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Poisson’s ratio is, for specified directions, the ratio of a lateral
contraction to the longitudinal extension during the stretching of
a material. Although a negative Poisson’s ratio (that is, a lateral
extension in response to stretching) is not forbidden by thermo-
dynamics, this property is generally believed to be rare in crystal-
line solids1. In contrast to this belief, 69% of the cubic elemental
metals have a negative Poisson’s ratio when stretched along the
[110] direction. For these metals, we find that correlations exist
between the work function and the extremal values of Poisson’s
ratio for this stretch direction, which we explain using a simple
electron-gas model. Moreover, these negative Poisson’s ratios
permit the existence, in the orthogonal lateral direction, of
positive Poisson’s ratios up to the stability limit of 2 for cubic
crystals. Such metals having negative Poisson’s ratios may find
application as electrodes that amplify the response of piezo-
electric sensors.

There is considerable fundamental and practical interest in
materials with negative Poisson’s ratios1–14, which Evans4 called
auxetic. We refer to auxetic crystals as axially auxetic or non-axially
auxetic, depending upon whether or not a negative Poisson’s ratio
arises for a crystal-axis direction. The calculation of Poisson’s ratio
is complicated for directions oblique to the crystal axes, because
the elastic constant tensor for general orientations involves as
many as 21 interrelated components for even a cubic phase15.
This complication probably explains why the common existence
of non-axial auxetic behaviour has largely remained unrecognized.
However, the important early work of Milstein and Huang16

established the occurrence of non-axial auxetic behaviour for
cubic metals and rare gases. The origin of this behaviour must
differ from that of other known types of auxetic materials and
structures: foams, honeycombs and hypothetical carbon phases
having re-entrant or hinged structures2–5,8,13; microporous organic
polymers4; polymer laminates11,14; polymer/fibre composites12; and
crystals such as a-cristobalite1,6.

We simplify the search for auxetic materials by deriving a general
criterion for the existence of auxetic behaviour. This ‘auxetic
criterion’, expressed in elastic compliances (Sij) for the axial direc-
tions, is that S11 þ S33 þ 2S13 2 S44 . 0. Satisfying this inequality is
a necessary and sufficient condition for auxetic behaviour for a
hexagonal or cubic phase when the Poisson’s ratios for axial
directions are all positive. This general criterion is derived from
equations for the Poisson’s ratio for an arbitrary direction for
cubic15 and hexagonal17 phases. Using these equations, the Poisson’s
ratios that usually have extremal values for cubic phases are:

nð110; 11̄0Þ ¼ 2 ð2C11C44 2 ðC11 2 C12ÞðC11 þ 2C12ÞÞ=

ð2C11C44 þ ðC11 2 C12ÞðC11 þ 2C12ÞÞ
ð1Þ

nð110; 001Þ ¼ 4C12C44=ð2C11C44 þ ðC11 2 C12ÞðC11 þ 2C12ÞÞ ð2Þ

These are the Poisson’s ratios for a [110] stretch, measured for [11̄0]
and [001] lateral directions, respectively. Such Poisson’s ratios are

for a stretch along the face diagonal of the cubic cell and a resulting
lateral strain measured along a perpendicular face-diagonal and a
perpendicular cube-axis direction, respectively.

We identified non-axial auxetic behaviour by the application of
the above criterion to experimentally determined elastic compliance
matrices (see ref. 18 and references therein, and Supplementary
Information). About 69% of the 32 investigated cubic phases of the
elemental metals satisfy the auxetic criterion. Of these 18 face-
centred cubic (f.c.c.) metals and 14 body-centred cubic (b.c.c.)
metals, 78% and 57%, respectively, are non-axially auxetic. For all of
these cubic phases, except lithium, both the minimum and the
maximum Poisson’s ratio are for a [110] applied stress. In contrast,
out of 20 investigated hexagonal close-packed (h.c.p.) phases, only
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Figure 1 Correlations for the Poisson’s ratios of b.c.c. metals, derived from

observed18,22 elastic compliances and polycrystalline work functions. a, Correla-

tion between n(110,11̄0) and n(110, 001) and the polycrystalline work function. The

experimentally derived Poisson’s ratios are denoted by unfilled squares for n(110,

11̄0) and filled diamonds for n(110, 001). The curves arepredicted dependencies of

n(110, 11̄0) and n(110, 001) (bottom and top curves, respectively) on [Be/(a
2Φ0)]2/5;

see text for details. b, Comparison of experimentally derived data points relating

n(110,11̄0) and n(110, 001) with the theoretical prediction (solid curve) for the simple

two-term lattice energy used to obtain the theoretical curves of a.
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zinc and beryllium are auxetic. Other than zinc, none of these cubic
and hexagonal phases of elemental metals has a reliably reported
negative Poisson’s ratio for an axial direction. These results indicate
for the elemental metals that (1) f.c.c. and b.c.c. phases are usually
auxetic in non-axial directions, (2) axial auxetic behaviour is rare
(or non-existent) for the cubic phases, and (3) the hexagonal phases
are rarely auxetic for either axial or non-axial directions. None of the
cubic phases are auxetic for a stretch along the three-fold axis
direction, which is also the case for the auxetic trigonal phases of
arsenic and bismuth characterized by Gunton and Saunders19.

Our analysis of reported elastic compliance data for cubic alloys
and the cubic intermetallic phases18 provides results consistent with
the above conclusions. Although none of the ,130 investigated
cubic alloy and cubic intermetallic phases are auxetic for axial
directions, ,50% of these phases are auxetic for non-axial direc-
tions. Furthermore, all those cubic alloy and cubic intermetallic
phases that are auxetic contain at least one element that has an
auxetic phase, and auxetic behaviour is almost always found for
such cubic phases that contain only elements having auxetic phases.

In contrast with these results for metals, application of the auxetic
criterion to published elastic compliance matrices18 shows that
auxetic behaviour of any type is either rare or non-existent for
many classes of cubic materials. For example, all investigated cubic
alums (48 phases) and garnets (20 phases) are non-auxetic. Also,
auxetic behaviour is rare or non-existent for salts with either the
NaCl or the CsCl type structure. The diamond structural types for
carbon, silicon and germanium are also non-auxetic. However,
various cubic solids that share the ball-like packing of the elemental
metals are auxetic. For example, non-axial auxetic behaviour is
found16,18,20,21 for the f.c.c. phases of rare gases, methane, ammonia
and adamantane (but not for the f.c.c. phase of C60).

The existence of negative Poisson’s ratios for the cubic metals
enables the existence of Poisson’s ratios above unity. In fact, our
analysis of the literature data18 for metallic cubic phases provides
non-axial Poisson’s ratios that range between −0.67 and 1.47 for
Cu68.6Al27.6Ni3.8 and between −0.81 and 1.68 for CuAuZn2. Also,
,20% of the ,80 investigated types of cubic alloys provide a
maximum Poisson’s ratio of above unity. Such metals must have a
negative Poisson’s ratio for the same stretch direction as the

maximum Poisson’s ratio (nmax), otherwise the linear com-
pressibility would be negative (thereby violating a stability con-
dition for cubic phases). The existence of a nmax . 1 implies that a
plane exists parallel to the stretch axis that decreases area during
stretching. The most negative fractional area change (DA/A) caused
by a fractional elongation of DL/L is then DA=A ¼ ð1 2 nmaxÞDL=L.

Figures 1 and 2 show results that can be used both to understand
the origin of the negative Poisson’s ratios and to design new auxetic
phases. These figures for b.c.c. metal phases (Fig. 1a) and for non-
ferromagnetic f.c.c. metal phases (Fig. 2) show that the extremal
Poisson’s ratios for a [110] stretch are correlated with the measured
work function22. We also find that correlations exist between either
n(110, 11̄0) or n(110, 001) and (nws)

1/3, (Hvap/(VM)2/3)1/3 and V−1/3
M ,

where nws is the Wigner–Seitz electron density parameter23, Hvap is
the molar heat of vaporization, and VM is the molar volume. These
relationships reflect the correlation between off-axis Poisson’s ratios
and work function, as it is known23 for metals that (nws)

1/3, (Hvap/
(VM)2/3)1/3 and V−1/3

M are correlated with work function.
We find that a simplistic model provides insight into the origin of

the negative Poisson’s ratios and the observed correlations. We
approximate the energy per atom (U) of a crystal (with molar
volume V and equilibrium molar volume Vo) by the sum of
nearest-neighbour central force interactions (Φ) and a term that
depends on the mth power of volume. The second derivative of this
second term with respect to V/Vo (evaluated at V ¼ V o) is the
equilibrium value of the bulk modulus of the electron gas (Be).
Hence, U ¼ ðp=2ÞΦ þ BeðV =V oÞ

m=ðmðm 2 1ÞÞ, where p is the
number of nearest-neighbour atoms surrounding a central atom.
As the basic conclusions of the analysis do not depend on this
approximation, we ignore core exclusion, exchange, and correlation
effects, and approximate Be by the bulk modulus due to the kinetic
energy of the electron gas (so that m is −2/3)24–26. Following the
approach used by Thomas24, calculating the derivatives for elastic
stiffnesses and applying the condition for equilibrium (dU=dV ¼ 0
for V ¼ V o) results in C11 2 C12 ¼ 2Beð1 2 mÞ2 1, C44 ¼ ða2Φ0þ
2Beð1 2 mÞ2 1Þ=3, and C11 þ 2C12 ¼ a2Φ0 þ Beð1 2 3mÞð1 2 mÞ2 1

for b.c.c. phases and C11 2 C12 ¼ ða2Φ0 þ 7Beð1 2 mÞ2 1Þ=4, C44 ¼
ða2Φ0 þ 3Beð1 2 mÞ2 1Þ=4, and C11 þ 2C12 ¼ a2Φ0 þ Beð1 2 3mÞ
ð1 2 mÞ2 1 for f.c.c. phases, where Φ0 is d2Φ/dr2 evaluated at the
equilibrium interatomic separation r ¼ ro and where a is the lattice
parameter. These equations are substituted into equations (1) and
(2) to obtain n(110, 11̄0) and n(110, 001) as a function of only Be/
(a2Φ0). For nearly vanishing values of Be, these equations provide
minimum and maximum Poisson’s ratios of −1 and 2 for b.c.c. and 0
and 1/2 for f.c.c. Simple geometrical arguments, which are illu-
strated in Fig. 3 for b.c.c., explain why nearest-neighbour central
forces result in a negative Poisson ratio for b.c.c. phases, but not for
f.c.c. or h.c.p. phases.

In Fig. 1b we compare the relationship between n(110, 11̄0) and
n(110, 001) obtained from theory and experiment for b.c.c. phases.
Considering the simplicity of this theory and the absence of any
adjustable parameters, the agreement is quite good. Also, Fig. 1a
shows that the theoretically predicted dependence of n(110, 11̄0)
and n(110, 001) on [Be/(a2Φ0)]2/5 is quite similar to the experimen-
tally determined variation of these Poisson’s ratios with work
function. These dependent variables were chosen for comparison
of theory and experiment because free-electron theory predicts that
B2/5

e is proportional to the Fermi energy (EF), and the work function
(WF) differs in magnitude from EF by only the contribution from
surface dipoles. Hence increasing WF increases the bulk modulus
contribution from the electron gas. The above equations for b.c.c.
metals imply that the auxetic behaviour disappears as the mechan-
ical anisotropy becomes small, which is consistent with
observations21. However, other types of structures are known that
are both auxetic and isotropic14.

Comparison of the theoretical and observed dependence of the
Poisson’s ratios on work function for f.c.c. metals (Fig. 2) indicates
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Figure 2 The dependence of n(110, 11̄0) and n(110, 001) on polycrystalline work

function for f.c.c. phases of the non-ferromagnetic elemental metals. Unfilled

squares denote n(110, 11̄0) and filled diamonds denote n(110, 001). The lines are

least-squares fits to the experimental results, which are derived from reported

compliances18 and work functions22.
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qualitatively similar trends. But although the model predicts for
b.c.c. that n(110, 11̄0) approaches −1 and n(110, 001) approaches 2
as Be vanishes, the corresponding calculated Poisson’s ratios for the
f.c.c. phases are 0 and 1/2, respectively. Hence, the present simplified
theory must be modified for the f.c.c. metals by the inclusion of
interatomic potential or band-structure effects that can be
expressed as many-body forces. Evidence that such forces cannot
be ignored for f.c.c. metals is provided by Cousins and Martin27,
who show that the crystal potential for f.c.c. metals like Cu, Ag, Au
and Ni cannot be reliably expressed as the sum of pairwise
interatomic and volume-dependent terms. Inclusion of many-
body forces can shift the Poisson’s ratios downwards to approxi-
mately the observed values. For example, application of the simple
three-atom, Born–Mayer-type potential of Cousins28 provides lim-
iting values of nð110; 11̄0Þ ¼ 2 1 and nð110; 001Þ ¼ 2, which are
identical to the results for b.c.c. phases that are described by the
pairwise interaction model. As for the case of b.c.c. phases, such
large-magnitude Poisson’s ratios are reduced by the effect of the
electron-gas bulk modulus, which increases with increasing work
function.

Based on these results we make the following conclusions.
Pairwise central forces can explain the large negative values of
n(110, 11̄0) and the large positive values of n(110, 001) for the
b.c.c. metals. An increasing electron-gas contribution to bulk
modulus with increasing work function, which helps stabilize the

b.c.c. phases as an energy minima, simultaneously makes n(110,
11̄0) less negative and n(110, 001) less positive. The dependence of
n(110, 11̄0) and n(110, 001) on work function is similar for the f.c.c.
and b.c.c. metals. However, significant auxetic behaviour for the
f.c.c. metals depends on the existence of a substantial many-body
contribution to the binding energy. The present analysis indicates
that Poisson’s ratios of nð110; 11̄0Þ ¼ 2 1 and nð110; 001Þ ¼ 2 can
be closely approached by either f.c.c. or b.c.c. phases that have
negligible electron-gas contributions—although precisely reaching
these values results in a soft mode shear instability. The above
conclusions from theory and experimental results are opposite to
the previous suggestion21 that the electron-gas contribution causes
negative Poisson’s ratios.

The existence of negative Poisson’s ratios for the cubic metals has
practical importance, especially as a negative Poisson’s ratio reverses
the compensation effects of positive Poisson’s ratios on the volume
and area changes caused by a uniaxial stress. One example is a
method for obtaining over a two-fold increase in the sensitivity of a
strain sensor by sandwiching a sheet of piezoelectric polymer
between two thick auxetic metal electrodes. This sensitivity increase
occurs because the negative Poisson’s ratio of the metal electrode
amplifies the effect of an applied in-plane uniaxial strain on sensor
sheet area.

Some types of applications previously proposed for axially
auxetic materials3,4 are also possible for the non-axially auxetic
cubic metals. The prospects for such applications are enhanced by
the commercial availability of non-axially auxetic metals as large
single crystals. For example, large single crystals of Ni3Al, which
has18 a minimum Poisson’s ratio of −0.18, are used as vanes for
aircraft gas turbine engines29. M
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Figure 3 The structural origin of a negative Poisson’s ratio and a giant positive

Poisson’s ratio for the case of a rigid-sphere b.c.c. solid. The solid minimizes

density decrease during deformation by maintaining intersphere contact. Two

b.c.c. unit cells (defined by the dotted lines) provide a crystallographic reference

for describing the relative directions of atomic displacements (black arrows) of

atoms 1–6 in response to an applied force in the [110] direction (F, indicated by

the two white arrows). Decreasing the acute angle in the rhombus defined by

atoms 1–4 is the only way to elongate the crystal in the [110] stress direction

without increasing the nearest-neighbour separations (indicated by the solid

black lines).Hence, the separationbetween atoms1and 3decreases, providinga

positive n(110, 001). This angle decrease partially closes this rhombus, thereby

pushing atoms 5 and 6 apart (corresponding to a negative n(110, 11̄0) ). Simple

geometrical analysis of these deformations provides that nð110; 001Þ ¼ 2 and

nð110; 11̄0Þ ¼ 2 1. Similarly, simple pictures indicate that the minimum Poisson’s

ratio is zero for rigid-sphere f.c.c. and h.c.p. phases. Atoms in next-nearest-

neighbour (11̄0) sheets are orthogonally in contact for f.c.c. Hence, the dimension

in the [11̄0] direction is unaffected bya [110] strain and nð110; 11̄0Þ ¼ 0. Likewise, an

infinitesimal uniaxial elongation orthogonal to a close-packed plane of rigid-

sphere atoms in h.c.p. cannot significantly affect packing in this plane, so the

minimum Poisson’s ratio is zero.
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The switching properties of most liquid-crystal electro-optic
devices rely mainly on the reorientation of the average molecular
direction (director) within the bulk of the liquid-crystal layer1.
Reorientation of the director at or near the surfaces of the layer
usually has an insignificant effect on device performance. Here we
describe a different configuration in which a nematic liquid
crystal is placed between a flat surface treated to induce a parallel
anchoring of the director and a grating surface treated to give a
perpendicular anchoring. We show that this configuration leads to
an effective azimuthal anchoring at the grating surface that
depends on the applied voltage when the nematic phase has
negative dielectric anisotropy (that is, the director has a tendency
to align perpendicular to the applied field). This leads to a voltage-
controlled twist effect in the liquid-crystal cell that is highly
sensitive to the grating profile. Furthermore, this twist effect
possesses an electro-optic response which is far less dependent on
viewing angle compared to many other liquid-crystal display
configurations. We therefore suggest that this technology might
find application in the next generation of liquid-crystal displays.

Liquid-crystal displays consist of a liquid-crystal layer contained
between two substrate surfaces. These surfaces impose a preferred
orientation of the liquid-crystal director to generate uniform
optical properties. Treating the surface with a low-surface-energy
surfactant2 leads to perpendicular alignment (director orthogonal
to surface plane) whereas an ordered polymer coating leads to
planar alignment (director in surface plane with preferred direc-
tion). Planar alignment is usually achieved using a polymer which
has been ordered by rubbing with a nylon cloth3, although proto-
types are now emerging in which the ordering is induced optically4.
The earliest alignment method to be explained quantitatively is that
in which a grating surface is used5. The liquid-crystal director aligns
along the grating grooves in order to minimize the elastic distortion
energy.

Here we consider a nematic liquid crystal in contact with a grating
surface which has been treated with a low-energy surfactant. Such a
treatment constrains the director to align perpendicular to the local
surface direction. The average director orientation is then perpen-
dicular to the average surface direction for a symmetric grating
profile. If the liquid crystal has negative dielectric anisotropy, then
application of a sufficient electric field will lead to a planar
configuration in which the director lies along the grating grooves.
This is also well known. However, in the present work the grating
surface is placed opposite a normally planar surface in which the
planar anchoring direction is perpendicular to the grating groove

direction. A new mode of operation is then observed. Figure 1 shows
a schematic view of the behaviour of this configuration in which the
grating grooves are in the y direction (that is, out of the plane of the
figure) and the planar anchored direction is along the x axis. The
director is represented by the black rods. When no voltage is applied
between the substrates (V ¼ 0), the director has a tilt in the x–z
plane which varies roughly linearly with z. When the voltage is
raised to V1, the tilt angle decreases because the applied field couples
to the negative dielectric anisotropy but the director remains in the
x–z plane as this is the preferred anchoring direction on the planar
surface. However, when the voltage is increased the liquid-crystal tilt
is lowered in the vicinity of the grating surface which then starts to
impose an azimuthal twisting torque on the near-surface director.
Eventually, at a sufficient voltage (V2), the twist torque overcomes
the bulk twist threshold energy and a finite twist is observed. These
energies may be compared as follows. The maximum twist torque
which can be imposed by the grating is given by5

Wf ¼
1

4

�����������

k11k33

p

a2 2p

L

� �3

ð1Þ

where a and L are respectively the amplitude and pitch of a
sinusoidal oscillation, and k11 and k33 are the liquid-crystal elastic
constants. For a typical grating with an amplitude of 0.25 mm and a
pitch of 1 mm, this energy is roughly 4 3 10 2 5 J m 2 2. The twist
threshold energy is given by k22/d where d is the cell gap. For a 5-mm
cell this energy is typically only 1 3 10 2 6 J m 2 2. Therefore in the
high-voltage regime, the grating alignment energy dominates over
the twist energy and the cell is expected to have a 908 twist as shown
in Fig. 1 at V ¼ V 2. This configuration thus allows a voltage-
controlled twist (VCT) effect.

The VCT behaviour can also be numerically analysed using a
finite-element approach in which a grid of directors are elastically
coupled to each other and contained between surfaces with defined
boundary conditions. For a particular applied voltage, the system is
relaxed until the minimum energy is found. Figure 2a shows an
example of a predicted configuration at 0 V. In this case, the liquid
crystal is continuously distorted between the planar boundary
condition on the top flat surface and the perpendicular boundary
condition on the bottom grating surface. If the voltage is set to 15 V
(Fig. 2b), the cell relaxes into a configuration with lower average tilt
in which the director near the grating is twisted out of the x–z plane
(represented by shorter lines). Therefore this approach also predicts
a VCT effect.

Figure 1 Schematic representation of the liquid-crystal cell geometry used to

observe the VCTeffect. Details are given in the text.


