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ABSTRACT

The North Atlantic Oscillation (NAO) is a major mode of large-scale climate variability which contains a broad
spectrum of variations. There are substantial contributions from short-term 2–5 year variations, which have clearly
marked teleconnections. Decadal trends are also apparent in the historical record of the NAO and may be due to
either stochastic or deterministic processes. Evidence is presented that suggests the NAO exhibits ‘long-range’
dependence having winter values residually correlated over many years. Several simple stochastic models have been
used to fit the NAO SLP (sea-level pressure) wintertime index over the period 1864–1998, and their performance at
predicting the following year has been assessed. Long-range fractionally integrated noise provides a better fit than
does either stationary red noise or a non-stationary random walk. Copyright © 2000 Royal Meteorological Society.
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1. INTRODUCTION

Since at least the 18th century, it has been known in Denmark that when the winter there is severe, the
winter in Greenland tends to be milder than normal, and vice versa (van Loon and Rogers, 1978). This
remarkable opposition is part of a prominent planetary-scale mode of climate variability known as the
‘North Atlantic Oscillation’. The North Atlantic Oscillation (NAO) is associated with a large-scale net
displacement of air between the subtropical high near the Azores and the low pressure region near Iceland
and the Arctic region (Teisserenc de Bort, 1883; Hildebrandsson, 1897; Walker, 1924). High index winters
have stronger mean westerly flow over the North Atlantic and western Europe associated with a deeper
than normal Icelandic low and a stronger than normal Azores high. Stronger westerly flow advects more
warm maritime air over Europe and more cold Arctic air over Greenland and the northwest Atlantic,
thereby giving rise to the anti-correlation between temperatures in Greenland and Denmark. The NAO
has strong impacts on the climate and environment of both western Europe (Rogers, 1990; Hurrell, 1995)
and eastern Europe (Bojariu and Cotariu, 1996). There is evidence that the NAO can influence wheat
production in Northern Europe (Meinardus, 1900; Kettlewell et al., 1999) and oceanic ecosystems in the
North Atlantic ocean (Fromentin and Planque, 1996).

After more than a century of scientific investigation, the fundamental mechanisms determining the
evolution of the NAO are still far from being elucidated. For example, it is not clear whether the NAO
is simply due to the aggregation of stochastic weather events, or whether ocean dynamics in the North
Atlantic ocean play an active role in controlling the evolution of the NAO. Improved understanding of
causal mechanisms of the NAO may enable skilful climate forecasts to be made seasons to years in
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advance, with obvious socioeconomic benefits. It is also not clear whether possible anthropogenically-
induced climate change has been responsible for the recent increasing trend in the NAO since the mid-1960s.
More detailed understanding of previous NAO behaviour may ultimately allow us to conclusively
discriminate between possible man-made changes and so-called natural variations in the NAO.

This study investigates various aspects of NAO variations present in the sea-level pressure and surface
temperature observations briefly described in the Section 2. Section 3 discusses long-term variations and
trends that have occurred in the NAO, and Section 4 explains how year-to-year differencing can be used
to separate out such features. Section 5 then uses differences to extract short-term variations in the NAO.
Section 6 proposes some simple stochastic models for describing the fluctuations in the NAO, and fits to
these models are compared in the Section 7. Section 8 concludes the article with a summary and some
speculations.

2. DATA USED IN THIS STUDY

The NAO has clear signatures in several different climatic variables such as temperature, pressure,
rainfall, etc. This investigation will make use of wintertime means of observed sea-level pressure (SLP)
and surface temperature. For both temperatures and pressures, the quoted year refers to the year of the
spring months and not the year of the preceding December.

2.1. A SLP index of the NAO

The difference in SLP between the centres-of-action near to Iceland and the Azores has long been used
to summarize the mean westerly flow over the North Atlantic region (Walker, 1924). Hurrell (1995)
defined a winter NAO SLP index for 1964–1998 based on the difference between standardized Decem-
ber–March mean SLPs measured at Lisbon (Portugal) and Stykkisholmur/Reykjavik (Iceland).1 It has
been widely used in recent NAO studies such as Hurrell (1995, 1996), and Hurrell and van Loon (1997).
Seasonal averaging is required in order to suppress the noisy intraseasonal fluctuations in monthly mean
SLP. Figure 1(a) shows the evolution of this index from 1900 to 1994, with decadal trends depicted by
10-year running medians.

In addition to this station index, we also make use of globally gridded monthly mean SLPs for
1959–1994 obtained from the NCEP/NCAR 40-year reanalyses.2

2.2. Surface temperatures

Numerous studies have defined the NAO using surface temperatures rather than SLPs (e.g. Hann, 1890;
Loewe, 1937; van Loon and Rogers, 1978). Temperatures have the advantage over pressures of having
more persistence from 1 month to the next, and also have centres of action which are more geographically
locked to fixed features such as continents. In this study, we have analysed the Jones et al. (1986)
temperature data set which is freely available from http://www.cru.uea.ac.uk/. The data set was obtained
by averaging observed air temperatures at 2 m above the ground and temperatures at the sea surface into
5° latitude–longitude boxes over the whole globe (Jones et al., 1986).

Figure 1(b) shows wintertime mean temperatures derived from this data set by averaging over large
regions covering northwest Europe (7.5°W–47.5°E, 52.5°N–72.5°N) and the northwest Atlantic (22.5°W–
77.5°W, 52.5°N–72.5°N). There is a clear anti-correlation between the temperatures of the two regions as
was realized by the Danes in the 18th century (van Loon and Rogers, 1978). Wintertime mean
temperatures over NW Europe and NW Atlantic are (anti-) correlated with a product moment correlation
of −0.50 over the period 1900–1994. NW Europe and NW Atlantic wintertime mean temperatures also
have strong correlations of 0.60 and −0.59, respectively, with the December–March NAO SLP index
over 1900–1994. When all the grid point values are used to estimate the area-weighted average over the
northwest Atlantic region, the increasing number of colder observations that have become available close
to Greenland gives the misleading impression that there has been a cooling trend of 5°C since 1900. To
obtain reliable estimates of area-averages, we have only considered data after 1900, and have not included
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ANY values from grid points that have less than 80 winter means defined out of the 95 winters from 1900
to 1994. This simple quality control approach is an effective way of dealing with the difficulties caused by
taking area averages when there are a varying number of missing values. In this study, wintertime mean
temperatures are obtained by taking the average of the monthly means at each grid point for December,
January, and February (DJF).

3. LONG-TERM NAO VARIATIONS

3.1. Decadal trends

Decadal variations are apparent in the 10-year running medians of the NAO SLP index shown in
Figure 1. For example, the increasing trend that started in the mid-1960s, which has provoked speculation
about possible anthropogenic-induced climate change (Trenberth, 1990; Hurrell, 1996; Wallace et al.,
1996). Prior to this recent bullish episode, there was an equally strong decreasing trend from the
late-1940s to the mid-1960s (Rogers, 1984), which is not easily explainable as a consequence of global
warming. The decadal trends, however, may be caused by other deterministic influences such as ocean
dynamics (Deser and Blackmon, 1993; Kushnir, 1994), or may simply be the result of aggregating values
in noisy time series (Wunsch, 1999).

The presence of decadal trends can be assessed using the Kruskal–Wallis rank statistic to test the null
hypothesis that all the decadal means come from the same underlying population against the alternative
hypothesis that the decadal means come from different populations (Hollander and Wolfe, 1973).
Applying this test to the 12 decadal means of the NAO SLP index calculated from 1870 to 1989, gives a
Kruskal–Wallis H-statistic of 18.422. Under the two-sided null hypothesis, this statistic is expected to be
x2 distributed with 11 degrees of freedom and so has a probability of 0.07 of occurring. Therefore, at 90%

Figure 1. Evolution from 1900 to 1994 of: (a) the NAO SLP index—difference in standardized December–March mean SLPs
between Lisbon (Portugal) and Stykkisholmur (Iceland). Decadal trends are indicated by the 10-year running median (dashed line);
(b) December–February mean surface temperatures averaged over large regions covering NW Europe (7.5°W–47.5°E, 52.5°N–

72.5°N) and the NW Atlantic (22.5°W–77.5°W, 52.5°N–72.5°N)
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confidence, the null hypothesis that the decadal means come from the same population can be rejected.
In other words, the NAO has stronger decadal variations than are likely to be obtained from sampling
a white noise process. The main contributions are from the high index decades of 1900–1929, 1980–1989,
and the low index decades of 1870–1989, and 1950–1969.

3.2. Long-range dependence

Many naturally occurring processes have values which remain residually correlated with one another
even after many years. Such ‘long-range dependence’ has been noted in many diverse environmental
quantities such as the Nile river minima (Hurst, 1951), global mean temperatures (Bloomfield, 1992), daily
Italian rainfall amounts (Montanari et al., 1996), and wind power variations from 1961 to 1978 over
Ireland (Haslett and Raftery, 1989). It is worth noting that all these quantities are influenced to varying
extents by the NAO, especially wind power over Ireland. ‘Long-range dependence’ does not signify the
existence of a ‘memory’ having a particular time-scale, but implies instead that the process forgets slowly
its past behaviour—autocorrelations decay hyperbolically in time rather than exponentially. Long-range
dependence is reviewed in Beran (1994).

In Figure 2(a), it can be seen that despite being small, autocorrelations of the NAO SLP index retain
small magnitudes even up to large lags. This behaviour differs from the fast exponential decay expected
for short-range processes such as red noise. Evidence for long-range dependence is also provided by the
increasing power at low frequencies in the power spectrum of the NAO SLP index (Figure 2b). For
short-range processes, the spectral power density asymptotes to a constant value at low frequency as can
be seen in the spectrum for the red noise fit to the NAO SLP index shown in Figure 2(b). Such flattening
out does not occur for the spectrum of the NAO SLP index shown in Figure 2(b), which instead appears
to have a singularity (pole) at zero frequency. Wunsch (1999) has estimated that the NAO SLP index has
a spectral power density that is closely approximated by P(v):0.66v−0.22, where v is the angular
frequency. The singular increase of power as v�0 is a characteristic feature of long-range dependence
(Beran, 1994).

3.3. Aggregated 6ariance

The variance of sample means of n independent values satisfies the well-known expression var(z̄n)=
s2n−1. This expression is also expected to hold for series generated by short-range processes, with values
that become independent of one another after long enough periods. Figure 2(c) shows the ‘aggregated
variance’ var(z̄n) estimated for consecutive sample means of n winters of the standardized NAO SLP time
series from 1864 to 1998. The variances of the means all exceed the n−1 value expected for short-range
time series that become uncorrelated after long enough times. For example, the variance of decadal means
is equal to 0.187, which is almost twice the value of 0.1 expected from the n−1 law.

The linearity in the log–log plot in Figure 2(d) suggests the presence of a power law scaling regime
having var(z̄n)=s2n−a. From a weighted least squares linear fit to the points in Figure 2(d), an estimate
of a= −0.79 is obtained for the NAO SLP index scaling exponent. This estimate is almost two standard
errors greater than the value of a= −1 expected for a short-range white noise process of the same length.
The standard error in a is estimated to be 0.11 from aggregated variance fits to 1000 Monte-Carlo
realizations of 135-year-long series of white noise.

4. DETRENDING BY USING DIFFERENCES

As was noted by Helland-Hansen and Nansen (1920), North Atlantic variations often exhibit substantial
short-term year-to-year fluctuations superimposed on longer term trends. The NAO is no exception and
contains spectral power over a broad band of different frequencies, with no significant preference for any
particular frequency band (Wunsch, 1999). Decadal trends, which typically explain less than 10% of the
total variance, can nevertheless confound analyses of short-term variability and predictability. Because of
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Figure 2. Evidence for long-range dependence in the NAO SLP index: (a) autocorrelation function showing slow decay of
autocorrelations with lag; (b) spectral power density showing increasing power at low frequencies compared to the power density
of a short-range AR(1) fit (dashed); (c) variance of means of increasing length compared to 1/n behaviour expected for independent
values (dashed); (d) log–log plot of aggregated variance showing linear slope shallower than the slope of −1 expected for

independent values (dashed)

increased noisiness due to atmospheric instabilities, great care needs to be exercised when analysing and
forecasting variations in mid-latitudes.

4.1. Year-to-year 6ariations

It took the genius of Bjerknes (1962) to realize that long-term decadal variations in the North Atlantic
ocean may have quite different natures and causes to shorter term variations. To isolate short-term
variations, Bjerknes and his students examined many maps of year-to-year differences in North Atlantic
SSTs and SLPs for the period 1880–1915 (Bjerknes, 1964). Taking the difference between the value in one
year and the previous year, Dzy=zy−zy−1, is a standard and widely-used method for detrending time
series (Box and Jenkins, 1976). It has the advantage over removing a linear fit in that it can also remove
piecewise linear trends by converting them into constant terms. It also has the advantage over methods
such as Fourier filtering or removing linear fits in that it is local in time. This is a desirable property since
trends often behave differently at different times. For example, the NAO SLP index had a decreasing
decadal trend from 1940 to 1960, but then an increasing one from 1960 to 1990. Any time series can be
decomposed into the sum zy= z̄y+z %y, of the 2-year moving average z̄y= (zy+zy−1)/2 and the high-pass
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residual z %y= (Dzy)/2. The high-pass filter D/2 attenuates the amplitude of low-frequency signals by a
factor of sin(vt/2) where v is the angular frequency and t is the time between samples (e.g. 1 year).
Therefore, biennial signals with periods of 2 years suffer no attenuation whereas signals with periods of
4 years have their amplitudes attenuated by a factor of 
2. Decadal and lower frequency variability are
attenuated to less than 30% of their original amplitudes. This justifies Bjerknes (1964) method of using
year-to-year differences for extracting the ‘2–5 year short-term trends’ (his words). Year-to-year differ-
ences in budget quantities such as the total heat content of the upper ocean can also be physically
interpreted as being the total amount of heat received throughout the whole of the preceding year.

4.2. Measuring roughness

The ratio of the variances, var(Dz)/var(z), can be used to measure the ‘roughness’ of a time series and
is known as either the von Neumann ratio (von Neumann, 1941, 1942).3 The ratio is identical to 2(1−f1)
where f1 is the moment estimate of the lag-1 autocorrelation.

Figure 3 shows the geographical distribution of 50 times the square root of the von Neumann ratio, in
other words, the percentage of the total standard deviation (S.D.) explained by short-term variations.
Short-term variations contribute to more than 50% of the total root mean square amplitude over all the
Northern Hemisphere. The ratio is larger over continental areas than over oceans due predominantly to
the reduced thermal inertia over the drier land surface. A notable exception is the local maximum over
the eastern equatorial Pacific caused by short-term El Niño variations. There is a marked minimum south
of Greenland related to deep vertical mixing, and also intriguing local minima in the Sea of Okhotsk, and
in the Pacific ocean northeast of Japan.

5. SHORT-TERM VARIATIONS

This section will focus in more detail on the short-term variations obtained by taking year-to-year
differences of the data. Analysis of short-term variations has the advantage that the effective sample size
is larger than for data contaminated with decadal trends. There is less chance of obtaining spurious
correlations and so more robust estimates can be made of spatial patterns of behaviour. Since differencing
attenuates the amplitude of dominant ENSO variations by about half, and also removes decadal trends,
it can provide a very useful technique for investigating short-term climate variability.

Figure 3. Relative contribution of short-term variations to total root mean square variation of December–March mean surface
temperatures (in %). Uncorrelated white noise variations would give a ratio 71%. Shaded regions with less than 65% have less

short-term contributions and more power at lower frequencies
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Figure 4. Leading eigenvectors of the correlation matrix of year-to-year differences in gridded winter (DJF) surface temperatures
from 40°S–80°N: (a) first leading eigenvector showing strong correlations with the tropics; (b) second leading eigenvector showing
a quadrupole pattern over the North Atlantic and surrounding land regions, containing the well-known NAO dipole between

Greenland and NW Europe. Eigenvectors are normalized so as to represent correlations in %.

5.1. Spatial correlations: teleconnections

To summarize the correlations between the short-term variations in climate of different regions, we
have performed a principal component analysis of the differenced surface temperature wintertime means
from 1900 to 1994 over the longitudes 40°S–70°N. Since land temperature anomalies are typically five to
ten times larger than anomalies over sea, the correlation matrix must be used instead of the covariance
matrix in order to extract the main factors which contribute to correlations between short-term variations
in temperatures in different regions. The resulting leading eigenvectors are shown in Figure 4 and explain
14.4% and 6.2%, respectively, of the total correlation.4 Tests reveal that both these modes are robust
features that are not unduly sensitive to either the choice of the spatial domain or the time period. The
eigenvectors have been normalized so that they can be interpreted directly as maps of correlations that
would have been obtained by correlating the data with the respective principal components.

The leading eigenvector in Figure 4(a) has strong zonally coherent tropical correlations particularly
prevalent in the Indian ocean sector, with also some indication of a Pacific North America wave pattern.
The leading principal component is anti-correlated with the backward difference of the June–September
all-India rainfall monsoon index (r= −0.47), which strongly suggests that this mode is of tropical origin
and is related to the tropical biennial oscillation (Meehl, 1997).

The second leading principal component is strongly correlated with the differenced NAO SLP index
(r=0.66) and the associated eigenvector in Figure 4(b) shows the characteristic NAO temperature dipole
expected between NW Europe and the NW Atlantic. Interestingly, there are also strong correlations with
temperatures over the southeastern USA and the Middle East which were also briefly discussed by Walker
(1924). The NAO temperature signature is a quadrupole pattern consisting of the well-known northern
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dipole together with an opposite phase dipole in the subtropics. Over the North Atlantic ocean, the two
leading modes of short-term temperature variability both resemble the short-term pattern discovered by
Bjerknes (1962, 1964). However, the leading eigenvectors are distinguished from one another on a global
scale by the presence and absence of correlations with the tropics. The global nature of the NAO is
confirmed by its emergence as the second leading eigenvector of the correlation matrix of near-global
short-term temperature variations.

5.2. Co6ariance of SLP and temperature

To briefly summarize the correlations between short-term variations in surface temperature and
tropospheric flow, we have also performed a canonical correlation analysis of the year-to-year differences
in winter temperatures (DJF) and year-to-year differences in NCEP/NCAR reanalysis wintertime (DJF)
SLPs over the period 1959–1994. The differencing helps to eliminate decadal trends that can sometimes
give rise to spurious correlations. In this study, the temperature and SLP data are prefiltered by first
projecting onto the first five leading principal components. The first two leading eigenvectors of the
differenced wintertime (DJF) SLP covariance are shown in Figure 5(a) and (b) and explain 32% and 12%
of the total variance. The first eigenvector projects strongly on the Iceland and Azores centres-of-action
of the NAO, yet also has strong correlations extending zonally out of the Atlantic sector that encircle the
Arctic region (Thompson and Wallace, 1998). The second eigenvector represents more a transpolar
wavetrain pattern connecting the Pacific and Atlantic sectors. Figure 5(c) and (d) show the SLP and
temperature patterns that give maximum canonical correlation (r=0.94). The SLP pattern has a strong
projection on the North Atlantic Iceland–Azores dipole, yet does not resemble the leading SLP
eigenvector in the Pacific sector. The pattern is a strong mixture of the two leading eigenvectors and does
not resemble the Arctic oscillation discussed in Thompson and Wallace (1998). The surface temperature
pattern in Figure 5(d) resembles that of the second leading temperature eigenvector previously shown in
Figure 4(b). It should be noted that canonical correlation analysis can not be used to infer causality.
However, more in-depth studies suggest that the surface temperature pattern is primarily a response to
atmospheric flow dynamics and not vice versa (Thompson and Wallace, 1998).

5.3. 2–3 year fluctuations

A substantial contribution to short-term variability comes from variations having periods between 2
and 3 years, as can be seen in the increased power spectral density in Figure 2(b). Such variations were
particularly prevalent in the 1950s, and have been a robust feature of North Atlantic variability since at
least 1701 (Deser and Blackmon, 1993; Cook et al., 1997; Hurrell and van Loon, 1997; Tourre et al.,
1999). Quasi-biennial signals phase-locked with the annual cycle have been found in mid-latitude surface
temperatures (Clayton, 1885; Landsberg et al., 1963; Lamb, 1972), and are present in mid-latitude
tropospheric winds and SLP variations (Angell and Korshover, 1963; Angell et al., 1969; Ebdon, 1975;
Trenberth, 1980; Trenberth and Shin, 1984). The cause of these short-term variations is still unknown but
they could be due to either annual modulation of coupled atmosphere–surface feedbacks, or could be a
subharmonic of the annual cycle generated by mid-latitude non-linearities. There has been speculation
that the quasi-biennial variations may offer some hope of predictability in mid-latitudes (Brier, 1968;
Madden, 1976). These tropospheric fluctuations do not appear to be strongly associated with the
stratospheric quasi-biennial oscillation (Trenberth and Shin, 1984).

6. STOCHASTIC MODELS OF THE NAO

This section will consider some simple stochastic models that may be suitable for capturing some of the
salient features of the NAO. In contrast to complex physically-based general circulation models, such
statistical models are easy and quick to use and allow one to make many different forecasting tests.
Furthermore, such models can provide invaluable and indispensable ‘benchmark’ control forecasts

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 1–18 (2000)
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Figure 5. Short-term variations in tropospheric dynamics: (a) first eigenvector of covariance matrix of year-to-year differences in
SLP 1959–1994 (32% of total variance) showing annular pattern with strong projection on the North Atlantic sector; (b) second
eigenvector of covariance matrix of year-to-year differences in SLP 1959–1994 (12% of total variance) showing a transpolar
wavetrain pattern; (c) pattern of differenced SLPs that has maximum canonical correlation with differenced surface temperatures;
(d) pattern of differenced surface temperatures that has maximum canonical correlation with differenced SLPs. Patterns are

normalized so as to represent correlations in %

necessary for assessing the possible forecast skill of more complex models. This section will describe four
different time series models that have been used to fit the NAO SLP index. The estimated model
parameters for the NAO SLP index from 1864 to 1998 are given in Table I. The quality of the fits will
be examined in detail in Section 7.

Table I. Autoregressive time series models investigated in this study

p s(f. 1)f. 1Model d

AR(1) 0.091 0 0.15
0.13 0.09AR(10) 10 0

1 –0.13 0.005FAR(1)
RW 1 1 −0.48 0.08

All models are of the form Fp(B)(1−B)dzy=ay where B is the backward shift operator Bzy=zy−1

and ay is white noise (cf. Appendix A). Model parameters d and fk are estimated using maximum
likelihood fits to the standardized NAO SLP index over the 135 winters from 1864 to 1998.

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 1–18 (2000)
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Figure 6. Estimates of the lag-1 autocorrelation coefficient for the NAO SLP index made over the period 1864-YEAR (solid line),
and YEAR-1998 (dashed line). Note the absence of convergence in both cases even after 135 years

6.1. A stationary ‘red noise’ model: AR(1)

The ‘red noise’ paradigm of climate variability considers extra-tropical surface temperature anomalies
to be the low-pass filtered response to stochastic heat fluxes associated with passing weather events
(Davis, 1976; Hasselmann, 1976; Frankignoul and Hasselmann, 1977). The thermal capacity of the sea or
land surface is responsible for generating serial correlations in surface temperature when forced with
uncorrelated heat fluxes. This paradigm has been useful for understanding model generated sea surface
temperatures (Griffies and Bryan, 1997; Saravanan and McWilliams, 1997). Incidentally, the word ‘noise’
has an oceanographic origin since it is derived from the Latin word ‘nauseam’, which describes the
possible sea-sickness that can occur when sailing over rough (noisy) seas. The continuous time model
proposed by Hasselmann (1976) is not directly applicable to discrete time series such as the wintertime
NAO SLP index. However, a discrete analogue having the same low frequency limit is provided by the
first order AR(1) autoregressive model:

zy=f1zy−1+ay, (1)

where zy is the anomaly from the time mean for year y, and ay is a Gaussian distributed innovation
(shock). The maximum likelihood estimate of the lag-1 autocorrelation f1 for the NAO SLP index from
1864 to 1998 is quite small (0.15) yet is almost two standard errors larger than zero (Table I).
Furthermore, due to the presence of substantial sampling fluctuations, the lag-1 estimate does not appear
to have converged even with 135 years of data (Figure 6). The AR(1) model is one of the simplest time
series models that can be used to model and forecast stationary time series.

6.2. A higher order autoregressi6e model: AR(10)

It can also be useful to consider higher order autoregressive processes such as:

zy= %
p

k=1

fkzy−k+ay. (2)

These models are special cases of the general class of Auto-Regressive Integrated Moving Average
(ARIMA) models described in more detail in Appendix A. ARIMA(p, 0, 0) models have more parameters

Copyright © 2000 Royal Meteorological Society Int. J. Climatol. 20: 1–18 (2000)
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{f1, f2, . . . , fp}, and can therefore sometimes provide better fits to a time series than do simple AR(1)
models. For example, models of order p]2 can capture oscillatory behaviour, whereas AR(1) processes
always damp out exponentially. One disadvantage of higher order models is that extra uncertainty is
introduced by the need to estimate more parameters. It is therefore advisable when making forecasts, to
use models that do not have more parameters than necessary. This principle of parsimony is explained in
more detail in Box and Jenkins (1976). In this study, we have considered the AR(10) model which uses
the preceding ten winters to forecast the following winter.

6.3. A ‘long-range’ fractional differenced model: FAR(1)

Evidence was presented in Section 3 which suggests that the NAO exhibits long-range dependence.
Stationary ‘long-range’ processes can be conveniently modelled using ARIMA models having fractional
powers d of the difference operator (Hosking, 1981). To test this approach, we have examined the
behaviour of the fractional differenced first order autoregressive model FAR(1)=ARIMA(1, d, 0) defined
as:

Ddzy=f1Ddzy−1+ay. (3)

The fractional power of the difference operator is obtained using the binomial expansion:

(1−B)d=1−dB+
d(d−1)

2!
B2−

d(d−1)(d−2)
3!

B3+ · · ·, (4)

which converges for values of d between −0.5 and 0.5. Non-stationary processes are obtained when
�d �\0.5 (Hosking, 1981). Such models have been successfully used to model and forecast economic time
series (Geweke and Porter-Hudak, 1983), wind power in Ireland (Haslett and Raftery, 1989), and trends
in global warming (Bloomfield, 1992). Maximum likelihood estimates of d and f1 given in Table I, are
small and suggest once again that the NAO SLP index is close to being a stationary white noise process.
Although f1 is estimated to be very close to zero, the estimate of the difference power d is positive and
non-zero (0.15) suggesting a stationary long-range process. This estimate of d predicts values for the
scaling exponent a=2d−1= −0.7 and power spectrum scaling P(v):v−2d=v−0.3 in agreement with
those obtained in the Section 3. The small estimate for d implies that the NAO SLP index is a stationary
process having only a small amount of long-range dependence. Such a model is expected to explain only
a small fraction of the total variance of the noisy time series (Hosking, 1981).

6.4. A non-stationary ‘random walk’ model: RW

Year-to-year differences can also be modelled using an AR(1) model:

Dzy=f1Dzy−1+ay. (5)

The values {zy} generated by this ARIMA(1, 1, 0) model (cf. Appendix A) are no longer tied to zero as
they were in the AR(1) and AR(10) models, and can drift to arbitrarily large or small values. The variance
of this non-stationary process increases indefinitely with time. When f1=0, the model describes a pure
random walk process in which zy is incremented each year by independent Gaussian steps. The maximum
likelihood estimate of f1 is given in Table I, and is close to the theoretical value of −0.5 expected for
a differenced white noise process. Non-stationary models such as ARIMA(1, 1, 0) are widely used in
economics and financial applications for describing and forecasting series having marked trends.

6.5. A comparison of some 500-year simulations

Figure 7 shows some 500-year-long realizations that have been simulated using the four different
stochastic models. Decadal trends and periodicities are apparent in the running medians of all the
simulated series, as were previously noted in the NAO SLP series. The decadal variations in the simulated
series are the result of filtering random processes and have no underlying dynamical explanation. The
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presence of apparent trends and periodicities in filtered random processes is known as the ‘Slutsky–Yule
effect’, and can easily lead to misinterpretation due to the human instinct to search for regular patterns
even when there may be none (Wunsch, 1999). The non-stationary RW series has the most marked trends
and periodicities, whereas the decadal medians of the AR(1) series never wander far from the mean value
of zero. The AR(10) and FAR(1) series are intermediate between the stationary AR(1) and the
non-stationary RW cases, and show some periods containing long period variations (e.g. years 300–500).
An interesting property of long-range and random walk processes is that when strong decadal trends are
present, short-term variations are often less prevalent. Strong trends are often the fortuitous result of a
run of changes having the same sign, and so by definition are less likely to contain rapid fluctuations.

Figure 7. Some examples of 500 year long realizations simulated using the different models: (a) the red noise model AR(1); (b) the
higher order model AR(10); (c) the fractionally differenced model FAR(1); and (d) the random walk model ARIMA(1, 1, 0).

Long-term trends are indicated by the 50-year running medians
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Similar behaviour has been noted in the NAO series (Hurrell and van Loon, 1997), and speculations have
been made on possible dynamical mechanisms for such behaviour (Tourre et al., 1999).

7. ASSESSMENT OF MODEL FITS TO NAO SLP INDEX

This section compares the performance of the four previously described time series models in fitting the
NAO SLP index from 1864 to 1998. Fits are obtained using model parameters estimated from NAO SLP
index data over the same 135-year period (Table I). In addition to the four stochastic models, statistics
for two very simple benchmark forecasts are also presented: ‘climatology’ and ‘persistence’. A ‘climatol-
ogy’ forecast assumes that the value in the following year will be the same as the overall climatological
mean, whereas a ‘persistence’ forecast assumes that the value the following year will be the same as in the
current year (a martingale process).

7.1. Forecast 6erification

With the exception of the correlation study of Johansson et al. (1998), very few studies have been
published describing forecasts of the NAO. In this section, we will focus on the skill of the four different
time series models at forecasting one winter ahead the NAO SLP index from 1865 to 1998. Such
verification of in-sample forecasts of past values (hindcasts) is the standard method for assessing the
goodness of fit of time series models. The 1-year ahead forecast ẑy for year y is compared to the observed
value of zy, and the misfit is measured by the residual ey=zy− ẑy. In-sample hindcasts differ from
real-time forecasts of the unknown future in that model parameters are estimated using all the sample
data, and so prior information about the values to be forecast has been included when making the
forecast. In-sample hindcasts often have more forecast skill than can be realistically achieved in real
application ‘out-of-sample’ forecasts. However, because of the shortness of the NAO SLP index series,
out-of-sample forecasts could be more unreliable because of the increased uncertainty in model parame-
ters estimated over shorter, yet independent, periods. An alternative approach is to perform cross-
validated forecasts in which model parameters are estimated using all the available data except the year
to be forecast (Johansson et al., 1998). However, this leave-one-out approach should be used with care
since it may overestimate forecast skill because of the presence of serial correlations and decadal trends
in the NAO.

7.2. Goodness of fit

Figure 8 shows the model fits to the standardized NAO SLP index time series obtained by estimating
the model parameters over the whole period 1864–1998. Verification statistics obtained for these fits are
given in Table II. All the model fits substantially underestimate the variance of the standardized NAO
SLP index—the S.D.s s(ẑ) in Table II are all less than one. With the exception of the random walk
model, all the fits in Figure 8 remain close to the mean value of zero. However, the RW model is more
volatile than the other more stationary fits and resembles more closely a persistence forecast. None of the
fits match closely the NAO SLP index, and all give residuals with S.D.s s(e) comparable to the S.D. of
the original standardized index. For the random walk and persistence forecasts, the S.D. of the residuals
actually exceeds the S.D. of the original series. The high order AR(10) model gives residuals with the
smallest S.D. of 0.96, and explains only about 8% (=100% (1–0.96)2) of the total variance close to the
maximum possible limit of 10% estimated by Wunsch (1999). Despite having only one and not ten
parameters, the FAR(1) model gives residuals having only slightly larger S.D.s. A more robust measure
of forecast error appropriate for short noisy time series is provided by the mean absolute deviation
(MAD) about the median:

MAD=
1.483

n
%
n

y=1

�ẑy−zy �, (6)
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Figure 8. Model fits to the standardized NAO SLP index (in grey) obtained for: (a) the red noise AR(1) model; (b) the higher order
AR(10) model; (c) the fractionally differenced FAR(1) model; and (d) the random walk ARIMA(1, 1, 0) model

which is equal to the S.D. for normally distributed residuals. From Table II, it can be seen that the
random walk gives the smallest MAD of 0.93 which is much less than the S.D. of 1.15. The random walk
model has a large S.D. but a small MAD because it makes risky forecasts not close to the mean and so
sometimes produces much larger errors than do the other models. Because of squaring, large errors
contribute significantly more to the S.D. than they do to the MAD. The FAR(1) model gives residuals
with a MAD of 0.97, less than the MAD of 0.99 for the original index. Furthermore, the MAD value of
0.97 is close to the FAR(1) residual S.D. of 0.98 suggesting that the FAR(1) residuals are close to been
normally distributed.
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7.3. Measures of association

Table II presents two measures of association that can be used to judge the forecast skill: the product
moment correlation r(z, ẑ), and the odds ratio u. Largest correlations are obtained with the AR(10) model
closely followed by the FAR(1) and RW models. All the correlations are small and are most likely
predominantly due to the decadal trends in the NAO. A complementary way of assessing the skill of
forecasts is to use the ‘odds ratio’ based on the 2×2 contingency table of the number of binary events
when the index is above or below zero (Stephenson, 1999). For example, the AR(10) fit gives 39 ‘hits’
(z]0 and ẑ]0), 23 ‘false alarms’ (zB0 and ẑ]0), 29 ‘misses’ (z]0 and ẑB0), and 34 ‘correct
rejections’ (zB0 and ẑB0). The odds ratio is equal to 39×34/23×29=1.99 which is significantly
different from unity (no skill) at 95% confidence. The odds ratio can be interpreted as the ratio of the
odds of forecasting a hit to the odds of forecasting a false alarm (Stephenson, 1999). From Table II, it
can be seen that the AR(10) model has the highest odds ratio followed next by the FAR(1) model. All
models have odds ratios between 1 and 2 confirming that there is some slight positive association between
the fits and the NAO SLP index.

7.4. Are the residuals correlated?

When a model provides a good fit to a time series, the leftover residuals are expected to be white noise
having uncorrelated values. To judge this, we have calculated the aggregated variance for the residuals
and used the scaling relationship var(ēn)=s2(e)na to estimate the exponent a. The estimate of a should
be close to −1 when the residuals are uncorrelated white noise. It can be seen from Table II that the
random walk and persistence models give residuals having a much less than −1 which signifies that the
residuals have more power at high frequencies than at low frequencies (blue noise). This is a classic sign
that the time series has been over differenced leading to anti-correlated successive values. The AR(1) and
climatological forecasts give residuals having a greater than −1 which signifies that the residuals have
more power at lower frequencies than at high frequencies. In other words, the residuals still contain
persistence and runs that were present in the original series. The FAR(1) and AR(10) models give
residuals having a close to −1 suggesting that the residuals are uncorrelated noise.

7.5. Brief summary

This section has examined various aspects of the fits provided the four different models. None of the
forecasts provides a particularly close fit to the noisy NAO SLP index. The persistence and RW models
give the poorest fits with correlated residuals containing more variance than that of the original index.
The other models give fits which forecast ‘safe’ values close to the mean climatological value of zero. The
AR(10) and FAR(1) models give forecasts having the largest associations with the observed index as
measured by the product moment correlation and the odds ratio. Similar to what was found by Geweke

Table II. Verification statistics for model fits to the standardized NAO SLP index for
the winters 1865–1998

r(ẑ, z)s(e) MAD(e) Odds ratios(ẑ)Model a(e)

––0.990.00 1.00CLIM −0.81
1.23 −0.920.15 0.99 0.95 0.149AR(1)
1.99 −1.000.28 0.96 1.00 0.276AR(10)a

−0.991.660.1730.970.980.17FAR(1)
1.39 −1.720.76RW 1.15 0.93 0.173

PERS 1.281.301.00 −1.911.230.149

The one-year ahead in-sample forecasts are denoted by ẑ, and are shown in Figure 8. For good fits,
the residuals ey= ẑy−zy should be Gaussian distributed with MAD(e) close to s(e), and should
also be independent of one another with a(e) close to −1. Refer to Section 7 for more discussion.
a The fit was performed over the slightly shorter period 1874–1998.
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and Porter-Hudak (1983), the high order AR model slightly outperforms the FAR model, yet at the
expense of having nine additional parameters. Therefore, FAR(1) appears to be the simplest model that
provides one of the best fits to the noisy NAO SLP index.

8. CONCLUDING REMARKS

From the evidence provided by historical SLP data from 1864 to 1998, interannual variations in the
wintertime NAO SLP index have a broad band spectrum which is close to being white noise. Such
independence of winters is not surprising, if one believes that interannual variations in the NAO are
nothing more than sampling fluctuations caused by stochastic variations in the number and intensity of
North Atlantic storms each winter. However, despite being the most apparent feature, this pessimistic
prospect for forecasting the NAO is not the whole story. Interestingly, there is some suggestion of
‘long-range dependence’ in the NAO that is required to explain the low frequency behaviour. Such
behaviour is not accounted for by simple autoregressive models such as the red noise stochastic model of
climate variability. Long-range fractionally integrated noise zy=D−day, having only one parameter
(d=0.15), provides one of the best fits to the NAO SLP index. Larger values of d such as d=1 (random
walk) are overdifferenced and provide less good fits. To summarize, the evidence based on the short
historical record suggests that the NAO is a stationary process with long-range dependence rather than
been a non-stationary random walk.

Long-range behaviour is ubiquitous and has been named ‘the Joseph effect’ by Mandelbrot and Wallis
(1968) based on Joseph’s interpretation of the Pharaoh’s prophetic dream concerning climatic persistence:

. . . there came seven years of great plenty throughout the land of Egypt. And there shall arrive after them seven years of
famine. (Genesis, 41: 29–30).

‘The Joseph effect’ is used to describe time series which exhibit long-term persistence, and is not intended
to signify the presence of cycles with definite periodicities. The recent series of high NAO winters in the
1990s provides a contemporary example of ‘the Joseph effect’. Various mechanisms exist for generating
long-range dependence such as aggregation, non-linear interactions, and self-criticality. The aggregation
of an infinite number of short-range processes can lead to a process with long-range dependence and this
is a plausible mechanism for the long-range dependence often seen in hydrological and financial processes
(Beran, 1994). It could also be the mechanism responsible for long-range dependence in the NAO with the
North Atlantic ocean integrating a large number of stochastic heat fluxes.

This study has shown that even simple stochastic models such as fractionally integrated noise are
capable of generating long-range processes having significant low frequency variability and marked
trends. It is not inconceivable that natural climate variability could also possess such properties simply as
the result of the aggregation of many stochastic weather processes. Care should therefore be exercised
when assessing and attributing causes to trends observed in climate. Simple short-range processes can
underestimate the stochastic trends that may occur naturally in climate even in the absence of any
deterministic influences from anthropogenic radiative forcing or dynamical changes in ocean circulation.
This study has been based on the short time series of historical climate measurements that are available,
and longer model generated series are currently being investigated (Stephenson and Pavan, 1999).
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APPENDIX A. ARIMA(p, d, q) TIME SERIES MODELS

Auto-Regressive Integrated Moving Average (ARIMA) time series models form a general class of linear
models that are widely used in modelling and forecasting time series (Box and Jenkins, 1976). The
ARIMA(p, d, q) model of the time series {z1, z2, . . . } is defined as:

Fp(B)Ddzy=Uq(B)ay, (7)

where B is the backward shift operator, Bzy=zy−1, D=1−B is the backward difference, and Fp and Uq

are polynomials of order p and q, respectively. ARIMA(p, d, q) models are the product of an autoregres-
sive AR(p) part Fp=1−f1B−f2B2− · · ·−fpBp, an integrating part I(d)=D−d, and a moving average
MA(q) part Uq=1−u1B−u2B2− · · ·−uqBq. The parameters in F and U are chosen so that the zeros of
both polynomials lie outside the unit circle in order to avoid generating unbounded processes. The
difference operator takes care of ‘unit root’ (1−B) behaviour in the time series and for d\0.5 produces
non-stationary behaviour (e.g. increasing variance for longer time series). A simple example of an
ARIMA model is provided by the ARIMA(1, 0, 0) first order autoregressive model zy=f1zy−1+ay that
is sometimes used to model natural climate variability. All these models are ‘discrete time’ models suitable
for modelling time series sampled at regular intervals.

NOTES

1. Freely available from http://www-sv.cict.fr/lsp/Stephen/NAO/index.html
2. Available from http://wesley.wwb.noaa.gov/reanalysis.html
3. Sometimes also referred to as the Durbin–Watson statistic.
4. Closely related modes explaining more total variance can be obtained by using either a smaller spatial domain or by using the

covariance instead of the correlation matrix.
5. http://www-sv.cict.fr/lsp/Stephen/STOEC/index.html
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