their
affordances directly : they are the primary objects of
perception (not “sense data”, “inner images”, etc.).
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Perhaps the composition and layout of surfaces
constitute what they afford. If so, to perceive them is to
perceive what they afford. This is a radical hypothesis,
for it implies that the “values” and “meanings” of things
in the environment can be directly perceived. Moreover,
it would explain the sense in which values and meanings
are external to the observer.

J. J. Gibson, The Ecological Approach to Visual Perception
(1979), p.127
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The Goals of Affordance Research

I Ecological questions:
I What is the role of affordances in the life of an individual?
I How can affordances be used to explain behaviour?
I How can they be exploited for improving the design of

environments?

I Ontological questions:
I How are individual affordances defined?
I What kinds of affordance are there and how can they be

classified?
I How can their properties be formalised?

I Aetiological questions:
I Where do affordances come from, i.e., how does the physical

layout of surfaces determine the affordances they provide for
any given class of creatures?
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An Example: Doors

I Steedman (2002) provides an ontological analysis of the
affordances associated with doors, formalised in a linear
dynamic event calculus:

I If you push on a closed door, it will open; if you push on an
open door, it will close.

I If a door is open, you can go through it; if it is closed, you
cannot.

I If you are inside, and go through a door, you end up outside; if
you are outside, and go through a door, you end up inside.

I An ecological analysis would focus on the role of doors in
providing passageways and barriers to regulate the movement
of people around buildings, etc.

I An aetiological analysis would describe the physical
characteristics that something must have in order to function
as (i.e., possess all the relevant affordances of) a door.
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Image Schemas

I Image schemas (Talmy, Johnson, Lakoff) are recurring
patterns which we use to structure our understanding of the
world. They are presumed to play a fundamental role in
human cognition and language.

I Important examples are CONTAINER and PATH.
I An image schema may be thought of as a coordinated bundle

of affordances:
I Primary affordances of a container: putting things in, taking

things out
I Secondary (optional) affordances of a container: moving things

(by moving the container they’re in), concealing things,
protecting things, storing things.

I At least in many cases, an image schema may be
characterised in terms of the affordances of its instances.
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Quantitative and Qualitative Determinants of Affordance

I Warren (1995) showed experimentally that for a set of stairs
to be climbable for a given human subject, the ratio between
the vertical height of each step and the subject’s own
leg-length should not exceed 0.88.

I Such numerical measurements are obviously important in
determining the affordances of different surface layouts.

I However, the relevant quantitative questions cannot even be
asked unless suitable qualitative conditions are satisfied first.

I For a flight of stairs there must exist an appropriately
configured sequence of alternating horizontal surfaces and
vertical displacements — otherwise there is nothing to
measure!
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QUALITATIVE
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QUANTITATIVE

L
R

R/L < 0.88
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The Goal of this Research

Outline of a research programme:

I To investigate the qualitative conditions that must be satisfied
by a surface layout in order for it to have some specified
affordance.

I In particular, to determine to what extent the
affordance-generating features of surface layouts can be
specified in terms on simple qualitative calculi such as the
RCC systems.

In the remainder of this paper we will focus on one particular case,
the affordance of containment.
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Formal Preliminaries
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Spatial Regions

I We will use standard RCC relations, specifically
P,PP,TP,TPP,EC ,DC ,O,PO.

I Spatial relations between objects are expressed using RCC
relations between their positions.

I The position of object o at time t is denoted pos(o, t). This
is a spatial region which coincides with the spatial extent of o
at t.

I Other spatial notions we will need:
I Boundary: ∂r
I Convex hull: cvhull(r)
I Congruence: Congruent(r1, r2)
I Union (r1 ∪ r2), intersection (r1 ∩ r2), and difference (r1 \ r2)

(understood set-theoretically or mereologically)
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Physical Objects

I Physical objects include
I Material objects (made of matter)
I Non-material objects (dependent on material objects, but not

themselves material)

I Non-material objects include holes and concavities in material
objects, e.g., the space within a container.

I The convex hull of an object (as opposed to that of a region)
is also a non-material object.

I These non-material objects associated with material objects
are not spatial regions: their location, shape, and size depend
on those of their hosts, and may change if the latter do.
Spatial regions do not change.
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Functions and Relations on Objects

Many of the functions and relations used for spatial regions have
analogues which apply to objects; we notate these using starred
symbols:

I The convex hull cvhull∗(o) of an object o obeys the rule:

∀t(pos(cvhull∗(o), t) = cvhull(pos(o), t)).

I Objects are congruent if their positions are:

∀t(Congruent∗(o1, o2, t) ↔
Congruent(pos(o1, t), pos(o2, t))).

I The boundary ∂∗(o) of an object is a lower-dimensional object
satisfying

∀t(P(∂(pos(o, t)), pos(∂∗(o), t)))
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Physical vs Spatial Connection

Modified RCC relations P∗,PP∗,TP∗, . . . apply to physical
objects, with connection understood to mean physical attachment
rather than spatial contiguity (objects are EC ∗ if actually joined
together). Note that these must be relativised to time.

A

B

C

A

B

TPP∗(B,A, t) EC ∗(A,B, t),DC ∗(B,C , t)
NTPP(pos(B, t), pos(C , t)) EC (pos(B, t), pos(C , t))
PP(∂(pos(A, t)), pos(∂∗(A), t)) EC (pos(A, t), pos(B, t))
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Non-interpenetrability

The Principle of Non-Interpenetrability for Material Objects:

I If at any time two material objects do not overlap (i.e., have
no common part), then their positions at that time cannot
overlap either:

Material(o1) ∧Material(o2) ∧ ¬O∗(o1, o2, t) →
¬O(pos(o1, t), pos(o2, t)).

I If at least one of the objects is non-material, then overlap is
possible, e.g., a material object located in a (non-material)
cavity in another material object. Thus we can have:

Material(o1) ∧ ¬Material(o2) ∧ ¬O∗(o1, o2, t) ∧
O(pos(o1, t), pos(o2, t)).
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Time

I We use the Method of Temporal Arguments.

I We write
S(t)

to mean that state S holds at time t.

I We write
E (t1, t2)

to mean that an event of type E occurs over the interval
[t1, t2].
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Modality

I We use a notion of modality based on possible futures:

♦P is true at t if and only if there is some
possible future of t such that, if that future is
the actual future, then P is true at t.

I This is not unproblematic! What is a “possible” future?
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Can the ball fit into the slot?
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Hammer it into a disc . . .
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It can now!
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Possible futures revisited

I The possible futures we need to found modality on must not
be too affordance-disrupting.

I We should not (normally) allow hammering a ball into a disc.

I But we should allow, e.g., folding a letter to fit it into an
envelope.

I For the purposes of assessing affordances, some objects should
be regarded as rigid.
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Rigidity

An object is rigid if all of its possible positions are congruent:

Rigid(o) =df ∀t∀t ′∀r∀r ′( ♦(pos(o, t) = r) ∧
♦(pos(o, t ′) = r ′) →
Congruent(r , r ′) )

Here too, possibility is to be understood as
‘non-affordance-disrupting’.

Different degrees of disruption correspond to different degrees of
rigidity.
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Containers and
Containment
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What is a Container?

I A container is a material object which can contain other
material objects

I But what does it mean for one object to contain another?

I My pocket contains coins
I The jug contains water
I The vase contains flowers (and water)
I The car contains people

I For simplicity, we shall restrict ourselves to “full containment”,
in which the contained object is “right inside” the container
— as in all the examples above except the flowers in the vase.
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The Contained Space of a Container

I An container has a contained space. This is a non-material
object, dependent on the container, within which an object
has to be in order to be contained by the container.
(The term is due to Pat Hayes.)

I We shall write cs(x) to denote the contained space of
container x .

I The contained space is always
I joined to x: ∀t EC∗(cs(x), x , t);
I part of the convex hull of x : ∀t P∗(cs(x), cvhull∗(x), t).
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Open and Closed Containers

I A container is closed at time t if the boundary of its
contained space is part of the boundary of the container itself
(its inner boundary):

Closed(x , t) =df Container(x) ∧ P∗(∂∗(cs(x)), ∂∗(x), t)).

A container can be closed at some times and open (i.e., not
closed) at others.

I The portals of an open container are the connected
components of ∂∗(cs(x)) \ ∂∗(x). These are non-material
objects, dependent on x , which exist whenever x is not closed.
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Containment

I ‘At time t, container c contains object o’ means that the
position of o at t is part of the position of the contained
space of c at t:

Contains(c , o, t) =df P(pos(o, t), pos(cs(c), t)).

cs(c)
co

I ‘Container c can contain object o’ means that it is possible
for c to contain o now or in the future:

CanContain(c , o, t) =df ∃t ′(t ≤ t ′ ∧ ♦Contains(c , o, t ′)).
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Containment and Rigidity

I The contained space of a rigid container is also rigid:

Container(c) ∧ Rigid(c) → Rigid(cs(c))

I It is easy to prove that a rigid container can contain a rigid
body only if the latter is congruent to part of the contained
space of the former:

CanContain(c , o, t) ∧ Rigid(c) ∧ Rigid(o) →
∃u∀t(Congruent∗(o, u, t) ∧ P∗(u, cs(c), t)))

I But more generally both the container and what it contains
may be either rigid or non-rigid.
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Being in a container is not the same as entering it . . .
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Entering a Container
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Entering and Leaving

I An important part of the affordance of containment is that, in
principle, objects can enter or leave (or be put in or taken out
of) containers.

I Suppose that o is outside c at t0 and inside c at t1.

I Over the interval [t0, t1], both o and c may undergo changes
in both position and shape.

I The sequence of positions/shapes assumed by an object over
an interval constitutes a trajectory.

I A condition for o to come to be inside c is that suitable
trajectories for both objects exist, compatible with whatever
rules for continuity, rigidity, non-interpenetrability, etc, are in
force.
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Trajectories

I A trajectory traj is a continuous sequence of spatial regions,
represented by a continuous function

traj : [0, 1] → R,

where R is the set of all spatial regions.

I How is “continuous” defined? Given a metric ∆ on the space
of spatial regions, continuity of trajectory traj is defined in the
usual way as

∀t ∈ [0, 1]∀ε > 0∃δ > 0∀t ′ ∈ [0, 1](
|t − t ′| < δ → ∆(traj(t), traj(t ′)) < ε).
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Following a trajectory

The following formula says that object o follows trajectory traj
over the interval [t0, t1]:

Follows(o, traj , t0, t1) =df

∀t
(
t0 ≤ t ≤ t1 → pos(o, t) = traj

(
t−t0
t1−t0

))
t = t1

0t − t

t  − t1 0
traj ( )

traj(0)

traj(1)

t

0t = t
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Continuity of Motion

The motion of o over the interval [t0, t1] is continuous so long as
over that interval it follows a (continuous) trajectory from its
position at t0 to its position at t1.

We require the motion of any object to be continuous over any
interval within its lifetime:

[t, t ′] ⊆ lifetime(o) → ∃traj(traj(0) = pos(o, t) ∧
traj(1) = pos(o, t ′) ∧
Follows(o, traj , t, t ′))
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Entering a Container: Initial position
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Entering a Container: Just outside
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Entering a Container: Entering
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Entering a Container: Just inside
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Entering a Container: Final position
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Entering a container

I We will concentrate on the actual entering, i.e., the transition
between “just outside” to “just inside”.

I For o to enter c over the interval [t1, t2], o and c must follow
trajectories such that at the start, o is EC to the contained
space of c , and at the end, it is TPP. In between, the relation
between the two must be neither EC nor TPP.

I The following formula expresses this:

Enters(o, c , t0, t1) =df

∃trajo∃trajc(
Follows(o, trajo , t0, t1) ∧ Follows(c , trajc , t0, t1)) ∧

∀t(t0 ≤ t ≤ t1 →
EC (pos(o, t), pos(cs(c), t)) ↔ t = t0 ∧
TPP(pos(o, t), pos(cs(c), t)) ↔ t = t1)
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Remarks on the definition of Enters(o, c , t0, t1)

I From non-interpenetrability, we always have
¬O(pos(o, t), pos(c , t)), so this does not need to be stated
explicitly.

I From the transition diagram for RCC, for t0 < t < t1, we have
PO(pos(o, t), pos(cs(c), t)). If o is a one-piece object, this
means that o must intersect a portal of c during this period.

I Both o and c may move, and, if non-rigid, change shape
during the entering process — all this is accounted for by the
trajectories trajc and trajo .

I It seems obvious that to move from a position outside c to a
position inside c , o must enter c . This needs to be proved!

¬O(pos(o, t), pos(cs(c), t)) ∧ Contains(c , o, t ′) →
∃t0∃t1(t ≤ t0 < t1 ≤ t ′ ∧ Enters(o, c , t0, t1))
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means that o must intersect a portal of c during this period.

I Both o and c may move, and, if non-rigid, change shape
during the entering process — all this is accounted for by the
trajectories trajc and trajo .

I It seems obvious that to move from a position outside c to a
position inside c , o must enter c . This needs to be proved!

¬O(pos(o, t), pos(cs(c), t)) ∧ Contains(c , o, t ′) →
∃t0∃t1(t ≤ t0 < t1 ≤ t ′ ∧ Enters(o, c , t0, t1))
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The Affordance of Entering

I CanEnter(o, c , t) =df ∃t ′♦Enters(o, c , t, t ′)

I How is the affordance of entry related to the affordance of
containment, i.e., how is CanEnter related to CanContain?

I Conjecture: ¬O(pos(o, t), pos(cs(c), t)) →
(CanContain(o, c , t) ↔

∃t ′(t ≤ t ′ ∧ CanEnter(o, c , t ′))).

I Entry gives a lower-level view of the affordance of
containment.

I Note: To get the ship into the bottle, we might have to
dismantle it first and then reassemble it in the bottle — this
raises the ontological question of whether the ship can be
referred to even when in the dismantled state . . .
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Entry at a Portal

Antony Galton The Formalities of Affordance



Entry at a Portal

Antony Galton The Formalities of Affordance



Entry at a Portal

Antony Galton The Formalities of Affordance



Entry at a Portal

Antony Galton The Formalities of Affordance



Entry at a Portal

Antony Galton The Formalities of Affordance



Entry at a Portal

Antony Galton The Formalities of Affordance



Entry at a Portal

I While o is entering c , we can distinguish the part of o still
outside c , and the part already in c . Their common boundary
must lie within a portal of c , by non-interpenetrability.

I In fact we need only consider the positions of these parts, say

r1(t) = pos(o, t) ∩ pos(cs(c), t)
r2(t) = pos(o, t) \ pos(cs(c), t)

I Then we must have

Enters(o, c , t0, t1) ∧ t0 < t < t1 →
P(∂r1(t) ∩ ∂r2(t), pos(∂∗cs(c) \ ∂∗c , t))

I ∂r1(t) ∩ ∂r2(t) is the position of a cross-section of o.
To enter c , o must be able to fit a continuous series of its
cross-sections into a portal of c . This is implicit in the
affordance of entering.
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Conclusions

and
Further Work
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Specific Summary

I Initial goal: To characterise formally the conditions under
which the affordance of containment exists.

I High-level characterisation of containment: Contains(c , o, t)
and its affordance: CanContain(c , o, t)

I Middle-level characterisation in terms of entering:
Enters(o, c , t0, t1)
and its affordance: CanEnter(o, c , t)

I Low-level characterisation of entering in terms of portals and
cross-sections.
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Summary of General Approach

I Initial goal: To define what it means for an object or
collection of objects to afford some action A to an object o.

I High-level definition of the affordance is a modalised version
of the definition of what it means for o actually to perform A.

I By invoking general principles such as continuity and
non-interpenetrability we tease out successively lower-level
conditions for the affordance to exist.

I We thereby approach by stages the final goal, to specify what
it is about any particular physical layout that results in its
having the affordances it does.

I This will then enable us to explain how, in Gibson’s words, we
are able to perceive affordances directly: by perceiving these
lower-level properties of the physical layout.

Antony Galton The Formalities of Affordance



Summary of General Approach

I Initial goal: To define what it means for an object or
collection of objects to afford some action A to an object o.

I High-level definition of the affordance is a modalised version
of the definition of what it means for o actually to perform A.

I By invoking general principles such as continuity and
non-interpenetrability we tease out successively lower-level
conditions for the affordance to exist.

I We thereby approach by stages the final goal, to specify what
it is about any particular physical layout that results in its
having the affordances it does.

I This will then enable us to explain how, in Gibson’s words, we
are able to perceive affordances directly: by perceiving these
lower-level properties of the physical layout.

Antony Galton The Formalities of Affordance



Summary of General Approach

I Initial goal: To define what it means for an object or
collection of objects to afford some action A to an object o.

I High-level definition of the affordance is a modalised version
of the definition of what it means for o actually to perform A.

I By invoking general principles such as continuity and
non-interpenetrability we tease out successively lower-level
conditions for the affordance to exist.

I We thereby approach by stages the final goal, to specify what
it is about any particular physical layout that results in its
having the affordances it does.

I This will then enable us to explain how, in Gibson’s words, we
are able to perceive affordances directly: by perceiving these
lower-level properties of the physical layout.

Antony Galton The Formalities of Affordance



Summary of General Approach

I Initial goal: To define what it means for an object or
collection of objects to afford some action A to an object o.

I High-level definition of the affordance is a modalised version
of the definition of what it means for o actually to perform A.

I By invoking general principles such as continuity and
non-interpenetrability we tease out successively lower-level
conditions for the affordance to exist.

I We thereby approach by stages the final goal, to specify what
it is about any particular physical layout that results in its
having the affordances it does.

I This will then enable us to explain how, in Gibson’s words, we
are able to perceive affordances directly: by perceiving these
lower-level properties of the physical layout.

Antony Galton The Formalities of Affordance



Summary of General Approach

I Initial goal: To define what it means for an object or
collection of objects to afford some action A to an object o.

I High-level definition of the affordance is a modalised version
of the definition of what it means for o actually to perform A.

I By invoking general principles such as continuity and
non-interpenetrability we tease out successively lower-level
conditions for the affordance to exist.

I We thereby approach by stages the final goal, to specify what
it is about any particular physical layout that results in its
having the affordances it does.

I This will then enable us to explain how, in Gibson’s words, we
are able to perceive affordances directly: by perceiving these
lower-level properties of the physical layout.

Antony Galton The Formalities of Affordance



Summary of General Approach

I Initial goal: To define what it means for an object or
collection of objects to afford some action A to an object o.

I High-level definition of the affordance is a modalised version
of the definition of what it means for o actually to perform A.

I By invoking general principles such as continuity and
non-interpenetrability we tease out successively lower-level
conditions for the affordance to exist.

I We thereby approach by stages the final goal, to specify what
it is about any particular physical layout that results in its
having the affordances it does.

I This will then enable us to explain how, in Gibson’s words, we
are able to perceive affordances directly: by perceiving these
lower-level properties of the physical layout.

Antony Galton The Formalities of Affordance



A Challenge for AI and Knowledge Representation

I We have only looked at containment here, and even in this
case there is still a lot of work to do in order to derive the
desired lower-level characterisations from the high-level
definitions using an appropriate set of general principles.

I That leaves everything else to investigate, such as affordances
for

I shifting
I lifting
I hiding
I opening
I closing
I climbing
I grasping
I . . .

Antony Galton The Formalities of Affordance



A Challenge for AI and Knowledge Representation

I We have only looked at containment here, and even in this
case there is still a lot of work to do in order to derive the
desired lower-level characterisations from the high-level
definitions using an appropriate set of general principles.

I That leaves everything else to investigate, such as affordances
for

I shifting
I lifting
I hiding
I opening
I closing
I climbing
I grasping
I . . .

Antony Galton The Formalities of Affordance



THE END
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