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Abstract. Prediction and predictability properties of nonlinear dynamical sys-
tems are diagnosed and analysed empirically using nonlinear time series analysis
techniques. The notion of predictability is relaxed from accurate prediction of
individual trajectories to a coarse-grained view in which only probabilities of vis-
iting certain regions of state space or regimes are forecast. The regimes and the
transition probabilities between them are determined simultaneously by fitting a
hidden Markov model to a time series of the system. Predictive information is then
refined by building a nearest-neighbour model of the regime posterior distribution.
The ideas are exemplified on the stochastically forced Lorenz system.

1 Introduction

Predicting the future time evolution of a dynamical system is an important task in many areas
of science. Often the underlying dynamical equations are unknown and only a time series of
the system is available. There are well-established methods for constructing statistical models
from the observations [1–4]; possible approaches include local constant or analogue models,
local polynomial models, radial basis functions and neural networks.
Sometimes a dynamical system is dominated on a coarse-grained scale by the switching

between different areas of state space where the trajectory spends some time. Such regime
behaviour may be already obvious by eye in a time series [5–7] or may be more subtle [8,9]. This
leads to the notion of regime prediction where only probabilities of visiting certain regions of
state space are forecast rather than individual trajectories. The perspective of regime prediction
may be particularly adequate when determinism and thus predictability is weak, that is, for
systems with a considerable stochastic component. Regime predictability then focuses on and
condenses the little predictability available at all in the system. Moreover, it is presumably most
interesting at longer prediction times. Regime predictability may be still present in a dynamical
system at prediction timescales where predictability of individual trajectories measured by mean
square errors or correlations is already lost.
The present approach combines the well-known methodologies of hidden Markov models

[10] and nearest-neighbour models [4] to build statistical predictive models from data. Firstly,
the most predictable coarse-grained structures or regimes are identified by fitting a hidden
Markov model to a time series of the dynamical system under consideration. Secondly, a nearest-
neighbour model of the regime posterior distribution is used to predict the regime posterior
distribution at future time.
The paper is organised as follows: In section 2, the model system used as an example in the

present study is introduced. Then the prediction methodology is outlined in detail in section 3.
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Fig. 1. Sample time series of the x1-, x2- and x3-component of the Lorenz system with white Gaussian
noise.

The results are presented in section 4; the paper closed with a brief discussion of the results
and their implications in section 5.

2 The stochastically forced Lorenz system

The classical Lorenz model [5] augmented by white stochastic forcing [11] is used here as an
example system:

ẋ1 = −sx1 + sx2 + ση1 (1)

ẋ2 = −x1x3 + rx1 − x2 + ση2 (2)

ẋ3 = x1x2 − bx3 + ση3 (3)

where η1, η2 and η3 denote pairwise independent white Gaussian noises with zero mean and
unit variance: 〈ηi〉 = 0 and 〈ηiηj〉 = δij . The standard parameter set s = 10, r = 28 and b = 8/3
is chosen. The noise standard deviation is σ = 2. The system is integrated in time numerically
using the Euler forward scheme [12] with step size h = 10−5. Reducing the step size by a
factor of 10 does not change the statistical properties of the system. Figure 1 displays a sample
trajectory of the model; the sampling interval in the graphs is 0.01. The noise level is moderate;
shape and character of the trajectories are still close to those of the deterministic Lorenz system.
The trajectory evolves around an attractor with two butterfly-wing-shaped lobes; it switches
irregularly between the two lobes. On each of the wings, the state vector spirals around the
unstable steady states at (−6√2,−6√2, 27) and (6√2, 6√2, 27), respectively.



Nonlinear Dynamics and Chaos: Selected Problems 37

3 Methodology

3.1 The hidden Markov model

Hidden Markov models (HMMs) [10] are a flexible and versatile tool for time series modelling,
prediction and classification. In the following, the HMM is described in the form in which it is
used in the present study.

3.1.1 Model setting

We consider an equally sampled data set of length N , {x1, . . . ,xN}, from the (determinis-
tic or stochastic) dynamical system under consideration. Each data point is a vector x =

(x1, . . . , xm)
T
in m-dimensional state space, dropping the temporal index for convenience. It

may be either measured data or data from a numerical simulation. The vector x may represent
the original variables of the state space of the dynamical system (complete observation) or be
obtained by a (linear or nonlinear) projection from a higher-dimensional state space (partial
observation). In the latter case, it may be advisable to introduce additional variables using a
time-delay embedding [13] in order to recover some of the information lost in the projection.
The m-dimensional vector x is assumed to already include these. In the case of the Lorenz

system, we have complete observation with m = 3 and x = (x1, x2, x3)
T
.

A discrete HMM with Gaussian output density is used to model the system in a coarse-
grained sense. The HMM has a finite number of internal or hidden states {1, . . . ,K} which
are not observable directly. Each state is associated with a time-independent Gaussian output
density into m-dimensional state space characterized by a mean µi and a covariance matrix Γi.
The probability of observing the data vector x given the internal state q = i is

gi(x) = p(x|q = i) = 1

(2π)
m
2 (detΓi)

1
2

exp

[
−1
2
(x− µi)TΓ−1i (x− µi)

]
. (4)

This defines a probabilistic partitioning of state space; the internal states correspond to the
regimes of the dynamical system and are referred to as such. Transitions among the regimes
are governed by a time-independent matrix of transition probabilities

Aij = p(qn+1 = j|qn = i), i, j = 1, . . . ,K. (5)

The initial probability distribution is

θi = p(q1 = i), i = 1, . . . ,K. (6)

The parameters of the model are the means {µi}Ki=1, the covariance matrices {Γi}Ki=1, the
transition matrix A and the initial distribution θ. The number of regimes K is the only hyper-
parameter in the model which has to be fixed a priori. It reflects the degree of coarse-graining
of state space.
It is not clear whether regime transitions in a nonlinear deterministic or stochastic system

are actually Markovian. Coarse-graining and, probably more severely, projection onto a lower-
dimensional space (in case of only partial observation of the system) are possible sources of
non-Markovianity. Nevertheless, a first-order Markov model appears to be a reasonable working
approximation. A short discussion on how to test this approximation is given in section 3.1.3.

3.1.2 Parameter estimation

Given an equally sampled time series of length N , {x1, . . . ,xN}, the parameters of the HMM are
estimated according to the maximum likelihood principle using the expectation-maximization
(EM) algorithm [14] which in the context of HMMs is the Baum-Welch or forward-backward
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algorithm. Two auxiliary variables are introduced. The forward variable αi,n is the probability
of observing the partial sequence {x1, . . . ,xn} together with the regime qn = i:

αi,n = p(x1, . . . ,xn, qn = i), i = 1, . . . ,K; n = 1, . . . , N. (7)

The forward variable satisfies the recursion relation

αi,n+1 = gi(xn+1)

K∑
j=1

αj,nAji, i = 1, . . . ,K; n = 1, . . . , N − 1 (8)

with initialisation

αi,1 = θigi(x1), i = 1, . . . ,K. (9)

In a similar way the backward variable βi,n is introduced as the conditional probability of
observing the partial sequence {xn+1, . . . ,xN} given the regime qn = i:

βi,n = p(xn+1, . . . ,xN |qn = i), i = 1, . . . ,K; n = 1, . . . , N − 1. (10)

The backward variable obeys the recursion formula

βi,n =
K∑
j=1

Aijgj(xn+1)βj,n+1, i = 1, . . . ,K; n = 1, . . . , N − 1 (11)

together with the definition

βi,N = 1, i = 1, . . . ,K. (12)

Two more useful probabilities are introduced which can be expressed in terms of the forward
and backward variables: the probability γij,n of having the successive pair of regimes qn = i
and qn+1 = j given all the data

γij,n = p(qn = i, qn+1 = j|x1, . . . ,xN ) = αi,nAijgj(xn+1)βj,n+1∑K
k=1

∑K
l=1 αk,nAklgl(xn+1)βl,n+1

,

i, j = 1, . . . ,K; n = 1, . . . , N − 1 (13)

and the posterior probability of having the regime qn = i given all the data

δi,n = p(qn = i|x1, . . . ,xN ) = αi,nβi,n∑K
j=1 αj,nβj,n

, i = 1, . . . ,K; n = 1, . . . , N. (14)

The likelihood function of the data is

L = p(x1, . . . ,xN ) =

K∑
i=1

αi,N =

K∑
i=1

αi,nβi,n, n = 1, . . . , N. (15)

The EM algorithm is iterative. The expectation step of the rth iteration is the calculation of α
(r)
i,n

and β
(r)
i,n from the current parameter estimates according to formulae (8), (9), (11) and (12) and

then the calculation of γ
(r)
ij,n and δ

(r)
i,n according to equations (13) and (14). The maximization

step consists in updating the parameters according to the reestimation formulae

µ
(r+1)
i =

∑N
n=1 xnδ

(r)
i,n∑N

n=1 δ
(r)
i,n

, i = 1, . . . ,K (16)
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Γ
(r+1)
i =

∑N
n=1

(
xn − µ(r+1)i

)(
xn − µ(r+1)i

)T
δ
(r)
i,n∑N

n=1 δ
(r)
i,n

, i = 1, . . . ,K (17)

A
(r+1)
ij =

∑N−1
n=1 γ

(r)
ij,n∑N−1

n=1 δ
(r)
i,n

, i, j = 1, . . . ,K (18)

θ
(r+1)
i = δ

(r)
i,1 , i = 1, . . . ,K. (19)

Initial guesses for the parameters {µ(0)i }
K

i=1, {Γ(0)i }
K

i=1, A
(0) and θ(0) need to be provided to

start the iteration. The algorithm is monotonically non-decreasing in likelihood and converges
to a maximum of the likelihood function L.

3.1.3 Regime prediction and predictability

The mean posterior probability of observing the regime qn = i is introduced:

wi =
1

N

N∑
n=1

δi,n, i = 1, . . . ,K. (20)

The vector w = (w1, . . . , wK) corresponds to the weights of the individual components in an
ordinary Gaussian mixture model [15]. Given only a single data point x, the posterior probability
of the system being in regime q = i is

Pi = p(q = i|x) = wigi(x)∑K
j=1 wjgj(x)

, i = 1, . . . ,K. (21)

For N = 1 and the choice θ = w, one has Pi = δi,1. P = (P1, . . . , PK) is the posterior obtained
from a static Gaussian mixture model but using the regimes obtained from the HMM. It appears
to be necessary to resort to this static posterior in order to be able to assign a posterior to a
single data point. The problem of regime prediction now consists in predicting the posterior
distribution Pτ a lead time τ ahead given an initial condition x0.
The matrix of transition probabilities A is a row-stochastic matrix, that is, Aij ≥ 0 for

i, j = 1, . . . ,K and
∑K
j=1Aij = 1 for i = 1, . . . ,K. According to the Perron-Frobenius theo-

rem, the transition matrix (generically) possesses a real single leading eigenvalue λ1 = 1; the
corresponding real eigenvector v1 has only non-negative entries and represents the station-
ary distribution or invariant measure of the Markov chain when normalized with respect to the
L1-norm. In the following, we assume that all eigenvectors vi are normalised with respect to the
(complex) L1-norm. The remaining eigenvalues have magnitude smaller than one and greater
equal zero; they may come as real eigenvalues or in complex conjugate pairs.
Consider an initial probability distribution ρ0 expanded into the eigenvectors of the Markov

model: ρ0 = v1+
∑K
i=2 c

0
ivi. After k steps, the initial distribution has evolved into the distribu-

tion ρk = ρ0Ak = v1+
∑K
i=2 c

k
i vi with c

k
i = c

0
iλ
k
i . Any initial distribution eventually converges

to the stationary density of the Markov model: ρ = limk→∞ ρk = v1. A predictability timescale
τi is associated with each eigenvector vi defined as the time in which that mode decays to 1/e
of its initial amplitude:

τi = − δt

log |λi| , (22)

δt is the step size of the Markov model. The leading eigenvector v1 as the limit distribution
is associated with an infinite timescale but does not really carry predictive information. The
following eigenvalues and corresponding eigenvectors with moduli close to one are the slowly
decaying probability modes which contribute most to predictability.
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If the dynamics of regime transitions in the system under consideration were exactly first-
order Markovian, the timescales τi would be independent of δt as the eigenvalues of transition
matrices A and A′ derived with step sizes δt and δt′ = κδt with some positive real constant κ
would then be related by λ′i = λκi . This offers a possibility to check the consistency of HMMs
with different time steps and thus the validity of the Markovian approximation.
The most obvious scheme for regime prediction is given by the Markov model itself. Given

some initial condition x0 at time t = 0 with corresponding regime posterior P0, a forecast
fτ = (fτ1 , . . . , f

τ
K) for the posterior P

τ at lead time τ = kδt, k being a positive integer, is
obtained by iterating the Markov model k steps:

fτ = P0Ak. (23)

This model is referred to as the global Markov model in the following.

3.2 The nearest-neighbour prediction model

The global Markov model cannot be expected to provide overly good forecasts because due to
the coarse-graining it does not make proper use of the information contained in a particular
initial condition. Predictive information is refined by combining the HMM with a nearest-
neighbour model [1–4]. Motivated by well-known methods from nonlinear time series analysis,
a locally constant or analogue model of the regime posterior distribution based on nearest
neighbours is built. Let UM (x0) be the set of the M nearest neighbours of an initial condition
x0 in a learning set of size Nl. Then a forecast is made by averaging over the posteriors of these
nearest neighbours at lead time τ :

fτ =
1

M

∑
UM (x0)

Pτ . (24)

Nearest neighbours are taken with respect to the Euclidean norm. The number of nearest
neighbours M and the size of the learning set Nl are parameters of the method controlling the
locality of the model in state space.

3.3 Forecast characterization and verification

Two quantities based on information theory are introduced in order to characterize and evaluate
the forecasts of the different models. The first one is prediction utility [16] defined by

R =
K∑
i=1

fi log
fi

ρi
, (25)

for a forecast at some prediction time τ , dropping the superscript for convenience now. Predic-
tion utility is actually the relative entropy of the forecast distribution with respect to the
stationary distribution of the Markov model and measures the information content in the
forecast distribution over the stationary distribution. Utility is non-negative for any forecast
distribution f ; it is zero if and only if f = ρ. Prediction utility is not a skill score; it just
characterises the forecast.
To actually evaluate forecast quality the ignorance score [17] is used. It is here defined as

ign = −
K∑
i=1

Pi log fi, (26)

for some forecast f and corresponding true posterior distribution P. This is actually a gen-
eralisation of the ignorance score in that here a probabilistic forecast is evaluated against a
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Fig. 2. (a) Convergence of the log-likelihood in the learning data set for K = 1 (solid), K = 2 (long-
dashed), K = 3 (dotted), K = 4 (dot-dashed) and K = 5 (short-dashed). (b) In-sample (solid) and
out-of-sample (dashed) log-likelihood as a function of the number of regimes K.

verification which is itself probabilistic whereas in [17] the verification is deterministic. Igno-
rance is non-negative and unbounded above; it measures the ignorance of someone who is in
possession of the forecast f but not the true posterior P. The mean ignorance score 〈ign〉 over an
ensemble of initial conditions of any prediction scheme is bounded below by the mean entropy

of the posterior distribution 〈−∑Ki=1 Pi logPi〉, which is independent of the lead time τ .

4 Results

HMMs are determined for the stochastically forced Lorenz system with numbers of regimes
ranging from K = 2 to K = 5. The estimation of the models is done in a learning time series
of length N = 50000; the step length of the Markov chain is δt = 0.1, amounting to 5000 time
units worth of data used in the estimation of the HMM. HMMs have also been estimated for
step sizes δt = 0.05 and δt = 0.2. They are very close to the one at δt = 0.1 regarding the
predictability timescales and the means and covariances of the regimes. Therefore only the case
δt = 0.1 is presented here.
In Figure 2(a), the convergence of the log-likelihood with the number of iterations in the EM

algorithm is illustrated. The algorithm converges quite fast; the likelihood function is virtually
steady after 10 iterations for all K. Figure 2(b) gives the in-sample and out-of-sample log-
likelihoods of the HMMs for various values of K. The out-of-sample values are calculated in a
time series of length N = 50000 different from the learning set. In-sample and out-of-sample
likelihood are virtually identical for all K; there is no sign of overfitting yet until K = 5. The
likelihood function increases monotonically up to K = 5; it actually keeps increasing up to
about K = 10 (not shown) exhibiting a very flat plateau.
Table 1 gives the magnitude of the eigenvalues and the corresponding predictability time-

scales of the HMMs with increasing numbers of regimes K. All models possess a second eigen-
value with a predictability timescale of about τ2 ≈ 1. There is a clear gap between the second

Table 1. Moduli of eigenvalues and associated predictability timescales for hidden Markov models
with different numbers of regimes K.

K = 2 K = 3 K = 4 K = 5i |λi| τi |λi| τi |λi| τi |λi| τi

1 1.000 ∞ 1.000 ∞ 1.000 ∞ 1.000 ∞
2 0.899 0.94 0.872 0.73 0.916 1.15 0.895 0.90
3 0.557 0.17 0.504 0.15 0.505 0.15
4 0.366 0.10 0.505 0.15
5 0.424 0.12
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Fig. 3. (a) Mean utility of forecasts using the nearest-neighbour model (solid), the global Markov
model (dashed) and the true posterior distribution (dotted). (b) Mean ignorance of forecasts using
the nearest-neighbour model (solid), the global Markov model (dashed), the true posterior distribution
(lower dotted) and the stationary distribution (upper dotted).

eigenvalue and the remainder of the spectrum whose timescales are smaller by a factor of about
4 to 7.5.
For a HMM with K = 2, the two regimes are located at positions µ1 =

(−6.67,−6.50, 24.09)T and µ2 = (6.65, 6.47, 24.08)T; they lie symmetrically on the wings of
the attractor close to the unstable steady states. The matrix of transition probabilities is sym-
metric within estimation error and given by

A =

(
0.950 0.050
0.051 0.949

)
. (27)

The stationary distribution is ρ = v1 = w = (0.505, 0.495); the second eigenvector is v2 =
(−0.500, 0.500).
In the model with K = 3, the three regimes are centred at µ1 = (−8.08,−7.04, 27.64)T,

µ2 = (0.11, 0.17, 15.12)
T
and µ3 = (8.06, 6.93, 27.78)

T
, respectively. The transition matrix is

A =


0.876 0.124 0.000
0.155 0.685 0.160
0.000 0.132 0.868


 . (28)

The stationary distribution of the Markov chain is ρ = v1 = w = (0.362, 0.288, 0.350); the
other eigenvectors are v2 = (−0.500, 0.012, 0.488) and v3 = (−0.243, 0.500,−0.257). The first
and the third regime are very close to the regimes found with K = 2; a new regime occurs in
the middle of the attractor in between the other two. The second eigenvector is very similar to
the second eigenvector with K = 2. The third eigenvector involving the new regime versus the
other two is only relevant on a very short timescale.
We conclude that the essential regime behaviour in this case is just the two wings of the

attractor and the switching between them. It is already captured in the model with only two
regimes. Therefore we will only consider that model further.
Figure 3 illustrates the mean utility and the mean ignorance score of the various regime

forecasts. For the nearest-neighbour model, M = 50 nearest neighbours in a learning set of
length Nl = 50000 with sampling interval δt = 0.1 have been used. All statistics are calculated
using an ensemble of Nv = 50000 forecasts from initial conditions a time interval δt = 0.1
apart taken from a verification data set different from the learning set the model is estimated
in and also different from the learning set the nearest neighbours are taken from. The mean
utility of the nearest-neighbour model monotonically decreases to zero like the global Markov
model but much more slowly. The ignorance score of both the Markov model and the nearest-
neighbour model increase monotonically with lead time and then saturate at the value given
by the stationary distribution. The nearest-neighbour model clearly outperforms the global
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Fig. 4. (a) Mean absolute error of forecasts using the nearest-neighbour model (solid), the iterated
AR(1) model fitted at lag δt = 0.1 (dashed) and the AR(1) model fitted at lag τ (dot-dashed); dotted
horizontal line indicates the L1-norm of the data. (b) Root mean square error of forecasts using the
nearest-neighbour model (solid), the iterated AR(1) model fitted at lag δt = 0.1 (dashed) and the
AR(1) model fitted at lag τ (dot-dashed); dotted horizontal line indicates the L2-norm of the data.
(c) Correlation skill of forecasts using the nearest-neighbour model (solid), the iterated AR(1) model
fitted at lag δt = 0.1 (dashed) and the AR(1) model fitted at lag τ (dot-dashed).

Markov model. It still has substantial skill at τ ≈ 2 and there are traces of regime prediction
skill up to about τ ≈ 5.
Figure 4 gives information on predictability in the system in the conventional sense of

prediction of individual trajectories. The same nearest-neighbour model as for regime prediction
is used but now as is usually done as a deterministic model for trajectory prediction [1–4]:

x̂τ =
1

M

∑
UM (x0)

xτ . (29)

The mean absolute error, the root mean square error and the correlation skill are shown. These
are given by

mae =

〈
3∑
i=1

|xi − x̂i|
〉
, rmse =

√√√√〈 3∑
i=1

(xi − x̂i)2
〉
.

and

corr =

〈∑3
i=1(xi − 〈xi〉)(x̂i − 〈x̂i〉)

〉
√〈∑3

i=1 (xi − 〈xi〉)2
〉√〈∑3

i=1 (x̂i − 〈x̂i〉)2
〉 ,

where x̂i is a prediction at some lead time τ and xi the corresponding verification. In the present
system, the predictability timescale for trajectory prediction is about the same as for regime
prediction. There is detectable skill in the predictions up to τ ≈ 5.
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As a comparison to the global Markov model, prediction of the system with a first-order
autoregressive process (AR(1) model) is examined. Firstly, an iterated one-step AR(1) model
with step size δt = 0.1 as in the Markov model is considered. The predictions for lead time
τ = kδt, k being a positive integer, are given by x̂τ = 〈x〉+Bk1(x0−〈x〉) with B1 = B1B−10 where
B0 is the covariance matrix of the system and C1 the covariance matrix at lag 1 (corresponding
to δt). Secondly, an AR(1) model specific to the prediction time τ is built, that is, x̂τ =
〈x〉+Bk(x0−〈x〉) with Bk = CkC−10 where Ck is the covariance matrix at lag k (corresponding
to τ). Both linear models rapidly lose any substantial skill. The model specific to the lead
time is slightly better as it makes use of the predictive information in the oscillation of the
x3-component which is not visible in the covariance at lag 1. The matrix B1 has eigenvalues
with |λ1| = |λ2| = 0.758 and |λ3| = 0.628. These are associated with predictability timescales
τ1 = τ2 = 0.36 and τ3 = 0.22. Predictability of trajectories based on the autocorrelations in the
system decays faster than regime predictability in the global Markov model.

5 Discussion

A framework for regime prediction and predictability in nonlinear dynamical systems has been
described and exemplified. In the stochastically forced Lorenz system, regime behaviour is
dominated by just two regimes, basically the two wings of the attractor, which are symmetrical
both statistically and dynamically. Things should be more interesting in systems with more
than two non-symmetric regimes. An example is large-scale atmospheric circulation [8,9].
The present methodology holds the potential for improving prediction by combining dynam-

ical and statistical models. Often a dynamical model for an observed system is available which
is more or less good, yet imperfect, due to either parameter uncertainty or misspecification of
the model class [6,7]. Such models may provide good short-term forecasts but miss regime resi-
dence times or the structure of regimes in the long term. A similar situation exists in numerical
weather prediction: Current models have a good local propagator but model error is still there
and sometimes they miss transitions between weather regimes. The statistical regime model
built from data then really contains predictive information on top of the dynamical model and
could be hybridized with the dynamical model, for example, in a Bayesian model averaging
framework. Put differently, the coarse-grained regime model acts as a (hard or weak) constraint
on the predictions of the dynamical model.
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