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Large-Scale Electric and Magnetic Fields Generated by the Oceans 
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The magnetostatic equations are used to derive a consistent set of equations capable of describing 
the global-scale, low-frequency electric and magnetic fields induced by the motion of the ocean 
through the geomagnetic field. The equations are solved numerically with realistic 2 ø x 2 ø topography 
in a global domain with ocean flow simulated by a detailed ocean circulation model. Estimates of the 
annual mean and the first annual harmonic of the electric potential, the vertical component of the 
oceanic magnetic field, and the vertically integrated electric current density stream function are 
obtained. With the idea of using electric and magnetic fields to deduce large-scale oceanic flow, 
emphasis is placed on the geographical location of interesting features. The fields are not found to be 
basin-wide but rather are found to be localized and strongest in shallow regions. The magnetic fields 
generated by ocean currents are of the order of 1 nT, and while these can be measured by 
magnetometers, they would be difficult to detect owing to contamination from other sources of 
magnetic variation. In finding the electric field, electric currents cannot be neglected where ocean 
currents cut across isobaths. However, in regions where the ocean flow is aligned with the isobaths, 
measurement of electric fields is sufficient to find the ocean flow. 

1. INTRODUCTION 

Ever since Faraday [1832] attempted to measure the flow 
of the River Thames by measuring the potential across 
electrodes lowered from Waterloo Bridge, people have been 
attempting to use motionally induced electric and magnetic 
fields to deduce geophysical flows. Salt in the ocean makes it 
a good conductor. The movement of a conductor through a 
magnetic field induces a potential drop across the conductor 
proportional to the product of its velocity and the magnetic 
field. Depending on the geometry, this can in turn cause 
electric currents to flow in the conductor. The electric 

currents give rise to a secondary magnetic field. The inverse 
problem is to deduce the flow field given either the electric 
field or the magnetic field or both. Depending on the situa- 
tion, both fields may be necessary. The direct problem is to 
calculate the electric and magnetic fields given the flow. 

Over the last century, magnetic observatories around the 
globe have been continuously monitoring the Earth's mag- 
netic field, and if these data could somehow be inverted, 
they would be a valuable source of information on the ocean 
flow. Also, it has been reported (S. K. Runcorn, personal 
communication, 1991) that analyzed observatory data show 
a magnetic signal coming from the interior which has an 
annual cycle and is spatially correlated with the ocean 
basins. Unfortunately, little is known about how to invert 
these data to obtain ocean flows globally. This is a motiva- 
tion to do theoretical studies aimed at understanding how the 
ocean currents are related to motionally generated electric 
and magnetic fields on large spatial scales and seasoral time 
scales. 
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Furthermore, measurements of electric fields using under- 
sea communication cables, towed electrodes, and seabed 
devices have been performed. Comparison of total trans- 
ports of the Florida Current deduced from cable measure- 
ments and from current meter mooring and profiling obser- 
vations indicate that cable measurements can be a very good 
way to measure ocean transports over a wide range of time 
scales [Larsen, 1992]. A detailed comparison of measure- 
ments of a bottom-mounted device and current meter data 

has recently been carried out [Chave and Luther, 1990; 
Luther et al., 1991]. 

Theoretical work on the electromagnetic behavior of the 
oceans has been performed over the last 40 years (refer to 
Larsen [1992] for a complete review). The direct problem is 
in principle simple, but the effects of varying topography and 
conductivity variations within both the sea and the seabed 
complicate the problem. No attempt has been made to 
calculate the electromagnetic behavior for the global domain 
with realistic ocean flows and topography. It is our belief 
that this is a necessary first step. Such a large-scale view has 
the problem that it is incapable of addressing small-scale 
phenomena in the electric and magnetic fields. However, it 
provides a description of the global behavior and can be used 
to find interesting regions for smaller-scale studies. For 
example, regions of strong electric fields can be identified 
which can then be of use in choosing cables which provide 
good measurements. Another advantage of a global study is 
that it requires no boundary conditions in the horizontal 
directions. This is of special importance in calculating the 
global magnetic field due to the ocean. Smaller-domain 
studies have to make some assumptions about the electric 
currents on the horizontal boundaries. 

In this paper we aim to understand the global electric and 
magnetic fields motionally induced by oceanic flow on 
seasonal time scales. Our model is incapable of describing 
scales less than about 4 ø and is intended to represent the 
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global picture rather than the fine detail. In sections 2--4 we 
start from the magnetostatic equations and derive a simple, 
vertically averaged thin-shell equation appropriate for large 
scales and low frequency. We model the ocean and adjacent 
land areas as a thin conductive shell between two perfect 
insulating layers, one representing the atmosphere above 
and the other representing the upper mantle below. Further- 
more, we simplify the conductivity distribution to one hav- 
ing only two values, one for land and one for sea. This is all 
done in order to obtain an equation which can be easily 
solved numerically and which contains the essential behav- 
ior of the motionally induced fields. Our model is roughly 
consistent with what little is known, but for simplicity it 
neglects effects which may be important quantitatively. For 
example, the fact that saturated ocean sediments have a 
much higher conductivity than solid crust is ignored, as are 
conducting layers at deeper levels in the mantle [Mackie et 
al., 1988; Cox et al., 1986]. In section 6 we describe how we 
solved the equation numerically. Section 7 explains the 
ocean model used for the flow field. We present the results of 
the simulation in section 8 and conclude with a discussion in 

section 9. 

2. MAGNETOSTATIC EQUATIONS: DERIVATION 
FROM MAXWELL'S EQUATIONS 

Under the assumption that the time period of interest T is 
such that T >> e/•r, where e is the relative permittivity and 
•r is the electrical conductivity of the medium, the displace- 
ment currents are much less than the total electric currents, 
and electromagnetic radiation is negligible. Under these 
conditions, Maxwell's equations for a moving medium be- 
come [Sanford, 1971] 

OB/Ot = -VAE (1) 

E = K/xJ- vAB (2) 

/zJ = VAB (3) 

These are known as the magnetostatic equations for a 
medium with magnetic permeability/x. The magnetic diffu- 
sivity K = (r r/x) -1 acts as a diffusion coefficient for the 
magnetic field. 

Equations (1)-(3) can be combined to give 

OB/Ot = -VA(KVAB - vAB) (4) 

Furthermore, we can split B into the field b due to the oceans 
and the geomagnetic field F, i.e., B = F + b. Omitting time 
variations in F and using the fact that VAF = 0 (i.e., away 
from geomagnetic current sources), we obtain the equation 

Ob/Ot = -VA(KVAb) + VA(vAb) + VA(vAF) (5) 

This has four terms, which are the "self-induction" term 
Ob/Ot, the "resistive term" -VA(KVAb), the "dynamo 
term" VA(vAb), and the "motional induction term" 
VA(vAF). 

3. THIN-SHELL APPROXIMATION 

The physical model which will be the basis of our calcu- 
lations is that of a spherical shell whose outer radius is the 
surface of the oceans and whose inner radius corresponds to 
the maximum depth of the oceans. In our model we assume 

that the atmosphere above the shell and the crust below the 
shell are perfect insulators. 

With the exception of lightning strikes, the atmosphere is 
much less conducting than the saltwater in the ocean, and 
hence it is a good approximation to treat it as a perfect 
insulator. The case of the earth beneath the ocean is much 

harder to justify. Although the conductivity of the crust and 
mantle is much less than that of seawater, the crust-mantle 
system can provide a return path for electric currents 
generated in the ocean by virtue of the larger cross-sectional 
area available to electric currents flowing into the earth 
beneath the sea than to those flowing through the sea. This 
simplistic argument is complicated by the fact that current 
paths are refracted at the interface of media having different 
conductivities. In this paper we neglect the complication 
involved in having more than two layers of differing conduc- 
tivity and make the assumption that leakage currents 
throughout the lithosphere are negligible to those through 
the sea. (Work is in progress by A. Flosadottir at Seattle on 
the multilayer problem.) 

Let the outer radius of the shell be a, the radius of the 
Earth, and the inner radius be a - D. The radius of the 
Earth is an appropriate horizontal scale for ocean circulation 
so that the aspect ratio of the model, •i, is 

• = D/a (6) 

where •i is approximately 10 2-3 . 
Another factor of importance is the ratio of the induced 

field in the oceans and the Earth's geomagnetic field. We 
define this as/3, where 

13 = bo/Fo (7) 

Theoretical estimates of b 0, the typical magnitude of b, are 
less than 20 nT [Chapman and Bartels, 1940], whereas F 0 is 
a typical value for the geomagnetic field of 4 x 10 4 nT. Thus 
/3 is of the order of 5 x 10 -4. 

The ratio of advection of the magnetic field to diffusion is 
called the magnetic Reynolds number, Rm where 

Rm = Uoa/K (8) 

For the ocean the conductivity is of the order of 4 11-• m-• 
and/x is equal to 4rr x 10 -7, giving a K of the order of 2 x 
105 m 2 s -•. The radius of the Earth is 6.37 x 106 m, and a 
typical ocean velocity is 0.1 m s -• . Thus R m is typically of 
the order of unity. 

This result implies that advection is as equally important 
as diffusion. However, diffusion occurs isotropically, and 
hence diffusion in the vertical should also be considered. 

This has the effect of replacing the horizontal length scale a 
in R m by the vertical length scale D. It can then be seen that 
the vertical magnetic Reynolds number is a factor of a 
thousand less than the horizontal one, which implies that 
vertical diffusion dominates both horizontal diffusion and 

advection. This is shown formally in Appendix A. Over land 
the velocity is zero, and hence the diffusion term is the only 
term; the equations approximate to Laplace's equation over 
land. 

In Appendix A, equation (5) is written in nondimensional 
form and an expansion is made with respect to the small 
parameters/3 and •i. At zero order, the magnetostatic equa- 
tions in dimensional form are 
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0 ze •0 = 0 (9) 

Oze;t = 0 (10) 

1 1 

axe, O,(ex cos 4•) = 0 (11) 
cos cos 

e, = +KOzb • + uF z (12) 

e;t = -KOzb4• - vF z (13) 

where b • and b, are zonal and meridional components of 
the induced magnetic fields and F z is the vertical component 
of the geomagnetic field. Equations (9)-(13) are the appro- 
priate thin-shell approximation of the magnetostatic model 
for monthly to annual time scales. Since all omitted terms 
are of the order of/3 or 8, and these parameters are of the 
order 10 -3 , we see that the thin-shell approximation is very 
accurate and little would be gained from using the full 
magnetostatic equations shown in (4). Note that the equa- 
tions contain no time derivatives and so the only time 
dependence comes from time variations in the ocean flow 
field (u, v). 

4. VERTICAL INTEGRATION 

We wish to use equations (9)-(13) to calculate the mag- 
netic fields measurable at magnetic stations situated outside 
of the thin shell, i.e., r > a. In the insulating interior (r < a 
- D) and exterior (r > a) regions, the magnetic field is given 
by the gradient of a potential field 12 which satisfies V212 = 
0. The effect of electric currents in the thin shell is to cause 

a magnetic potential drop X across the thin shell situated at r 
= a. Calculating X from our knowledge of the ocean flow and 
using suitable boundary conditions, we can find 12 and hence 
the magnetic field everywhere. As the thin shell approaches 
zero thickness, suitable boundary conditions for 12 become 
12 ra= a - D -- ,)(, O rlll a __ - - r=a-o 0 and 12 must be finite as r • 0 
and r • c•. Given X, these conditions can be most easily 
solved by expanding 12 in terms of spherical harmonics and 
then solving for the coefficients (refer to Appendix B for 
details). 

To be able to find an expression for X, we must vertically 
integrate (12) and (13) from z = -D to z = 0, and we find 
that 

e 4• = -•- b,• + d z (14) o K 

ex = D b,I + dz (15) o K 

ldz (16) 

Note that K• • - (tr)/x, where (tr) is a depth-averaged 
conductivity as discussed by Sanford [1971]. In deriving 
these expressions, we have made use of (9) and (10) which 
state that for thin shells the horizontal components of the 
electric field do not vary with depth. 

To proceed further, we make an assumption about the 

depth variation of K. We assume that K can take only two 
values' 

K = K s 0 >- z > -d 
(17) 

K = K L -d >- z >- -D 

Depth d is the depth of the ocean and is always less than or 
equal to D. 

We note that 

K•-ff • =/z[dtr s + (O - d)trL]/O 

where the left-hand side is /z times the depth-averaged 
conductivity as defined by the model. 

The sea and land values Ks and K L have typical values of 
2 x 105 m 2 s -• and 2 x 108 m 2 s -• [Larsen, 1992]. The 
conductivity of seawater depends on both temperature and 
salinity and this may play a role in the variability of the 
oceanic magnetic and electric fields. (Recent work by J. 
Girton indicates that inclusion of conductivity variability 
does not change the results from those presented in this 
paper.) However, in this paper we consider the variations in 
Ks to be small in comparison to the factor of 1000 between 
KL and Ks, and hence we neglect variations in Ks. 

With the reasonable rigid-lid approximation, the vertically 
averaged ocean flow can be written in terms of a stream 
function. Furthermore, we will neglect depth variations in 
F z which are small because of the spherical shell's being 
thin. These assumptions allow us to write 

fO uFz -F z 0 0 o K dZ=Ksa Ocb (18) 

f _, vFz F z 0 O D K dz = Ksa cos & 0A (19) 

where 0 is a time-varying transport stream function for the 
ocean which varies with time. Substituting these expressions 
into (14) and (15) gives 

Keff ( 1 OX Fz e• =•-- a cos & 0A fsa •' (20) 

- •+ , (21) ex- D 04 Ksa cos 4 • 

Kea = D + (22) 
K• 

Equations (20) and (21) can be substituted into (11) to yield 

V'(KeaVX)+J •, •Fz =0 (23) 
with the two-dimensional operators defined as 

( 1 VX = , (24) 
a cos 4 0• a 

1 8f• 1 O 
V' (f,•, f4,) = • + (f4• cos •) 

a cos (b O A a cos •b O•b 
(25) 



15,470 STEPHENSON AND BRYAN: OCEAN-GENERATED ELECTRIC AND MAGNETIC FIELDS 

of og og of 
J(f, g)- (26) 

acos 0 0A a00 a cos 0 0A a00 

Equation (23) relates the magnetic potential drop X, which 
is a stream function for the vertically averaged electric 
currents, to the stream function ½ for the vertically averaged 
ocean flow. In the next section we will solve (23) numerically 
for given ½ in order to find X. The vertical component of the 
magnetic field strength at sea level, b z, can be obtained from 
X as described in Appendix B. 

Another quantity of interest is the electric potential 
defined by Vq) = (e x, e •). The potential tI) can be obtained 
by taking the divergence of Vq) to yield V2q) = -V ß (e x, e 
and then inverting the two dimensional Laplacian (using 
spherical harmonics). The expressions for (ex, e,) are 
obtained from (20) and (21). The potential tI) is of relevance 
to the measurement of voltages across underwater telephone 
cables. If a cable runs from point A to point B, then the 
voltage drop across the cable is equal to tI) B - q)A. Hence 
the global distribution of tI) is of importance in choosing 
optimum cables for measuring ocean flow. 

5. GENERAL PROPERTIES 

Scale Analysis 

Scale analysis of the equations in section 4 gives 

X • (Fz/K) ½ (27) 

b z • (Fz½/KL) (28) 

tI) • (Fz½/D) (29) 

where ½ is the volume transport of an ocean current with a 
depth D and a width L. Consider the Florida Current, where 
the time mean ½ • 30 x 106 m 3 s -1 D is •800 m, and L is 
•300 km. In this region, F z • 40,000 nT and K • 2 x 105 
m 2 s -1. Using these values gives X • 6 x 106 nT, b z • 20 
nT, and tI) • 1.5 V. The value for the ocean magnetic field of 
20 nT agrees with that calculated by Chapman and Bartels 
[1940, p. 709]. Equation (29) can be written in terms of a 
sverdrup-to-volt conversion factor C = 10-6D/F z [Larsen, 
1992]. With the values given above we get C = 20 Sv V -1 
compared with the measured value of 24.4 Sv V -1 discussed 
by Larsen. 

Uniform Geomagnetic Field and Topography 

In the case that (Keff/Ks)F z is constant with (A, 49, the 
Jacobian term vanishes, leaving only the diffusion term. The 
solution on a sphere is a uniform X field. Hence spatial 
variation of the geomagnetic field and bottom topography is 
a necessary requirement for the ocean to generate a mag- 
netic field. This is used as a check in the numerical code 

mentioned in section 6. 

6. METHOD OF SOLUTION 

The thin-shell approximation and vertical integration re- 
duce the problem to the second-order elliptic partial differ- 
ential equation in two dimensions given by (23) in section 5. 
Let i = 1, 2, ..- represent the index of grid points in the 
zonal direction and j denote the index of grid points in the 

meridional direction. To simplify the notation, we define the 
following numerical operators: 

a A = [( )i + 1/2 -- ( )i-1/2]/AA (30) 

( )x=[( )i+1/2 +( )i-1/2]/2 (31) 

Instead of defining every variable at every grid point, we use 
a staggered grid. In this way, variables are defined where 
they are required by second-order finite differencing of the 
continuous equations. The redundancy which occurs when 
every variable is defined at every grid point is avoided. If we 
think of the numerical grid as a checkboard, X and ½ are 
defined at the center of the squares, and ex and e4 are 
defined at the corner points. Special care must be taken in 
defining derivatives because the grid of the ocean model 
from which the values of ½ are taken has uneven spacing in 
the meridional direction. Equations (20) and (21) can be 
written, 

Keff( 1 (Fz) O• /3•(½A0) •) - - • ,(X) x + (32) e x- O a Ksa cos, (Xg33 

e4=• a cos • (a•) 4 Ksa b4(½)x (33) 
Equation (23) may then be represented as 

LX = G (34) 

where L is a numerical representation of a diffusion operator 
with nonconstant coefficients. 

8x({Keff/D[(1/a cos ,)(a•<xa,>•/<a,>•)]}a•> • 

+ • • [-•-•,Z 8 o(x> x cos 0 (35) 
G is simply the forcing term involving the second terms on 
the right-hand sides of (32) and (33). A simple iterative 
method, corresponding to under relaxation, was used to 
solve (35). 

xn+ 1 __ xn q_ a(Lx n - G) (36) 

This iterative method is exactly analogous to a simple 
time-marching, thermal diffusion problem. The stability cri- 
terion [Richtmyer and Morton, 1967] is well known. 

Keff 1 

ot Da 2 cos 0(AA) 2 -< - (37) 2 

This criterion is most restrictive as the meridians converge 
to the poles. To avoid the extremely small a required near 
the poles, Fourier filtering is performed in the zonal direction 
so as to cut off all zonal scales less than that of the zonal grid 
spacing at the equator. 

To calculate G, the fields ½ and F z are required. In 
addition, the parameters KL and Ks and the depth of the 
ocean are required in order to calculate Keff/K s. For the 
geomagnetic field F z, we use the 1980 values given in Table 
1 and shown in Figure 1 taken from Merrill and McElhinney 
[1983]. For the ocean stream function we take 12 monthly 
values from the ocean model described in the next section. 
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TABLE 1. Gauss Coefficients 

I m G H # h #' h' 

1 0 - 30001.01 0.00 50.93 0.00 4.23 0.00 
1 1 - 1949.99 5634.00 160.47 286.40 5.00 6.33 
2 0 - 2038.01 0.00 80.61 0.00 5.77 0.00 
2 1 3035.01 -2134.00 -211.02 -272.61 2.25 8.90 
2 2 1652.00 - 179.00 - 13.29 3.58 2.41 6.21 
3 0 1292.99 0.00 -86.37 0.00 5.08 0.00 
3 1 -2155.98 -38.00 171.60 145.49 1.25 2.71 
3 2 1244.00 261.00 99.58 -0.17 7.08 3.01 
3 3 851.00 -235.00 - 10.50 12.38 2.40 4.35 
4 0 918.99 0.00 43.07 0.00 1.56 0.00 
4 1 777.02 189.00 - 52.84 - 30.52 4.12 2.45 
4 2 411.00 -265.00 -89.09 -51.92 3.74 1.63 
4 3 -428.00 69.00 43.98 4.21 1.55 4.49 
4 4 224.00 - 289.00 22.33 - 72.09 1.93 7.93 
5 0 -216.01 0.00 -60.76 0.00 2.93 0.00 
5 1 354.03 74.00 -50.04 - 32.85 1.50 2.98 
5 2 261.00 147.00 23.80 13.33 4.03 4.73 
5 3 -66.00 - 149.00 - 37.13 - 12.67 3.02 5.10 
5 4 - 173.00 -71.00 7.97 43.93 1.43 2.76 
5 5 -52.00 101.00 42.28 -4.74 5.78 2.33 
6 0 50.99 0.00 46.32 0.00 1.48 0.00 
6 1 57.03 - 15.00 107.52 99.12 6.42 3.22 
6 2 47.00 98.00 4.24 - 23.06 2.49 2.19 
6 3 - 194.00 75.00 -5.99 11.10 4.41 2.90 
6 4 6.00 -44.00 -61.48 -59.46 2.59 5.16 
6 5 17.00 2.00 -76.96 7.97 3.10 3.20 
6 6 - 104.00 27.00 -5.10 - 1.89 3.88 2.66 
7 0 64.99 0.00 - 1.99 0.00 1.75 0.00 
7 1 -54.96 -70.99 - 108.86 -96.71 2.47 0.83 
7 2 7.00 -24.00 -38.00 41.64 5.46 5.39 
7 3 17.00 9.00 - 10.92 25.12 1.98 1.10 
7 4 - 17.00 8.00 56.05 31.69 5.28 1.47 
7 5 - 1.00 12.00 64.31 -6.68 2.12 2.90 
7 6 16.00 - 17.00 13.01 5.88 2.38 3.96 
7 7 9.00 - 14.00 -3.83 -0.68 1.75 4.01 
8 0 12.99 0.00 10.76 0.00 3.18 0.00 
8 1 8.04 12.01 48.60 77.11 4.04 1.11 
8 2 -4.00 -21.00 52.07 - 12.52 0.91 2.81 
8 3 -5.00 11.00 26.72 -35.05 2.72 0.09 
8 4 - 12.00 -20.00 -56.51 11.32 1.98 2.46 
8 5 0.00 10.00 - 58.09 41.46 3.98 0.46 
8 6 - 1.00 7.00 -43.98 - 12.66 0.97 2.01 
8 7 10.00 - 13.00 12.95 -2.26 1.99 3.07 
8 8 3.00 - 13.00 - 10.88 1.60 4.28 2.54 

G and H are in nanoteslas. All others are in picoteslas. G and H are those for the 1980 Geomagnetic 
Field, # and h are the annual mean ocean magnetic field, and #' and h' are the magnitudes of the annual 
fluctuations. 

The depth of the ocean also comes from the ocean model. 
For Ks we use the value 2 x 10 5 m 2 s -• corresponding to an 
ocean conductivity of 4 fl -• m -• . For KL we used the 
values 2 x 10 5, 2 x 10 6, 4 x 10 6, 6 x 10 6, 8 x 10 6, and 10 7 
m 2 s -• corresponding to land conductivities of 4, 0.4, 0.2, 
0.13, 0.1, and 0.08 fl -• m -• respectively Ideally, to model , ß 

land realistically, we would like to use a value of K L = 2 x 
10 8 m 2 s -• corresponding to a conductivity of 0.004 
m -•. Unfortunately, as KL is increased the relaxation 
parameter a has to be decreased to satisfy the numerical 
stability criterion. With the most realistic run with KL = 10 7 
m 2 s -• it was found that a had to be less than 0.01 , ß 

Furthermore, it required more than 100,000 underrelaxation 
steps for convergence errors to be less than 5%. This took 16 
hours on one processor of a Cray-YMP, and hence to go to 
K L = 2 x 10 8 m 2 s -! is computationally too expensive. As 
will be explained later, we feel that the results show signs of 
convergence with increasing K L over our range of KL. In 

future work it is of importance to develop a more efficient 
algorithm than underrelaxation so that realistic KL values 
can be used. 

The numerical algorithm was checked by using the case 
where K L = Ks and the ocean depth and geomagnetic field 
are uniform, in which case one should obtain uniform X- The 
diffusion operator was checked also in this special case by 
comparing it with that obtained by performing the Laplacian 
operator using spherical harmonics. 

7. THE OCEAN MODEL 

The distribution of ocean currents was taken from a 2 ø x 

2 ø version of the Geophysical Fluid Dynamics Laboratory 
(GFDL) ocean circulation model [Bryan and Lewis, 1979]. 
This particular version has over 30 levels in the vertical. The 
ocean circulation model is based on the primitive equations 
of motions with the Boussinesq approximation and hydro- 
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Fig. 1. The vertical component of the 1980 geomagnetic field, in nanoteslas. 

static balance. Temperature, salinity, and wind stress are 
specified at the upper surface as a function from climatolog- 
ical data. The temperature and salinity were specified from a 
water mass atlas by Levitus [ 1982]. The wind stress data are 
taken from Hellerman and Rosenstein [1983]. The model is 
numerically integrated from an arbitrary initial state until it 
comes into approximate balance with the specified upper 
boundary conditions. In terms of resolution and configura- 
tion of boundary conditions, the experiment is similar to that 
of Bryan and Lewis [1979], but the vertical resolution is 
twice that of the earlier study. 

Since the details of the electrical conductivity within the 
ocean are not explicitly considered in this preliminary study, 
the only output required of the model is the total transport 
and the depth distribution. The annually averaged pattern of 
the transport stream function is given in Figure 2. The most 

prominent feature is the Antarctic Circumpolar Current in 
the southern hemisphere, which is the ocean counterpart of 
the atmospheric jet streams. Continental barriers prevent a 
similar feature in the northern hemisphere. Westerlies and 
the trade winds provide anticyclonic torques in the subtrop- 
ical zones of the oceans, giving rise to huge wind gyres, 
which have intensified poleward flowing boundary currents 
at the western side. The Kuroshio and the Gulf Stream are 

western boundary currents in the northern hemisphere, and 
the Brazil Current and the East Australian Current are 

similar features in the southern hemisphere. 
Many features in Figure 2 can be explained by the simple 

theory of wind-driven currents [Sverdrup, 1947; Godfrey, 
1989]. In some areas, however, the effect of topography is to 
horizontally separate the upper and lower branches of the 
thermohaline circulation. In this case the thermohaline cir- 
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Fig. 2. The annual mean oceanic total transport stream function, in megatons per second. 
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culation is projected on to the barotropic component of the 
flow and influences the pattern of transport. This is particu- 
larly true in the North Atlantic. 

Of particular interest for the present study is the amplitude 
of the first annual harmonic shown in Figure 3. The largest 
areas of changed circulation lie in regions directly affected 
by the Eurasian monsoons in the western Pacific and Indian 
oceans. In the Indian Ocean the reversal of the trade winds 

by the monsoon gives rise to very strong seasonal variations, 
which actually cause a reversal of surface currents along the 
equator and in the Somali Current region. Note that in this 
region the amplitude of the first harmonic of the stream 
function is greater than the amplitude of the mean transport 
stream function. In the northwestern Pacific the seasonal 

change is roughly 30% of the annual mean. At 35øN, 20øN, 
and 10øS in the western Pacific, the amplitude of the seasonal 
variation is greatest where the annual mean is a minimum, 
suggesting that north-south shifts of the wind pattern rather 
than a change in amplitude are responsible for the seasonal 
change. 

Surprisingly there are rather small changes in circulation 
in the North Atlantic at high latitudes. A much greater 
change is indicated in the South Atlantic, where the Antarc- 
tic Circumpolar Current swings northward downstream of 
the Drake Passage. Part of this variation is related to 
north-south swings in the confluence region between the 
Brazil Current and the Malvinas (Falkland) Current. 

Just north of the equator in the western Atlantic and 
western Indian oceans there are two areas of strong seasonal 
variation, connected in the Atlantic with a northward current 
running along the coast of Brazil and in the Indian Ocean 
with the Somali Current. Both seasonal currents are strong 
at the surface and are closely associated with coastal up- 
welling. Both of these currents are at a maximum in early 
summer. In subtropical latitudes of the northern hemisphere 
the western boundary currents are at a maximum late winter 
or early spring. 

In the southern hemisphere the direction of flow is re- 
versed so a maximum of the stream function in subtropical 
gyres also takes place in boreal spring. However, this 
corresponds to a minimum amplitude of the anticyclonic 
flow, and the maximum anticyclonic flow in the subtropical 
gyre region actually takes place in austral spring. 

RESULTS 

Unless stated otherwise, all the following results refer to 
the case where KL = 10 7 m 2 s -1. Similar behavior appears 
to be converging to this in the runs with smaller KL. Table 2 
shows the dipole Gauss coefficients for ,y as KL is varied. 
Note how they appear to converge as KL is increased. 

Figures 4, 5, and 6 show the annual mean values for the X, 
b z, and electrical potential ß fields. It can be seen that ß 
shows strongest variations in regions of strong ocean cur- 

TABLE 2. Convergence of ,y Dipole Gauss Coefficients 

KL/Ks 

(l, m) 1 10 20 30 40 50 

(1, O) # 36 82 72 63 57 51 
(1, 1) # 201 194 176 168 164 160 
(1, 1) h 398 382 339 315 299 286 

Units are nanotesla Earth radii. 
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Fig. 4. The annual mean electric potential, in volts. Shading indicates values exceeding 0.1 V, and the contour 
interval is 0.2 V. 

rents such as the Antarctic Circumpolar Current and the 
western boundary currents. The X and b z fields show largest 
values in regions where there are large depth variations and 
strong ocean currents. Note how in general the contours of 
the current density stream function avoid going through land 
areas and this is due to the low conductivity of land. 
Calculations were performed with a uniform ocean depth of 
D - 5500 m in all ocean areas, and the results were 
significantly different to these presented. The inclusion of 
variable bottom topography intensified the fields, especially 
ß , and brought them into closer agreement with the values 
expected from naive scaling estimates discussed in section 5. 

The electrical potential field shown in Figure 4 is the 

easiest field to interpret physically. Equations (20) and (21) 
require a relationship between the electric potential and 
ocean currents. As one faces downstream in the northern 

magnetic hemisphere, the highest potential should be on the 
left. In the southern magnetic hemisphere the highest poten- 
tial should be to the right facing downstream. Note that the 
highest values are all at coasts in the northern hemisphere, 
since the strongest currents and the shallowest ocean depths 
are found there. The peaks in the potential near Madagascar 
and New Zealand may be spurious, since the ocean model 
required these areas to be shallow plateaus in the ocean 
rather than islands, and such a feature should excite a large 
electric field. 
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Fig. 5. The annual mean vertically integrated electric current density stream function, in nanotesla Earth radii. 
Shading is for values above zero, and the contour interval is 0.2 nT a. The arrows indicate the direction of electric 
current flow. 



STEPHENSON AND BRYAN: OCEAN-GENERATED ELECTRIC AND MAGNETIC FIELDS 15,475 

90N 

60N 

30N 

Eq 

30S 

60S 

ANNUAL MEAN 

90S • , , , , ............... I 
60E 120E 180E 120W 60W 

LONGITUDE 

Fig. 6. The annual mean vertical component of the ocean-generated magnetic field at sea level, in nanoteslas. Shading 
indicates values above 0.5 nT, and the contour interval is 1 nT. 

The stream function of the integrated current density, X, 
shown in Figure 5, is rather weak along the western bound- 
aries of the Atlantic and Pacific where the electric field has 

maximum gradients. As is shown in (23), the X is forced only 
when lines of •and lines of FzKee/K s do not coincide. Since 
Keff is largely a function of depth, this implies that X will not 
be excited unless lines of flow cut across bottom contours. 

Since the mean flow along the western boundaries of the 
North Atlantic and North Pacific is roughly aligned with 
bottom topography, the X field is rather weak. In the 
Antarctic Circumpolar Current the flow is forced across 
submarine ridges in several places, and we see extrema in X 
created near the Kerguelen Islands, the Macquarie Rise, the 
East Pacific Rise, and the Drake Passage. 

The vertical component of the magnetic field generated by 
time-mean ocean currents is shown in Figure 6. It is closely 
related to the ,y field, but is of even smaller scale. It is mainly 
confined to the southern ocean where the circulation is 

strongest, and the Antarctic Circumpolar Current tends to 
cut across isobaths. The contours are given in units of 0.5 nT 
and the maximum values are less than 5 nT. This value is less 

than that expected from naive scaling estimates, for exam- 
ple, 2 nT in the Gulf Stream rather than the expected 20 nT. 
One reason for this may be geometrical factors. For certain 
geometries the electric currents can be identically zero (e.g., 
the infinite uniform channel), and hence the scaling argu- 
ments provide only an upper bound. Another reason could 
be that our model only resolves scales greater than 2 ø and in 
a higher-resolution model, ocean currents would be nar- 
rower and more intense, leading to stronger magnetic fields. 
The magnitudes of the other components of the magnetic 
field may be stronger. The values of the order of 1 nT will be 
extremely hard to separate from the much larger variations 
in observed magnetic fields (e.g., 100 nT for magnetic 
storms, 15 nT yr -1 secular geomagnetic variation). Hence it 
appears that it may be very difficult to use magnetic obser- 
vations to deduce ocean flows. 

Figures 7-9 show the magnitude and phase of the annual 

harmonic of the •, X, and b z fields. The phase is denoted by 
the lettering WIN, SPR, SUM, and AUT signifying northern 
winter, spring, summer, and autumn seasons, respectively, 
as the period in which maximum amplitude occurs. Note that 
the regions of maximum magnitude are not basin-wide 
modes but tend to be localized. Four regions which predom- 
inate are the north Australian coast, the western boundary of 
the Pacific, the western North Atlantic, and the Indian 
Ocean, which is dominated by the monsoons. The regions of 
maximum amplitude are not simply correlated with those in 
the ocean stream function •. Ocean depth and closeness to 
magnetic poles play a role. 

It can be seen that the magnetic field produced by the 
ocean is an extremely noisy and local field. This is as 
expected from the presence of 1/L in the naive scaling 
expression for b z presented in section 5. The Gauss coeffi- 
cients for the annual mean and for the magnitude of the 
annual harmonic are presented in columns 3-6 of Table 1; (g) 
and (h) are the annual mean values due to the ocean, and g' 
and h' are the magnitudes of the annual harmonic due to the 
ocean. It can be seen that the Gauss coefficients fail to 

diminish for the higher harmonics, unlike those for the 
geomagnetic field. This suggests that expansions of magnetic 
field station data in only a few spherical harmonics could 
lead to misleading results. From the scaling analysis one 
expects the strongest magnetic field to have the same hori- 
zontal scale as the strongest ocean currents. For the Gulf 
Stream this gives a length scale of roughly 200 km, which 
requires at least I = 32 for the highest harmonic. 

The fact that the magnetic field is so local and is so small 
raises the question as to its effect in the calculation. If the 
electric currents were omitted in the calculation, would the 
calculated potential • still be correct? To address this 
question, consider the ß calculated assuming the electric 
currents are zero: 

O• 0 (Keffl Fz O•b OA • K s,] D OA (38) 
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Fig. 7. The magnitude of the first annual harmonic of the electric potential, in volts. Shading indicates values above 
40 mV •d the contour interval is 10 reV. 

O• ø (KeelFzO• 
O•b •K s/] D O•b (39) 

This differs from the exact (I) by the difference in potential 
(I)J ---- (I) -- (I)0 which satisfies the equation 

(a 2 cos •b)DV2(I )j OX OKeff OX OKeff - (40) 

In the case of the uniform Keff, the potential associated with 
the electric currents (I)J can be seen to be zero. However, in 
all other cases, (I)J is not necessarily zero and should be 
calculated. Figures 10 and 11 show the annual mean and the 
magnitude of the annual harmonic of this potential. These 
figures can be compared with those of (I) in Figures 4 and 7. 

The annual mean of (I)J is large in the vicinities of the New 
Zealand Plateau, the northern tropical Atlantic, and the 
western Pacific south of Japan. In these regions it is compa- 
rable to (I) in Figure 4, and hence in these regions electric 
currents are important in the calculation. The annual har- 
monic is sizable mainly in coastal regions where the depths 
are shallow, such as the Grand Banks on the east coast of 
America. At the Grand Banks the potential due to electric 
currents is 20 mV and is thus a large part of the 50 mV in the 
total potential variation at that point. To summarize, the 
hypothesis that the electric currents can be disregarded in 
calculating the electric potential is reasonable in many 
regions but does fail in certain regions. The regions in which 
it fails appear to be regions where flow is forced across 
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Fig. 8. The magnitude of the first annual harmonic of the vertically integrated electric current density stream function, 
in picotesla Earth radii. Shading is for values above 30 pT a, and the contour interval is 5 pT a. 
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Fig. 9. The magnitude of the first annual harmonic of the vertical component of the sea level oceanic magnetic field, 
in nanoteslas. Shading indicates values above 0.1 nT, and the contour interval is 0.05 nT. 

isobaths such as the New Zealand Plateau, the Kerguelen 
Plateau, and the Mid-Atlantic Ridge. 

9. DtscusstoN 

We have derived consistent vertically integrated thin-shell 
equations capable of describing the electric and magnetic 
fields generated by the large-scale, low-frequency ocean flow 
using an idealized model of conductivity in the ocean and 
upper mantle. These have been solved numerically using 
data from a 2 ø x 2 ø ocean model in order to find the behavior 

of the annual mean and the first annual harmonic. The annual 

mean response is in accordance with scaling arguments 
which agree with previous values in the literature. The 
annual harmonic shows strong responses only in localized 
regions, and rather than being basin-wide, the response 

appears to be localized in regions of shallow depth and in 
regions with strong depth variations and strong barotropic 
currents. The magnetic field shows a lot of small-scale 
structure as expected from scaling arguments. In calculating 
the electric potential, the electric currents appear to play a 
small role in the calculation except in certain regions where 
transport lines cut across depth contours. In these regions, 
knowledge of both the electric and magnetic field would be 
necessary in order to deduce the ocean flow. 

The fact that electric currents are generated when there is 
transport across isobaths has been mentioned previously in 
Sanford's [1971] discussion of J*. The work in this paper 
which allows us to numerically simulate the electromagnetic 
behavior of the ocean is complementary to the more analyt- 
ical work of Sanford. It would be useful and interesting to 
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Fig. 10. The annual mean electric potential due to electric currents, in volts. Shading indicates values above 0.05 V, 
and the contour interval is 0.1 V. 
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Fig. 11. The magnitude of the first annual harmonic of the electric potential due to electric currents, in volts. Shading 
indicates values above 20 mV, and the contour interval is 10 mV. 

test these two methods on a more idealized case in order to 

obtain more insight into the electric currents J*. Within the 
limitations of our model, and its simplified assumptions 
about conductivity, it appears that electric currents are large 
enough in some parts of the world ocean to make the electric 
field differ significantly from the naive case where electric 
currents are neglected entirely. This far from invalidates the 
useful electric field measurements of ocean transport but 
suggests that it would be useful to perform numerical mod- 
eling in regions where electric field measurements are being 
made. Sufficiently refined models could be useful in locating 
good sites for electromagnetic measurements. 

The fact that the motionally induced magnetic field ap- 
pears to have a lot of small-scale structure and is not easily 
related to the ocean flow suggests that magnetic field mea- 
surements may be a poor way to deduce large-scale ocean 
flow. Furthermore, the small signal strengths of the order of 
1 nT are extremely prone to contamination from other 
geophysical sources such as magnetic storms and iono- 
spheric jet fluctuations. 

The electric field has strong signals of the order of 10 mV 
km -• and in most regions is a direct result of the motion; 
i.e., electric currents are negligible. Hence the electric 
potential appears to be a good candidate for monitoring 
ocean flows. In designing a monitoring system it will be 
necessary to make preliminary direct measurements and 
solve the vertically averaged thin-shell equations for each 
site in order to ascertain the importance of electric currents. 
If the electric currents are found to be not negligible, then 
the inverse problem of deducing the flow from the electric 
potential could prove to be very difficult if not impossible. 
Certain regions such as the Kuroshio, the Gulf Stream at 
50øN, the region north of Australia, and the region between 
Madagascar and Mazambique have a strong electric poten- 
tial annual harmonic, and the flow is aligned with isobaths. 
Neglecting other factors of practical importance, these may 
prove to be regions where electric field measurements would 
be most useful. 

APPENDIX A: DERIVATION OF THE THIN-SHELL 

APPROXIMATION 

For scaling purposes, let 

F = FoF' b = Fofib' E = UF0e' 

v = U0v' K = Uoa/Rm z = 15az' 

t = (a/Uo)t' VA = (1/a/5)V'A 

where a is the radius of the Earth, /i is the ratio of the 
maximum depth of the ocean to a, /3 is the ratio of the 
magnitude b to the magnitude of F, U0 is a typical ocean 
velocity of 0.1 m s -1, and F0 is the magnitude of the 
geomagnetic field F. The primed quantities are nondimen- 
sional and of the order of unity. Both /3 and /i are small 
parameters of the order of e -• 10 -3 , and hence we expected 
a power series expansion in them to converge quickly. The 
time scale a/Uo is approximately 2 years. For much shorter 
time scales (less than hours), t' is significantly less than 
unity, and self-inductive effects become important, as can be 
seen in the following analysis. We are interested in the 
variations with a period of 1 year, and so t' is of the order of 
unity. 

Equation (5) in section 2 may be expressed in terms of two 
equations 

E = KVAb - vA(b + F) (A1) 

Ob/Ot = -VAE (A2) 

In nondimensional form, (A1) and (A2) become 

Oh' 
/3/5 •= -V' x e' (A3) 

at 

e ! •--V' xb'-vx(fib' +F') (A4) 
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Naive inspection of (A3) and (A4) shows that the self- 
induction term is of the order of e 2, the resistive term is of 
the order of e ø, the dynamo term is of the order of e 1 , and 
the motional induction term is of the order of e ø. Hence the 
e ø balance is expected to occur between only the resistive 
and the motional induction terms. 

We can expand the operator V'A in terms of a power series 
in/5: 

V'A = V(ø)A +/5V(1)A- /52z'V(•)A + 0(/5 3) (A5) 

where if a = (ax, a4, az), then 

V(0)Aa ( Oa4 Oa,• ) = , 0 
OZ' ' OZ' 

[•_• 1 Oa 4 'Oa z 1 Oaz + a V(•)Aa = a4' cos tb 0h cos tb 0h 

(A6) 

cos tb Orb (ax cos tb) (A7) 
Substituting these expressions into (A3) and (A4) and retain- 
ing only e ø terms (while noting that the z component of 
nondivergent fields such as b and v is of the order of/5 less 
than the A and •b components), gives 

Oe'4/Oz' =0 (A8) 

Oe[/Oz' = 0 (A9) 

1 0e'• 1 0 
cos 4• OA cos 

(el cos tb) - 0 (A10) 

..... v'F[ (All) e[ 1• m Oz' 

= • • + u'F[ (A12) e'4 R m Oz 
These are the thin-shell equations, which should be a good 

representation of the magnetostatic equations when the shell 
is thin, the ocean magnetic field is small, and the time scale 
is much longer than the self-inductive time scale D2/K. 

APPENDIX B: DEDUCING THE OBSERVABLE MAGNETIC 
FIELD FROM THE MAGNETIC POTENTIAL DROP 

Let the magnetic scalar potential li be denoted by •-•i for 
r -< a - D and lie for r >- a. Expand the fields in terms of 
spherical harmonics: 

i l 

•'•i(A, 49, r)= Z Ylm (A, 4))rOlm r (B1) 
l,m 

lie(A, •b, r)= Z Ylm(A' •b)ø•[mr-(l+ •) (B2) 
l,m 

X (A' 49)'--Z Ylm(A' 4))Clm (B3) 
l,m 

b z = •'• Ylm(A, 4))blm (B4) 
l,m 

where m is the zonal wave number, and l is the total angular 
wave number. Using the boundary conditions Il I a = a-D X 

and O rliI a -- 0 gives a-D 

o• [m a -(l + 1) o• [m al -- = C lm (B5) 

(l + 1)rOlm a-(l+ 2)+ lto•ma(l-1)= 0 (B6) 

Physically, these boundary conditions are equivalent to a 
uniform vertical component of the magnetic field through the 
depth of the ocean but a jump condition in the potential. 

These can be solved to find 

l 
e _ a (l + •) (B7) 

rolm- (21 + 1) elm 

i (l+ 1) a -•C•m (B8) rolm (2/+ 1) 

Using the fact that b z = Orli[r= a gives 

t(t + •) Clm (B9) blm = (2/+ 1) a 
Hence we have found the coefficient for the magnetic field 
blm given the coefficient Clm for the magnetic potential drop 
X. The spherical transforms are performed numerically using 
Gaussian quadrature. 
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