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The Brier score is a widely used measure of performance for probabilistic

forecasts of event occurrences, and it is often decomposed additively into

three terms that quantify the reliability and resolution of the forecasts, and

the uncertainty of the forecasted events. The standard decomposition yields

biased estimates of the large-sample values of these three quantities: reliability

is overestimated and uncertainty is underestimated, whileresolution may be

either overestimated or underestimated. An unbiased decomposition is shown

to be unattainable but a new decomposition is proposed that has smaller biases

and therefore provides a more accurate measure of forecast performance. The

implications for the Brier skill score and the attributes diagram are discussed,

and results are illustrated with seasonal forecasts of sea surface temperatures.
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1. The Brier score and its decomposition

Suppose that probabilitiesp1, . . . , pn are forecasts for the

occurrence ofn events, and letx1, . . . ,xn indicate whether

or not then events occur, so thatxi = 1 if the ith event

occurs andxi = 0 if the ith event fails to occur. The Brier

score (Brier, 1950) for these forecasts is

B =
1

n

n
∑

i=1

(pi − xi)
2
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and takes values in the interval[0, 1] with smaller values

indicating better forecasts.

Suppose now that each forecast can take one of onlyK

distinct values,π1, . . . , πK . Let Ik = {i : pi = πk} be the

set of indices for those occasions on whichπk is forecast

and letnk be the number of such occasions. For thosek for

whichnk > 0, define the conditional relative frequency,

x̄k =
1

nk

∑

i∈Ik

xi,

to be the proportion of events that occur out of thenk

occasions on whichπk is forecast. Also define

x̄ =
1

n

n
∑

i=1

xi

to be the overall proportion of occasions on which the event

occurs. Then the Brier score can be decomposed (Murphy,

1973) as

B = REL − RES + UNC, (1)

where

REL =
∑

k∈K0

nk

n
(πk − x̄k)2, (2)

RES =
∑

k∈K0

nk

n
(x̄k − x̄)2, (3)

UNC = x̄(1 − x̄) (4)

and K0 = {k : nk > 0} so that the sums are over those

k for which nk exceeds zero. The first term (REL) in

the decomposition is a weighted average of the squared

differences between the conditional relative frequenciesand

the corresponding forecasts, and measures the reliability

of the forecasts. The best score for the reliability is zero,

which is obtained if the conditional relative frequencies are

equal to their corresponding forecasts. The second term

(RES) is a weighted variance of the conditional relative

frequencies and measures the resolution of the forecasts.

The worst score for the resolution is zero, which is obtained

if the conditional relative frequencies are the same for all

forecasts. The third term (UNC) is a measure of uncertainty

or climatological variation in the event occurrence. Very

rare or very common events have low uncertainty.

Bröcker (2011) showed that the three terms in the Brier

score decomposition (1) are biased. This means that the

expected value of each term is typically different from

its true value, defined to be the value that would be

obtained were the sample size,n, increased to infinity. The

reliability is systematically overestimated, the uncertainty

is systematically underestimated, while the resolution

may be either overestimated or underestimated. Therefore,

evaluating this standard decomposition for finite samples

can give a misleading impression of forecast quality. We

show that an unbiased decomposition of the Brier score

is unattainable but propose a new decomposition that

has smaller biases than the standard decomposition and

therefore provides a more accurate measure of forecast

performance. We discuss the implications of the bias for the

Brier skill score and the attributes diagram, and illustrate the

new decomposition with seasonal forecasts of sea surface

temperatures.

2. The bias and a bias-corrected decomposition

We show that the standard decomposition of the Brier score

is biased and derive our results under the assumption that

the forecast-verification pairs{(pi, xi) : i = 1, . . . , n} are

independent and identically distributed random variables.

Extensions to dependent random variables are discussed in

section 5. Define the long-run relative frequency with which

the event occurs to be the expected value

µ = E(xi)

for all i, and define the long-run relative frequency with

which the event occurs amongst those occasions on which

the forecast equalsπk to be

µk = E(xi | pi = πk)
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for all i and eachk. Also define the expected frequency with

whichπk is forecast in a sequence ofn forecasts to be

E(nk) = nφk

for eachk, whereφk > 0. The weak law of large numbers

tells us that̄x → µ, x̄k → µk andnk/n → φk for eachk as

n → ∞. Substituting these limits into the decomposition (1)

of the Brier score yields the following limits for the

reliability, resolution and uncertainty:

REL∞ =

K
∑

k=1

φk(πk − µk)2, (5)

RES∞ =

K
∑

k=1

φk(µk − µ)2,

UNC∞ = µ(1 − µ). (6)

These are the values that would be obtained were the sample

size infinite. For finiten, however, a special case of a result

obtained by Bröcker (2011) shows that the expected values

of the reliability, resolution and uncertainty terms in the

standard decomposition (1) are as follows:

E(REL) = REL∞ +
1

n

K
∑

k=1

νk,nµk(1 − µk),

E(RES) = RES∞ +
1

n

K
∑

k=1

νk,nµk(1 − µk) −
µ(1 − µ)

n
,

E(UNC) = UNC∞ −
µ(1 − µ)

n
, (7)

whereνk,n is the probability thatnk exceeds zero. A special

case of these expressions (in which members of an ensemble

predict the event independently with probabilityµ, the

forecast is the proportion of ensemble members that predict

the event, andµk = µ for all k) was obtained by Ferro

et al. (2008) in their investigation of the effect of ensemble

size on the Brier score, but they did not comment on the

dependence of these expected values on the sample size,n.

The differences between the expected and limiting values

above are the biases. The bias in the reliability,

bias(REL) = E(REL) − REL∞

=
1

n

K
∑

k=1

νk,nµk(1 − µk), (8)

is non-negative and decreases monotonically to zero as

n increases. In other words,REL tends to overestimate

REL∞ and the reliability of the forecasts will tend to appear

poorer than it would do were a larger sample available. The

bias in the uncertainty,

bias(UNC) = −
µ(1 − µ)

n
, (9)

is non-positive and increases monotonically to zero asn

increases. So, the uncertainty will tend to appear smaller

than it would do were a larger sample available. The bias in

the resolution can be positive or negative, but also converges

to zero asn increases. In practice, however, the bias in

the resolution is often positive becauseµ(1 − µ) is often

small compared to
∑K

k=1
νk,nµk(1 − µk), in which case

the resolution of the forecasts will tend to appear better than

it would do were a larger sample available.

We prove in the appendix that unbiased estimators for the

reliability and resolution are unattainable. Nonetheless, we

propose a new decomposition of the Brier score in which

the estimate of uncertainty is unbiased and the estimates

of reliability and resolution have smaller biases than in the

standard decomposition. This new decomposition is

B = REL′ − RES′ + UNC′, (10)
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where

REL′ = REL −
1

n

∑

k∈K1

nk

nk − 1
x̄k(1 − x̄k), (11)

RES′ = RES −
1

n

∑

k∈K1

nk

nk − 1
x̄k(1 − x̄k) +

x̄(1 − x̄)

n − 1
,

(12)

UNC′ = UNC +
x̄(1 − x̄)

n − 1
(13)

and K1 = {k : nk > 1} so that the sums are over those

k for which nk exceeds1. Usually all nk exceed1

because smallnk are often eradicated by relabelling distinct

forecasts with a common forecast value (e.g. Bröcker

and Smith, 2007), although this will typically change

the limiting values,REL∞ and RES∞, being estimated.

Whether or not forecasts are pooled in this way, the new

decomposition yields more accurate estimates than the

standard decomposition. We prove in the appendix that

UNC′ is unbiased and that the biases ofREL′ andRES′

decay to zero at a faster rate than the biases ofREL and

RES as the sample size,n, increases.

The new decomposition has one complication:REL′

andRES′ can be negative. In such cases, we recommend

replacing the sum in the definitions ofREL′ (11) and

RES′ (12) by the largest value for which both terms are

non-negative. This is equivalent to replacingREL′ with

max{REL′, REL′ − RES′, 0} and replacingRES′ with

max{RES′, RES′ − REL′, 0}. This ensures that the three

terms in the decomposition still combine to equalB.

Independent work by Bröcker (2011) proposed a different

decomposition:

REL′′ = REL −
1

n

∑

k∈K0

x̄k(1 − x̄k), (14)

RES′′ = RES −
1

n

∑

k∈K0

x̄k(1 − x̄k) +
x̄(1 − x̄)

n
, (15)

UNC′′ = UNC +
x̄(1 − x̄)

n
. (16)

We prove in the appendix that the biases of these estimates

all decay to zero more slowly than the biases of our

decomposition. We also show in the appendix that the

biases of the uncertainty and reliability terms in these three

decompositions satisfy the following orderings for alln:

bias(UNC) ≤ bias(UNC′′) ≤ bias(UNC′) = 0 (17)

and

0 ≤ bias(REL′) ≤ bias(REL′′) ≤ bias(REL). (18)

The ordering on the biases of the resolution terms can

depend onn.

3. The Brier skill score and attributes diagram

The Brier skill score (e.g. Glahn and Jorgensen, 1970)

is defined asBSS = 1 − B/Bref , whereBref is the Brier

score for some set of reference forecasts. If the reference

forecasts are always equal to the in-sample climatology,

x̄, then Bref = UNC and BSS = (RES − REL)/UNC

(Murphy, 1996). The preceding calculations show that

both the numerator and denominator of thisBSS are

systematically underestimated, but to say anything about the

bias of the ratio would require further analysis. We do find,

however, that theBSS based on the new decomposition is

larger than theBSS based on the standard decomposition:

since UNC′ ≥ UNC, we have BSS′ = 1 − B/UNC′ ≥

1 − B/UNC = BSS with equality if and only ifB = 0.

Our new decomposition of the Brier score also has

implications for the attributes diagram of Hsu and Murphy

(1986). The attributes diagram augments the reliability

diagram, which comprises the points{(πk, x̄k) : k =

1, . . . , K}, with three lines: the horizontal line at height

x̄ representing climatology, the 45◦ line through the origin

representing perfect reliability (REL = 0), and the no-skill

line x̄k = (πk + x̄)/2. The positions of the points and

the first two lines in the diagram are unaffected because

the forecast valuesπk are fixed, the quantities̄xk and

x̄ are unbiased estimators of the corresponding long-run

quantities, and if all points lie on the 45◦ line thenREL′ =
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0. The no-skill line, however, is affected. This line is derived

by recalling that reference forecasts equal to the in-sample

climatology,x̄, yield a Brier score equal toUNC. Setting

B = UNC implies REL = RES, and the no-skill line is

obtained by equating the summands in the definitions of

REL (2) andRES (3). However,UNC is a biased estimator

for the expected Brier score achieved by the long-run

climatological reference forecast,µ. An unbiased estimator

is UNC′ and settingB = UNC′ impliesREL′ = RES′. A

new, no-skill curve is obtained, therefore, by equating the

summands in the definitions ofREL′ (11) andRES′ (12).

Rewriting the last term in the definition ofRES′ as

the sum
∑K

k=1
nk{x̄k(1 − x̄k) + (x̄k − x̄)2}/{n(n− 1)}

shows that this new curve is defined by

x̄k =
π2

k − α

2πk − β
,

whereα = nx̄2/(n − 1) andβ = (2nx̄ − 1)/(n − 1). This

curve is a hyperbola with asymptotesπk = β/2 and x̄k =

(2πk + β)/4. In the region between the two branches

of the hyperbola, theREL′ summand is less than the

correspondingRES′ summand and so this region represents

forecasts that make a positive contribution to skill.

4. A numerical illustration

We illustrate the standard (1) and bias-corrected (10)

decompositions of the Brier score using 4928 probabilistic,

seasonal forecasts of equatorial Pacific monthly mean

sea surface temperature (SST) anomalies constructed

previously by Stephensonet al. (2005). The forecasts

are for the event that the anomaly is positive and are

verified against the ERA-40 reanalysis (Uppalaet al., 2005).

Further information about the forecasts and verifications

may be found in Stephensonet al. (2008). We categorize

the forecast probabilities into ten, non-overlapping binsof

width 0.1 and replace each forecast by its corresponding bin

mean so that there are ten distinct forecast probabilities.

Qualitatively similar results were obtained for other bin

widths.
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Figure 1. Expected values of reliability, resolution and uncertainty against
sample size,n, for the SST forecasts: standard decomposition (solid lines),
bias-corrected decomposition (dashed lines) and true, long-run values
(dotted lines). Pointwise 5–95% intervals of the sampling distributions are
superimposed: standard decomposition (light grey regions), bias-corrected
decomposition (dark grey regions) and their overlap (hashed).

We use the following procedure to illustrate how the

biases in the Brier score components depend on the sample

size, n. First, we calculate the bias-corrected reliability,

resolution and uncertainty components of the Brier score

using all 4928 forecast-verification pairs, and take these

values as approximations to the true, long-run values

REL∞, RES∞ and UNC∞. Then, for eachn < 4928,

we form 10 000 samples ofn forecast-verification pairs

by sub-sampling at random from the full data set, and

compute the standard and bias-corrected decompositions for

each sample. Thus, for eachn, we obtain 10 000 values of

REL and REL′, RES and RES′, and UNC and UNC′.

The means of these values approximate the corresponding

expected values and are plotted in Figure 1 for10 ≤ n ≤

100. The 5% and 95% quantiles of the 10 000 values are

also plotted to illustrate the sampling variation.

As expected, the standard Brier score decomposition

yields large biases. The expected values ofREL andRES

exceedREL∞ and RES∞ while the expected value of
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UNC lies belowUNC∞. The magnitudes of the biases are

considerable whenn is small. For example, the expected

value ofREL is at least five times greater thanREL∞ when

n is less than 40. When the bias-corrected decomposition is

used, the bias ofUNC′ is zero for alln while the biases of

REL′ andRES′ are smaller and decay more rapidly than

the biases ofREL andRES. The biases ofREL′ andRES′

are negligible whenn is greater than about 60, an accuracy

achieved byREL andRES only oncen exceeds 300 (not

shown).

The 5–95% intervals defined by the quantiles of the

sampling distributions are wider forRES′ than forRES,

slightly wider for UNC′ than for UNC, and slightly

narrower forREL′ than forREL. The sampling variation

is greater forUNC′ than forUNC becauseUNC′/UNC =

n/(n− 1) > 1. We do not know if the sampling variation

for REL′ is always less than forREL, or if the sampling

variation for RES′ is always greater than forRES. For

individual data sets, standard errors and confidence intervals

for the three components might be estimated using ideas

similar to those employed by Ferro (2007).

The SST data used in Figure 1 exhibit significant

temporal dependence up to lags of three months and,

therefore, violate the independence assumption that was

used to derive the biases of the decompositions in section 2.

The resampling scheme employed to construct Figure 1,

however, destroys the time order of the data, and so the

results are indicative of how the decompositions perform

when there is no temporal dependence. The performance of

the decompositions in the presence of temporal dependence

is discussed in section 5.

To illustrate our proposed adjustment to the no-skill

curve in the attributes diagram, we consider a subset of

88 forecasts from a single gridpoint, at 150◦W in the

central equatorial Pacific. Using data from a single gridpoint

helps to highlight the differences between the standard

and bias-corrected no-skill curves because the two are

visually indistinguishable whenn is large. The diagram is

shown in Figure 2. We see that the bias-corrected curve
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Figure 2. Attributes diagram for the SST forecasts. The circles are centred
on the points(πk, x̄k) and their areas are proportional to the number,
nk, of contributing data. The light grey region is the positive-skill region
given by the standard no-skill line (dotted line). The dark grey region is the
area added to the positive-skill region by using the bias-corrected no-skill
curve (dashed curve). The solid horizontal and vertical lines represent the
observed climatology,̄x.

results in a larger positive skill region. The Brier score for

these data isB = 0.131 and the standard decomposition

yields REL = 0.018, RES = 0.137 and UNC = 0.250

with BSS = 0.475, while the bias-corrected decomposition

yields REL′ = 0.009, RES′ = 0.129 and UNC′ = 0.251

with BSS′ = 0.478.

5. Discussion

The reliability-resolution-uncertainty decomposition of the

Brier score is obtained by conditioning on the forecasts

(Murphy, 1973). An alternative decomposition is obtained

by conditioning on the verifications (Murphy and Winkler,

1987) to yield three terms that Murphy (1996) refers to

as the type 2 conditional bias, the discrimination and

the variance of the forecasts. The standard version of

this alternative decomposition yields biased estimates of

these three quantities and a bias-corrected version can

be obtained using calculations similar to those described

above. Decompositions obtained by conditioning on either

forecasts or verifications can be obtained for not only the

Brier score, but for any score that takes the form of a mean
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squared error (Murphy, 1996) or weighted mean squared

error (Young, 2010). Again, the standard decompositions

are biased, but bias-corrected versions can be derived.

In fact, all proper scores can be decomposed into

reliability, resolution and uncertainty terms (Bröcker,

2009). It would be useful to identify the bias of the

decomposition for other scores and to construct bias-

corrected decompositions where possible. Bröcker (2011)

has considered the logarithmic (ignorance) score and the

multi-category Brier score. We consider briefly the cases of

the ranked probability score (RPS; Epstein, 1969) and the

continuous ranked probability score (CRPS; Brown, 1974;

Matheson and Winkler, 1976).

The RPS can be written as a sum of Brier scores

corresponding to a nested sequence of events (e.g. Toth

et al., 2003) and, therefore, a decomposition of the RPS into

reliability, resolution and uncertainty terms can be obtained

by summing the corresponding terms of these Brier scores.

Both standard and bias-corrected decompositions can be

formed in this way. The CRPS can be written as an integral

of Brier scores corresponding to a nested continuum of

events (e.g. Hersbach, 2000) and so the CRPS can be

decomposed in a similar manner, integrating the terms of

the Brier score decompositions.

These decompositions of the RPS and CRPS, however,

are unsatisfactory because they measure the average

reliability and resolution of sets of forecasts for binary

events instead of the reliability and resolution of the full

probability distributions specified by the forecasts. Other

decompositions based on the full distributions are preferable

(Murphy, 1972; Candille and Talagrand, 2005). It appears

to be possible to construct bias-corrected versions of these

decompositions too. These alternative decompositions of

the RPS and CRPS rely on each distinct forecast distribution

being issued several times so that empirical distributionsof

the corresponding verifications can be constructed. Unless

there are very many forecasts, it is therefore often necessary

to group similar, rather than identical, forecast distributions

(Candille and Talagrand, 2005). This is also often done for

the Brier score when the issued forecast probabilities can

take any value in the interval[0, 1] instead of onlyK distinct

values. When such grouping is used, Stephensonet al.

(2008) show that the Brier score obtained by combining the

reliability, resolution and uncertainty terms will typically

differ from the value obtained by evaluating the Brier

score directly from the ungrouped forecasts. In order

to retrieve the Brier score for the ungrouped forecasts,

it is necessary to generalize the resolution term in the

decomposition to account for within-group variation. The

same can be expected to be true for the decompositions

of the RPS and CRPS when forecasts are grouped. The

generalized resolution defined by Stephensonet al. (2008)

is also biased but, again, a bias-corrected version can be

derived. We expect that bias-corrected versions could also

be obtained in the cases of the RPS and CRPS. Finally,

other decompositions of the RPS and CRPS have been

proposed that avoid the need to group forecasts (Hersbach,

2000; Candille and Talagrand, 2005). The bias of these

decompositions could be investigated too.

We have assumed throughout that the forecasts and

verifications are independent and identically distributed

random variables. Temporal dependence is likely to inflate

biases and also to reduce the rates at which biases

decay to zero. Analysing the biases in the presence of

temporal dependence is complicated, however, because

the verifications that contribute to the conditional relative

frequencies,̄xk, are randomly spaced in time. Whichever

decomposition is used, therefore, checking the convergence

of the reliability, resolution and uncertainty estimates as the

sample size increases is worthwhile. This can be done by

plotting againstn the estimates calculated from the firstn

data.

6. Summary

The standard decomposition of the Brier score is biased and

we have proposed a simple, bias-corrected decomposition

that provides a more accurate description of forecast

reliability and resolution when the verification data can
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be described by independent and identically distributed

random variables.
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Appendix

Proofs

There is no unbiased decomposition

If an unbiased estimator forREL∞ (5) exists then it

must be the sum of unbiased estimators for the summands

of REL∞ and these estimators could be subtracted from

the summands ofREL (2) to obtain unbiased estimators

for the summands,νk,nµk(1 − µk), of the bias (8) of

REL, whereνk,n = Pr(nk > 0) = 1 − (1 − φk)n because

the distribution ofnk is binomial with parametersn and

φk. An unbiased estimator forνk,nµk(1 − µk) must be a

function of nk and {xi : i ∈ Ik} but the order of thexi

carries no information aboutµk or φk and so we can require

this estimator to be a function ofnk and sk, wheresk =
∑

i∈Ik
xi and the conditional distribution ofsk givennk is

binomial with parametersnk andµk. Consider an estimator

g(nk, sk) with expectation

E{g(nk, sk)} =

n
∑

m=0

m
∑

t=0

g(m, t) Pr(sk = t | nk = m)

× Pr(nk = m)

=

n
∑

m=0

(

n

m

)

φm
k (1 − φk)n−m

×

m
∑

t=0

g(m, t)

(

m

t

)

µt
k(1 − µk)m−t.

This polynomial inµk andφk must equal the polynomial

{1 − (1 − φk)n}µk(1 − µk)

=

n
∑

r=1

(

n

r

)

(−1)r+1φr
kµk(1 − µk)

for all µk andφk if g(nk, sk) is to be an unbiased estimator

for νk,nµk(1 − µk). This can happen only if, for alli =

0, 1, . . . , n and j = 0, 1, . . . , n, the coefficients ofφi
kµj

k

in the two polynomials are equal . The latter polynomial,

however, has a non-zero coefficient forφkµ2
k and the

former polynomial contains no such term. Thus, there is

no unbiased estimator forνk,nµk(1 − µk) and hence no

unbiased estimator forREL∞. A similar argument shows

that there is no unbiased estimator forRES∞.

The bias of the new decomposition

We show first that the uncertainty term (13) in the

new decomposition is unbiased. The definitions of

UNC (4) andUNC′ (13) yield UNC′ = nUNC/(n − 1)

while the expressions forUNC∞ (6) and E(UNC) (7)

yield E(UNC) = (n − 1)UNC∞/n so thatE(UNC′) =

nE(UNC)/(n − 1) = UNC∞ and

bias(UNC′) = 0. (19)

To find the bias of the reliability term (11), write

REL′ = REL −
1

n

K
∑

k=1

rk,

whererk = nkx̄k(1 − x̄k)/(nk − 1) if nk > 1 andrk = 0

if nk ≤ 1. If nk ≤ 1 thenE(rk | nk) = 0. If nk > 1 then

x̄k(1 − x̄k)

=
1

nk

∑

i∈Ik

xi −
1

n2
k





∑

i∈Ik

xi +
∑

i∈Ik

∑

j∈Ik\{i}

xixj




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becausex2
i = xi whenxi = 0 or 1, and so

E(rk | nk)

=
nk

nk − 1

[

1

nk

∑

i∈Ik

E(xi | pi = πk)

−
1

n2
k

{

∑

i∈Ik

E(xi | pi = πk)

+
∑

i∈Ik

∑

j∈Ik\{i}

E(xi | pi = πk)E(xj | pj = πk)

}]

=
nk

nk − 1

[

µk −
1

n2
k

{

nkµk + nk(nk − 1)µ2
k

}

]

= µk(1 − µk).

Therefore,

E(rk) = µk(1 − µk) Pr(nk > 1)

= µk(1 − µk){Pr(nk > 0) − Pr(nk = 1)}

and, using the bias (8) ofREL,

bias(REL′) = bias(REL) −
1

n

K
∑

k=1

E(rk)

=
1

n

K
∑

k=1

Pr(nk = 1)µk(1 − µk). (20)

The bias ofRES′ equals the bias ofREL′ becauseUNC′

and the Brier score itself are unbiased: the expectation of

the Brier score is independent ofn.

Next, we calculate the rate at which the bias ofREL′, and

hence ofRES′, decays asn increases. From the binomial

distribution ofnk, we have

Pr(nk = 1) = nφk(1 − φk)n−1

and, therefore, the bias (20) ofREL′ is

bias(REL′) =

K
∑

k=1

φk(1 − φk)n−1µk(1 − µk),

which decays geometrically asn increases. The leading

order terms in the biases for the standard decomposition

decay at the much slower rate of1/n.

The bias of Br̈ocker’s decomposition

Now we calculate the biases and their rates of decay for

the decomposition (14)–(16) proposed by Bröcker (2011).

Arguments similar to those above show that

bias(UNC′′) = −
µ(1 − µ)

n2
(21)

and

bias(REL′′) =
1

n

K
∑

k=1

µk(1 − µk)
n

∑

m=1

1

m
Pr(nk = m)

(22)

with bias(RES′′) = bias(REL′′) + bias(UNC′′). The

biases ofREL′′, RES′′ andUNC′′ all decay to zero at rate

1/n2. This is immediate forUNC′′. To see that it is true for

REL′′, and hence forRES′′, note that

n
∑

m=1

1

m + 1
Pr(nk = m) ≤

n
∑

m=1

1

m
Pr(nk = m)

≤ 2

n
∑

m=1

1

m + 1
Pr(nk = m)

and

n
∑

m=1

1

m + 1
Pr(nk = m)

=

n
∑

m=1

1

m + 1

(

n

m

)

φm
k (1 − φk)n−m

=
1/φk

n + 1

n
∑

m=1

(

n + 1

m + 1

)

φm+1

k (1 − φk)n−m

=
1/φk

n + 1

n+1
∑

m=2

(

n + 1

m

)

φm
k (1 − φk)n+1−m

=
1/φk

n + 1

{

1 − (1 − φk)n+1 − (n + 1)φk(1 − φk)n
}

,

the leading order term of which decays at rate1/n.

Therefore,
∑n

m=1
m−1 Pr(nk = m) decays at rate1/n and

bias(REL′′) decays at rate1/n2.
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The ordering of the biases

The ordering (17) on the biases of the uncertainty terms

follows immediately from the bias expressions (9), (19) and

(21). The ordering (18) on the biases of the reliability terms

follows from the bias expressions (8), (20) and (22) because

Pr(nk = 1) ≤

n
∑

m=1

1

m
Pr(nk = m)

≤

n
∑

m=1

Pr(nk = m)

= Pr(nk > 0).

References

Brier GW. 1950. Verification of forecasts expressed in termsof

probability. Mon. Weather Rev.78: 1–3. DOI: 10.1175/1520-

0493(1950)078<0001:VOFEIT>2.0.CO;2.
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