Verifying forecasts of extreme events

Chris Ferro

Walker Institute
Department of Meteorology
University of Reading

UK Extremes Meeting, Sheffield, 17 April 2007

Daily rainfall: mid-Wales, 1 Jan $05-11$ Nov 06

Thanks to Marion Mittermaier (UKMO)

Verifying binary forecasts

Observed Not Observed

Forecasted	a	b	$a+b$
Not Forecasted	c	d	$c+d$
	$a+c$	$b+d$	n

Summarise with verification measures, e.g.
Hit rate $=\frac{a}{a+c}, \quad$ Critical success index $=\frac{a}{a+b+c}$.

Notation and rationale

Event is forecasted if $X>u$ and observed if $Y>v$.

Observed Not Obs.

Forecasted	$\operatorname{Pr}(X>u, Y>v)$	$*$	$\operatorname{Pr}(X>u)$
Not Forecasted	$*$	$*$	$*$
	$\operatorname{Pr}(Y>v)$	$*$	1

- Consider u such that $\operatorname{Pr}(X>u)=\operatorname{Pr}(Y>v)=: p$.
- Extreme-value model for joint probability as function of p.
- Evaluate the table and measures for any small p.

Probability model

Imagine choosing u so that

$$
\operatorname{Pr}(X>u)=\operatorname{Pr}(Y>v)=: p \quad \text { (base rate). }
$$

Define $\quad \underset{\sim}{\tilde{Y}}=-\log [1-F(X)]$ where $F(x)=\operatorname{Pr}(X \leq x)$

and $Z=\min \{\tilde{X}, \tilde{Y}\}$. Then

$$
\operatorname{Pr}(X>u, Y>v)=\operatorname{Pr}(Z>-\log p)
$$

Model

$$
\operatorname{Pr}(Z>z)=\kappa \exp (-z / \eta) \quad \text { for all } z>w_{0}
$$

Probability model

Imagine choosing u so that

$$
\operatorname{Pr}(X>u)=\operatorname{Pr}(Y>v)=: p \quad \text { (base rate). }
$$

Define $\quad \tilde{X}=-\log [1-F(X)]$ where $F(x)=\operatorname{Pr}(X \leq x)$

$$
\tilde{Y}=-\log [1-G(Y)] \quad G(y)=\operatorname{Pr}(Y \leq y)
$$

and $Z=\min \{\tilde{X}, \tilde{Y}\}$. Then

$$
\operatorname{Pr}(X>u, Y>v)=\operatorname{Pr}(Z>-\log p)
$$

Model

$$
\operatorname{Pr}(Z>z)=\kappa \exp (-z / \eta) \quad \text { for all } z>w_{0}
$$

Probability model

Imagine choosing u so that

$$
\operatorname{Pr}(X>u)=\operatorname{Pr}(Y>v)=: p \quad \text { (base rate). }
$$

Define $\quad \tilde{X}=-\log [1-F(X)]$ where $F(x)=\operatorname{Pr}(X \leq x)$

$$
\tilde{Y}=-\log [1-G(Y)] \quad G(y)=\operatorname{Pr}(Y \leq y)
$$

and $Z=\min \{\tilde{X}, \tilde{Y}\}$. Then

$$
\operatorname{Pr}(X>u, Y>v)=\operatorname{Pr}(Z>-\log p)
$$

Model

$$
\operatorname{Pr}(Z>z)=\kappa \exp (-z / \eta) \quad \text { for all } z>w_{0}
$$

i.e.

$$
\operatorname{Pr}(X>u, Y>v)=\kappa p^{1 / \eta} \quad \text { for all } p<\exp \left(-w_{0}\right)
$$

Interpretation

Observed Not Observed

Forecasted	$\kappa p^{1 / \eta}$	$*$	p
Not Forecasted	$*$	$1-2 p+\kappa p^{1 / \eta}$	$*$
	p	$*$	1

Hit rate $=\kappa p^{1 / \eta-1}$

Estimate parameters κ and η

Suppose we have data $Z_{t}=\min \left\{\tilde{X}_{t}, \tilde{Y}_{t}\right\}$ for $t=1, \ldots, n$.
Under mild conditions, points $\left(t, Z_{t}\right)$ above a high threshold w_{0} are well approximated by a Poisson process and the expected number of points above $z>w_{0}$ is

$$
\Lambda(z)=n \operatorname{Pr}(Z>z)=n \kappa \exp (-z / \eta) .
$$

Choose w_{0} then maximise the likelihood

$$
\begin{gathered}
\exp \left[-\Lambda\left(w_{0}\right)\right] \prod_{Z_{t}>w_{0}} \kappa \eta^{-1} \exp \left(-Z_{t} / \eta\right) . \\
\tilde{X}_{t}=-\log \left[1-\hat{F}\left(X_{t}\right)\right] \text { where } \hat{F}(x)=\frac{1}{n+1} \sum_{t=1}^{n} I\left(X_{t} \leq x\right) .
\end{gathered}
$$

Daily rainfall: mid-Wales, 1 Jan 05 - 11 Nov 06

Parameter estimates

Verification measures

- Direct estimates degenerate for rare events
- Model estimates change smoothly and are more precise

Conclusion

- Deterministic forecasts of rare, extreme events
- Only two parameters are needed to describe how the quality of calibrated forecasts changes with base rate
- The model gives more precise estimates of forecast quality

Paper and R code available at

> www.met.rdg.ac.uk/~sws02caf
c.a.t.ferro@reading.ac.uk

Appendix

Model theory

Simulation study

Limiting behaviour of verification measures

Probabilistic forecasts

Univariate extreme-value theory

Let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$ for i.i.d. X_{t}.
If there exist $a_{n}>0, b_{n}$ and non-degenerate H such that

$$
\operatorname{Pr}\left(M_{n} \leq a_{n} x+b_{n}\right) \xrightarrow{w} H(x) \quad \text { as } n \rightarrow \infty
$$

then H is the generalised extreme-value distribution function

$$
H(x)=\exp \left[-\{1+\gamma(x-\alpha) / \beta\}_{+}^{-1 / \gamma}\right] .
$$

Point process $\left(t / n,\left(X_{t}-b_{n}\right) / a_{n}\right)$ converges to Poisson process with intensity measure $-(b-a) \log H(x)$ on $(a, b) \times(x, \infty)$.

Stationary X_{t} gives $H(x)^{\theta}$ for $\theta \in(0,1]$ and compound Poisson.

Bivariate extreme-value theory

\tilde{X} and \tilde{Y} are Exponential with unit means, so

$$
\operatorname{Pr}(Z>z)= \begin{cases}\exp (-z) & \text { if } \tilde{X} \equiv \tilde{Y} \\ \exp (-2 z) & \text { if } \tilde{X} \Perp \tilde{Y}\end{cases}
$$

Assume

$$
\operatorname{Pr}(Z>z) \sim \mathcal{L}\left(e^{z}\right) \exp (-z / \eta) \quad \text { as } z \rightarrow \infty
$$

where $0<\eta \leq 1$ and $\mathcal{L}(r t) / \mathcal{L}(r) \rightarrow 1$ as $r \rightarrow \infty$ for all $t>0$.

For a high threshold w_{0},

$$
\begin{aligned}
\operatorname{Pr}\left(Z>w_{0}+z\right) & \approx \mathcal{L}\left(e^{w_{0}+z}\right) \exp \left[-\left(w_{0}+z\right) / \eta\right] \\
& \approx \mathcal{L}\left(e^{w_{0}}\right) \exp \left[-\left(w_{0}+z\right) / \eta\right]
\end{aligned}
$$

Simulation study

- Bivariate Normal data: correlation 0.8
- Direct and model estimates of hit rate

Limiting behaviour of measures

Limiting behaviour of measures

$$
\begin{gathered}
\text { Hit rate }=\frac{a}{a+c} \sim \kappa p^{1 / \eta-1} \rightarrow \begin{cases}0 & \text { if } \eta<1 \\
\kappa & \text { if } \eta=1\end{cases} \\
\mathrm{PC}=\frac{a+d}{n}, \quad \mathrm{PSS}=\frac{a d-b c}{(a+c)(b+d)}, \quad \mathrm{OR}=\frac{a d}{b c}
\end{gathered}
$$

Limiting behaviour of measures

Hit rate $=\frac{a}{a+c} \sim \kappa p^{1 / \eta-1} \rightarrow \begin{cases}0 & \text { if } \eta<1 \\ \kappa & \text { if } \eta=1\end{cases}$

$$
\mathrm{PC}=\frac{a+d}{n}, \quad \mathrm{PSS}=\frac{a d-b c}{(a+c)(b+d)}, \quad \mathrm{OR}=\frac{a d}{b c}
$$

	$\eta<\frac{1}{2}$	$\eta=\frac{1}{2}$	$\eta>\frac{1}{2}$
PC	$1-2 p \uparrow 1$	$1-2 p \uparrow 1$	$1-2 p \uparrow 1$
P	$1-2 \bar{\kappa} p \uparrow 1$		

PSS $\quad-p \uparrow 0 \quad-\bar{\kappa} p \uparrow 0 \quad \kappa p^{\delta-1} \downarrow 0 \quad \kappa-\bar{\kappa} p \uparrow \kappa$ OR $\quad \kappa p^{\delta-2} \downarrow 0 \quad \kappa-2 \kappa \bar{\kappa} p \downarrow \kappa \quad \kappa p^{\delta-2} \uparrow \infty \quad \kappa /\left(\bar{\kappa}^{2} p\right) \uparrow \infty$
where $\delta=1 / \eta$ and $\bar{\kappa}=1-\kappa$

Contradictory skill scores?

ERA-40 daily rainfall forecasts: $\eta=0.81, \kappa=1.16$

Probabilistic forecasts

Binary observation $\quad I=I(Y>v)$
Probabilistic forecast $\quad P=m^{-1} \sum_{i=1}^{m} I\left(X_{i}>u\right)$
Brier score

$$
B=n^{-1} \sum_{t=1}^{n}\left(P_{t}-I_{t}\right)^{2}
$$

Assuming stationarity and exchangeable ensemble members,

$$
\begin{aligned}
E(B)= & \operatorname{Pr}\left(X_{1}>u, X_{2}>u\right)-\operatorname{Pr}\left(X_{1}>u, Y>v\right) \\
& +\operatorname{Pr}(Y>v)+\frac{1}{m}\left[\operatorname{Pr}\left(X_{1}>u\right)-\operatorname{Pr}\left(X_{1}>u, X_{2}>u\right)\right]
\end{aligned}
$$

Two (η, κ)-models for the joint probabilities, estimated from an independence likelihood.

