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A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in

spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The

dynamics are assumed to be governed by a system of linear stochastic differential equations which is

estimated from the data. The principal modes of the system together with corresponding decay or

growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the sys-

tem matrix. The method can be applied to stationary datasets to identify the least stable modes and

assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding win-

dow approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a

genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic

model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learn-

ing data window. The methods are demonstrated and explored using the one-dimensional Swift-

Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the

homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract

and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis

successfully predicts the timing of the first instability and the unstable mode well beyond the learning

data window. Published by AIP Publishing. https://doi.org/10.1063/1.5022189

Critical transitions or tipping points are described as

sudden, possibly irreversible, disproportionate changes

in the output of a complex system in response to small

changes in the input. Such abrupt shifts have been

observed, e.g., in ecosystems, the climate system, financial

markets, or biomedical applications. There has been

much research in recent years devoted to extracting from

time series data early-warning signals preceding critical

transitions. In cases where the transition is due to a bifur-

cation, two generic features are often found when

approaching the bifurcation: an increasingly slow recov-

ery of the system from noisy perturbations, known as

critical slowing down, as well as an increasing variance of

the fluctuations around the (quasi-)equilibrium state.

In this paper, we discuss data-based detection, antici-

pation, and prediction of bifurcation-induced critical

transitions in spatially extended systems. A linear frame-

work of nonstationary dynamical modelling is adopted to

identify and track the characteristic modes of the system

with corresponding decay/growth rates and oscillation

frequencies. Unlike most previous work, we also discuss

genuine prediction of critical transitions (rather than just

detection and anticipation) by extrapolation of the

dynamical model beyond the learning data window.

I. INTRODUCTION

Many complex dynamical systems may experience dras-

tic sudden changes in their behavior, so-called critical

transitions or tipping points. Often, these are due to bifurca-

tions,1 that is, there is a slow drift of a system parameter

toward a local bifurcation point. It is desirable to find early-

warning signs based on measured time series from the sys-

tem to indicate whether a critical transition is imminent in

order to avoid or mitigate its impact. There has been tremen-

dous progress in recent years in identifying early-warning

signs for approaching bifurcations in noisy systems. The

most generic and widely used early-warning signs are

increasing autocorrelation (critical slowing down)2,3 and

increasing variance.4,5 Other indicators are trends in skew-

ness6 and quasi-stationary probability densities and their

modality.7,8 A more quantitative and dynamically motivated

approach lies in deriving a nonstationary model from data

and then propagating it beyond the learning data window to

study its projected future behaviour.9–13

So far, most of the data-based work on critical transi-

tions refers to univariate time series. The additional data in a

multivariate setting can be expected to improve existing

early-warning signs and open the possibility to discover new

ones. A multivariate analysis based on tracking the (com-

plex) eigenvalues of the Jacobian matrix of the system recon-

structed from data has been proposed recently.14 For

spatially extended systems, early-warning signs of critical

transitions discussed in the literature include increasing auto-

correlation,15 spatial correlation,16 spatial variance, and

skewness17,18 as well as the patchiness of states.19 A mathe-

matically rigorous analysis of stochastic partial differential

equations approaching bifurcations has been performed

recently focusing on analytically deriving basic scaling laws

of the covariance operator for linear stochastic partiala)Electronic mail: F.Kwasniok@exeter.ac.uk
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differential equations and comparing the results to numerical

simulations of fully nonlinear problems.20

This paper transfers the approach of nonstationary dynam-

ical modelling to spatially extended systems. The dynamics

are approximated by a system of linear stochastic differential

equations which is identified from data using statistical estima-

tion techniques. The least stable modes of the system are

tracked and instabilities are predicted based on analysis of the

eigenvalues and eigenvectors of the system matrix.

The method is meant to be a generic technique of critical

transition analysis for pattern-forming spatial systems.

Possible applications are vegetation patterns in theoretical

ecology and the meridional overturning circulation or the El

Ni~no–Southern Oscillation phenomenon in climate science.

This paper is organized as follows: The methodology is

discussed in Sec. II. Section III introduces the stochastic

Swift-Hohenberg equation used here as an example system

and details its properties and its numerical solution. The

results are presented in Sec. IV. The paper finishes with

some discussion and concluding remarks in Sec. V.

II. METHODOLOGY

The methodology builds on principal oscillation pattern

(POP) analysis, a technique proposed in the field of climate

science.21,22 A similar technique termed dynamic mode

decomposition has been introduced in the field of engineer-

ing fluid dynamics.23 For completeness, POP analysis is here

briefly recapitulated. It is then put into a nonstationary con-

text using a sliding window approach which has not been

done previously. The main methodological contribution of

the present paper lies in introducing a genuinely nonstation-

ary POP analysis.

We consider a complex, spatially extended system

described by a D-dimensional state vector X¼ (X1,…, XD)T.

A time series of the system, {X0,…, XN}, is available with

Xn ¼ XðtnÞ ¼ ðX1;n;…;XD;nÞT. The time series may be

evenly or unevenly sampled; the sampling interval is

dtn¼ tnþ1 – tn. The dataset may originate from observations

with the components of the state vector representing mea-

surements at different locations; or it may originate from

numerical simulation of a high-dimensional, deterministic,

or stochastic dynamical system. In the latter case, the system

may be an infinite-dimensional partial differential equation;

the components of the state vector X then are grid point val-

ues from a finite-difference discretization or Fourier coeffi-

cients from a spectral discretization.

A. Stationary data

We first assume that the dataset stems from a stationary

system. The stationary analysis refers to detection of critical

transitions or detection of the proximity of a system to a tran-

sition threshold.

1. Dimension reduction using principal component
analysis

Prior to the POP analysis, the dimension of the dataset is

reduced via principal component analysis,24 also referred to

as proper orthogonal decomposition (POD) or empirical

orthogonal function (EOF) analysis. The mean state of the

system hXi is given as the sample mean of the dataset

hXi ¼ 1

N þ 1

XN

n¼0

Xn: (1)

The dataset is projected onto K modes, with K�D, which

account for most of the variance of the fluctuations around

the mean state. More precisely, we seek an expansion

Xn ¼ hXi þ
XK

j¼1

yj;n ej; (2)

with yj;n ¼ eT
j MðXn � hXiÞ such that the error function

J ¼ 1

N

XN�1

n¼0

Xn � hXi �
XK

j¼1

yj;n ej

0
@

1
A

T

�M Xn � hXi �
XK

j¼1

yj;n ej

0
@

1
A (3)

is minimized with respect to the modes fejgK
j¼1 subject to the

orthonormality constraints

eT
j Mek ¼ djk; (4)

where djk denotes the Kronecker delta symbol. The symmet-

ric, positive definite matrix M is the metric in which the error

is measured. It may often be equal to the identity matrix corre-

sponding to the Euclidian norm; but, for example, in the case

of a fluid system, it may be different and correspond to an

energy or enstrophy norm. For any K, the solution to the opti-

mization problem is given by the eigenvectors corresponding

to the K largest eigenvalues of the eigenvalue problem

CMej ¼ ljej; (5)

where C is the covariance matrix of the fluctuations given by

C ¼ 1

N

XN�1

n¼0

ðXn � hXiÞðXn � hXiÞT: (6)

The principal components are uncorrelated and the eigen-

value lj gives the variance accounted for by the mode ej

1

N

XN�1

n¼0

yj;nyk;n ¼ ljdjk: (7)

The minimum of the cost function is J ¼
PD

j¼Kþ1 lj. In order

to solve the eigenvalue problem of Eq. (5), it is most conve-

nient to solve the symmetric, positive definite eigenvalue

problem M1=2CM1=2êj ¼ ljêj with the same eigenvalues lj

and then obtain the eigenvectors as ej ¼M�1=2êj.

The dataset is reduced to the time series of the principal

components, {y0,…, yN}, with yn ¼ yðtnÞ ¼ ðy1;n;…; yK;nÞT.

We remark that a dimension reduction of the dataset

prior to the POP analysis is often convenient if the dimension
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D is very large, but it is not principally necessary. The POP

analysis described below could also be performed directly on

the anomaly time series fX0 � hXi;…;XN � hXig.

2. Principal oscillation patterns (POPs)

The dynamics of the principal components are approxi-

mated by a system of linear stochastic differential equations

_yj ¼
XK

k¼1

Ajkyk þ
XK

k¼1

rjkgk; (8)

where gk are white independent standard Gaussian processes.

Generically, the system matrix A can be diagonalized as

V�1AV ¼ diagðk1;…; kKÞ where the scalars fkjgK
j¼1 and the

matrix V are generally complex. The j-th column of V, vj, is

an eigenvector of the system matrix A with eigenvalue kj

Avj ¼ kjvj: (9)

The eigenvalues are ordered by non-increasing real part. The

linear transformation z ¼ V�1y corresponds to an expansion

of the state vector as

X ¼ hXi þ
XK

j¼1

zj pj; (10)

with pj ¼
PK

k¼1 Vkjek where the dynamics of the expansion

coefficients zj follow the decoupled equations:

_zj ¼ kjzj þ
XK

k¼1

r̂jkgk; (11)

with r̂jk ¼
PK

l¼1 ðV�1Þjlrlk. The modes fpjg
K
j¼1 are the prin-

cipal oscillation patterns (POPs) of the system. The dynam-

ics of the mode pj, characterized by the eigenvalue

kj ¼ �j þ ixj; (12)

correspond to an oscillation with frequency xj (period 2p/xj)

and an e-folding time of growth or decay of 1=j�jj. The POP

modes come as single, real modes (with zero frequency) or

as pairs of complex conjugate modes. The expansion coeffi-

cients fzjgK
j¼1 generally cannot be assumed to be uncorre-

lated as the driving stochastic terms are correlated.

The system matrix A is estimated from data. Two possi-

ble estimation techniques are available. One can discretize

the model of Eq. (8) using the Euler-Maruyama scheme28

with step sizes taken equal to the sampling intervals

yj;nþ1 ¼ yj;n þ dtn

XK

k¼1

Ajkyk;n þ
ffiffiffiffiffiffi
dtn

p XK

k¼1

rjkgk;n; (13)

corresponding to the data log-likelihood function

log pðy1;…; yNjy0Þ ¼
XN�1

n¼0

log pðynþ1jynÞ; (14)

with the Gaussian transition probability density

pðynþ1jynÞ � N ðyn þ dtnAyn; dtnDÞ; (15)

where the diffusion matrix D is given as Djk ¼
PK

l¼1 rjlrkl.

The maximum likelihood estimator for the system matrix A

is then the least-squares estimator given as

A ¼ G1G�1
0 ; (16)

with the covariance matrices

G0 ¼
1

N

XN�1

n¼0

dtnynyT
n ; (17)

G1 ¼
1

N

XN�1

n¼0

ðynþ1 � ynÞyT
n : (18)

The Euler-Maruyama discretization is consistent only in

the limit of infinitesimally small sampling intervals dtn. For

finite sampling intervals, the estimator is biased even in the

limit of large N. In practice, the estimator can be expected to

be reliable for POP modes for which the sampling intervals

are very small compared with the growth/decay timescale

and the period of oscillation.

In the case of evenly sampled data (dtn¼ dt), there is an

alternative way of estimating the system matrix A. The dis-

crete linear stochastic model

yj;nþ1 ¼
XK

k¼1

Bjkyk;n þ
XK

k¼1

qjkgk;n; (19)

is equivalent to the continuous model of Eq. (8), sampled at

intervals dt, if the system matrices A and B are related as

A ¼ 1

dt
log B: (20)

The discrete model has transition probability density

pðynþ1jynÞ � N ðByn;RÞ; (21)

with noise covariance matrix R given by Rjk ¼
PK

l¼1 qjlqkl.

The maximum likelihood estimator for the system matrix B

is the least-squares estimator given by

B ¼ C1C�1
0 ; (22)

with the covariance matrices

C0 ¼
1

N

XN�1

n¼0

ynyT
n ; (23)

C1 ¼
1

N

XN�1

n¼0

ynþ1yT
n : (24)

In the case of a dimension reduction with principal compo-

nents, we have C0¼ diag(l1,…, lK) by virtue of Eq. (7).

Then A is calculated from Eq. (20) and its eigenvalues and

eigenvectors analyzed as before. This estimation procedure

is asymptotically unbiased in the limit of large N regardless

of the sampling interval dt.
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There are also maximum likelihood estimates for the

diffusion matrix D and the noise covariance matrix R as well

as an expression relating them for evenly sampled data, but

this is less relevant here, as we focus on the system matrix in

the present context.

B. Nonstationary data

Two methods for analyzing nonstationary data are dis-

cussed: a sliding-window approach where the system is

regarded as stationary over a certain time window, and an

approach which models the nonstationarity explicitly.

1. Sliding window approach

In the sliding window approach, at each time instant t,
the time window [t – Tw, t] is considered and the system is

regarded as stationary in that window. A POP analysis is per-

formed as described above using all of the data points in the

interval [t – Tw, t]. The eigenvalues and eigenvectors of the

system matrix A are assigned to the time t. The size of the

sliding window, Tw, is a parameter of the method. Different

values of Tw should be used in the analysis to check for

robustness of the results. Generally, this approach can be

expected to lag behind the true stability properties of the sys-

tem as always data from the past are used in the analysis.

The sliding window approach corresponds to anticipa-

tion of critical transitions, as it allows to track the linear sta-

bility properties of the system over time; it cannot be termed

a prediction, as it has no provision to extrapolate into the

future and forecast the timing of the transition.

2. Nonstationary POP analysis

In the nonstationary POP analysis, the nonstationarity of

the system matrix is modeled explicitly and inferred from

data. The technique allows for genuine prediction of the tim-

ing and nature of critical transitions. Again, a system of lin-

ear stochastic differential equations is assumed

_yj ¼
XK

k¼1

AjkðtÞyk þ
XK

k¼1

rjkgk; (25)

but now with a time-dependent system matrix A(t). It is rep-

resented as

AðtÞ ¼
XS

j¼0

bjðtÞAj; (26)

where bj(t) are prescribed basis functions. We always set

b0(t)¼ 1 for the stationary part of the system. The basis func-

tions bj(t) for j> 0 might be trends (polynomial or other) or

trigonometric functions to model periodicities. The model

parameters fAjgS
j¼0 are estimated from data in a learning

data window. Equation (26) then allows to reconstruct the

system matrix anywhere in the learning data window as well

as to predict it for future times by extrapolating beyond the

learning data window.

There are again two ways for parameter estimation. One

can discretize the nonstationary model of Eq. (25) using the

Euler-Maruyama scheme with step sizes equal to the sam-

pling intervals. The maximum likelihood estimate for the

parameters is then the least-squares estimator given by

ðA0 A1 � � � AS Þ ¼ H1H�1
0 ; (27)

where

H0 ¼

H0;0;0 H0;0;1 � � � H0;0;S

H0;1;0 H0;1;1 � � � H0;1;S

..

. ..
. ..

. ..
.

H0;S;0 H0;S;1 � � � H0;S;S

0
BBBBB@

1
CCCCCA
; (28)

H1 ¼ ðH1;0 H1;1 � � � H1;S Þ; (29)

with the covariance matrices

H0;j;k ¼
1

N

XN�1

n¼0

dtnbj;nbk;nynyT
n ; (30)

H1;j ¼
1

N

XN�1

n¼0

bj;nðynþ1 � ynÞyT
n ; (31)

and bj,n¼ bj(tn).

In the case of equally sampled data, one can define a dis-

crete linear stochastic model as in Eq. (19), but now with the

time-dependent system matrix

BðtÞ ¼
XS

j¼0

bjðtÞBj: (32)

The maximum likelihood estimate for the parameters is then

the least-squares estimator given by

ðB0 B1 � � � BS Þ ¼ F1F�1
0 ; (33)

where

F0 ¼

F0;0;0 F0;0;1 � � � F0;0;S

F0;1;0 F0;1;1 � � � F0;1;S

..

. ..
. ..

. ..
.

F0;S;0 F0;S;1 � � � F0;S;S

0
BBBBB@

1
CCCCCA
; (34)

F1 ¼ ðF1;0 F1;1 � � � F1;S Þ; (35)

with the covariance matrices

F0;j;k ¼
1

N

XN�1

n¼0

bj;nbk;nynyT
n ; (36)

F1;j ¼
1

N

XN�1

n¼0

bj;nynþ1yT
n : (37)

The matrix B(t) can be reconstructed and predicted for any

time t from Eq. (32) and the corresponding matrix A(t) cal-

culated via Eq. (20).

We remark that, unlike in the stationary case, the two

expansions of Eqs. (26) and (32) with the same value of S
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and the same choice of nonstationary basis functions

fbjðtÞgS
j¼1 are not exactly equivalent, as the relationship

between A(t) and B(t) is nonlinear. But a Taylor expansion

of B ¼ exp ðdtAÞ shows that the difference is very small pro-

vided that dt is not very large and the nonstationarity of the

system is relatively slow.

The number of nonstationary basis functions, S, is a

hyperparameter of the method and determines the overall

complexity of the model. It can be determined using standard

likelihood-based model selection techniques such as infor-

mation criteria or likelihood cross-validation. The number of

parameters here increases quite rapidly with increasing S,

producing the danger of overfitting. Often, one might just

model a linear trend, that is, S¼ 1 and A(t)¼A0þ tA1 or

B(t)¼B0þ tB1.

3. Detrending

Also, the nonstationary POP model is formulated as an

anomaly model. Prior to the analysis and also prior to the

dimension reduction, the raw data are detrended, in line with

standard practice in critical transition analysis. This can be

done using a polynomial trend model (linear, quadratic,

etc.), a local polynomial trend model or a nonparametric

technique such as a kernel smoother.

III. THE STOCHASTIC SWIFT-HOHENBERG EQUATION

A. The deterministic model system

As an example of a pattern-forming spatially extended

system to explore the methodology, the one-dimensional real

Swift-Hohenberg equation,25,26 here augmented with a dis-

persion term,27 is used

@u

@t
¼ ruþ s

@3u

@x3
� 1þ @2

@x2

� �2

u� u3: (38)

The model is considered on the domain I ¼ ½0; L� subject to

periodic boundary conditions: u(0, t)¼ u(L, t) for all t. In the

absence of dispersion (s¼ 0), the Swift-Hohenberg equation

has variational structure26 and admits only stationary attrac-

tors. With dispersion, the spatial reflection symmetry is bro-

ken27 and the model admits, e.g., travelling wave solutions.

We introduce the complex scalar product

ðg; hÞ ¼
ðL

0

g�ðxÞhðxÞ dx (39)

for two functions g(x) and h(x), where the asterisk denotes

the complex conjugate.

B. Linear analysis

The Swift-Hohenberg equation can be written as

@u

@t
¼ LuþNðuÞ; (40)

with the nonlinear operator NðuÞ ¼ �u3 and the linear oper-

ator L ¼ Lþ þ L�, consisting of a self-adjoint part Lþ ¼ rI
�ð1þ @2=@x2Þ2 and a skew-symmetric part L� ¼ s@3=@x3.

The linear operator L on the domain I with periodic bound-

ary conditions has eigenfunctions

/kðxÞ ¼
1ffiffiffi
L
p exp i

2pkx

L

� �
; (41)

with

L/k ¼ ak/k; (42)

where the eigenvalues are given as

ak ¼ r � 1� 4p2k2

L2

� �2

� s
8p3k3

L3
i; (43)

for k 2 Z. The eigenfunctions form an orthonormal set

ð/k;/lÞ ¼ dkl: (44)

In the case of no dispersion (s¼ 0), the linear operator L is

self-adjoint, the eigenvalues are real and for k 6¼ 0, there are

two orthogonal eigenfunctions with the same eigenvalue

which could be chosen real as cos and sin modes.

For simplicity, we assume that the system size L is an

integer multiple of 2p. For r< 0, the homogeneous solution

u¼ 0 is linearly stable as Re(ak)< 0 for all k. At r¼ 0,

the critical wavenumber kc¼6L/2p becomes unstable; for

s¼ 0, there is a Turing bifurcation to a stationary wave pat-

tern; for s 6¼ 0, there is a Hopf bifurcation to a traveling wave

pattern.

C. Stochastic forcing

In order to study the dynamics of fluctuations around the

homogeneous state u¼ 0 prior to the first bifurcation, the

Swift-Hohenberg model is augmented with stochastic forcing

@u

@t
¼ LuþNðuÞ þ rnðx; tÞ: (45)

For simplicity, we restrict ourselves to additive noise here.

The noise standard deviation is given by the parameter r.

The noise process n(x, t) is a Gaussian process specified by

the separable covariance function

hnðx; tÞnðx0; t0Þi ¼ Ctemðt; t0ÞCspðx; x0Þ; (46)

with the temporal correlation function Ctem and the spatial

correlation function Csp. We here assume, as in Ref. 20, the

noise to be white in time, that is,

Ctemðt; t0Þ ¼ dðt� t0Þ; (47)

and the spatial correlation function is specified as

Cspðx; x0Þ ¼ exp �ðx� x0Þ2=c2
h i

: (48)

The parameter c defines the spatial correlation length. In

the limit c! 0, we have spatially white noise, that is,

Cspðx; x0Þ ¼ dðx� x0Þ.

033614-5 Frank Kwasniok Chaos 28, 033614 (2018)



D. Spatial discretization

The stochastic partial differential equation is discretized

in space using a finite-difference scheme. An equally spaced

mesh is introduced as (x0, x1,…, xM) where xj¼ jDx with

mesh size Dx¼L/M. The function u is discretized as u¼ (u0,

u1,…, uM�1) with uj¼ u(xj). We arrive at the system of sto-

chastic ordinary differential equations

_uj ¼ fjðuÞ þ rnj; j ¼ 0;…;M � 1: (49)

Using central differencing operators, the function fj is given by

fjðuÞ ¼ ðr � 1Þuj þ s
ujþ2 � 2ujþ1 þ 2uj�1 � uj�2

2ðDxÞ3

� 2
ujþ1 � 2uj þ uj�1

ðDxÞ2

� ujþ2 � 4ujþ1 þ 6uj � 4uj�1 þ uj�2

ðDxÞ4
� u3

j ; (50)

with u�2 ¼ uM�2; u�1 ¼ uM�1; uM ¼ u0 and uMþ1¼ u1 from

the periodic boundary condition. The scheme is of second-

order accuracy.

The discrete counterpart of the scalar product of

Eq. (39) is

ðg; hÞ ¼ Dx
XM�1

j¼0

g�ðxjÞhðxjÞ; (51)

using the trapezoidal integration scheme. The metric M for

the principal component analysis is a diagonal matrix defined

by Mjk¼Dxdjk.

E. Time integration

In view of the severe stiffness of the Swift-Hohenberg

model already at moderate resolutions, the system is inte-

grated in time using the implicit Euler-Maruyama scheme28

unþ1
j ¼ un

j þ fjðunþ1ÞDtþ r
ffiffiffiffiffi
Dt
p

nn
j : (52)

The scheme is unconditionally stable and of first-order accu-

racy. In order to advance the solution to the next time step,

the system of nonlinear equations

Gjðunþ1Þ ¼ unþ1
j � fjðunþ1ÞDt� un

j � r
ffiffiffiffiffi
Dt
p

nn
j ¼ 0; (53)

for j¼ 0,…, M – 1 needs to be solved for u
nþ1. This is done

using the Newton-Raphson method. A close first guess for

u
nþ1 to start the iteration can be generated by the determinis-

tic explicit Euler scheme as unþ1
j ¼ un

j þ fjðunÞDt. The

Jacobian matrix of G¼ (G0,…, GM�1) with respect to u
nþ1

is highly sparse which could be exploited to considerably

speed up the time integration.

In the case of no spatial correlation, the variables nn
j are

independent standard Gaussian noises. A method for gener-

ating a noise field n(xj, t) which is colored in space with

given correlation function (and white in time) has been

described in the literature29 and also a numerical implemen-

tation in MATLAB given.20

F. Parameter settings

The domain size is chosen to be L¼ 4p. The critical

wavenumber which becomes linearly unstable at r¼ 0 is

then kc ¼62. The size of the spatial grid for the numerical

solution is M¼ 200, corresponding to a mesh size Dx¼p/50.

The time step is Dt¼ 0.02; the solution is sampled at sam-

pling interval dt¼ 5Dt¼ 0.1. A case without dispersion,

s¼ 0, and a case with dispersion, s¼ 0.5, are considered. In

the system without dispersion, the eigenvalues of the linear

operator are purely real; in the system with dispersion, we

have pairs of complex conjugate eigenvalues. These two

cases more generally represent two generic behaviors: a sys-

tem with purely damped modes and a system with oscillatory

modes. The noise level is set to r¼ 0.01. Mainly spatially

white noise is used, but also a case with spatially colored

noise with correlation length c¼ 3p/2 is discussed. The

bifurcation parameter r is varied within the range [–1, 0.05].

The number of retained principal components is set to

K¼ 12 throughout the paper. The results are very insensitive

to the choice of K once about 8 principal components are

retained.

IV. RESULTS

Prior to the first instability (for r< 0), the mean state of

the Swift-Hohenberg model is virtually zero and the variance

of the system is pretty small, growing close to the bifurca-

tion. A detrending is therefore here not necessary and the

linear approximation for the dynamics can be expected to

hold to a good degree (cf. Ref. 20) It is natural to compare

the reconstructed eigenvalues and eigenvectors of the POP

model with those of the linear operator of the system.

A. Stationary data

We start with analysis of stationary datasets and an inves-

tigation of the quality of eigenvalue and eigenvector recon-

struction in this setting. For both cases s¼ 0 and s¼ 0.5,

sample integrations of the full nonlinear stochastic Swift-

Hohenberg model are performed for the values r¼�1,

r¼�0.25, r¼�0.05 and r¼ 0.05, representing the approach

to and passage through the first bifurcation of the homoge-

neous state u¼ 0. The integrations extend over the time win-

dow [0, 1000]; the length of the time series is N¼ 10 000.

Figure 1 displays parts of these datasets for s¼ 0. The

solutions are dominated by wavenumbers k¼62 as the least

stable modes; the timescale of the system visibly increases

when approaching the bifurcation. After the Turing bifurca-

tion, there is a large-amplitude stationary wave solution of

wavenumber 2.

The solutions of the system in the case s¼ 0.5 are shown

in Fig. 2. Again, the recovery timescale of the system clearly

increases when approaching the bifurcation. At r¼�0.05,

the emerging traveling wave pattern is already visible. After

the Hopf bifurcation, there is a large-amplitude traveling

wave solution. The period of the nonlinear solution is
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actually very close to the period obtained from linear theory

which is 2p/s¼ 4p.

Figure 3 shows the four leading eigenvalues of the linear

operator of the system and those reconstructed with the dis-

crete and continuous POP models for the case without dis-

persion. The eigenvalues are purely real; the third least

stable eigenvalue is single, the others are double. The critical

(double) eigenvalue is ac¼ r. Overall, the reconstruction is

very good. Expectedly, errors are larger for the more

strongly damped modes with the discrete POP model per-

forming better on them than the continuous POP model. The

degenerate situation of double eigenvalues is reconstructed

as two slightly different eigenvalues. For r¼ –1, one of the

double eigenvalues is reconstructed as a complex conjugate

pair with almost zero frequency.

For the model with dispersion, the leading eigenvalues

are a single real eigenvalue and three complex conjugate

pairs (Fig. 4). The critical eigenvalues are ac ¼ r 6 is. Again,

the reconstruction of the eigenvalue spectrum of the system

from the datasets is very accurate, particularly for the least

stable modes. The estimation method using the discrete POP

model is somewhat better than that using the continuous

POP model.

We now look at the extracted POP modes of the system.

Figure 5 displays the first seven POPs for the case r¼ –0.05

and s¼ 0 using the discrete POP model. They correspond to

the eigenvalues shown in Fig. 3(c) and are purely real. It is

known that the true modes of the system are Fourier modes

and from Eq. (43), it can be seen that in order of increasing

stability, there are the wavenumbers k¼62, k¼61, k¼ 0,

and k¼63. Therefore, we look at the decomposition of the

POPs in terms of the Fourier modes. The contribution of

wavenumbers 6k to the POP pj is defined as c0;j ¼ jð/0; pjÞj2
and ck;j ¼ jð/�k; pjÞj2 þ jð/k; pjÞj2 for k> 0. We haveP

k ck;j ¼ 1 for all j. The modes of the system are very well

reproduced. In particular, the critical modes p1 and p2 almost

perfectly span the space of /2 and /�2. There are small errors

in the other POPs. The POPs extracted with the continuous

POP model (not shown) are very close to the POPs from the

discrete POP model.

Figure 6 displays the results for the model with disper-

sion (s¼ 0.5). The POPs correspond to the eigenvalues

shown in Fig. 4(c). The modes from the discrete POP model

are shown. There are the complex conjugate pairs p1 and p2,

p3 and p4, the real mode p5, and the complex conjugate pair

p6 and p7. The critical modes are perfectly reproduced; there

are small distortions in the other modes. Again, the results

from the continuous POP model (not shown) are almost

identical.

We also look at the system driven by spatially colored

rather than spatially white noise. Figure 7 displays the case

close to the bifurcation (r¼ –0.05) without and with disper-

sion. The reconstruction of the eigenvalue spectrum of the

system from the datasets is about as good as for spatially

FIG. 1. Sample integrations of the stochastic Swift-Hohenberg model for s¼ 0 and r¼ –1 (a), r¼�0.25 (b), r¼�0.05 (c), and r¼ 0.05 (d).
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white noise. We also looked at the spatial structure of the

POP modes (not shown). The spatially colored noise excites

the wavenumbers 0 and 61 more strongly than the spatially

white noise does. Therefore, these wavenumbers gain more

variance in the system than they do for spatially white noise

which makes the pattern extraction problem harder. The

errors are larger than for white noise, as there is some mixing

between the wavenumbers, but the leading modes are still

very well identified with contributions of wavenumber 2

well above 0.95.

The conclusions drawn from single integrations of the

model are confirmed in an ensemble of 20 such simulations

(not shown). Particularly, the critical eigenvalues and modes

are reliably identified with small errors as the system

approaches the bifurcation and the timescale of the critical

modes separates more clearly from the timescales of the

other modes. This is encouraging, as it is a priori not clear

how good the linear approximation still is when the variance

of the system grows close to the transition.

B. Sliding window approach

We now examine nonstationary datasets. Integrations of

the stochastic Swift-Hohenberg model are performed over

the time interval [0, 2000] in which the bifurcation parameter

r is linearly ramped as r(t)¼�1þ t/2000. The integrations

start with r¼�1 at t¼ 0 and reach the bifurcation (r¼ 0) at

FIG. 2. Sample integrations of the stochastic Swift-Hohenberg model for s¼ 0.5 and r¼�1 (a), r¼�0.25 (b), r¼�0.05 (c), and r¼ 0.05 (d).

FIG. 3. Eigenvalues of the linear operator of the Swift-Hohenberg equation

(red), and eigenvalues reconstructed with the discrete POP model (blue) and

the continuous POP model (green) for s¼ 0 and r¼�1 (a), r¼�0.25 (b),

and r¼�0.05 (c).
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t¼ 2000. The length of the time series is 20001. The two dif-

ferent sliding window sizes Tw ¼ 250 and Tw ¼ 400 are consid-

ered; they correspond to N¼ 2500 and N¼ 4000, respectively.

Figure 8(a) displays the real part of the least stable

eigenvalue of the system as a function of the end of the slid-

ing window for s¼ 0. The true critical eigenvalue is ac (t)
¼ r(t). The POP analysis tracks the changing stability of the

system toward the bifurcation very well. Expectedly, the

reconstruction lags behind the true values as data from the

past are used for the analysis. This effect is more severe for

the larger window length. On the other hand, the statistical

sampling fluctuations are larger with the shorter window

length, as fewer data points are used for the analysis. The

sampling fluctuations become smaller as the system comes

closer to the bifurcation because the timescale of the critical

modes then separates more clearly from the timescales of the

other modes. The results for the discrete and the continuous

POP model are very close to each other.

Figures 8(b) and 8(c) show the real and imaginary part

of the critical eigenvalue extracted with the POP analysis for

the case s¼ 0.5. The true critical eigenvalues here are ac (t)
¼ r(t) 6 is. Again, the changing stability of the system is

tracked very well with some time lag. The statistical sam-

pling fluctuations appear to be smaller than for s¼ 0. This

may be due to the fact that there is more information in the

data, as the non-zero frequency constrains the model infer-

ence more strongly. Also the frequency of the critical mode

can be extracted from the data with the POP analysis. We

observe some error and large sampling fluctuations initially.

The results from the discrete and the continuous POP model

differ more significantly than for the real part of the eigen-

value. But all the methods appear to converge as the system

comes closer to the bifurcation and the frequency of the

emerging traveling wave solution is correctly anticipated.

Figure 9 displays summary information from an ensemble

of 50 simulations for the discrete POP model. The ensemble

FIG. 4. Eigenvalues of the linear operator of the Swift-Hohenberg equation

(red), and eigenvalues reconstructed with the discrete POP model (blue) and

the continuous POP model (green) for s¼ 0.5 and r¼�1 (a), r¼�0.25 (b),

and r¼�0.05 (c).

FIG. 5. (a) First (red solid), second (red dashed), third (blue solid), and

fourth (blue dashed) POP. (b) Fifth (green), sixth (magenta solid), and sev-

enth (magenta dashed) POP. (c) Contribution of wavenumbers to the POPs.

Parameter setting is r ¼�0.05 and s¼ 0.
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mean steadily tracks the real part of the true critical eigenvalue

with some time lag. For the imaginary part of the critical

eigenvalue, the ensemble mean fluctuates with small amplitude

around the true value, consistent with an unbiased estimation.

The standard deviation of all the quantities decreases as the

transition point is approached. It is smaller for the system with

dispersion in accordance with the observation in Fig. 8.

In order to check whether also the spatial structure of

the critical mode of the system is correctly identified, we

look at the contribution of wavenumber 62 to the least

stable POP mode (Fig. 10). Over the whole course of the

integration, a large contribution of wavenumber 62 to the

critical mode is robustly extracted. Some sampling fluctua-

tions are observed initially, in particular, with the shorter

window length. As the system approaches the bifurcation,

the spatial structure of the critical mode is almost perfectly

and very robustly identified; this is especially true for the

model with dispersion (s¼ 0.5). The results from the discrete

and the continuous POP model are almost identical here.

Figure 11 gives the corresponding summary information

from the ensemble of simulations for the discrete POP

model. It confirms an improvement of the reconstruction as

the system comes closer to the bifurcation point. The recon-

struction is more accurate with the larger sliding window

length and for the system with dispersion.

For the integrations with the ramped bifurcation parame-

ter r, we also look at more conventional early-warning signs.

A generic early-warning sign for critical transitions is

increasing autocorrelation (critical slowing down), here mea-

sured by the spatially averaged lag-1 autocorrelation

R ¼ 1

M

XM�1

j¼0

XN�1

n¼0

uðxj; tnÞ � huðxjÞi
� �

uðxj; tnþ1Þ � huðxjÞi
� �

XN

n¼0

uðxj; tnÞ � huðxjÞi
� �2 ;

(54)

with

huðxjÞi ¼
1

N þ 1

XN

n¼0

uðxj; tnÞ: (55)

The autocorrelation in the system is clearly increasing

toward the bifurcation both for s¼ 0 and s¼ 0.5 (Fig. 12).

The autocorrelation is larger for the shorter sliding window

as the effect of lagging behind is less severe. There is a clear

correspondence here between the rising spatially averaged

autocorrelation and an eigenvalue approaching criticality;

both quantities carry very similar information. But the

spatially averaged autocorrelation does not reveal as much

information about the underlying dynamics as the POP

FIG. 6. (a) First POP (red, real part solid, imaginary part dashed) and third

POP (blue, real part solid, imaginary part dashed). (b) Fifth POP (green) and

sixth POP (magenta, real part solid, imaginary part dashed). (c) Contribution

of wavenumbers to the POPs. Parameter setting is r¼�0.05 and s¼ 0.5.

FIG. 7. Spatially correlated noise: eigenvalues of the linear operator of the

Swift-Hohenberg equation (red), and eigenvalues reconstructed with the dis-

crete POP model (blue) and the continuous POP model (green) for r¼�0.05

and s¼ 0 (a) and s¼ 0.5 (b).
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analysis, for example, the spatial pattern associated with the

instability. Also, another generic early-warning sign, increas-

ing variance, both spatially averaged temporal variance and

temporally averaged spatial variance, is present in the Swift-

Hohenberg model.20

One may try to derive more quantitative and specific

information from indicators such as increasing autocorrelation

and increasing variance by looking at scaling laws for them

as a function of the distance from the instability threshold.1,20

However, it may turn out that such scaling laws break down

as the bifurcation is approached because the linear approxi-

mation is not sufficiently valid any more for them to hold.20

Generally it is recommended to always perform the slid-

ing window analysis for several choices of the window

length Tw and to look for consistency in the results. There is

always a trade-off between the size of the statistical sampling

fluctuations and the reconstruction lag. For the present sys-

tem, the smallest useful window size is about Tw¼ 150. A

possible approach to reducing the reconstruction lag might

lie in using a weighting scheme in the sliding window which

weights the most recent observations more strongly.

C. Nonstationary POP analysis

We now explore the nonstationary POP analysis. The

same integrations described before with the linearly ramped

bifurcation parameter r varied as r(t)¼�1þ t/2000 are used.

They extend on the time interval [0, 2000] and reach the

bifurcation point at t¼ 2000. A learning data window is

FIG. 8. (a) Real part of the least stable eigenvalue for s¼ 0. (b) Real part of

the least stable eigenvalue for s¼ 0.5. (c) Imaginary part of the least stable

eigenvalue for s¼ 0.5. Two sliding window lengths are used: Tw ¼ 250

(green – discrete POP model, black – continuous POP model) and Tw ¼ 400

(blue – discrete POP model, yellow – continuous POP model). The red solid

lines indicate the true values.

FIG. 9. Ensemble of 50 simulations: (a) Mean real part of the least stable

eigenvalue for s¼ 0 (solid) and s¼ 0.5 (dashed). Two sliding window

lengths are used: Tw¼ 250 (green) and Tw¼ 400 (blue). The red solid line

indicates the true value. (b) Mean imaginary part of the least stable eigen-

value for s¼ 0.5 and two sliding window lengths: Tw¼ 250 (magenta) and

Tw¼ 400 (cyan). The red solid line indicates the true value. (c) Standard

deviation of the various quantities over the ensemble. Color coding is the

same as in panels (a) and (b).
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defined as [0, te] where the end point te is varied on the inter-

val [800, 2000]. For each value of te, a nonstationary POP

analysis is performed as introduced in Sec. II which then

allows to reconstruct the system on the learning data window

[0, te] and to predict it beyond te. We use a discrete POP

model with a linear trend

BðtÞ ¼ B0 þ tB1: (56)

Figure 13 displays the reconstructed/predicted real part of

the least stable eigenvalue of the system for s¼ 0 and s¼ 0.5.

The areas below the solid black lines refer to reconstruction

(target time smaller than te); the areas above the solid black

lines refer to prediction (target time larger than te). In statistics,

this is often referred to as in sample and out of sample. If te is

too small the reconstruction/prediction is not very robust. With

s¼ 0. the results stabilize at about te¼ 1100 with a slight over-

prediction of instability and they become very good from about

te¼ 1450. With s¼ 0.5, the reconstruction and prediction is

very robust and accurate from about te¼ 1200. The results

with a continuous POP model are almost indistinguishable (not

shown).

Figure 14 displays summary statistics on the nonstation-

ary POP analysis from an ensemble of 100 simulations. Panel

(a) shows the predicted bifurcation time, that is, the time

when an unstable eigenvalue occurs in the nonstationary POP

model. On average, the bifurcation time is well predicted.

There is some delay in the system with dispersion which

decreases with increasing learning window size. The fluctua-

tions in the predictions markedly decrease with increasing

learning window size. Panel (b) gives the contribution of

wavenumber 2 to the leading POP mode. The reconstruction

improves with increasing learning window size; beyond

about te¼ 1500, it is very reliable. Identification is better for

the system with dispersion; in particular, very bad reconstruc-

tions occur less frequently.

A possible way to reduce the variability in the predic-

tions might be to take into account parameter uncertainty

which may be substantial here given the large number of

parameters in the nonstationary model. The likelihood-based

framework gives access to uncertainty information via the

Fisher information matrix. Each prediction would be formed

as an average over an ensemble generated by sampling from

the parameter error distribution. A similar technique has

been used for nonstationary probability density modelling.12

FIG. 10. Contribution of wavenumber 2 to the least stable POP mode for

s¼ 0 (a) and s¼ 0.5 (b). Two sliding window lengths are used: Tw¼ 250

(green – discrete POP model, black – continuous POP model) and Tw¼ 400

(blue – discrete POP model, yellow – continuous POP model).

FIG. 11. Ensemble of 50 simulations: Mean contribution of wavenumber 2

to the least stable POP mode for s¼ 0 (solid) and s¼ 0.5 (dashed). Two slid-

ing window lengths are used: Tw ¼ 250 (green) and Tw ¼ 400 (blue).

FIG. 12. Spatially averaged lag-1 autocorrelation R for s¼ 0 (a) and s¼ 0.5

(b). Two sliding window lengths are used: Tw¼ 250 (green) and Tw¼ 400

(blue).
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V. DISCUSSION AND CONCLUSIONS

A data-driven methodology for detecting, anticipating,

and predicting critical transitions in spatially extended systems

based on POP analysis was introduced. The system is approxi-

mated by a linear stochastic dynamical system and the princi-

pal modes and their stability properties are extracted from

data. The technique was explored using nonlinear integrations

of the one-dimensional stochastic Swift-Hohenberg model.

When applied to stationary datasets produced at differ-

ent values of the bifurcation parameter, the method is able to

reconstruct the principal eigenvalue spectrum of the system

as well as the spatial structure of the corresponding modes.

The reconstruction of the critical eigenvalue and mode is

particularly good.

The method was then applied to nonstationary datasets

using a sliding window approach. It was able to track the lin-

ear stability properties of the system and anticipate the

impending bifurcation. The characterization of the critical

mode is particularly reliable and improves when the system

comes closer to the bifurcation point. This is in contrast to

recently considered scaling laws for autocorrelation and vari-

ance which may break down close to the bifurcation point.20

A genuinely nonstationary POP analysis was introduced

based on the explicit inference of the nonstationarity using a

nonautonomous linear dynamical system. It is capable of

predicting the timing of the transition well ahead of the

bifurcation point.

The present technique makes a more detailed use of the

available spatio-temporal data than summary statistics such

as spatially averaged autocorrelation and temporal or spatial

variance and thus extracts more specific information, directly

linked to the underlying dynamics. Yet, the POP analysis

may still be termed generic as a simple and robust time series

model is used and no a priori knowledge about the underly-

ing system dynamics is required.

The POP analysis is clearly based on the assumption of

linear dynamics. Further investigation of its validity in non-

linear systems is necessary. The technique will probably be

mainly applicable to the first bifurcation from a homoge-

neous state to a patterned state as in the present study. When

looking, for example, at the opposite direction of control

parameter variation, that is, at the supercritical bifurcation

from the large-amplitude patterned state to the zero state, a

nonlinear model will be necessary.13
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s¼ 0 (green) and s¼ 0.5 (blue). The solid lines indicate the mean over the

ensemble, the dashed lines the 10% and 90% quantiles of the ensemble. The

red solid line indicates the true value. (b) Contribution of wavenumber 2 to

the least stable POP mode for s¼ 0 (green) and s¼ 0.5 (blue). Solid lines

indicate the mean over the ensemble, dashed lines the 10% and 90% quan-

tiles, and dotted lines, the 50% quantile.
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