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Abstract. It is an obvious truth that the possibilities for action and
movement are conditioned by the physical spatial environment. In the
terminology of J. J. Gibson, these possibilities are defined by the “af-
fordances” of environmental features, and the key to being a success-
ful agent in the physical world is being able to perceive and exploit
these affordances. To what extent can affordances be characterised in
terms of low-level environmental features using the methods of tradi-
tional logic-based commonsense knowledge representation? Follow-
ing an introductory general discussion, this paper concentrates on a
particular case, the affordance of containment, for which we give a
sequence of successively more detailed and lower-level analyses.

1 Affordances and Image Schemas

The notion ofaffordancewas introduced by J. J. Gibson as part of
his radical “ecological” theory of perception. Whereas previous the-
ories had held that an individual’s perception of its environment must
be mediated by percepts corresponding to the ever-shifting patterns
of sensory stimulation to which the individual is subject, Gibson be-
lieved that the environment is perceiveddirectly, in the form of the
ambient array of surfaces constituting the environment within which
the individual moves and acts. Although the patterns of sensory stim-
ulation must clearly play a part in giving rise to the direct perception
of the surrounding surfaces, they are not themselves perceived, but
serve merely as conduits by which the information contained in those
surfaces is brought to the attention of the perceiver. That we are not
aware of the patterns of sensory stimulation themselves should be
sufficiently obvious if we consider the case of the eye: if we were
able somehow to observe the patterns of light falling on the retina,
we would certainly not be able to discern from these the external
world which, in practice, we perceive with such immediacy; instead,
all we should see would be a “blooming buzzing confusion”, as a re-
sult of the rapid movements of the eyeballs as well as the movements
of the subject’s own head and body.

A key feature of Gibson’s theory is the further observation that
the potentialities for movement and action afforded to an individual
by its environment are inherent properties of the surface layout by
which the environment is defined. As Gibson himself puts it,

Perhaps the composition and layout of surfacesconstitutewhat
they afford. If so, to perceive them is to perceive what they af-
ford. This is a radical hypothesis, for it implies that the “values”
and “meanings” of things in the environment can be directly
perceived. Moreover, it would explain the sense in which val-
ues and meanings are external to the observer. [11, p.127]

Thus we perceive directly that a firm, more or less horizontal surface
supported about 50cm above the surrounding ground is suitable, if
sufficiently wide and deep, for sitting on — it “affords sitting” —
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and a sufficiently high and wide aperture in a more or less vertical
solid surface can be passed through (it “affords entering”). A well-
known attempt to make explicit the physical properties that a surface
layout must exhibit in order to be possessed of a certain affordance is
that of Warren [25] who, amongst other things, shows experimentally
that in order for a set of stairs to be climbable for a given subject, the
ratio between the vertical height of each step and the subject’s own
leg-length should be not more than 0.88.

In investigating affordances we should distinguish between several
distinct goals, all of which must be achieved before a complete theory
can be obtained. We may refer to these as upper-, middle- and lower-
level goals, and they may be formulated as follows:

1. The upper-level goal is to answer what may be called “ecological”
or “environmental” questions concerning the role of affordances
in the life of an individual, how they can be used to explain fea-
tures of human and animal behaviour, and how they can be ex-
ploited for the better design of environments.

2. The middle-level goal is concerned with characterising exactly
what affordances are: this may be called the “ontological” ques-
tion. How is an affordance defined, and what is the logical re-
lationship between statements about affordances and other state-
ments about the world?

3. The lower-level goal is the answer the “aetiological” question of
where affordances come from, exactly how the physical layout of
surfaces determines the affordances it has for any given class of
creatures.

As an example of the middle-level goal, Steedman [22, 23] consid-
ers the affordances associated with doors. He uses alinear dynamic
event calculusto formalise such statements as that a door can be gone
through if open, but not if shut; if it is pushed when shut, it becomes
open, and vice versa; if one is inside, then the result of going through
the door is to be outside, and vice versa. These capture the affor-
dances of a doorquapassageway as well asquabarrier. On the other
hand, no consideration is given to the physical characteristics that
something must have in order to be able to function as (i.e., possess
all the relevant affordances of) a door.

As pointed out by Frank and Raubal [7] and elaborated further by
Kuhn [17], affordances are closely related toimage schemas[18], re-
curring patterns which we employ to structure our understanding of
the world we live in, and which are presumed to play a fundamental
role in human cognition and language. Examples of image schemas
include CONTAINER and PATH: the link with affordances is obvi-
ous, since to be a container is precisely toafford containment, while
to be a path is toafford passage. Thus at least in many cases image
schemas may be characterised in terms of the affordances of actual
exemplars of those schemas.

An example of the upper-level goal is Jordanet al’s sketch for an
affordance-based model ofplacein GIS [16]. As is well recognised,
the notion of place is complex, not to be reduced to some simplistic



construct in terms of location. A place is a portion of the environment
that can fulfil certain purposes of an agent or community of agents,
e.g., “here is a good place to have our picnic”. In order for X to be a
good place for Y to Z it is necessary, at least, that X affords Zing to
Y. Jordanet al provide a useful discussion of the many factors that
need to be taken into account in giving an affordance-based model of
place, though their claim to have presented a “methodology to model
places with affordances” is perhaps overstated.

This paper is concerned less with the upper or middle level goals
than with the comparatively neglected lower level: in virtue of what
does a given surface layout possess a particular set of affordances?
Some of the work of Warren cited above (e.g., concerning the physi-
cal requirements for steps to be climbable) falls under this category.
This particular example is quantitative in nature: the climbability
of steps is referred to numerical measurements of both steps and
climber. This is obviously important, since the numerical measure-
ments make all the difference. Nonetheless, the quantitive questions
cannot really be asked unless certain qualitative conditions are satis-
fied first: to be a candidate for being a flight of stairs, for example,
there must exist an appropriately configured sequence of alternating
horizontal surfaces and vertical displacements, and in the absence of
this, or a close enough approximation, there is nothing to measure!

In the spirit of qualitative reasoning in AI, our aim is to consider
the low-level question from a qualitative point of view. In particular,
we shall be concerned with the following question: To what extent
can the affordance-generating features of surface layouts be specified
in terms of simple qualitative calculi such as RCC [20]? The analysis
will be very much in the spirit of the formalisations of commonsense
knowledge exemplified by such works as [12, 13, 21, 5], in which
the notion of affordance is certainly frequently implicit, even if not
brought to the fore as the explicit focus of attention. In the space
available, it will only be possible to look in detail at one particular
type of affordance, that ofcontainment.

2 A Few Preliminaries

An affordance is a potentiality for action offered by some environ-
mental feature to an agent. Gibson stressed themutuality implicit
in this definition — it takes two to make an affordance, that which
affords something, and that to which it affords it. Thus the formal
expression of affordance must be relational in nature. The “action”
which is afforded does not necessarily involve motion (e.g., a text
affords reading, a bed affords sleeping) but in the most typical cases
it does so. Hence the formal expression of affordance will often in-
volve an analysis of some kind of motion. For this, we require an
appropriate grounding in spatial and temporal representations.

2.1 Spatial regions

In this paper we use the well-known RCC system of [20], and specif-
ically the following relations:

P (x, y) x is part ofy
PP (x, y) x is a proper part ofy
TP (x, y) x is a tangential part ofy
TPP (x, y) x is a tangential proper part ofy
EC(x, y) x is externally connected toy
O(x, y) x overlapsy
PO(x, y) x partially overlapsy

We treat these as relations between spatial regions rather than objects
(but see below,§2.2). Spatial relations between objects are expressed

using RCC relations between theirpositions. The position of objecto
at timet, denotedpos(o, t), is a spatial region which coincides with
the spatial extent ofo at t. Note thatpos encodes both position and
shape: ifo changes shape, thenpos(o, t) changes. Use of this nota-
tion does not presuppose a “Newtonian” notion of absolute space: as
in everyday life, positions are always specified in a relative way, by
reference to some framework of objects which, for the purposes at
hand, can be regarded as fixed (e.g., the walls of a room, the surface
of the earth) even though from some wider perspective they may be
regarded as moving. The use ofpos only presupposes that we have
some such framework implicitly to hand. For a detailed discussion of
the related notion of “relative place”, see [6].

We shall not attempt to define exactly what a spatial region is, but
merely content ourselves with the observation that a spatial region
is a possible position for an object. As such, a region is paradigmati-
cally three-dimensional, since material objects are. However, we will
also need to refer to the boundary (or surface) of a three-dimensional
region, and this is of course two-dimensional. We write∂x to de-
note the boundary ofx. Other spatial notions needed are theconvex
hull of a regionr, denotedcvhull(r), and the relation ofcongruence
between spatial regions, denotedCongruent(r1, r2). This must be
stipulated to be an equivalence relation, and in addition it should sat-
isfy the rule that any part of a region congruent to a given regionz
must be congruent to part ofz, i.e.,

P (x, y) ∧ Congruent(y, z) →
∃u(Congruent(x, u) ∧ P (u, z))

(1)

but no further attempt will be made to define it here.
Although we make no commitment to a representation of regions

as sets of points, we will make use of the set-theoretic notations for
union (∪), intersection (∩), and difference (\) on the assumption that
some suitable analogous operations would be definable in any “point-
less” theory of regions.

2.2 Physical objects

Physical objects include bothmaterial objects, which are made of
matter, andnon-materialobjects such as holes (and in particular the
inner spaces of containers) which are dependent on material objects
but not themselves material. Both material and non-material pbjcts
have positions. The predicateMaterial(x) is used to say that an
object is material.

We shall use a parallel series of RCC relations, notatedP ∗, PP ∗,
TP ∗, etc, to apply to physical objects, where “connection” is now
understood to mean physical attachment rather than spatial conti-
guity. Thus objects areEC∗ if they are actually joined together,
DC∗ if not. If objects o1 and o2 are not joined together but are
touching at timet, the relation between them can be expressed as
DC∗(o1, o2) ∧ EC(pos(o1, t), pos(o2, t)).

Material objects are characterised by theprinciple of non-
interpenetrability, which says that non-overlapping material objects
cannot simultaneously occupy overlapping positions, i.e.,

Material(o1) ∧Material(o2) ∧ ¬O∗(o1, o2) →
∀t¬O(pos(o1, t), pos(o2, t))

(2)

2.3 Time

We shall have cause to refer to specific motion events. A number
of different formalisms are available for this purpose, notably the



method of temporal arguments, event-type reification, and event-
token reification; these methods are described and compared in [10].
In this paper, we use the method of temporal arguments, by which, to
say that an event of typeE occurs over an interval[t1, t2], we write
E(t1, t2), using the termst1 and t2 as temporal arguments to the
predicateE expressing the event type. Conversion to the other for-
malisms is mostly straightforward, if it is desired to go on to exploit
the greater expressivity of those formalisms.

2.4 Modality and possible futures

Since it refers to whatcanhappen rather than to whatdoeshappen,
affordance is amodalnotion. Its formal expression must therefore
use either modal logic or some other formalism capable of expressing
an appropriate notion of modality. It is a non-trivial task to specify
exactly the notion of modality we require, and some discussion of
this is needed before we can proceed further.

Affordances are important because of their role in determining
possible future actions: affordance is a potentiality, and what is now
afforded, and therefore potential, may become actualised in the fu-
ture. If we talk about the affordance that something had at some past
time, we are implicitly referring to the possible futures running for-
ward from that time. Thus the form of modality appropriate for de-
scribing affordances is future-directed: with reference to any time
point, we are interested in its different possible futures, but regard
its past as fixed. The possibility operator we will use may be charac-
terised informally as follows:3P is true att if and only if there is
some possible future oft such that, if that future is the actual future,
thenP is true att. This can be described formally in terms of the
history structuresof [1], in which this operator is notated3* .2 Under
this interpretation, the logic of3 is given by the modal system S5.

This does not, however, fully characterise the meaning of the op-
erator. What does “possible future” mean? To illustrate the problem,
consider a slot machine which will accept 1 euro coins: this means (at
least) that the slot affords entry by a 1 euro coin. Does the slot afford
entry by a metal sphere of diameter 12mm? The practical common-
sense answer is “no”: the sphere is too wide to fit into the slot. But
what if I take a hammer and flatten the sphere into a disk? Then it
will surely fit into the slot (the volume of the sphere is a little less
than that of a 1 euro coin). The natural reply to this is to say that this
is “cheating”: it is not what we meant when we asked if the slot could
admit the metal sphere. But now consider this case: I have written a
letter on an A4 sheet of paper; I have an A5-sized envelope: can I use
it to post my letter? This time the answer is surely “yes”: I can fold
my letter in two and slip it into the envelope. The envelope affords
containment for an A4 sheet. Somewhere between folding a sheet of
paper in two and hammering a metal sphere flat lies the borderline
between those possible histories which we wish to allow for the pur-
pose of defining affordances and those which we do not. But where
exactly? The paper-folding is more easily reversible than the sphere-
flattening: but it is not completely reversible, since you can never get
rid of a crease in a sheet of paper. Perhaps the key lies in the notion
that folding a letter to fit it into an envelope is an entirely normal and
expected procedure: it is what we do. Flattening a sphere to fit it into
a slot intended for coins is highly unusual and only likely to be done
under exceptional circumstances.

We therefore do not want our modal operators to range over all
conceivable futures, or even all physically possible ones. Somehow
we must restrict our attention to those futures in which exceptional,

2 This operator is also used — notatedM — in [8, Ch.7].

affordance-disrupting events do not occur except perhaps in excep-
tional circumstances. It is in terms of these futures that the modal
operators2 and3 are to be interpreted. Of course, to say this is to
say virtually nothing until we have characterised what “normal” or
“expected” means. We acknowledge the ultimate necessity of doing
this, but meanwhile proceed to the technicalities of characterising
affordances on the assumption that some suitable definition of the
modal operators can be given.

2.5 Rigidity

Modality enters into the definition of another physical property,
namelyrigidity, which will be important in what follows. A material
object is rigid if itcannotchange shape. In reality, of course, absolute
rigidity is a fiction, but in practice many objects can be treated as if
they were rigid, and in particular for the logic of containment the dis-
tinction between rigid objects such as apples and boxes and non-rigid
objects such as bags and scarves (and human bodies!) is important.
An object is rigid if all of its possible positions are congruent:

Rigid(o) =df

∀t∀t′∀r∀r′(3(pos(o, t) = r) ∧3(pos(o, t′) = r′) →
Congruent(r, r′))

(3)

3 Case study: The Affordance of Containment

What is a container? It is hard to give a non-circular answer. A con-
tainer is something which can contain other things. What does it
mean to contain something? For A to contain B is for B to be in
A. What does “in” mean? “A is in B” means that B contains A . . .
and we are back where we started.

We might say that for A to contain B is for A to constrain the
position of B in a certain way. For example, the coins in my pocket
go wherever my pocket goes, unless they are taken out. The water in
a jug is held in place by the jug — without the jug, the water would
spread out and find its way to the lowest accessible spaces. But if a
man is in a house, in what sense is his position constrained by the
house? What about a tree in a field?

3.1 Contained space

We do not attempt todefinecontainers or the containment relation
here; but we can at least try to say as much as we can about it that is
clear, definite, and formalisable. To this end, we make use of the no-
tion of thecontained spaceof a container, introduced by Hayes [13]
in the context of containers for liquids. A cup, for example, is a solid
ceramic object used for containing liquids; its contained space is the
space partially enclosed by the material of the cup, within which any-
thing contained by the cup is located. As Hayes says, the contained
space “isnot a physical object but is characterized by a certain ca-
pacity and by being in a certain relation to a container”. In our ter-
minology, it is a non-material object dependent on the container. The
contained space of a container is well-defined since there is a point
beyond which, if more liquid is added, it will overflow; the surface
of the liquid at this point defines the upper boundary of the contained
space. For solid or granular matter, it is harder to specify that part
of the boundary of the contained space which is not shared with the
container itself. We will not attempt to address this problem here.3

3 Note also that for solids, we often speak of containment even when only part
of the contained object is actually in the contained space of the container,
e.g., a vase containing flowers, where only the stalks of the flowers are
actually inside the vase. Such examples have been discussed extensively in
the literature on spatial prepositions [15, 24, 3].



The contained spacecs(x) of a containerx belongs tox, but is not
part of it. It is not a spatial region, since it may be located at different
spatial regions at different times; asx moves around,cs(x) moves
with it.4 In particular,cs(x) is always contiguous withx, i.e.,

Container(x) → ∀tEC∗(cs(x), x).

and it is always located within the convex hull of the region occupied
by x:

Container(x) → ∀t(P (pos(cs(x), t), cvhull(pos(x), t))).

A container isclosedwhen the boundary of its contained space
forms part of the boundary of the container itself:

Closed(x, t) =df

Container(x) ∧ P (∂pos(cs(x), t), ∂pos(x, t)).

When a container is not closed, the connected components of
∂pos(cs(x), t)\∂pos(x, t) are (again following [13]) calledportals
of the container. They are the entrances and exits by which objects
can enter or leave the container. Many containers exhibit both open
and closed states: a box with a hinged lid, for example, is open when
the lid is raised, and closed when it is down.

3.2 Containment

To say that containerc contains objecto at a given time is to say
that the spatial region occupied byo at that time is part of the spatial
region occupied by the contained space ofc, i.e.,5

Contains(c, o, t) =df P (pos(o, t), pos(cs(c), t)) (4)

To formalise the notion thatc affords containment foro, we need
to say thatc cancontaino. At time t, this will be the case so long as
it is possible forc to containo at some time at or in the future oft:

CanContain(c, o, t) =df

∃t′(t ≤ t′ ∧3Contains(c, o, t′)).
(5)

It is implicit in the use of3 here thato can be moved over toc and
can enter it, with either or both undergoing changes of shape needed
to allow this to happen — all such changes being of the kind we have
called “normal” or “expected”.

3.3 Containment and rigidity

In general, we do not wish to make any assumptions concerning the
rigidity or otherwise of containers and what can be put in them. We
have four distinct cases here, as shown in the following table:

Rigid container Non-rigid container

Rigid object Apple in a box Apple in a bag

Non-rigid object Scarf in a box Scarf in a bag

We consider the form taken byCanContain in the case wherec
ando are both rigid. It seems obvious that if a container is rigid, then
so is its contained space; so we postulate the rule

Container(c) ∧Rigid(c) → Rigid(cs(c)) (6)

4 The ontology of contained spaces is similar to the ontology of holes [2],
sharing many of the same problems and difficulties.

5 We do not need to specify thatc is a container; ifc is not a container,cs(c)
can be defined to be the null object, sopos(cs(c), t) will also be null, and
henceContains(c, o, t) is necessarily false.

Hencecs(c) is rigid as well. AssumeCanContain(c, o, t). From
(5) this means there is a timet′ not earlier thant such that
3Contains(c, o, t′), i.e., from (4),

3P (pos(o, t′), pos(cs(c), t′)).

What regions exist cannot vary between different possible futures, so
this implies there are regionsr1 andr2 such that

P (r1, r2) ∧3(pos(o, t′) = r1) ∧3(pos(cs(c), t′) = r2).

By (3), sinceo andcs(c) are both rigid, this implies6

P (r1, r2) ∧ Congruent(r1, pos(o, t)) ∧
Congruent(r2, pos(cs(c), t)).

Finally, from (1), since congruence is an equivalence relation, we
obtain∃u(Congruent(pos(o, t), u)∧P (u, pos(cs(c), t))). Thus, a
rigid container can contain a rigid object only if the latter is congruent
to part of the contained space of the latter:

CanContain(c, o, t) ∧Rigid(c) ∧Rigid(o) →
∃u(Congruent(pos(o, t), u) ∧ P (u, pos(cs(c), t)))

3.4 Trajectories and continuity

Although we have seen how to say that a container can contain an
object, we have not really addressed our original question, which is
by virtue of whatdoes this potentiality obtain? Consider the case in
which objecto is outside containerc at timet0, and inside it at later
time t1. Over the interval[t0, t1] botho andc may change position
and shape. We can track the values ofpos(o, t) andpos(c, t) as t
runs fromt0 through tot1. These specify thetrajectoriesof o and
c. A condition for an object to come to be inside a container is that
suitable trajectories for both the object and the container exist.

A trajectory is simply a continuous sequence of spatial regions.
Formally, it may be represented by a continuous function

traj : [0, 1] →R,

whereR is the set of all spatial regions.7 Exactly what is meant by
“continuous” here needs discussion. A number of approaches to this
have been suggested in the literature. One way is to adopt a four-
dimensional view, and try to characterise continuity in terms of the
shape of the spatio-temporal extent of the motion considered as a re-
gion in four dimensions [19, 14]. Another approach, closer in spirit to
our current enterprise, is to characterise continuity in terms of some
metric on the space of possible regions [9, Ch. 7][4, 5]; metrics con-
sidered include the Hausdorff distance and variations on that, and the
volume of the symmetric difference. For each such metric∆, a tra-
jectorytraj may be characterised as continuous with respect to that
metric in the usual way, i.e.,

∀t ∈ [0, 1]∀ε > 0∃δ > 0∀t′ ∈ [0, 1](
|t− t′| < δ → |traj(t)− traj(t′)| < ε).

6 Here we are also using the trivial facts3(pos(o, t) = pos(o, t)) and
3(pos(cs(c), t) = pos(cs(c), t)).

7 Expressions of the formtraj(x) should be understood as “syntactic sugar”
for something along the lines ofvalue(traj, x), wheretraj is a term
rather than a function symbol; this will allow us to quantify over trajectories
without breaking the bounds of first-order logic. But for ease of reading we
shall retain the notationtraj(x).



The particular trajectories we are interested in are sequences of
possible positions of an object. The following formula says thato
follows trajectorytraj over the interval[t0, t1]:

Follows(o, traj, t0, t1) =df

∀t
(
t0 ≤ t ≤ t1 → pos(o, t) = traj

(
t−t0
t1−t0

))
Of course, this trajectory cannot be followed if there are obstacles
in the way; but this need not be specified explicitly, since given
Follows(o, traj, t0, t1), non-interpenetrability (2) already implies
that wheno is at any point in the trajectory, no other body overlaps
the position it then occupies. It is not necessary for the whole trajec-
tory to be unoccupied by other objects throughout[t0, t1]: an obstacle
is fine so long as it is removed when you get to it.

Continuity of motion is now secured by means of the rule

∀t∀t′∀r∀r′(t < t′ ∧ pos(o, t) = r ∧ pos(o, t′) = r′ →
∃traj(traj(0) = r ∧ traj(1) = r′ ∧

Follows(o, traj, t0, t1)))
(7)

3.5 Entry into a container

In order foro to come to be insidec during the interval[t0, t1], o
andc must follow trajectories which begin witho andc in positions
such thato is outsidec, and end with them in positions such thatc
containso, and which are such that at no time do the positions ofo
andc overlap. This motion can be divided into three parts: first,o and
c get into a position whereo is “just outside”c; theno actually enters
c, arriving at a position where it is “just inside”c; and finally, it may
proceed to a resting position insidec. The middle phase is the crucial
one: this is what we will call theenteringevent.

We must now formally characterise the actual process of enter-
ing. This begins at the latest time wheno is “just outside”c, i.e.,
EC(pos(o, t), pos(cs(c), t)), and ends at the first time wheno is
“just inside” c, i.e.,TPP (pos(o, t), pos(cs(c), t)). We can put

Enters(o, c, t0, t1) =df

∃trajo∃trajc(
Follows(o, trajo, t0, t1) ∧
Follows(c, trajc, t0, t1) ∧
∀t(t0 ≤ t ≤ t1 →

EC(pos(o, t), pos(cs(c), t)) ↔ t = t0 ∧
TPP (pos(o, t), pos(cs(c), t)) ↔ t = t1))

(8)

It follows from non-interpenetrability (2) that the positions ofo and
c never overlap, i.e., we have¬O(pos(o, t), pos(c, t))) at all times
t. Hence we do not need to specify this explicitly in (8).

For t0 < t < t1, we havePO(pos(o, t), pos(cs(c), t)), and if we
assume thato is a one-piece object, this means thato must intersect
a portalp of c. We will return to the implications of this later.

It should be emphasised that in order to geto insidec, either or
both bodies may need to change shape (cf. the table above). This is
allowed for in (8), since there is no reason why the values oftrajo

should all be congruent, and similarly for the values oftrajc. In
particular,c may be closed initially; but this does not matter so long
as a portal has opened at the timeo needs to enter it.

From continuity, it seems plausible that

¬O(pos(o, t), pos(cs(c), t)) ∧ Contains(c, o, t′) →
∃t0∃t1(t ≤ t0 < t1 ≤ t′ ∧ Enters(o, c, t0, t1))

(9)

Can we prove this from the rules and definitions we have given so
far? If not, what further rules are needed? These are currently unan-
swered questions.

The definition (8) tells us what it is foro to enterc; but if we are
interested in affordances, we want rather to specify what it means to
say thato canenterc. The obvious definition is

CanEnter(o, c, t) =df ∃t′3Enters(o, c, t, t′) (10)

In particular, we would like to prove the modalised version of (9):

¬O(pos(o, t), pos(cs(c), t)) →
(CanContain(o, c, t) ↔

∃t′(t ≤ t′ ∧ CanEnter(o, c, t′))).
(11)

This deceptively simple formula is none the less highly significant.
The predicateCanContain expresses the bare affordance of con-
tainment, which (4) defines as the potentiality for actual contain-
ment. This is, as we noted, a rather high-level view of the affordance,
abstracting away from the features of the world in virtue of which
containment is afforded in any particular situation. By invoking the
principle of continuity of movement, we were able to express a more
detailed precondition for the affordance of containment, namely, not
just that an object can be situated inside a container, but that it can
come to be there, in other words that there is a trajectory by which
it can enter it. This is what is expressed byCanEnter; it gives us
a somewhat lower-level view of the affordance. Formula (11) links
these two views, the higher-level to the lower, by asserting in effect
that they refer to the same underlying reality.

3.6 Entry at a portal

A still lower-level view is possible. Let us return to the observation
that during the entering event,o must intersect a portal ofc. Consider
informally the preconditions foro to be able to enterc via the portal
p. One is thatc can containo, i.e., its interior can be so located that
o lies wholly inside it. Another is that there is a continuous series of
cross-sections ofo, each of which fits insidep. Herep and the cross-
sections ofo are two-dimensional entities. These conditions are not
so far sufficient, as can be seen from Figure 1, where the vase is
large enough to contain the ball, and every cross-section of the ball
fits into the entrance portal of the vase (shown by the dotted line), but
still the ball cannot enter the vase assuming both are rigid. (Of course
a rubber ball could be squeezed past the constriction in the neck of
the vase.) We need an additional condition, that there is a possible
position ofo insidec that is tangential top.

How do we express these conditions formally? We assume here
thato is a one-piece object (as opposed to, for instance, a two-piece
object such as a teapot which consists of a body and a separate lid).
Thenpos(o, t) is always a connected spatial region, which means
that any two points within it can be joined by a one-dimensional

Figure 1. The vase could contain the ball if only the ball could get into it.



path lying wholly within the region. IfPO(pos(o, t), pos(cs(c), t)),
then from the definition ofPO, part of o lies outsidecs(c) and
part of o lies insidecs(c). For each pair of points inpos(o, t),
one of which lies outsidecs(c) and the other inside, there is a
path between them which (i) lies wholly withinpos(o, t) and (ii)
intersects the boundary∂pos(cs(c), t). Let x be the sum of all
the intersections of such paths with∂pos(cs(c), t), so we have
P (x, pos(o, t)) ∧ P (x, ∂pos(cs(c), t)). By non-interpenetrability
(2), o does not overlapc, and hence no part ofo overlaps the bound-
ary of c. In particular,¬O(x, ∂pos(c, t)). This means that we have
P (x, ∂pos(cs(c), t) \ ∂pos(c, t)), i.e.,x is part of the portals ofc.

By formalisation of this argument, one might hope to prove, from
the principles enunciated so far, the following formula:

Enters(o, c, t0, t1) →
∀t(t0 < t < t1 →
∃r1∃r2(pos(o, t) = r1 ∪ r2 ∧

¬O(r1, pos(cs(c), t)) ∧
P (r2, pos(cs(c), t)) ∧
P (∂r1 ∩ ∂r2, ∂pos(cs(c), t) \ ∂pos(c, t))))

(12)

Note that this does not imply that∂r1 ∩ ∂r2 (our earlierx) is part
of just one portal ofc. A horseshoe-shaped object could have its two
ends inserted into different entrances of a container with more than
one entrance; but if the object is to enter the container, then all of it
must pass through just one portal eventually. No doubt an argument
based on continuity should enable us to establish this, but again, the
details are at present unclear.

4 Concluding remarks

To summarise what we have done, we began with the goal of char-
acterising in formal terms the conditions under which it can be said
that a certain affordance exists, namely the affordance of contain-
ment which a container has in relation to an object. We began with a
very high level characterisation which amounted to little more than
a definition of what it means to say that one thing can contain an-
other. This was the definition (5). By combining this definition with
the condition of continuity (7), we were able to spell out a lower-
level condition for the container to afford containment to the object,
namely that it is possible for the object to enter the container; this
is expressed in the definition ofCanEnter (10), the full details of
which are contained in the definition of theEnters predicate (8). Fi-
nally, by invoking the principle of non-interpenetrability (2), we were
able, at least informally, to tease out a still lower-level condition for
the affordance, relating the portals of the container to the sequence
of cross-sections of the object which must intersect the portal as it
enters the container. This was expressed, in part, by (12).

The general approach may be summarised as follows. To define
what it means for some object or collection of objects to afford
some actionA to an objecto, we begin by defining what it means
for o actually to performA, and then use a modalised form of this
definition to provide a high-level definition of the affordance itself.
Then, by invoking general principles such as continuity and non-
interpenetrability, we tease out successively lower-level conditions
for the affordance to exist. In this way, we gradually approach the
goal of specifying just what it is about any particular physical layout
that results in its having the affordances that it does. To relate this
back to the original source of the affordance idea in Gibson’s theo-
ries of perception, we can now say that we are able to perceive affor-
dances by perceiving these lower-level conditions, which, we must
assume, are more directly accessible to our perceptual apparatus.

It has to be admitted that so far much of this is programmatic. Even
to handle fully the one case considered in this paper, namely contain-
ment, requires more detailed formal work than it has been possible
to present here. Then there is whole field of enquiry ripe for inves-
tigation: affordance of shifting, lifting, hiding, opening, closing, and
all the other potentialities offered by our environment which define
the scope and limits of human action in the world.
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