Verifying forecasts of extreme events

Chris Ferro

Walker Institute
Department of Meteorology
University of Reading

UK Extremes Meeting, Sheffield, 17 April 2007

Daily rainfall: mid-Wales, 1 Jan 05 – 11 Nov 06

Thanks to Marion Mittermaier (UKMO)

Verifying binary forecasts

	Observed	Not Observed	
Forecasted	а	b	a+b
Not Forecasted	С	d	c + d
	a + c	b+d	n

Summarise with verification measures, e.g.

$$\text{Hit rate} = \frac{a}{a+c}, \qquad \quad \text{Critical success index} = \frac{a}{a+b+c}.$$

Notation and rationale

Event is forecasted if X > u and observed if Y > v.

	Observed	Not Obs.	
Forecasted	Pr(X > u, Y > v)	*	Pr(X > u)
Not Forecasted	*	*	*
	Pr(Y > v)	*	1

- ▶ Consider u such that Pr(X > u) = Pr(Y > v) =: p.
- Extreme-value model for joint probability as function of p.
- Evaluate the table and measures for any small p.

Probability model

Imagine choosing u so that

$$Pr(X > u) = Pr(Y > v) =: p$$
 (base rate).

Define
$$\tilde{X} = -\log[1 - F(X)]$$
 where $F(x) = \Pr(X \le x)$
 $\tilde{Y} = -\log[1 - G(Y)]$ $G(y) = \Pr(Y \le y)$

and $Z = \min{\{\tilde{X}, \tilde{Y}\}}$. Then

$$\Pr(X > u, Y > v) = \Pr(Z > -\log p).$$

Model

$$Pr(Z > z) = \kappa \exp(-z/\eta)$$
 for all $z > w_0$

i.e.

$$\Pr(X > u, Y > v) = \kappa p^{1/\eta}$$
 for all $p < \exp(-w_0)$.

Probability model

Imagine choosing u so that

$$Pr(X > u) = Pr(Y > v) =: p$$
 (base rate).

Define
$$\tilde{X} = -\log[1 - F(X)]$$
 where $F(x) = \Pr(X \le x)$
 $\tilde{Y} = -\log[1 - G(Y)]$ $G(y) = \Pr(Y \le y)$

and $Z = \min\{\tilde{X}, \tilde{Y}\}$. Then

$$\Pr(X>u,Y>v)=\Pr(Z>-\log p).$$

Model

$$Pr(Z > z) = \kappa \exp(-z/\eta)$$
 for all $z > w_0$

i.e.

$$\Pr(X > u, Y > v) = \kappa p^{1/\eta}$$
 for all $p < \exp(-w_0)$.

Probability model

Imagine choosing u so that

$$Pr(X > u) = Pr(Y > v) =: p$$
 (base rate).

Define
$$\tilde{X} = -\log[1 - F(X)]$$
 where $F(x) = \Pr(X \le x)$
 $\tilde{Y} = -\log[1 - G(Y)]$ $G(y) = \Pr(Y \le y)$

and $Z = \min{\{\tilde{X}, \tilde{Y}\}}$. Then

$$\Pr(X > u, Y > v) = \Pr(Z > -\log p).$$

Model

$$Pr(Z > z) = \kappa \exp(-z/\eta)$$
 for all $z > w_0$

i.e.

$$\Pr(X > u, Y > v) = \kappa p^{1/\eta}$$
 for all $p < \exp(-w_0)$.

Interpretation

	Observed	Not Observed	
Forecasted	$\kappa oldsymbol{ ho}^{1/\eta}$	*	р
Not Forecasted	*	$1-2p+\kappa p^{1/\eta}$	*
	р	*	1

Hit rate $= \kappa \, p^{1/\eta - 1}$

Estimate parameters κ and η

Suppose we have data $Z_t = \min\{\tilde{X}_t, \tilde{Y}_t\}$ for t = 1, ..., n.

Under *mild conditions*, points (t, Z_t) above a high threshold w_0 are well approximated by a Poisson process and the expected number of points above $z > w_0$ is

$$\Lambda(z) = n \Pr(Z > z) = n \kappa \exp(-z/\eta).$$

Choose w₀ then maximise the likelihood

$$\exp[-\Lambda(w_0)] \prod_{Z_t > w_0} \kappa \eta^{-1} \exp(-Z_t/\eta).$$

$$\tilde{X}_t = -\log[1 - \hat{F}(X_t)]$$
 where $\hat{F}(x) = \frac{1}{n+1} \sum_{t=1}^n I(X_t \le x)$.

Daily rainfall: mid-Wales, 1 Jan 05 – 11 Nov 06

Parameter estimates

Verification measures

- Direct estimates degenerate for rare events
- Model estimates change smoothly and are more precise

Conclusion

- Deterministic forecasts of rare, extreme events
- Only two parameters are needed to describe how the quality of calibrated forecasts changes with base rate
- The model gives more precise estimates of forecast quality

Paper and R code available at

www.met.rdg.ac.uk/~sws02caf

c.a.t.ferro@reading.ac.uk

Appendix

Model theory

Simulation study

Limiting behaviour of verification measures

Probabilistic forecasts

Univariate extreme-value theory

Let $M_n = \max\{X_1, \dots, X_n\}$ for i.i.d. X_t .

If there exist $a_n > 0$, b_n and non-degenerate H such that

$$\Pr(M_n \le a_n x + b_n) \stackrel{w}{\to} H(x)$$
 as $n \to \infty$

then H is the generalised extreme-value distribution function

$$H(x) = \exp\left[-\left\{1 + \gamma(x - \alpha)/\beta\right\}_{+}^{-1/\gamma}\right].$$

Point process $(t/n, (X_t - b_n)/a_n)$ converges to Poisson process with intensity measure $-(b-a) \log H(x)$ on $(a,b) \times (x,\infty)$.

Stationary X_t gives $H(x)^{\theta}$ for $\theta \in (0, 1]$ and compound Poisson.

Bivariate extreme-value theory

 \tilde{X} and \tilde{Y} are Exponential with unit means, so

$$Pr(Z > z) = \begin{cases} exp(-z) & \text{if } \tilde{X} \equiv \tilde{Y} \\ exp(-2z) & \text{if } \tilde{X} \perp \tilde{Y} \end{cases}$$

Assume

$$\Pr(Z > z) \sim \mathcal{L}(e^z) \exp(-z/\eta)$$
 as $z \to \infty$,

where $0 < \eta \le 1$ and $\mathcal{L}(rt)/\mathcal{L}(r) \to 1$ as $r \to \infty$ for all t > 0.

For a high threshold w_0 ,

$$\Pr(Z > w_0 + z) \approx \mathcal{L}(e^{w_0 + z}) \exp[-(w_0 + z)/\eta]$$

$$\approx \mathcal{L}(e^{w_0}) \exp[-(w_0 + z)/\eta].$$

Simulation study

- Bivariate Normal data: correlation 0.8
- Direct and model estimates of hit rate

Limiting behaviour of measures

Hit rate
$$=$$
 $\frac{a}{a+c} \sim \kappa p^{1/\eta - 1} \rightarrow \left\{ \begin{array}{l} 0 & \text{if } \eta < 1 \\ \kappa & \text{if } \eta = 1 \end{array} \right.$ $= \frac{a+d}{n}, \qquad \text{PSS} = \frac{ad-bc}{(a+c)(b+d)}, \qquad \text{OR} = \frac{ad}{bc}$

where $\delta = 1/\eta$ and $\bar{\kappa} = 1 - \kappa$

Limiting behaviour of measures

$$\begin{aligned} & \text{Hit rate} = \frac{a}{a+c} \sim \kappa p^{1/\eta - 1} \to \left\{ \begin{array}{l} 0 & \text{if } \eta < 1 \\ \kappa & \text{if } \eta = 1 \end{array} \right. \\ & \text{PC} = \frac{a+d}{n}, \qquad \text{PSS} = \frac{ad-bc}{(a+c)(b+d)}, \qquad \text{OR} = \frac{ad}{bc} \end{aligned}$$

where $\delta = 1/\eta$ and $\bar{\kappa} = 1 - \kappa$

Limiting behaviour of measures

$$\begin{aligned} & \text{Hit rate} = \frac{a}{a+c} \sim \kappa p^{1/\eta-1} \to \left\{ \begin{array}{l} 0 & \text{if } \eta < 1 \\ \kappa & \text{if } \eta = 1 \end{array} \right. \\ & \text{PC} = \frac{a+d}{n}, \qquad \text{PSS} = \frac{ad-bc}{(a+c)(b+d)}, \qquad \text{OR} = \frac{ad}{bc} \end{aligned}$$

where $\delta = 1/\eta$ and $\bar{\kappa} = 1 - \kappa$

ERA-40 daily rainfall forecasts: $\eta = 0.81$, $\kappa = 1.16$

Probabilistic forecasts

Binary observation I = I(Y > v)

Probabilistic forecast $P = m^{-1} \sum_{i=1}^{m} I(X_i > u)$

Brier score $B = n^{-1} \sum_{t=1}^{n} (P_t - I_t)^2$

Assuming stationarity and exchangeable ensemble members,

$$E(B) = Pr(X_1 > u, X_2 > u) - Pr(X_1 > u, Y > v) + Pr(Y > v) + \frac{1}{m} [Pr(X_1 > u) - Pr(X_1 > u, X_2 > u)].$$

Two (η,κ) -models for the joint probabilities, estimated from an independence likelihood.