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The Brier score is a widely used measure of performance for mbabilistic

forecasts of event occurrences, and it is often decomposediditively into

three terms that quantify the reliability and resolution of the forecasts, and
the uncertainty of the forecasted events. The standard decgposition yields
biased estimates of the large-sample values of these threeantities: reliability

is overestimated and uncertainty is underestimated, whilgesolution may be
either overestimated or underestimated. An unbiased decoposition is shown
to be unattainable but a new decomposition is proposed thatds smaller biases
and therefore provides a more accurate measure of forecastgpformance. The
implications for the Brier skill score and the attributes diagram are discussed,
and results are illustrated with seasonal forecasts of seaidace temperatures.
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1. The Brier score and its decomposition score (Brier, 1950) for these forecasts is
Suppose that probabilities, ..., p, are forecasts for the 1<
L B = _Z(p1_$z)2
occurrence of, events, and let, ..., x,, indicate whether ni3

or not then events occur, so that; = 1 if the ¢th event

occurs ande; = 0 if the ¢th event fails to occur. The Brier
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and takes values in the intervfl, 1] with smaller values forecasts. The third termi{NC) is a measure of uncertainty

indicating better forecasts. or climatological variation in the event occurrence. Very

Suppose now that each forecast can take one of Anlyrare or very common events have low uncertainty.
distinct valuessry, ..., k. Let I, = {i : p; = m} be the  Brocker (2011) showed that the three terms in the Brier
set of indices for those occasions on whighis forecast score decomposition (1) are biased. This means that the
and letn;, be the number of such occasions. For tho$er expected value of each term is typically different from
whichn, > 0, define the conditional relative frequency, its true value, defined to be the value that would be
obtained were the sample sizg,increased to infinity. The
T = — Z Zq, reliability is systematically overestimated, the unciertia
is systematically underestimated, while the resolution
to be the proportion of events that occur out of the May be either overestimated or underestimated. Therefore,
occasions on which, is forecast. Also define evaluating this standard decomposition for finite samples
can give a misleading impression of forecast quality. We
7= L ixi show that an unbiased decomposition of the Brier score
s is unattainable but propose a new decomposition that

to be the overall proportion of occasions on which the evd}s Smaller biases than the standard decomposition and

occurs. Then the Brier score can be decomposed (MurpWrefore provides a more accurate measure of forecast

1973) as performance. We discuss the implications of the bias for the
B = REL — RES + UNC, (1) Brier skill score and the attributes diagram, and illustiie
new decomposition with seasonal forecasts of sea surface
where temperatures.
REL = Y ™(m —a1)%, 2) , _ N
keko 2. The bias and a bias-corrected decomposition
RES = Y ™(z), - 2)? (3)
KeKo ¥ We show that the standard decomposition of the Brier score
UNC = z(1 — 2) (4) is biased and derive our results under the assumption that
the forecast-verification pair§(p;, ;) : i =1,...,n} are

and Ko = {k : nj, > 0} so that the sums are over thosghdependent and identically distributed random variables
k for which n, exceeds zero. The first ternREL) in  Extensions to dependent random variables are discussed in
the decomposition is a weighted average of the squagggtion 5. Define the long-run relative frequency with which
differences between the conditional relative frequenangs the event occurs to be the expected value

the corresponding forecasts, and measures the reliability

of the forecasts. The best score for the reliability is zero, w=E(x;)

which is obtained if the conditional relative frequencies a

equal to their corresponding forecasts. The second tefom all 7, and define the long-run relative frequency with
(RES) is a weighted variance of the conditional relativevhich the event occurs amongst those occasions on which
frequencies and measures the resolution of the forecaie.forecast equals; to be

The worst score for the resolution is zero, which is obtained

if the conditional relative frequencies are the same for all wr = E(z; | pi = 7mk)
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forall i and eaclk. Also define the expected frequency witlabove are the biases. The bias in the reliability,
whichmy, is forecast in a sequenceofforecasts to be
bias(REL) = E(REL) — REL,

. _ K
(ng) = nox _ % Z Vit (1 = 11), (8)
k=1

for eachk, where¢, > 0. The weak law of large numbers

- - is non-negative and decreases monotonically to zero as
tells us thatt — pu, Zx — px andny/n — ¢ for eachk as

_ o . increases. In other wordREL tends to overestimate
n — oo. Substituting these limits into the decomposition (1775 s

REL., and the reliability of the forecasts will tend to appear
of the Brier score yields the following limits for the y PP

_— . , poorer than it would do were a larger sample available. The
reliability, resolution and uncertainty:

bias in the uncertainty,

K
_ _ 2

n

K
RESo = Y én(pr — 1), , " . ,
=1 is non-positive and increases monotonically to zera:as

UNCq = pu(1 — p). (6) increases. So, the uncertainty will tend to appear smaller
than it would do were a larger sample available. The bias in
These are the values that would be obtained were the santipéeresolution can be positive or negative, but also cormserg
size infinite. For finiten, however, a special case of a resutd zero asn increases. In practice, however, the bias in
obtained by Brocker (2011) shows that the expected valdlee resolution is often positive becaugél — ) is often
of the reliability, resolution and uncertainty terms in themall compared ttozl Vg itk (1 — ), in which case
standard decomposition (1) are as follows: the resolution of the forecasts will tend to appear bettenth

it would do were a larger sample available.
K

1
F(REL) = RELy, + — n 1-— ,
( ) + i ; Vit (1 — pig)

1 ¢ (1—p)
E(RES) = RES + — Z Vi (1 = i) — uv
n k=1 "

)

E(UNC) = UNCq, — w ()

wherevy, ,, is the probability that;, exceeds zero. A special

case of these expressions (in which members of an ensemble

predict the event independently with probability the

forecast is the proportion of ensemble members that predictVe prove in the appendix that unbiased estimators for the
the event, and., = p for all k) was obtained by Ferroreliability and resolution are unattainable. Nonetheless

et al. (2008) in their investigation of the effect of ensemblpropose a new decomposition of the Brier score in which
size on the Brier score, but they did not comment on titlee estimate of uncertainty is unbiased and the estimates
dependence of these expected values on the sample:sizef reliability and resolution have smaller biases than i th

The differences between the expected and limiting valugandard decomposition. This new decomposition is

B =REL' — RES' + UNC/, (10)
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where decomposition. We also show in the appendix that the

biases of the uncertainty and reliability terms in theseghr

1
REL’ = REL — - Z - [tk lfk(l — k), (11) decompositions satisfy the following orderings for sl
. —
keK
r 1 ng _ f(l — .f)
RES = RES =7 kZK ne — e =) + = bias(UNC) < bias(UNC”) < bias(UNC') =0  (17)
€Ky
(12)
1 and
UNC’ = UNC 4 2 =) (13)

n—1

0 < bias(REL') < bias(REL") < bias(REL).  (18)
and Ky = {k : ny > 1} so that the sums are over those

k for which n, exceedsl. Usually all n;, exceedl . ] )
The ordering on the biases of the resolution terms can

because smatl;, are often eradicated by relabelling distinct
depend om.

forecasts with a common forecast value (e.g. Brocker

and Smith, 2007), although this will typically changg  The Brier skill score and attributes diagram

the limiting values,REL., and RES.,, being estimated.

Whether or not forecasts are pooled in this way, the nérvr\}e Brier skill score (e.g. Glahn and Jorgensen, 1970)

decomposition yields more accurate estimates than } edefmed asBSS = 1 — B/Bier, Where Byt is the Brier

standard decomposition. We prove in the appendix ths(,Jcl:tore for some set of reference forecasts. If the reference

forecasts are always equal to the in-sample climatology,

%, then B, = UNC and BSS = (RES — REL)/UNC

UNC'’ is unbiased and that the biasesREL’ and RES’

decay to zero at a faster rate than the biaseRI6f. and

RES as the sample size, increases. (Murphy, 1996). The preceding calculations show that
both the numerator and denominator of tHE&SS are
The new decomposition has one complicati®izL’
. systematically underestimated, but to say anything alveut t
andRES’ can be negative. In such cases, we recommend
] ] o bias of the ratio would require further analysis. We do find,
replacing the sum in the definitions atEL’ (11) and
however, that thé&3SS based on the new decomposition is
RES’ (12) by the largest value for which both terms are
larger than theBSS based on the standard decomposition:

non-negative. This is equivalent to replaciRgL’ with
since UNC’ > UNC, we haveBSS' =1 - B/UNC’ >

max{REL’, REL' — RES’,0} and replacingRES’ with
1 — B/UNC = BSS with equality if and only ifB = 0.

max{RES’, RES’ — REL’, 0}. This ensures that the three
) - . ) Our new decomposition of the Brier score also has
terms in the decomposition still combine to equal
implications for the attributes diagram of Hsu and Murphy

Independentwork by Brocker (2011) proposed a different
P y ( ) prop (1986). The attributes diagram augments the reliability

decomposition:
P diagram, which comprises the point§(my,zy) : k =
1 1,..., K}, with three lines: the horizontal line at height
REL” = REL — = > Zx(1 — &), (14) o .
noR, T representing climatology, the 4%ine through the origin
1 o . N _ b
RES” — RES _ + Z e(1 — 7) + Z( a:)’ (15) representing perfect reliabiliyREEL = 0), and the no-skill
" yexo " line z, = (m, +)/2. The positions of the points and
UNC"” = UNC + M (16) the first two lines in the diagram are unaffected because
n

the forecast values; are fixed, the quantities; and
We prove in the appendix that the biases of these estimateare unbiased estimators of the corresponding long-run
all decay to zero more slowly than the biases of oguantities, and if all points lie on the 24%ine thenREL’ =
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0. The no-skill line, however, is affected. This line is dexiv

by recalling that reference forecasts equal to the in-sampl

0.2

climatology, z, yield a Brier score equal tt/NC. Setting E

>

%
P~
///”////‘///////////////////////////////IMI//WWWJ/M

0.1

B = UNC implies REL = RES, and the no-skill line is

o

obtained by equating the summands in the definitions of

REL (2) andRES (3). HoweverUNC is a biased estimator 3
for the expected Brier score achieved by the Iong—ruwn S
]
- . - . D: H
climatological reference forecagt, An unbiased estimator~ 2 ////////,/{/,{////l/[/{,/i///, i

is UNC’ and settingB = UNC’ impliesREL’ = RES'. A o

new, no-skill curve is obtained, therefore, by equating the

summands in the definitions ®EL’ (11) andRES’ (12).

0.28

Rewriting the last term in the definiton oRES’ as Q §
the sum°/ | nglan(1 - 3) + (3 — 22}/ {n(n— 1)} o
shows that this new curve is defined by °
20 40 60 80 10
I "
a 27 — ﬂ’ Figure 1. Expected values of reliability, resolution and uncertaiagainst

sample sizen, for the SST forecasts: standard decomposition (solig)ine
. bias-corrected decomposition (dashed lines) and trueg-fon values
wherea = nz?/(n — 1) andB = (2nz — 1)/(n — 1). This (dotted lines). Pointwise 5-95% intervals of the sampliisgrihutions are
) ) superimposed: standard decomposition (light grey regjdias-corrected
curve is a hyperbola with asymptotes = 5/2 andZ;, = decomposition (dark grey regions) and their overlap (hdjshe
(27 + ()/4. In the region between the two branches
of the hyperbola, theREL’ summand is less than the We use the following procedure to illustrate how the
correspondin@RkES’ summand and so this region representsases in the Brier score components depend on the sample
forecasts that make a positive contribution to skill. size, n. First, we calculate the bias-corrected reliability,
resolution and uncertainty components of the Brier score

4. A numerical illustration . e .
using all 4928 forecast-verification pairs, and take these

We illustrate the standard (1) and bias-corrected (1flues as approximations to the true, long-run values
decompositions of the Brier score using 4928 probabilisti¢ELw, RESe and UNC... Then, for eachn < 4928,
seasonal forecasts of equatorial Pacific monthly me4§ form 10000 samples of. forecast-verification pairs
sea surface temperature (SST) anomalies construd®¥gsub-sampling at random from the full data set, and
previously by Stephensoet al. (2005). The forecasts Compute the standard and bias-corrected decompositions fo
are for the event that the anomaly is positive and af8ch sample. Thus, for eaehwe obtain 10000 values of
verified against the ERA-40 reanalysis (Uppatal, 2005). REL and REL', RES and RES’, and UNC and UNC'".
Further information about the forecasts and verification§'® means of these values approximate the corresponding
may be found in Stephensat al. (2008). We categorize €XPected values and are plotted in Figure 11or< n <

the forecast probabilities into ten, non-overlapping ks 100. The 5% and 95% quantiles of the 10000 values are
width 0.1 and replace each forecast by its corresponding Bi0 plotted to illustrate the sampling variation.

mean so that there are ten distinct forecast probabilitiesAs expected, the standard Brier score decomposition
Qualitatively similar results were obtained for other bigields large biases. The expected value®éfl. andRES

widths. exceedREL,, and RES,, while the expected value of
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UNC lies belowUNC,. The magnitudes of the biases are :

considerable whem is small. For example, the expected, :
value ofREL is at least five times greater thRE L., when % 2 ] E
n is less than 40. When the bias-corrected decomposition% : ",.,-‘
used, the bias dINC’ is zero for alln while the biases of “a;a g ] O'.' O _y.,O"’
REL’ andRES’ are smaller and decay more rapidly tharg: o VA v
the biases oREL andRES. The biases oREL’ andRES’ C—TS g _ - “ ; O
are negligible whem is greater than about 60, an accuracé ) ,.«"'(. .'
achieved byREL andRES only oncen exceeds 300 (not -g g _ - E
shown). © !
The 5-95% intervals defined by the quantiles of the g i i i i i
sampling distributions are wider faRES’ than for RES, 0.0 0.2 0.4 0.6 0.8 1.
slightly wider for UNC’ than for UNC, and slightly Forecast probability

narrower forREL’ than forREL. The sampling variation Figure 2. Attributes diagram for the SST forecasts. The circles antred
on the points(wy, Zx) and their areas are proportional to the number,

is greater folUNC’ than forUNC becauséjNC’/UNC — ny, of contributing data. The light grey region is the positskéll region
given by the standard no-skill line (dotted line). The damygregion is the

n/(n—1) > 1. We do not know if the sampling variationarea added to the positive-skill region by using the biaseated no-skill
curve (dash'ed curve). The solid horizontal and verticadinepresent the

for REL' is always less than foREL, or if the sampling observed climatologys.

variation for RES’ is always greater than foRES. For

N . . results in a larger positive skill region. The Brier score fo
individual data sets, standard errors and confidence ial®rv gerp 9

. . . ..,th ta isB = 0.131 the st iti
for the three components might be estimated using |deagSe data is3 = 0.131 and the standard decomposition

similar to those employed by Ferro (2007). yields REL = 0.018, RES = 0.137 and UNC = 0.250

N ... .. with BSS = 0.475, while the bias-corrected decomposition
The SST data used in Figure 1 exhibit significant

yields REL' = 0.009, RES’ = 0.129 and UNC’ = 0.251
temporal dependence up to lags of three months and,

therefore, violate the independence assumption that v\\,/\gtsh BSS' = 0478,
used to derive the biases of the decompositions in section 2. )
5. Discussion
The resampling scheme employed to construct Figure 1,
however, destroys the time order of the data, and so thige reliability-resolution-uncertainty decompositiohtoe
results are indicative of how the decompositions perforBrier score is obtained by conditioning on the forecasts
when there is no temporal dependence. The performancé@wiirphy, 1973). An alternative decomposition is obtained
the decompositions in the presence of temporal dependeng&onditioning on the verifications (Murphy and Winkler,
is discussed in section 5. 1987) to vyield three terms that Murphy (1996) refers to
To illustrate our proposed adjustment to the no-skidls the type 2 conditional bias, the discrimination and
curve in the attributes diagram, we consider a subsettbé variance of the forecasts. The standard version of
88 forecasts from a single gridpoint, at %0 in the this alternative decomposition yields biased estimates of
central equatorial Pacific. Using data from a single gridpoithese three quantities and a bias-corrected version can
helps to highlight the differences between the standdrd obtained using calculations similar to those described
and bias-corrected no-skill curves because the two afgove. Decompositions obtained by conditioning on either
visually indistinguishable when is large. The diagram isforecasts or verifications can be obtained for not only the

shown in Figure 2. We see that the bias-corrected cuger score, but for any score that takes the form of a mean
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squared error (Murphy, 1996) or weighted mean squaré@ Brier score when the issued forecast probabilities can
error (Young, 2010). Again, the standard decompositiotake any value in the intervéll, 1] instead of onlyK distinct
are biased, but bias-corrected versions can be derived. values. When such grouping is used, Stephensoal.

In fact, all proper scores can be decomposed int@008) show that the Brier score obtained by combining the
reliability, resolution and uncertainty terms (Brockergliability, resolution and uncertainty terms will typita
2009). It would be useful to identify the bias of theliffer from the value obtained by evaluating the Brier
decomposition for other scores and to construct bisgsore directly from the ungrouped forecasts. In order
corrected decompositions where possible. Brocker (201a)retrieve the Brier score for the ungrouped forecasts,
has considered the logarithmic (ignorance) score and thés necessary to generalize the resolution term in the
multi-category Brier score. We consider briefly the cases@composition to account for within-group variation. The
the ranked probability score (RPS; Epstein, 1969) and ts@mne can be expected to be true for the decompositions
continuous ranked probability score (CRPS; Brown, 197df, the RPS and CRPS when forecasts are grouped. The
Matheson and Winkler, 1976). generalized resolution defined by Stephenebal. (2008)

The RPS can be written as a sum of Brier scorésalso biased but, again, a bias-corrected version can be

corresponding to a nested sequence of events (e.g. TégHved. We expect that bias-corrected versions could also
etal, 2003) and, therefore, a decomposition of the RPS if}g obtained in the cases of the RPS and CRPS. Finally,
reliability, resolution and uncertainty terms can be omeai Other decompositions of the RPS and CRPS have been
by summing the corresponding terms of these Brier scorB§0posed that avoid the need to group forecasts (Hershach,
Both standard and bias-corrected decompositions can2990; Candille and Talagrand, 2005). The bias of these
formed in this way. The CRPS can be written as an intege@compositions could be investigated too.
of Brier scores corresponding to a nested continuum ofVe have assumed throughout that the forecasts and
events (e.g. Hersbach, 2000) and so the CRPS canvegfications are independent and identically distributed
decomposed in a similar manner, integrating the termsf@hdom variables. Temporal dependence is likely to inflate
the Brier score decompositions. biases and also to reduce the rates at which biases

These decompositions of the RPS and CRPS, howe@&cay to zero. Analysing the biases in the presence of
are unsatisfactory because they measure the avertg@@poral dependence is complicated, however, because
reliability and resolution of sets of forecasts for binarﬁhe verifications that contribute to the conditional relati
events instead of the reliability and resolution of the fuffequencieszy, are randomly spaced in time. Whichever
probability distributions specified by the forecasts. @th8ecomposition is used, therefore, checking the convergenc
decompositions based on the full distributions are préfera©f the reliability, resolution and uncertainty estimatestze
(Murphy, 1972; Candille and Talagrand, 2005). It appeas}gmple size increases is worthwhile. This can be done by
to be possible to construct bias-corrected versions okth@¥otting against: the estimates calculated from the first
decompositions too. These alternative decompositionsd@{ta-
the RPS and CRPS rely on each distinct forecast distribution

6. Summary

being issued several times so that empirical distributmins
the corresponding verifications can be constructed. Unl83e standard decomposition of the Brier score is biased and
there are very many forecasts, it is therefore often necgssae have proposed a simple, bias-corrected decomposition
to group similar, rather than identical, forecast disttibns that provides a more accurate description of forecast

(Candille and Talagrand, 2005). This is also often done fi@liability and resolution when the verification data can
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be described by independent and identically distributé&tiis polynomial inu; andg, must equal the polynomial

random variables.
{1 = (1 = br)" ppur (1 — pug)

Acknowledgements = Z ( ) Do (1 = pr)

This work was funded by NERC Directed Granfor o), andg if g(ng, si,) is to be an unbiased estimator
NE/H003509/1. Caio Coelho provided the data. Expg; Vi nin(1 — ). This can happen only if, for all =

comments from Jochen Brocker, lan Jolliffe and aM1,....,nandj=0,1, n, the coefficients 0f¢};ui

anonymous referee helped us to improve the originglihe two polynomials are equal . The latter polynomial,

manuscript. however, has a non-zero coefficient fgr.u; and the
former polynomial contains no such term. Thus, there is

Appendix no unbiased estimator fay ,, (1 — 1) and hence no

unbiased estimator faREL.,. A similar argument shows

Proofs that there is no unbiased estimator RES .,

There is no unbiased decomposition

The bias of the new decomposition
If an unbiased estimator foREL., (5) exists then it

must be the sum of unbiased estimators for the summands

of REL,, and these estimators could be subtracted from Ye show first that the uncertainty term (13) in the

the summands oREL (2) to obtain unbiased estimators new  decomposition is unbiased. The definitions  of

UNC (4) and UNC’ (13) yield UNC’ = nUNC/(n — 1)
while the expressions foUNC,, (6) and E(UNC) (7)

. _ o n o
the distribution ofn;, is binomial with parameters and yield E(UNC) = (n — 1)UNCoe/n s0 that E(UNC') =
nE(UNC)/(n — 1) = UNC4 and

for the summandsyy, ,ux(1 — ui), of the bias (8) of

REL, whereyy, ,, = Pr(ny > 0) =1 — (1 — ¢x)" because

¢,. An unbiased estimator far ,, 1 (1 — p) must be a
function of n;, and {«; : i € I};} but the order of ther;
carries no information about; or ¢, and so we can require bias(UNC') = 0. (19)
this estimator to be a function of, and s, wheres; =
Eielk +; and the conditional distribution af, givenny is To find the bias of the reliability term (11), write
binomial with parameters;. and.,. Consider an estimator

K
1
[
g(nz, si.) with expectation REL’ = REL — n Z k>

n m

E{g(ny, sx)} = Z Zg(m’t) Pr(si =t |ny=m) Wherery =ngzp(l —2%)/(n — 1) if ny, > 1 andry, =0
m=01=0 if n, < 1.1fng < 1thenE(ry | ng) = 0. 1f ny, > 1 then
x Pr(ni =m)
S n m n—m — —
=> o1 (1 — i) Tr(1 — Tk)
m=0 m
- m _ -
R (AT IRCSNEES SEEE DIRE 3l ot
t=0 lGI i€l i€l JGIk\{ }
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because? = x; whenz; = 0 or 1, and so

E(ry | n)
ng
= E(x; |pi=m
|y S Bl =)
1
_T{ZE%H%_M)
k’LEIk

+>0> E(wi|Pi=7Tk)E($j|pj=m)H

1€l jelp\{i}

N
R {Hk — nZ — {nkpr + nk(ne — 1) Nk}}
= p(1 — pg).
Therefore,

E(rk) = pu(1 — pr) Pr(ng > 1)

= pur(1 — pr){Pr(ng > 0) — Pr(n, = 1)}

and, using the bias (8) ¢fEL,

K

. N 1
bias(REL') = bias(REL) - 1?:1 E(ry)
1 K
- - 321 Pr(ng = 1)pe(l — uk). (20)

The bias ofRES’ equals the bias dREL’ becauséJNC’

which decays geometrically as increases. The leading
order terms in the biases for the standard decomposition

decay at the much slower rate bfn.

The bias of Bdcker's decomposition

Now we calculate the biases and their rates of decay for
the decomposition (14)—(16) proposed by Brocker (2011).

Arguments similar to those above show that

bias(UNC") = _7,u(1n5 ) (21)
and
1 & "1
bias(REL") = - Zﬂk(l — g) Z p- Pr(ng =m)
k=1 m=1
(22)

with  bias(RES”) = bias(REL") + bias(UNC"). The
biases oREL”, RES” andUNC" all decay to zero at rate
1/n?. This is immediate foUNC". To see that it is true for
REL”, and hence foRES”, note that

Z ;Pr(nk =m) < Z iPr(nk =m)

:1m—|—1 mlm

and the Brier score itself are unbiased: the expectation of

the Brier score is independent of

Next, we calculate the rate at which the bia®&fL’, and

and

n

Z b Pr(n =m)

3 #< )m (1— )™

m+1

m=1

hence ofRES’, decays as: increases. From the binomial L/ Z <n * 1) L — )™

distribution ofn;, we have

Pr(nk = 1) = n(bk(l — (bk)n_l

and, therefore, the bias (20) BEL' is

K
bias(REL') = > " ¢ (1 — éx)" (1 — ),
k=1
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n+1 = m+1
1/¢1€ fa n+1 n+l—m
B n+1 Z < ) — %)
= WO g~ + Dan1 - 90"}

the leading order term of which decays at ratén.
Therefore)"" _, m~! Pr(n; = m) decays at rat¢/n and

bias(REL") decays at raté/n?.
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