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ABSTRACT

A simple and coherent framework for partitioning uncertainty in multimodel climate ensembles is pre-

sented. The analysis of variance (ANOVA) is used to decompose a measure of total variation additively into

scenario uncertainty, model uncertainty, and internal variability. This approach requires fewer assumptions

than existing methods and can be easily used to quantify uncertainty related to model–scenario interaction—

the contribution to model uncertainty arising from the variation across scenarios of model deviations from

the ensemble mean. Uncertainty in global mean surface air temperature is quantified as a function of lead

time for a subset of the Coupled Model Intercomparison Project phase 3 ensemble and results largely agree

with those published by other authors: scenario uncertainty dominates beyond 2050 and internal variability

remains approximately constant over the twenty-first century. Both elements of model uncertainty, due to

scenario-independent and scenario-dependent deviations from the ensemble mean, are found to increase with

time. Estimates of model deviations that arise as by-products of the framework reveal significant differences

between models that could lead to a deeper understanding of the sources of uncertainty in multimodel en-

sembles. For example, three models show a diverging pattern over the twenty-first century, while another

model exhibits an unusually large variation among its scenario-dependent deviations.

1. Introduction

Uncertainty in climate change prediction arises from

three different sources: model uncertainty, scenario un-

certainty, and internal variability. Model uncertainty ari-

ses because of an incomplete understanding of the

physical processes and the limitations of implementa-

tion of the understanding. Scenario uncertainty arises

because of incomplete information about future emis-

sions. Internal variability is the natural unforced fluctua-

tion of the climate system. Internal variability is aleatoric

and cannot be reduced by improvement of our scientific

knowledge. However, Smith et al. (2007) demonstrated

that a proper initialization of climate predictions with

observations can reduce the uncertainty for the next de-

cade. An obvious and exploratory way to evaluate the

total of these uncertainties is to calculate the spread of a

multimodel ensemble. However, further statistical anal-

ysis is needed to quantify the contributions of particular

sources of uncertainty and to describe how a particular

model reacts to a particular emissions scenario.

Various methods to decompose the total uncertainty

into its sources have been suggested in climate science.

Cox and Stephenson (2007) propose a conceptual frame-

work for this purpose and illustrate its use with a single

energy balance model. Hawkins and Sutton (2009, here-

after HS09) and Hawkins and Sutton (2011) fit polynomial

trend models over time and calculate various sources of

uncertainty. These studies offer simple interpretations of

uncertainty, but the drawback is that the total uncertainty

cannot be easily interpreted.

We use the analysis of variance (ANOVA) to de-

compose sources of uncertainty [for a complete review,

see Von Storch and Zwiers (2001, chapter 9)]. ANOVA

is a model-based approach that partitions the total var-

iance into components due to different sources of vari-

ation, allowing a fuller interpretation. The seminal work

of Madden (1976) suggests an ANOVA approach to test

for the likelihood of potentially predictable long-range
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variability. Formal ANOVA models are used in Zwiers

(1987, 1996) for analyzing seasonal observations and an

ensemble of climate simulations, respectively, and are

discussed from a statistical point of view. Several pre-

vious papers use ANOVA extensively for evaluating

model uncertainty from ensembles. Räisänen (2001) uses

ANOVA to divide the surface air temperature (SAT),

precipitation, and sea level pressure change into a com-

mon signal and variances associated with internal vari-

ability and model differences under the same forcing

scenario. Hingray et al. (2007) use ANOVA to estimate

the uncertainty in temperature and precipitation for a

collection of atmosphere–ocean general circulation models

(AOGCMs).

The remainder of this paper is organized as follows.

Section 2 describes the available data and compares the

methods of HS09 and ANOVA. We illustrate the results

in section 3 and present our discussion and conclusions

in section 4.

2. Data and methodologies

a. CMIP3 data

Following HS09, we illustrate the methodology by

applying it to global, decadal mean SAT multimodel

ensemble predictions for years 2001–99 from the Cou-

pled Model Intercomparison Project phase 3 (CMIP3)

archive. The multimodel ensemble data are extracted

from original monthly-scale data to decadal-scale data

using 10-years’ moving averaging (Table 1). The pre-

dictions are from Nm 5 7 general circulation models

(GCMs) under Ns 5 3 different future emissions sce-

narios [Special Report on Emissions Scenarios (SRES)

A1B, A2, and B1] with Nr 5 2 initial condition ensemble

members for each model and scenario. This gives a total

of Nm 3 Ns 3 Nr 5 42 predictions for 2001–99. These

future scenarios are summarized in Solomon et al. (2007,

chapter 10). The reason for using fewer GCMs than

other studies, such as Boer (2009) and HS09, is because

only seven GCMs have simulated all three scenarios

with at least two ensemble runs. Figure 1 shows time

series of all the simulation runs of all the models, sce-

narios, and replicates. The total uncertainty increases

with time because the simulation runs diverge with time.

b. Methodologies used in previous studies

The methodology in HS09 considers only one reali-

zation per model per scenario (Nr 5 1). Each prediction

of SAT is fitted using a fourth-order polynomial model

over years 1950–2099. The raw predictions X for each

model m, scenario s, and year t are written as

X(m, s, t) 5 z(m, s, t) 1 mref(m, s) 1 �(m, s, t), (1)

where a reference temperature for each model–scenario

combination is denoted by mref, the polynomial fit of the

projected change in global mean temperature is repre-

sented by z, and the regression error (internal variability)

is �. The reference temperature used is the 1971–2000

mean for each model and scenario. The internal vari-

ability estimator is the multimodel mean of the variance

of the regression error �(m, s, t):

VHS 5
1

NmNsT
�
N

m

m51
�
N

s

s51
�
T

t51
[�(m, s, t)]2. (2)

The internal variability is considered to have constant

variance in time. The model uncertainty estimator is the

multiscenario mean of intermodel variance of z(m, s, t):

MHS(t) 5
1

NmNs

�
N

m

m51
�
N

s

s51
[z(m, s, t) 2 z(�, s, t)]2, (3)

where z(�, �s, �t) 5 Smz(m, s, t)/Nm. The scenario uncer-

tainty estimator is the variance of multimodel means

of z(m, s, t):

SHS(t) 5
1

Ns

�
N

s

s51
[z(�, s, t) 2 z(�,�, t)]2, (4)

TABLE 1. Climate model data used in this study are obtained from the CMIP3 archive for years 2001–99 for the A1B, B1, and A2 scenarios

for GCMs with more than one ensemble member.

Acronym Model

CGCM3.1 Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled General Circulation Model,

version, 3.1

MIROC3.2(medres) Model for Interdisciplinary Research on Climate 3.2, medium-resolution version

MIUBECHO ECHAM and the global Hamburg Ocean Primitive Equation Model

ECHAM5/MPI-OM ECHAM and the Max Planck Institute Ocean Model

MRI CGCM2.3.2 Meteorological Research Institute Coupled General Circulation Model, version 2.3.2

CCSM3 National Center for Atmospheric Research Community Climate System Model, version 3

PCM National Center for Atmospheric Research Parallel Climate Model
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where z(�, �, t) 5 Sm,s z(m, s, t)/(NmNs). The sum of these

sources of uncertainty is then defined to be the total

uncertainty:

THS(t) 5 VHS 1 MHS(t) 1 SHS(t). (5)

Cox and Stephenson (2007) define the fractional un-

certainty (noise-to-signal ratio) at time t to be

F(t) 5
1:65

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
THS(t)

q

z(�,�, t)
. (6)

HS09 also consider the fraction of variance, defined as

VHS/THS(t), (7)

MHS(t)/THS(t), and (8)

SHS(t)/THS(t), (9)

where (7)–(9) refer to the fraction of variance of internal

variability, model uncertainty, and scenario uncertainty,

respectively.

c. Analysis of variance method

We adopt a model-based approach rather than a de-

scriptive or algorithmic approach because the use of a

statistical model facilitates a coherent interpretation of

uncertainty. We fit an ANOVA model on the projected

temperature anomalies x(m, s, r, t) for model m, scenario

s, and replicate r at time t from the 1971–2000 mean.

First, we consider the following ANOVA model for

global decadal SAT x(m, s, r, t) for each time t:

FIG. 1. Global, annual mean SAT prediction from

seven different GCMs under three different emission

scenarios from 2001 to 2099. Two ensemble members

are shown here per model per emission scenario.
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x(m, s, r, t) 5 m(t) 1 a(m, t) 1 b(s, t)

1g(m, s, t) 1 �(m, s, r, t), (10)

where m(t) is the overall effect representing the grand

ensemble mean of all simulations at time t 5 1, 2, . . . , 99;

a(m, t) is the scenario-independent deviation of model

m 5 1, 2, . . . , 7 from the overall ensemble mean m(t); b(s, t)

is the scenario deviation of emission scenario s 5 1, 2, 3;

the parameters a(m, t) and b(s, t) are collectively called

main effects; g(m, s, t) is the interaction term effect be-

tween model m and scenario s at time t that describes

scenario-dependent deviation. The error term �(m, s, r, t)

is independent and identically distributed.

The notion of interaction is an important concept in

ANOVA. Mathematically, interaction is said to occur if

the separate effects do not combine additively (Berrington

de González and Cox 2007). For climate projections, it

arises from how models react differently to emission sce-

narios, which we call scenario-dependent model uncertainty

as opposed to scenario-independent model uncertainty.

To demonstrate that there is a potential interaction term,

we show the mean response at different lead times to

different emission scenarios for each model in Fig. 2.

FIG. 2. Interaction plots show the means of the SAT for the years 2001–30, 2031–60, 2061–99, and 2001–99 against

emission scenarios for all the models. Symbols defined as C (CGCM3.1), M [MIROC3.2(medres)], E (MIUBECHO),

H (ECHAM5/MPI-OM), G (MRI CGCM2.3.2), S (CCSM3), and P (PCM). Interaction between model and scenario is

present where the lines are not parallel.
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The lines are not parallel, indicating that there is an ap-

parent interaction between some models and scenarios,

especially for long lead times. For example, in the year

2061–99, the effect of changing emission scenario is dif-

ferent for the CGCM3.1 (refer to Table 1 for model name

expansions) than for the MIUBECHO, as the lines

joining the models cross.

The method of least squares is used for the param-

eter estimation. Applying constraints �Nm

m51â(m, t) 5 0,

�Nm

s51b̂(s, t) 5 0, �Nm

m51ĝ(m, s, t) 5 0, for s 5 1, . . . , Ns and

�Ns

s51
ĝ(m, s, t) 5 0, for m 5 1, . . . , N

m
, the parameter es-

timators m̂(t), â(m, t), b̂(s, t) and ĝ(m, s, t) are

m̂(t) 5 x(�, �, �, t), (11)

â(m, t) 5 x(m, �, �, t) 2 x(�, �, �, t), (12)

b̂(s, t) 5 x(�, s, �, t) 2 x(�, �, �, t), and (13)

ĝ(m, s, t) 5 x(m, s, �, t) 1 x(�, �, �, t)

2 x(m, �, �, t) 2 x(�, s, �, t), (14)

where x(�, �, �, t) is the overall mean at time t; x(m, s, �, t) is

the mean over all the members at time t for model m and

scenario s; x(�, s, �, t) and x(m, �, �, t) are means over the

models and replicates, and the mean over the scenarios

and replicates, at time t respectively.

We define all four sources of uncertainty in terms of

the notion of variance. The ANOVA approach does not

assume constant internal variability over time and is also

not restricted to specify any type of trend for models.

The internal variability V(t) is the variance of each mem-

ber around the model scenario mean, defined as

V(t) 5
1

NmNsNr

�
N

m

m51
�
N

s

s51
�
N

r

r51
[x(m, s, r, t) 2 x(m, s,�, t)]2.

(15)

The scenario-independent model uncertainty M(t) is the

variance of model means around the ensemble mean,

defined as

M(t) 5
1

Nm

�
N

m

m51
[x(m,�,�, t) 2 x(�,�,�, t)]2

5 Varm[â(m, t)]. (16)

The scenario uncertainty S(t) is the variance of scenario

means around the ensemble mean,

S(t) 5
1

Ns

�
N

s

s51
[x(�, s,�, t) 2 x(�,�,�, t)]2 5 Vars[ b̂(s, t)].

(17)

The model–scenario interaction uncertainty I(t) is the

variance of model–scenario mean around the sum of

estimated main effects m(t), a(m, t) and b(s, t), defined as

I(t) 5
1

NmNs

�
N

m

m51
�
N

s

s51
hx(m, s, �, t) 2 fx(�, �, �, t) 1 [x(m, �, �, t) 2 x(�, �, �, t)] 1 [x(�, s, �, t) 2 x(�, �, �, t)]gi2

5
1

NmNs

�
N

m

m51
�
N

s

s51
[x(m, s,�, t) 1 x(�,�,�, t) 2 x(m,�,�, t) 2 x(�, s,�, t)]2 5 Varm,s[ĝ(m, s, t)]. (18)

The total uncertainty T(t), is simply the variance of the ensembles, defined as

T(t) 5
1

NsNmNr

�
N

m

m51
�
N

s

s51
�
N

r

r51
[x(m, s, r, t) 2 x(�,�,�, t)]2 5

1

NmNsNr

�
N

m

m51
�
N

s

s51
�
N

r

r51
[x(m, s, r, t) 2 x(m, s,�, t)]2

1
1

Nm

�
N

m

m51
[x(m,�,�, t) 2 x(�,�,�, t)]2 1

1

Ns

�
N

s

s51
[x(�, s,�, t) 2 x(�,�,�, t)]2

1
1

NsNm

�
N

m

m51
�
N

s

s51
[x(m, s,�, t) 1 x(�,�,�, t) 2 x(m,�,�, t) 2 x( �, s,�, t)]2 5 V(t) 1 M(t) 1 S(t) 1 I(t). (19)

Since the multimodel ensembles used here are ‘‘en-

sembles of opportunity’’ (Tebaldi and Knutti 2007), we

do not think of the available models and scenarios as

a sample from a wider population of possible models and

scenarios. If a wider population could be envisaged from

which the ensemble members form a sample, then our
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ANOVA model could be adapted to include so-called

random effects that would enable inferences about the

population (Eisenhart 1947). The simulation runs under

the same model–scenario are thought to be the samples

drawn from a finite population. However, it is also ap-

propriate to interpret internal variability as independent

realizations from an infinite population. Then our esti-

mation formula V(t) will be underestimated by 50% when

n 5 2. In that case a possible solution is to use a random

effects model to capture such a setting (e.g., Gelman 2005),

but we retain simplicity by assuming finite population.

d. Connection to the estimates in HS09

The model–scenario interaction can be interpreted as

a component of the model uncertainty defined in HS09.

Consider the sum of the scenario-independent uncer-

tainty M(t) and the model–scenario interaction variance

I(t), defined as

M(t) 1 I(t) 5
1

Nm

�
N

m

m51
[x(m,�,�, t) 2 x(�,�,�, t)]2 1

1

NmNs

�
N

m

m51
�
N

s

s51
[x(m, s,�, t) 1 x(�,�,�, t) 2 x(�, s,�, t) 2 x(m,�,�, t)]2

5
1

NmNs

�
N

m

m51
�
N

s

s51
[x(m,�,�, t) 2 x(�,�,�, t) 1 x(m, s,�, t) 1 x(�,�,�, t) 2 x(�, s,�, t) 2 x(m,�,�, t)]2

5
1

NmNs

�
N

m

m51
�
N

s

s51
[x(m, s,�, t) 2 x( �, s,�, t)]2. (20)

The sum of the terms M(t) and I(t) is analogous to how

HS09 define the model uncertainty MHS(t) in (3). The

scenario uncertainty S(t) and internal variability V(t) are

also similar to the definitions in (2) and (4).

3. Results

We now use the ANOVA approach described above

to quantify the uncertainty in global mean and decadal

mean SAT in a subset of the CMIP3 climate projections.

Figure 3a shows how the different variance components

vary with lead time. The scenario uncertainty [S(t), thick

dashed line] dominates the total uncertainty after year

2050, which agrees with HS09. Over the entire period,

model uncertainty [M(t), thick solid line] is also greater

than the internal variability [V(t), thin solid line], which

itself is rather constant over time (as assumed by HS09).

The model–scenario interaction variance [I(t), thin dashed

FIG. 3. Uncertainty in global, decadal mean surface temperature projections is shown here by variances. (a) All

four components of uncertainty: scenario-dependent model uncertainty (thick solid line), scenario uncertainty (thick

dashed line), internal variability (thin solid line), and model scenario interaction uncertainty (thin dashed line).

(b) Contribution of internal variability and the model–scenario interaction effect variance, i.e., internal variability

(thin solid line) and model–scenario interaction uncertainty (thin dashed line). Internal variability from an ANOVA

model with absence of interaction (thick solid line) is also superposed in the same diagram.
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line] increases from less than 1 3 1023 to 2.5 3 1022 K2,

larger than the internal variability component, demon-

strating that interaction is an important component of

uncertainty (see Fig. 3b).

Figure 4 presents a comparison of the fractions of un-

certainty from the methodologies of HS09 and ANOVA.

With our ANOVA approach, the scenario uncertainty

dominates all the uncertainty after the year 2050. In the

ANOVA method, the fraction of variance due to in-

ternal variability decreases rapidly in the first few de-

cades, which may be due to a random fluctuation in the

internal variability V(t) in the first decade. Meanwhile,

scenario uncertainty contributes slightly less in the

ANOVA method for about the first 30 years. The model

uncertainty dominates in the first few decades and has

similar values in HS09 and the ANOVA approach. The

model–scenario interaction variance increases from

a small value and is saturated at about 5% after two

decades.

Figure 5 shows how the various fitted ANOVA pa-

rameters evolve over time. In Fig. 5a, the separation be-

tween the model effects a is seen to increase with time,

and some of the models, such as ECHAM5/MPI-OM

and PCM, give a larger contribution to the model un-

certainty than others. Systematic changes in mean de-

viations can be found in some models (such as PCM)

that contribute more to the model uncertainty than

others. Such a pattern may be attributable to the fact

that the PCM simulations in the historical period are

not continuous with those in the twenty-first-century

SRES simulations. In Fig. 5b, SRES A2 overtakes SRES

A1B in the year 2070, and they have a 0.5-K separation

in the year 2100. This separation can be understood as

the response to the socioeconomic difference in the

emission scenario and also how the model treats the

forcings, such as aerosol, differently. A plot of the in-

teraction term (Fig. 5c) is helpful for understanding the

contribution of model–scenario interaction, which in-

creases with lead time.

Figure 6 explores the interaction effect in more detail

and shows that the interaction effect varies widely. For

example, the variation to the different scenarios is the

greatest for CCSM3, and the CCSM3 is relatively cool in

SRES B1 and relatively warm in A2.

4. Discussion and conclusions

a. Methodology

We introduce a simple, coherent approach for the

modeling of uncertainty in multimodel ensembles. The

sources of uncertainty are estimated from the ANOVA

model and add up to give total variance, which is a nat-

ural measure of global uncertainty. In contrast to the

uncertainty decomposition constructed in previous stud-

ies, this approach does not need to specify a particular

type of trend and noise distribution and does not assume

constant internal variability over time. The ANOVA

approach is a powerful way to quantify sources of un-

certainty, and the results generated are often easy to

interpret. It is easy to summarize the structure of all

ensemble members under different scenarios with simple

exploratory techniques. Another important feature is in-

teraction. In this framework, model–scenario interaction

FIG. 4. Comparison of the fraction of variance for global, decadal mean SAT using (a) HS09 methodology and

(b) the ANOVA-based approach.
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is defined as a form of nonconstancy of variance across

scenarios in different models. The framework supports

the decomposition of model uncertainty into a term that

measures the uncertainty due to a variation between

scenario-independent model deviations and an interac-

tion term that measures the uncertainty due to a var-

iation between scenario-dependent model deviations.

Ignoring the significant interaction term in the analysis

would lead to a dramatic impact on the interpretation

of the data. The framework offers, along with some ex-

ploratory data analysis techniques, a more detailed in-

terpretation on uncertainty and the contribution from

a particular ensemble member.

b. Scientific interpretation

Our results for uncertainty in the global and decadal

mean temperature change broadly agree with previous

studies; however, some details are different, especially

for short lead times. Here are some important findings:

d Scenario uncertainty, conditional on the choice of

scenarios, is of the greatest importance after year 2050.
d Internal variability is constant over time but decreases

rapidly as a fraction of the total.
d Uncertainty from scenario-independent model devia-

tions dominates uncertainty from scenario-dependent

model deviations over the entire study period.
d The model–scenario interaction effect is an important

contribution to uncertainty, especially at long lead

times.

The first finding is fully in agreement with previous

papers, such as HS09 and Cox and Stephenson (2007).

The second finding is an assumption in HS09 and is now

validated using the ANOVA framework. The latter two

FIG. 5. Time series plots of the fitted terms: (a)–(c) estimates â(m, t), b̂(s, t), and ĝ(m, s, t), respectively. Model symbols as in Fig. 2.
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findings are more closely tied to the presence of a sig-

nificant interaction term. There are several possible rea-

sons for this finding of certain models having large

interaction terms. The most likely reason is that the

same forcings are treated differently across the range of

models (e.g., Kiehl 2007). However, even if two models

treat a forcing in exactly the same way, there could still be

a contribution to the interaction if the models respond

differently to the forcing—in other words, if the models

have different effective climate sensitivities.

c. Future work

The ANOVA approach, because of its simplicity, is a

good starting point to cope with some other more com-

plex problems on attributing uncertainty from multi-

model ensembles. Apart from global mean temperature,

it is also interesting to investigate uncertainty for dif-

ferent space–time scales and other meteorological fields,

such as precipitation and stratospheric ozone (Hawkins

and Sutton 2011 and Charlton-Perez et al. 2010). It is

possible to extend this approach to a more general class

of models. These extensions are not currently common

in the climate science community, but they have been

used extensively in areas such as biology, epidemiology,

and financial modeling. For example, an obvious ex-

tension to climate science is a multivariate ANOVA

(MANOVA; see details in Press 1972, chapter 8) by

incorporating the relationship between different atmo-

spheric fields. This is particularly useful because atmo-

spheric fields are often correlated. A separate analysis of

fields such as temperature and precipitation may lead

to repeated use of data. For epidemiology applications,

FIG. 6. Time series plots of the fitted model–scenario interaction effects ĝ(m, s, t): (a)–(c) emission scenarios B1, A1B, and A2,

respectively. Model symbols as in Fig. 2.
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Zhang et al. (2009) developed the techniques of smoothed

ANOVA (SANOVA) to smooth spatial random effects

by taking advantage of the spatial variation.
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