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Daily rainfall: mid-Wales, 1 Jan 05 – 11 Nov 06
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Verifying binary forecasts

Observed Not Observed
Forecasted a b a + b

Not Forecasted c d c + d
a + c b + d n

Summarise with verification measures, e.g.

Hit rate =
a

a + c
, Critical success index =

a
a + b + c

.



Notation and rationale

Event is forecasted if X > u and observed if Y > v .

Observed Not Obs.
Forecasted Pr(X > u, Y > v) ∗ Pr(X > u)

Not Forecasted ∗ ∗ ∗
Pr(Y > v) ∗ 1

I Consider u such that Pr(X > u) = Pr(Y > v) =: p.
I Extreme-value model for joint probability as function of p.
I Evaluate the table and measures for any small p.



Probability model

Imagine choosing u so that

Pr(X > u) = Pr(Y > v) =: p (base rate).

Define X̃ = − log[1− F (X )] where F (x) = Pr(X ≤ x)

Ỹ = − log[1−G(Y )] G(y) = Pr(Y ≤ y)

and Z = min{X̃ , Ỹ}. Then

Pr(X > u, Y > v) = Pr(Z > − log p).

Model

Pr(Z > z) = κ exp(−z/η) for all z > w0
i.e.

Pr(X > u, Y > v) = κ p1/η for all p < exp(−w0).
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Interpretation

Observed Not Observed
Forecasted κp1/η ∗ p

Not Forecasted ∗ 1− 2p + κp1/η ∗
p ∗ 1

Hit rate = κ p1/η−1

●

η2

κ2

0 η1 1

0

κ1

Superior
for all p

Superior
for p > p*

Superior
for p < p*

Inferior
for all p



Estimate parameters κ and η

Suppose we have data Zt = min{X̃t , Ỹt} for t = 1, . . . , n.

Under mild conditions, points (t , Zt) above a high threshold w0
are well approximated by a Poisson process and the expected
number of points above z > w0 is

Λ(z) = n Pr(Z > z) = n κ exp(−z/η).

Choose w0 then maximise the likelihood

exp[−Λ(w0)]
∏

Zt>w0

κ η−1 exp(−Zt/η).

X̃t = − log[1− F̂ (Xt)] where F̂ (x) =
1

n + 1

n∑
t=1

I(Xt ≤ x).
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Parameter estimates
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Verification measures

Return Period (days)
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I Direct estimates degenerate for rare events
I Model estimates change smoothly and are more precise



Conclusion

I Deterministic forecasts of rare, extreme events

I Only two parameters are needed to describe how the
quality of calibrated forecasts changes with base rate

I The model gives more precise estimates of forecast quality

Paper and R code available at

www.met.rdg.ac.uk/∼sws02caf

c.a.t.ferro@reading.ac.uk



Appendix

Model theory

Simulation study

Limiting behaviour of verification measures

Probabilistic forecasts



Univariate extreme-value theory

Let Mn = max{X1, . . . , Xn} for i.i.d. Xt .

If there exist an > 0, bn and non-degenerate H such that

Pr(Mn ≤ anx + bn)
w→ H(x) as n →∞

then H is the generalised extreme-value distribution function

H(x) = exp
[
−{1 + γ(x − α)/β}−1/γ

+

]
.

Point process (t/n, (Xt − bn)/an) converges to Poisson process
with intensity measure −(b − a) log H(x) on (a, b)× (x ,∞).

Stationary Xt gives H(x)θ for θ ∈ (0, 1] and compound Poisson.



Bivariate extreme-value theory

X̃ and Ỹ are Exponential with unit means, so

Pr(Z > z) =

{
exp(−z) if X̃ ≡ Ỹ
exp(−2z) if X̃ � Ỹ

Assume

Pr(Z > z) ∼ L(ez) exp(−z/η) as z →∞,

where 0 < η ≤ 1 and L(rt)/L(r) → 1 as r →∞ for all t > 0.

For a high threshold w0,

Pr(Z > w0 + z) ≈ L(ew0+z) exp[−(w0 + z)/η ]

≈ L(ew0) exp[−(w0 + z)/η ].



Simulation study

I Bivariate Normal data: correlation 0.8
I Direct and model estimates of hit rate
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Limiting behaviour of measures

Hit rate =
a

a + c
∼ κp1/η−1 →

{
0 if η < 1
κ if η = 1

PC =
a + d

n
, PSS =

ad − bc
(a + c)(b + d)

, OR =
ad
bc

η < 1
2 η = 1

2 η > 1
2 η = 1

PC 1− 2p ↑ 1 1− 2p ↑ 1 1− 2p ↑ 1 1− 2κ̄p ↑ 1
PSS −p ↑ 0 −κ̄p l 0 κpδ−1 ↓ 0 κ− κ̄p ↑ κ

OR κpδ−2 ↓ 0 κ− 2κκ̄p l κ κpδ−2 ↑ ∞ κ/(κ̄2p) ↑ ∞

where δ = 1/η and κ̄ = 1− κ
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Contradictory skill scores?
ERA-40 daily rainfall forecasts: η = 0.81, κ = 1.16
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Probabilistic forecasts

Binary observation I = I(Y > v)

Probabilistic forecast P = m−1 ∑m
i=1 I(Xi > u)

Brier score B = n−1 ∑n
t=1(Pt − It)2

Assuming stationarity and exchangeable ensemble members,

E(B) = Pr(X1 > u, X2 > u)− Pr(X1 > u, Y > v)

+ Pr(Y > v) +
1
m

[Pr(X1 > u)− Pr(X1 > u, X2 > u)] .

Two (η, κ)-models for the joint probabilities, estimated from an
independence likelihood.
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