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ABSTRACT

Anthropogenic influences are expected to cause the probability distribution of weather variables to
change in nontrivial ways. This study presents simple nonparametric methods for exploring and comparing
differences in pairs of probability distribution functions. The methods are based on quantiles and allow
changes in all parts of the probability distribution to be investigated, including the extreme tails. Adjusted
quantiles are used to investigate whether changes are simply due to shifts in location (e.g., mean) and/or
scale (e.g., variance). Sampling uncertainty in the quantile differences is assessed using simultaneous con-
fidence intervals calculated using a bootstrap resampling method that takes account of serial (intraseasonal)
dependency. The methods are simple enough to be used on large gridded datasets. They are demonstrated
here by exploring the changes between European regional climate model simulations of daily minimum
temperature and precipitation totals for winters in 1961–90 and 2071–2100. Projected changes in daily
precipitation are generally found to be well described by simple increases in scale, whereas minimum
temperature exhibits changes in both location and scale.

1. Introduction

The comparison of two time series is a common task
in climate research. Daily precipitation, for example,
might be compared at two sites, or during two periods
at one site. Many comparisons could be made, but here
the focus is on differences in the marginal probability
distributions of the two series. Our interest and ex-
amples are motivated by a desire to explore possible
future changes in the distributions of meteorological
variables due to climate change. For example, there is
much interest in how extremes in the tails of the distri-
bution (e.g., the 90th and higher percentiles) might
change in future climates (Watson and Core Writing
Team 2001). Changes in such quantities are likely to
have greater societal impact than changes in the mean
of the distribution (e.g., Beniston et al. 2005, manu-
script submitted to Climatic Change).

Two distributions can be compared graphically by
plotting estimates of the density functions, such as his-
tograms, or by quantile–quantile plots. Inferences

about the similarity of distributions of weather vari-
ables have generally been made with parametric statis-
tical tests, such as the t test for equality of means, or the
F test for equality of variances; see von Storch and
Zwiers (2001) or Wilks (1995) for details. However,
such tests rely on strong distributional assumptions to
which their performance can be sensitive, they give
only a limited view of how the distributions differ when
more detail can be useful, and their implementation in
the presence of serial dependence (e.g., correlation)
can be troublesome. The t test for example is unable to
detect changes in scale, the F test is unable to detect
changes in location, and both can have low power if the
distributions are not normal (e.g., Wilcox 1997, chapter
5). This study describes a simple technique that depicts
how two distributions differ and that can be used to
assess whether or not the difference can be character-
ized by a change in location or scale, often measured,
respectively, by sample means and variances. The tech-
nique is flexible and can be tailored to focus on parts of
the distribution, such as the extreme lower or upper
tails, that are of specific interest, and it takes proper
account of possible temporal and spatial dependence
within and between the two series.

The technique is described in section 2 and demon-
strated with an application in section 3. The example
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application examines the changes in distributions of
daily minimum temperature and daily precipitation
throughout Europe over the twenty-first century, as
simulated by the Danish Meteorological Institute’s
high-resolution (50-km grid) regional climate model
HIRHAM4 (Christensen et al. 1998) for the European
Union project, Prediction of Regional Scenarios and
Uncertainties for Defining European Climate Change
Risks and Effects (PRUDENCE; Christensen et al.
2002). The simulations comprise a control (1961–90)
and a scenario (2071–2100) integration, the latter
forced by the Intergovernmental Panel on Climate
Change (IPCC) A2 emissions scenario (Nakićenović
and Swart 2000). Boundary conditions are supplied by
the Hadley Centre’s global, atmosphere-only model
HadAM3H, which is driven by observed sea ice and sea
surface temperature (HadISST1) in the control; sea ice
and sea surface temperatures in the scenario are deter-
mined from changes simulated by the Third Hadley
Centre Coupled Ocean–Atmosphere General Circula-
tion Model (HadCM3). See the PRUDENCE project
Web site at http://prudence.dmi.dk for more details.

2. Statistical method

a. Hypotheses

The aim is to understand any differences between the
probability distributions of two variables, such as daily
maximum temperatures at two sites. Simple character-
izations of the possibly complex differences are often
able to capture the main features and aid understand-
ing. Two such characterizations are of particular inter-
est: differences in location or scale, for which the dis-
tributions are related by a constant translation or scal-
ing, respectively.

Let X and Y denote the two variables, and let their
distribution functions be F(x) � P(X � x) and G(y) �
P(Y � y), where P(A) denotes the probability of an
event A. See von Storch and Zwiers (2001) or Wilks
(1995) for basic introductions to probability distribu-
tions. The following hypotheses are of interest for un-
derstanding changing distributions:

H0: F �z� � G�z�

HS: F ��Xz� � G��Yz�

HL: F ��X � z� � G��Y � z�

HLS: F ��X � �Xz� � G��Y � �Yz�

�1�

for all �� � z � � and unknown constants �X, �Y, 	X


 0, and 	Y 
 0. Hypothesis H0 claims no difference
between F and G, HS a difference only in scale, HL a

difference only in location, and HLS a difference only in
location and scale. The relative impacts of location and
scale changes have been discussed using parametric ap-
proaches by Mearns et al. (1984) and Katz and Brown
(1992) among others.

In the remainder of this section, functions of quan-
tiles that summarize the differences between F and G
are defined, and simple, informative plots are described
that support an informal assessment of the legitimacy of
hypotheses (1). Methods are presented for computing
confidence intervals to represent the variability of the
quantile estimators, and formal testing of the hypoth-
eses is discussed.

b. Quantiles

The p quantile (100p percentile) of a continuous dis-
tribution is the value below which a proportion p of the
probability mass falls. For example, the p quantile, xp,
of F satisfies F(xp) � p. If {X1, . . . , Xm} and {Y1, . . . ,
Yn} are samples from distributions F and G, and X(1) �

. . . � X(m) and Y(1) � . . . � Y(n) are the order statistics
(samples arranged in increasing order), then estimators
for the p quantiles of F and G are

x̂p � X� �pm�0.5� � and ŷp � Y� �pn�0.5� �,

where �z� denotes the integer part of z. Different quan-
tile estimators might be preferred if the sample sizes are
small (Parrish 1990). See Bonsal et al. (2001) for an
application examining changes in temperature quan-
tiles and Wilcox (1997) for more material on such non-
parametric statistics.

Three useful statistics for summarizing a distribution
are the median, interquartile range, and Yule–Kendall
skewness measure, which are computed from just three
quantiles:

mX � x̂0.5,

sX � x̂0.75 � x̂0.25,

aX � �x̂0.75 � 2x̂0.5 � x̂0.25��sX.

�2�

These statistics are resistant measures of the location,
scale, and shape (asymmetry) of F, and can be com-
pared with the corresponding statistics, mY, sY, and aY,
for G. See Lanzante (1996) for examples demonstrating
the benefits of using such measures.

For illustration, these statistics are now computed
from all of the winter daily minimum temperatures
simulated by HIRHAM4 at a single grid point
(46.4805°N, 7.9761°E) in both the control (X) and sce-
nario (Y) 30-yr integrations. Winter is defined to cover
December–January–February (DJF), yielding sample
sizes m � n � 2700. In the control, mX � �12.2°C,
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sX � 10.1°C, and aX � �0.23; in the scenario, mY �
�8.2°C, sY � 7.3°C, and aY � �0.06. Histograms and
boxplots of the gridpoint temperatures are reproduced
in Fig. 1. Note that the skewness measures compare the
relative heights of the lower and upper boxes in the
boxplots. These statistics and plots indicate a general
warming together with a reduction in scale and a
change in shape of the distribution: the long, colder tail
evident in the control becomes shorter, resulting in a
more symmetric distribution in the scenario. Similar
behavior has been noted in observations such as the
Central England Temperature series (Antoniadou et al.
2001).

Another informative comparison is made by the
quantile–quantile plot of ŷp against x̂p for p � 1/N,
2/N, . . . , 1, where N � min(m, n). The hypotheses (1)
correspond to different linear relationships between the
two sets of quantiles:

H0: yp � xp

HS: yp � �Y�xp��X�

HL: yp � �Y � �xp � �X�

HLS: yp � �Y � �Y�xp � �X���X

�3�

for all 0 � p � 1. The right-hand sides of equalities HS,
HL, and HLS are the quantiles for the distribution ob-
tained by adjusting F to have, respectively, the same
scale, location, and location and scale as G.

The quantile–quantile plot of the scenario versus
control gridpoint temperatures is reproduced in Fig. 2a.
Estimates of the linear relationships (3) for hypotheses
H0, HL, and HLS are superimposed, where the location
parameters, �X and �Y, are estimated by the medians,
mX and mY, and the scale parameters, 	X and 	Y, by the
interquartile ranges, sX and sY. The estimated location-
scale model for HLS (dotted line) is reasonably close to

FIG. 1. Histograms of (a) control and (b) scenario DJF daily minimum temperatures (°C); (c) boxplots of control and scenario
temperatures. The boxplot whiskers extend over the range of the data; three lower quantiles ( p � 0.01, 0.05, and 0.1) and three upper
quantiles ( p � 0.9, 0.95, and 0.99) are marked (●).

FIG. 2. (a) Quantile–quantile plot (line with dots) of scenario vs control DJF daily minimum temperatures (°C) with straight lines
corresponding to hypotheses H0 (normal line), HL (dashed line), and HLS (dotted line); (b) quantile differences (line with dots),
location adjusted (dashed line), and location and scale adjusted (dotted line) against probability. Nine quantiles ( p � 0.01, 0.05, 0.1,
0.25, 0.5, 0.75, 0.9, 0.95, and 0.99) are highlighted (●).
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the quantile–quantile plot except for some discrepan-
cies at low and high temperatures. This indicates that,
while the changes to the body of the temperature dis-
tribution are well described by a change in location and
scale, a more complex model is required to describe the
changes in the extreme tails of the distribution.

c. Exploring changes in gridded fields

The quantile–quantile plot is practicable if only a
small number of pairwise comparisons are able to be
made. With gridded data, comparing distributions be-
tween two time periods at each of several thousand grid
points is often of interest. In this case, it is more valu-
able to plot maps showing the change in a single quan-
tile, such as ŷp � x̂p, at each grid point. Values of p can
be chosen to cover different parts of the distribution:
for the center, p � 0.25, 0.5, and 0.75 might suffice; for
the lower or upper tail, p � 0.01, 0.05, and 0.1 or p �
0.9, 0.95, and 0.99 could be used. All nine of these quan-
tiles will be examined in our application. The 0.1 and
0.9 quantiles correspond to the Watson and Core Writ-
ing Team (2001) definition of an extreme event; the
rarer quantiles provide more information about the
tails. Sample size will dictate how far into the tails quan-
tile estimators are acceptably precise.

If there is no difference between F and G (hypothesis
H0), then from (3) ŷp � x̂p is expected to be approxi-
mately zero for each p. If maps of these quantile dif-
ferences show nonzero values, then a simple explana-
tion could be a change in location. If hypothesis HL and
the corresponding relationship (3) hold, then the esti-
mators

ŷp � {mY � �x̂p � mX�}

for the location-adjusted quantile differences are ex-
pected to be zero, and maps of these differences are
useful for diagnosing a location shift. If significant pat-
terns still remain, then it is possible to look for an ad-
ditional change in scale. If hypothesis HLS and the cor-
responding relationship (3) hold, then the estimators

ŷp � �mY � sY� x̂p � mX

sX
��

for the location- and scale-adjusted quantile differences
are expected to be zero, and maps of these differences
are useful for diagnosing location and scale shifts. Care-
ful scrutiny of such maps can lead to a good under-
standing of how distributions differ at each grid point,
and how these differences vary geographically.

For illustration, the quantile differences between the
control and scenario temperatures at the example grid
point are shown in Fig. 2b. The location- and scale-

adjusted differences confirm the earlier finding that
model HLS provides a reasonable fit except in the tails.
See Beniston and Stephenson (2004) and McGregor et
al. (2005) for other applications of this technique.

d. Confidence intervals

Sample estimates d̂p � ŷp � x̂p differ from the true
differences dp � yp � xp due to sampling uncertainty.
This can be quantified by calculating confidence inter-
vals for dp. The interval [Lp, Up] is a pointwise (1 � �)
confidence interval for dp if

P�Lp � dp � Up� � 1 � �. �4�

The probability that the interval contains the true
quantile difference is 1 � �. See von Storch and Zwiers
(2001) for background on confidence intervals and
other aspects of statistical inference.

There are many ways to construct confidence inter-
vals. The approach employed here is based on boot-
strap resampling, a popular and effective technique that
can be adapted to account for dependence within and
between the samples. Dunn (2001), for example, uses
the bootstrap to estimate pointwise confidence inter-
vals for rainfall quantiles from a single sample; see also
Wilks (1995, 1997). A discussion of bootstrap confi-
dence intervals and their implementation in the current
setting is deferred to the appendixes. Pointwise confi-
dence intervals for the quantile differences between the
control and scenario temperatures at the example grid
point are shown in Fig. 3, where it can be seen that the
uncertainty is greater in the relatively long, colder tail.

The hypotheses (1) refer not to single quantiles but
to entire distributions: if hypothesis H0 holds, for ex-

FIG. 3. Quantile differences (thin line) of DJF daily minimum
temperatures (°C) against probability, with pointwise (gray) and
simultaneous (black) 90% confidence intervals.
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ample, then dp � 0 for all p. Suppose that limits L�p and
U�p are available for each of M values, p1, . . . , pM, of p
such that

P�L�p � dp � U�p for all p � p1, . . . , pM� � 1 � �.

�5�

If the pointwise limits Lp and Up satisfying expression
(4) are used to define these simultaneous confidence
intervals, then the coverage probability 1 � � is un-
likely to be obtained in (5). For example, if the different
quantiles were independent, then the pointwise limits
would give

P�Lp � dp � Up for all p � p1, . . . , pM� � 
k�1

M

P�Lpk
� dpk

� Upk
� � �1 � ��M.

Although independence is unrealistic, it remains true
that simultaneous intervals are generally wider than
pointwise intervals with the same coverage. The
method used here to construct simultaneous intervals is
described in appendix A.

e. Hypothesis tests

The simultaneous intervals (5) can be used to test H0:
the hypothesis is rejected at significance level � unless
L�p � 0 � U�p for all p. Rather than use all p1 � 1/N,
p2 � 2/N, . . . , pM � pN � 1, attention can be restricted
to a subset of quantiles, the choice of which involves a
trade-off between statistical power and the strength of
conclusions. Power reduces as more quantiles are con-
sidered because the simultaneous intervals widen, and a
real change in distribution is less likely to be detected.
On the other hand, a hypothesis test based on only a
few quantiles ignores possible changes in other parts of
the distribution. Our selected set of nine quantiles (p �
0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, and 0.99) form a
compromise, but other choices may be more appropri-
ate in other applications. A small simulation study of
the power of tests based on these quantiles is summa-
rized in appendix C.

Simultaneous confidence intervals for the quantile
differences between the control and scenario tempera-
tures at the example grid point are shown in Fig. 3. The
line dp � 0 lies outside the shaded simultaneous 90%
confidence intervals, which therefore support rejection
of H0 at the 10% level of significance.

One might attempt to test HL by constructing confi-
dence intervals for yp � {�Y � (xp � �X)}, which is zero
for all p if HL holds, by substituting it for dp in the
previous section. This is successful only if �X and �Y are
specified. For example, choosing �X � x0.5 and �Y �
y0.5 produces confidence intervals for yp � {y0.5 � (xp �
x0.5)}. Such intervals, however, do not support a test of
HL because HL leaves �X and �Y unspecified: even if
the confidence intervals for yp � {y0.5 � (xp � x0.5)}
failed to contain zero for all p, other choices for �X and

�Y might yield a different conclusion. Similar consider-
ations apply to confidence intervals for yp � 	Yxp/	X

and yp � {�Y � 	Y(xp � �X)/	X}.
Some authors (e.g., Sun et al. 2001) have proposed

rejecting HL if a horizontal line cannot pass completely
through the confidence band for dp, that is, if maxpL�p

 minpU�p. Such a test is conservative, however: if
HL holds, then the band will contain the true value of
�Y � �X with the appropriate probability, but the prob-
ability that it contains any constant line is greater, so
HL will be rejected too infrequently. Parametric models
can be used to test for specific departures from HL, HS,
or HLS, but such tests can be sensitive to model assump-
tions, as mentioned in section 1.

Our preferred approach for testing hypotheses H0,
HL, HS, and HLS would be first to test HLS against the
general alternative that there are some differences be-
tween the distributions that cannot be described by lo-
cation and scale changes, then HL or HS against HLS if
the first test were passed, and finally H0 against HL or
HS if the second test were passed. Several nonparamet-
ric procedures exist for the latter two tests when there
is no serial dependence: see Conover et al. (1981) and
Lehmann (1975, p. 95) for example. We have failed to
find any published nonparametric tests for HLS against
the general alternative, so we are investigating else-
where the use of minimized distance measures, such as
the Kolmogorov–Smirnov distance and the quantile
distance considered by Zhang and Yu (2002), as test
statistics.

3. Temperature and precipitation fields

The use of quantiles and adjusted quantile differ-
ences for diagnosing distributional changes was illus-
trated in the previous section with data at a single grid
point from the HIRHAM4 integrations. In this section,
the methods are applied across the entire spatial do-
main, first for winter daily minimum temperatures and
then for winter daily total precipitation.
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a. Temperature

The summary statistics (2) are displayed in Fig. 4. In
the control, cooler median temperatures are found over
northeastern Europe, regions that also exhibit greater
variability, and there is widespread negative skewness.
The uniform increase in scenario median temperatures
is greater in cooler regions, the general decrease in vari-
ability is greatest in the continental interior, and skew-
ness moves closer to zero except, most noticeably, for a
band in the east that may correspond to snow retreat
(Kjellström 2004).

That the probability distribution of scenario tem-
peratures is not everywhere merely a location shift of
the control distribution is evident in Fig. 5, where the
greater increase in cold quantiles, particularly in the
continental interior, is clear. Figure 6, showing the lo-
cation-adjusted quantile differences, indicates that the
distributional changes over much of the seas and west-
ern Europe can be described by a shift in location. Fig-
ure 7 indicates that additional changes in scale describe
some of the remaining changes in northern and eastern
Europe, but that some regions exhibit a more complex
distributional change.

b. Precipitation

Location shifts may be inappropriate descriptions of
changes in distributions of nonnegative variables such
as precipitation. A positive location shift would exclude
values near zero; a negative shift would admit negative
values. Although common measures of location such as
the median may still change, such effects are better
described by shifts in scale and shape. Distinguishing
between wet and dry days, the former denoting days on
which the precipitation strictly exceeds an amount u,
may also be important.

Let F and G denote the distribution functions for
excess wet-day precipitation above u � 1 mm in the
control and scenario integrations. Let also x̂p and ŷp be
the estimators for the p quantiles of F and G. The scale-
and shape-change hypothesis is formulated as

HSS F ��Xz�X� � G��Yz�Y�

for all z 
 0 and unknown, positive constants 	X, 	Y,
�X, and �Y. This hypothesis corresponds to the nonlin-
ear relationship

yp � �Y�xp ��X��Y��X.

FIG. 4. (a) Median (°C), (b) interquartile range (°C), and (c) skewness measure for DJF daily minimum temperatures in the control;
(d) differences in the medians and (e) ratios of the interquartile ranges between the scenario and control; (f) skewness measure in
the scenario.
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Taking logarithms yields

y*p � log�Y � �Y�x*p � log�X���X,

where x*p � logxp and y*p � logyp. This has the same
form as the final equality (3) and shows that a scale-
shape change of wet-day precipitation excess is equiva-
lent to a location-scale change of log-transformed
excess. Adjusted quantile differences can therefore be

defined as in section 2c. For example, if hypothesis HSS

holds, then the estimators

ŷ*p � �m*Y � s*Y� x̂*p � m*X
s*X

��
for the location- and scale-adjusted transformed quan-
tile differences are expected to be zero, where m*X �
x̂*0.5, s*X � x̂*0.75 � x̂*0.25, and m*Y and s*Y are defined simi-
larly. Inverting the transformation yields scale- and
shape-adjusted quantile ratios:

ŷp

mY�x̂p �mX�s*Y �s*X
.

Maps of these scale- and shape-adjusted quantities are
useful for diagnosing scale and shape changes. Setting
s*X � s*Y yields quantities appropriate for diagnosing a
pure scale change.

These methods are illustrated by application to win-
ter daily total precipitation from the control and sce-
nario integrations. Summary statistics are reproduced
in Fig. 8. In the control, greater median precipitation
amounts are found windward of steep altitude gradi-
ents, regions that also exhibit greater variability, and
there is widespread positive skewness. Scenario median
precipitation decreases only in the Mediterranean and
over the Scandinavian mountains, a pattern that is rep-
licated for scale, but the spatially complex changes in
skewness are difficult to summarize. The change in pro-
portion of wet days is shown in Fig. 9, revealing a de-
crease in the Mediterranean and in the far north, and an

FIG. 5. Differences (°C) in nine quantiles of DJF daily
minimum temperatures between the scenario and control.

FIG. 6. Same as in Fig. 5, but after adjusting for location.

FIG. 7. Same as in Fig. 5, after adjusting for location and scale.
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increase in the intervening latitudes that is strongest
around the North and Baltic Seas.

The changes in six quantiles are investigated in Fig.
10. (Low quantiles are of less interest so they are ex-

cluded.) All quantiles decrease in the Mediterranean
and over the Scandinavian mountains. Largest in-
creases are found elsewhere in Scandinavia and in east-
ern Europe. The scale-adjusted quantile ratios in Fig.
11 indicate that changes in scale of the distributions can
explain many of the differences over northern Europe,
the Alps, and around the Adriatic. Accounting for ad-
ditional changes in shape (not shown) explained little of
the remaining differences.

FIG. 9. Difference in the proportions (%) of wet days between
the scenario and control.

FIG. 10. Ratios of six quantiles of DJF daily total precipitation
between the scenario and control.

FIG. 8. Same as in Fig. 4, but for DJF daily total precipitation; (a) and (b) interquartile range are in mm.
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4. Discussion

The methods presented here are simple and flexible
tools for comparing entire distributions of meteorologi-
cal variables. Such investigations are able to highlight
differences, such as changes in the tails of a distribution,
that have important, practical consequences and that
could be missed by examining only means and vari-
ances. The application considered in section 3 demon-
strates the ability of the methods to highlight the main
features in large, gridded datasets, a situation in which
traditional, graphical comparisons would be impracti-
cable. The analysis can also be used to motivate a closer
examination of sites that exhibit complex distributional
changes.
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APPENDIX A

Bootstrap Confidence Intervals

This appendix first describes a method for obtaining
pointwise confidence limits with coverage probability
(4). If

P�l � d̂p � dp � u� � 1 � �,

then Lp � d̂p � u and Up � d̂p � l are valid confidence
limits. Requiring

P�d̂p � dp � l� � P�d̂p � dp � u� � ��2 �A1�

ensures equal-tailed intervals, a useful property that
highlights any asymmetry in the uncertainty associated
with d̂p, but does not necessarily yield the shortest in-
terval. Bootstrap estimates of l and u can be obtained in
the following way. Let {X*1 , . . . , X*m} and {Y*1 , . . . Y*n} be
samples formed by resampling the original sequences.
Discussion of how to perform this resampling is post-
poned to appendix B. When the original samples are
representative of the populations from which they were
drawn, the distribution of d̂p � dp is well approximated
by that of d̂*p � d̂p, where d̂*p � ŷ*p � x̂*p , x̂*p � X*( � pm�0.5�)
and ŷ*p � Y*( �pn�0.5�). The distribution of d̂*p � d̂p can be
approximated numerically by creating a large number,
B, of resamples: if d̂*p1, . . . , d̂*pB are the values of d̂*p for
the B resamples, and d̂*p(1) � . . . � d̂*p(B) are the order
statistics, then estimates of l and u satisfying equalities
(A1) are

l* � d̂*p�b1� � d̂p and u* � d̂*p�b2� � d̂p,

where b1 � �(�/2) B � 0.5� and b2 � �(1 � �/2) B � 0.5�.
Taking B � 1000 typically yields a sufficiently close
approximation. The resulting confidence limits,

Lp � d̂p � u* and Up � d̂p � l*,

define what is known as a “basic” bootstrap confidence
interval.

However, there are technical reasons and evidence
from simulation studies (Falk and Kaufmann 1991) that
another type of bootstrap interval should be preferred
for constructing confidence intervals for quantiles. Sup-
pose that there exists a function h(·) such that the dis-
tribution of ĉp � h(d̂p) is symmetric about cp � h(dp).
Estimates of l and u that satisfy P(l � ĉp � cp � u) �
1 � � can then be found as before: l* � ĉ*p(b1) � ĉp and
u* � ĉ*p(b2)

� ĉp. By symmetry, however, it is also the
case that P(l � cp � ĉp � u) � 1 � �, so valid confi-
dence limits for cp are Lp � l* � ĉp � ĉ*p(b1) and Up �
u* � ĉp � ĉ*p(b2). Applying the inverse transformation
yields “percentile” bootstrap confidence limits for dp:

Lp � d̂*p�b1� and Up � d̂*p�b2�.

Note that the symmetrizing function h(·) is not used,
and so need not be known, to compute these limits.

Bootstrapping confidence intervals for quantiles is
mathematically sound (e.g., DiCiccio and Romano
1988) but is more difficult than for many other quanti-
ties, such as means, in the sense that larger sample sizes
are required to obtain the same level of accuracy. Sev-

FIG. 11. Same as in Fig. 10, but after adjusting for scale.
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eral modifications of the bootstrap, such as smoothing
(Hall et al. 1989), have been proposed to improve mat-
ters, but these are more complicated to implement and
are not considered here.

Simultaneous intervals (5) can be estimated using a
method described by Davison and Hinkley (1997, their
section 4.2.4). From the B bootstrap samples obtained
previously, compute d̂*p1, . . . , d̂*pB for each p of interest.
Equal-tailed, simultaneous confidence intervals have
limits L�p � d̂*p(k) and U�p � d̂*p(B�1�k) for some 1 � k �

B/2. For any k, the bootstrap estimate of the coverage
probability (5) is

1
B �

b�1

B

I�d̂*pb � d̂*p�k� or

d̂*pb 	 d̂*p�B�1�k�

for at least one p�,

where I(A) � 1 when A is true, and 0 when A is false.
It is sufficient, therefore, to choose k such that this
estimate is as close as possible to 1 � �. This value can
be found with an appropriate search routine.

APPENDIX B

Bootstrap Resampling

When the original samples {X1, . . . , Xm} and {Y1, . . . ,
Yn} are independent of one another, and each com-
prises independent and identically distributed vari-
ables, bootstrap resampling is straightforward: new
samples {X*1 , . . . , X*m} and {Y*1 , . . . , Y*n} are formed by
resampling uniformly and with replacement from the
appropriate, original sample.

If there is dependence between or within the original
samples, then this must be reproduced in the resamples
for the bootstrap approximation to be accurate. Depen-
dence between samples can be preserved by resampling
Yi whenever Xi is chosen, for 1 � i � min(m, n). This
would be appropriate if Xi and Yi were coincident
(paired) measurements at two sites, for example. Sev-
eral approaches have been developed to account for
serial dependence within samples, two of which (pre-
whitening and moving-blocks resampling) are discussed
by Wilks (1997). In our application, each sample is a
time series of daily gridpoint values for consecutive
winters. If dependence between winters is weak, then
resampling data blocked into winters is an acceptable
solution. To be precise, each winter comprises r � 90
values and the Xi form blocks Zj � {X(j�1)r�1, . . . , Xjr}
for winters j � 1, . . . , m/r. We resample uniformly and
with replacement from {Z1, . . . , Zm/r} to obtain
{X*1 , . . . , X*m}, and similarly for the Yi.

Another potential complication is the presence of
time trends in the data. In this case, the stationarity
assumption that each Xi has distribution F and each Yi

has distribution G is unreasonable. The methods de-
scribed in this article are not designed for such data, so
any trends should be removed prior to the analysis. In
general, however, bootstrap techniques are easily modi-
fied to incorporate trends. For example, if {X̂1, . . . , X̂m}
is an estimate of an additive trend in the Xi, then the
detrended data, X̃i � Xi � X̂i, should be resampled
before adding back the estimated trend component to
obtain X*i � X̃*i � X̂i.

APPENDIX C

Power Study

The power of the hypothesis test proposed in section
2 for H0 and based on simultaneous, percentile boot-
strap confidence intervals for nine quantiles (0.01, 0.05,
0.1, 0.25, 0.5, 0.75, 0.9, 0.95, and 0.99) with 1000 boot-
strap samples is compared with the power of the Kol-
mogorov–Smirnov test, the two-sample t test, and the F
test.

Monte Carlo estimates of power are obtained from
1000 simulated datasets. Each dataset comprises two,
independent samples of 300 independent normal ran-
dom variables. Serial dependence is suppressed so that
the t and F tests are applicable without adjustment (see,
e.g., chapter 6 of von Storch and Zwiers 2001). The
sample size is the effective size (von Storch and Zwiers
2001, p. 115) of samples of length 2700 generated by a
first-order autoregressive process with correlation 0.8
at first lag. The power of the tests to detect changes in
location is determined by setting the variances of the
two samples equal to 1 and allowing the difference (�)
between the means to range from 0 to 0.5. The power of
the tests to detect changes in scale is determined by
setting the means of the two samples equal to 0 and
allowing the ratio (�) of the standard deviations to
range from 1 to 1.5.

The results are plotted in Fig. C1. The t and F tests
are designed and are most powerful for detecting
changes in, respectively, the means and variances of
normal distributions. The quantile and Kolmogorov–
Smirnov tests, on the other hand, are sensitive to any
distributional changes and do not make any such dis-
tributional assumptions. The results show that the
quantile test is conservative and less powerful than the
Kolmogorov–Smirnov test for detecting location
changes but is generally more powerful for detecting
scale changes. Note that these results also give the pow-
ers of detecting changes in scale (exp �) and shape (�)
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when the data have lognormal distributions and the
tests are applied to the log-transformed data.
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