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ABSTRACT

The vertical radiation of local convective and shear instabilities of internal inertio-gravity waves is examined
within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity
and static stability resembling an internal inertio-gravity wave packet without mean vertical shear is used as the
dynamical framework. The influence of primary wave frequency and amplitude, as well as orientation and
horizontal wavenumber of the instability on vertical radiation, is discussed. Considerable radiation occurs at
small to intermediate instability wavenumbers for basic-state gravity waves with high to intermediate frequencies
and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wave
vector of the instability is aligned parallel to the horizontal wave vector of the basic-state gravity wave. These
radiating modes are essentially formed by shear instability. Convective instabilities, that occur at large instability
wavenumbers or strongly convectively supercritical amplitudes, as well as shear instabilities of low-frequency
basic-state gravity waves, are nonradiating, trapped in the region of instability. The radiation of an instability
is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of
critical levels outside the region of instability of the primary wave.

1. Introduction

Numerous observational and theoretical studies have
shown the importance of internal gravity waves in de-
termining the circulation and structure of the atmo-
sphere, particularly of the mesosphere. As internal grav-
ity waves grow in amplitude when propagating upward,
they may become unstable to local convective or shear
instability [see Fritts and Rastogi (1985) for a review].
The latter is also referred to as dynamical or Kelvin–
Helmholtz instability. These two mechanisms are com-
monly believed to play an important role in gravity wave
saturation and breakdown and to contribute significantly
to momentum deposition, the dissipation of larger-scale
motions and the generation of turbulence in the meso-
sphere.

Instabilities of gravity waves have been subject of a
variety of theoretical studies. Fritts and Yuan (1989)
investigated the stability of the environment due to a
large-amplitude inertio-gravity wave (IGW) using a hy-
perbolic tangent profile of horizontal velocity without
mean vertical shear. The study has been extended to a
situation with mean vertical shear by Yuan and Fritts
(1989). A stability analysis that is similar to that of Fritts
and Yuan (1989) has been performed by Dunkerton
(1997), however, employing a wave packet as basic-
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state velocity profile, which seems to be more adequate
than a hyperbolic tangent profile since the vertical struc-
ture of IGW is more sinusoidal rather than having the
form of a simple shear layer. Complementary to such
linear stability analyses, gravity wave instability has
been investigated by direct numerical simulation (Win-
ters and d’Asaro 1989; Walterscheid and Schubert 1990;
Sutherland and Peltier 1994; Lelong and Dunkerton
1998a,b).

A particularly interesting and potentially important
issue are radiating instabilities, that is, instabilities that
result in waves being radiated vertically far from the
seat of instability. Such radiating modes can grow to
large amplitudes and may lead to the generation of tur-
bulence even at height levels outside the region of in-
stability of the primary gravity wave. The aspect of
vertical radiation of instabilities has been addressed by
means of linear stability analysis and nonlinear numer-
ical simulation by Dunkerton and Robins (1992) for a
gravity wave critical layer and by Sutherland et al.
(1994) for a Bickley jet profile and a hyperbolic tangent
profile.

The present study aims to give a systematic survey
on radiating instabilities that arise from a realistic si-
nusoidal IGW basic state within linear stability theory.
It is an extension of the papers by Dunkerton and Robins
(1992), Sutherland et al. (1994), and Dunkerton (1997)
regarding linear theory. It brings together and builds on
ideas and results of these papers. The effectiveness of
radiation of an instability is measured by the penetration
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ratio (Sutherland et al. 1994) that quantifies the extent
to which the linear eigenfunction penetrates from the
region of instability into the adjacent stable regions of
the wave field. The study is performed under the as-
sumption of steady plane-parallel flow as is usually
done. This assumption is justified if instabilities are in-
vestigated that are local compared to the horizontal
wavelength of the primary gravity wave, and fast com-
pared to the period of the primary gravity wave. The
dependence of radiation upon IGW frequency and am-
plitude as well as orientation and horizontal wavenum-
ber of instability is discussed.

The paper is organized as follows. In section 2, the
theory of local instabilities in Boussinesq plane-parallel
shear flows and their vertical radiation is recapitulated.
Then the particular basic-state configuration relevant to
IGW is introduced and the numerical solution of the
corresponding eigenvalue problem is outlined. The re-
sults are illustrated and discussed in section 3. The paper
closes with a short summarizing and concluding section.

2. Theory

a. Stability analysis

In the present study, we consider instabilities on a
steady, plane-parallel, stratified shear flow in the Bous-
sinesq approximation without dissipation and rotation
with vertical profiles of horizontal velocity u 5 u(z) and
static stability N 2 5 N 2(z). As is well known, such a
flow may give rise to growth of initial perturbations, a
necessary condition for shear instability being that the
mean Richardson number is below 0.25 somewhere in
the flow (Miles 1961; Howard 1961). A convectively
unstable situation is clearly characterized by a negative
Richardson number. The nondivergent perturbation ve-
locity field can be expressed in terms of a streamfunction
C(x, z). A disturbance is assumed that is periodic in the
horizontal direction with some wavenumber k, complex
phase speed c, complex frequency v 5 kc, and an am-
plitude that varies with height: C(x, z) 5 f(z) exp[ik(x
2 ct)]. Within the framework of linear stability theory,
the complex amplitude f(z) then satisfies the Taylor–
Goldstein equation (e.g., Drazin and Reid 1981):

2f 1 g f 5 0,zz (1)

with
2N uzz2 2g 5 1 2 k . (2)

2(c 2 u) c 2 u

The subscript z denotes differentiation with respect to
z. Having the application to an internal gravity wave
packet in mind, we consider a flow that is unbounded
below and above (2` , z , `), and for which below
and above some level (z , 2ẑ , 0 and 0 , ẑ , z) the
horizontal velocity and the static stability are constant.
Hereafter, the domain 2ẑ # z # ẑ is referred to as the
center or inner region and the domains z , 2ẑ and ẑ

, z are referred to as the far-field or outer regions. If
u(z) 5 û and N 2(z) 5 N̂2 for ẑ , z (or z , 2ẑ), then
Eq. (1) becomes the familiar wave equation with so-
lution

f(z) 5 C exp(iĝz) 1 C exp(2iĝz),1 2 (3)

where C1 and C2 are complex constants and the vertical
wavenumber is given byĝ

2N̂
2 2ĝ 5 2 k . (4)

2(c 2 û)

Anticipating the position of boundary conditions, the
branch of the square root in the calculation of is takenĝ
so that

0 , arg(ĝ) # p. (5)

In the following, we assume that û 5 0 as is the case
for the IGW velocity profile that will be introduced later.
Physically meaningful solutions have the form of Eq.
(3) with C2 5 0 (or C1 5 0). This follows by requiring
that | f(z) | stays bounded as z → ` (or z → 2`) when
Im( ) ± 0 and by the requirement for upward energyĝ
propagation when Im( ) 5 0. It can be immediatelyĝ
seen that Im( ) ± 0 for an unstable mode [Im(c) . 0].ĝ
It follows that all unstable modes have | f(z) | → 0 as
z → 6`. In this paper, we only deal with unstable
modes.

b. Radiation of instabilities into the far-field regions

The question of how to assess the ability of a dis-
turbance to radiate into the far-field regions has been
debated in the literature. The most natural approach is
to look how rapidly the eigenfunction f(z) decays in
the outer regions. However, McIntyre and Weissman
(1978) put forward doubts if the extent to which the
linear eigenfunction appears to penetrate into the far-
field regions is a reliable measure of the effectiveness
of radiation. They conjecture that the penetration depth
may merely reflect the growth rate of the instability.
Instead, they propose the phase speed condition for sus-
tained radiation, requiring that | Re(v) | , N̂ (in the
case û 5 0) as a classification within linear theory. It
is based on the reasoning that sustained radiation will
be favored when the real part of the phase speed of the
instability matches the phase speed of some possible
freely propagating wave with the same horizontal wave-
length. Moreover, McIntyre and Weissman (1978) ad-
vocate a nonlinear treatment of the problem to answer
the question of whether or not the phase speed condition
is satisfied since a mature stage of the disturbance in-
volving nonlinear processes may be dominated by phase
speeds or wavelengths different from those of the linear
stage. Especially for strong instabilities, they consider
linear theory unreliable.

On the other hand, the work by Sutherland et al. (1994)
seems to allow more optimism concerning linear theory.
They introduce the penetration ratio Re( )/Im( ) as aĝ ĝ
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measure of the intrusion of an instability into the far-
field regions. The penetration ratio is the ratio of the
length scale on which the amplitude of the instability
decreases by a factor e to the wavelength of the insta-
bility. Sutherland et al. (1994) discuss the dependence of
the penetration ratio on the complex instability frequency
v. The absolute penetration ratio decreases with increas-
ing growth rate, especially | Re( )/Im( ) | , 1 wheneverĝ ĝ
Im(v) . N̂/ , but it also depends substantially on theÏ8
real part of instability frequency. For an instability of a
given growth rate Im(v), the absolute penetration ratio
is largest if [Re(v)]2 5 (1/3)(N̂2 1 [Im(v)]2). The pen-
etration ratio exhibits a cutoff when the real part of in-
stability frequency exceeds the background Brunt–Väis-
älä frequency: | Re( )/Im( ) | , 1 whenever | Re(v) | .ĝ ĝ
N̂. This is in accordance with the phase speed condition
of McIntyre and Weissman (1978). Moreover, Sutherland
et al. (1994) show by a couple of representative nonlinear
simulations that the penetration ratio derived from only
linear theory does indeed correctly predict the effective-
ness of wave radiation.

Having all this in mind, we believe that linear stability
theory can provide useful information on radiation of
IGW basic-state instability. We therefore stick to linear
theory in the present study and regard the far-field struc-
ture of a growing eigenfunction obtained from linear
stability theory characterized by the penetration ratio as
an indicator of the capability of this instability to radiate.

c. IGW basic-state configuration

For this study, vertical profiles of horizontal velocity
and static stability resembling an inertio-gravity wave
packet are adopted (cf. Dunkerton 1997):

u 5 ac A(cosm z cosa 1 R sinm z sina), (6)0 0 0

2 2N 5 N (1 2 aA cosm z). (7)0 0

The envelope of the wave packet is

2z
A 5 A(z) 5 exp 2 . (8)1 2[ ]s

Here, R 5 f /v0 is a nondimensional rotation rate, f
being the Coriolis parameter and v0 being the IGW
intrinsic frequency. The phase of IGW is m0z in the
approximation of steady plane-parallel flow. Without
loss of generality, the IGW horizontal wave vector
points in the x direction; a is the azimuthal angle be-
tween the horizontal wave vectors of IGW and insta-
bility; u then is the component of the horizontal velocity
field parallel to the instability wave vector. The phase
speed c0 and the vertical wavenumber m0 of IGW are
related through the dispersion relation for hydrostatic
IGW:

2N02m 5 . (9)0 2 2c (1 2 R )0

Parameter a is a nondimensional wave amplitude such
that a 5 1 corresponds to a convectively neutral situ-
ation. The form of the envelope is different from that
of Dunkerton (1997). Since our main concern is the far-
field structure of the eigenfunctions, it is necessary to
use profiles of horizontal velocity and static stability
that are smooth everywhere; discontinuities may cause
spurious modes.

An analysis of the profile of Richardson number cor-
responding to the IGW basic state considered here as
performed by Dunkerton (1997) reveals for which con-
vectively stable IGW configurations (a , 1) shear in-
stability is possible. In the case of transverse instability
(a 5 908), for all 0 , R , 1 there is an IGW amplitude
a , 1 so that Ri , 0.25. When a , 908, larger am-
plitudes are required at any value of R in order to attain
Ri , 0.25. For parallel instability (a 5 08), R has to
exceed 1/ to reach Ri , 0.25 for convectively sub-Ï2
critical amplitudes. However, the condition Ri , 0.25
is not sufficient for shear instability, nor is the depres-
sion of Ri below 0.25 by itself a good indicator of
growth rate. Other factors in addition to Ri determine
the growth rate. It has been shown by Fritts and Yuan
(1989) for a hyperbolic tangent profile, and by Dunk-
erton (1997) for a wave packet, that without mean ver-
tical shear even for a 5 908, significant shear instability
of a convectively stable basic state occurs only for R
larger than about 0.7.

Nondimensional quantities are introduced as z* 5 m0z,
k* 5 k/m0, g* 5 g/m0, c* 5 c/c0, and u* 5 u/c0. In-
sertion of Eqs. (6) and (7) into Eq. (1) using the dispersion
relation of Eq. (9) yields

2f0 1 g f 5 0,* * * (10)

with
2(1 2 R )(1 2 aA cosz*) u 0*

2 2g * 5 1 2 k*. (11)
2(c* 2 u*) c* 2 u*

The prime denotes differentiation with respect to z*; f*
denotes a nondimensional streamfunction amplitude; the
nondimensionalization is arbitrary since any eigenfunc-
tion is only determined up to a factor anyway. The ei-
genvalue problem depends in a nontrivial manner on
nondimensional rotation rate R, IGW amplitude a, in-
stability orientation a, nondimensional instability hor-
izontal wavenumber k*, and localization parameter s.
A variation of the phase speed c0 of the basic-state grav-
ity wave results only in a linear scaling of the instability
wavenumber k, and a variation of the background static
stability results only in a linear scaling of the com-2N 0

plex instability frequency v. It follows from Eqs. (6)
and (7) that u* → û* 5 0 and N 2 → N̂2 5 as z* →2N 0

6`. The nondimensional vertical wavenumber of the
instability in the far-field regions is thus given by

21 2 R
2 2ĝ * 5 2 k*. (12)

2c*
The penetration ratio characterizing the far-field struc-
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ture of the eigenfunctions is here (different from Suth-
erland et al. 1994) defined as

1 Re(ĝ*)
D 5 , (13)

2p Im(ĝ*)

so that a value | D | 5 1 really means that the amplitude
of the eigenfunction decreases by a factor e within a
wavelength. Because of û* 5 0 we always have D #
0 as can be readily seen from a mathematical discussion
of and *. Physically, this corresponds to energy2ĝ ĝ*
propagation from the inner region into the outer regions.

The eigenvalue problem has special properties for
some particular values of the parameters arising from
certain symmetries: First, if R 5 0 or a 5 08, the profile
of horizontal velocity is symmetric with respect to the
center: u*(2z*) 5 u*(z*). It follows that (2z*) 52g*

(z*) for arbitrary c* and thus any eigenfunction is2g*
symmetric: f*(2z*) 5 f*(z*). Second, for a 5 908,
u* is antisymmetric: u*(2z*) 5 2u*(z*). If, addition-
ally, Re(c*) 5 0 (as turns out to be always the case for
the most unstable mode), it follows that (2z*) 52g*

where the overbar denotes the complex conju-2g (z )* *
gate; corresponding eigenfunctions then fulfill f*(2z*)
5 . Moreover, is then purely real and negative2f (z ) ĝ* * *
[Eq. (12)] and thus * is purely imaginary. Hence suchĝ
modes have D 5 0; that is, they are nonradiating.

d. Numerical solution of the eigenvalue problem

The algorithm employed to solve the eigenvalue prob-
lem is essentially a kind of shooting method. The bound-
ary conditions demanding that | f*(z*) | is bounded as
z* → 6` are represented by radiation boundary con-
ditions applied at positions 2ẑ* , 0 and ẑ* . 0:

f9*(2ẑ*) 5 2iĝ*f*(2ẑ*), (14)

f9*(ẑ*) 5 iĝ*f*(ẑ*). (15)

Introducing the vector of real variables y 5 (y1, y2, y3,
y4)T with y1 5 Re(f*), y2 5 Im(f*), y3 5 Re( ), andf9*
y4 5 Im( ), Eq. (10) can be written as a nonautono-f9*
mous dynamical system of first order:

y9 5 y , (16)1 3

y9 5 y , (17)2 4

2 2y9 5 2Re(g *)y 1 Im(g *)y , (18)3 1 2

2 2y9 5 2Im(g *)y 2 Re(g *)y . (19)4 1 2

An eigenfunction is only determined up to an arbitrary
complex factor. Thus, without loss of generality, one
can assume y1(0) 5 1 and y2(0) 5 0. The dynamical
system of Eqs. (16)–(19) is integrated backward from
z* 5 0 to z* 5 2ẑ* and forward from z* 5 0 to z* 5
ẑ* with initial condition y(0) 5 [1, 0, y3(0), y4(0)]T. A
cost function is introduced that measures the violation
of the radiation boundary conditions:

2 2x 5 x [Re(c*), Im(c*), y (0), y (0); ẑ*]3 4

25 |f9*(2ẑ*) 1 iĝ*f*(2ẑ*)|
21 |f9*(ẑ*) 2 iĝ*f*(ẑ*)| . (20)

It depends on the complex phase speed c*, the complex
slope of the function f* at zero, and the real parameter
ẑ*. The complex phase speed and the eigenfunction are
determined simultaneously by minimizing the cost func-
tion. For a solution of the eigenvalue problem, the value
of the cost function at the minimum has to be zero (up
to numerical error). It is important to note that the ra-
diation boundary conditions select the solution that is
bounded as z* → 6` only when applied at a position
ẑ* where the solution has already attained its far-field
behavior given by Eq. (3). Hence it is essential to verify
that ẑ* is chosen large enough. This can be done in the
following way. Having found a zero value of the cost
function at some complex phase speed c* for a particular
parameter value ẑ*, the minimization is repeated for a
value of ẑ* that is enlarged by a characteristic length
of the problem—say, ẑ* 1 1/Im( *) instead of ẑ*. Onlyĝ
if this second minimization yields a zero value of the
cost function (up to numerical error) at a complex phase
speed that is equal to the complex phase speed obtained
in the first minimization (within sufficient accuracy, say,
relative discrepancy smaller than 0.001) one can be cer-
tain to have found a correct solution of the eigenvalue
problem.

The minimization of the cost function can be per-
formed numerically using standard iterative techniques,
for example, a quasi-Newton method (Gill et al. 1981),
provided a moderately accurate guess for the complex
eigenfrequency is available. But even without a good
first guess, it is straightforward to search a large number
of eigenfrequencies. Having found a solution for some
particular parameter values, the solution branch can be
traced through parameter space. The symmetries of the
eigenvalue problem for certain parameter values men-
tioned above can be exploited to facilitate the compu-
tations. It proved sufficient to approximate the gradient
of the cost function by finite differences but it may even
be provided exactly using the method of adjoint equa-
tions.

3. Results and discussion

The IGW instability is a function of nondimensional
rotation rate R, IGW amplitude a, instability orientation
a, nondimensional instability horizontal wavenumber
k*, and localization parameter of the wave packet s. It
is impossible to investigate all IGW configurations;
some choices of parameters have to be made. The width
of the Gaussian envelope of the wave packet is taken
to be equal to the vertical wavelength of the basic-state
gravity wave throughout this paper: s 5 l0 5 2p/m0.
In the center region, the envelope is then very similar
to the envelope used by Dunkerton (1997). Three rep-
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FIG. 1. Frequency (a), growth rate (b), and penetration ratio (c) of
the fastest growing instability mode as a function of nondimensional
instability wavenumber for R 5 0 and a 5 1.5. Azimuths are a 5
08 (solid), a 5 308 (dashed), a 5 608 (dotted–dashed), and a 5 908
(dotted). Constant background static stability is 5 0.0004 s22.2N 0

resentative values of the rotation rate have been con-
sidered, namely the high-frequency limit R 5 0, an in-
termediate value (R 5 0.6) and a low-frequency case
(R 5 0.95). For any of the three cases, the instability
has been traced through the entire range of instability
wavenumbers for a couple of IGW amplitudes. The par-
allel instability (a 5 08), the transverse instability (a
5 908), as well as two intermediate azimuths (a 5 308
and a 5 608) have been analyzed. The present study
focuses exclusively on the most unstable instability
mode. In many cases, there are several unstable modes.
Expectedly, the most unstable mode is then usually not
the one that exhibits strongest radiation, however, it is
obviously always the physically most relevant one. For
a 5 908, the complex frequency of the fastest growing
mode turned out to be purely imaginary in all examined
cases. The modes of transverse instability therefore al-
ways have vanishing penetration ratio (cf. section 2c).

a. R 5 0

For R 5 0, instability is only possible for convectively
supercritical IGW amplitudes. In Fig. 1, frequency,
growth rate, and penetration ratio of the fastest growing
instability mode as a function of instability wavenumber
are shown for R 5 0 and a 5 1.5. Frequency and growth
rate are indicated in dimensional units for a background
static stability of 5 0.0004 s22. The diagram of2N 0

growth rates (Fig. 1b) is virtually identical to the results
of Dunkerton (1997) who examined the same configu-
ration. This demonstrates the weak dependence of the
instability on the exact shape of the envelope of the
wave packet. The preferred instability is transverse.
Growth rate asymptotes to the maximum growth rate of
convection N0 as k* → `. The transverse in-Ïa 2 1
stability is purely convective without horizontal-scale
selection. For a 5 608, results are very similar with
slightly smaller growth rates at any k*. The parallel
instability exhibits a local maximum of growth rate at
small instability wavenumber representing a mode that
is significantly influenced by shear. This maximum is
less distinct at a 5 308. Negative static stability is not
essential for the growth of this mode (Dunkerton 1997).
It may be called a mode of hybrid shear-convective
instability as it is present only at convectively super-
critical IGW amplitudes but is essentially formed by
shear instability. For large k*, the instability becomes
purely convective without scale selection for all azi-
muths. The modes of parallel instability at small k* are
characterized by a large absolute penetration ratio. The
absolute penetration ratio decreases rapidly from a 5
08 to a 5 908. At large k*, the modes are nonradiating
for all azimuths. The relative maximum and the relative
minimum of growth rate of the parallel instability do
not manifest themselves as relative extrema in the pen-
etration ratio. This is due to the cutoff behavior of the
penetration ratio when the real part of the instability
frequency exceeds the constant background Brunt–Väis-

älä frequency of N0 5 0.02 s21. Physically, it reflects
the phase speed condition of McIntyre and Weissman
(1978).

Figure 2 illustrates the situation for a 5 1.1. The
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FIG. 2. Frequency (a), growth rate (b), and penetration ratio (c) as
in Fig. 1, but for R 5 0 and a 5 1.1.

results remain qualitatively the same with growth rates
considerably shifted to lower values and absolute pen-
etration ratios considerably shifted to higher values. The
cutoff at Re(v) 5 N0 acting at different wavenumbers
for the different azimuths becomes even more clearly
visible than with a 5 1.5. At intermediate wavenumbers,
the instability at a 5 608 has a larger absolute pene-

tration ratio than at a 5 08 and a 5 308, despite having
a larger growth rate than those. Also, for small k* where
the frequencies are well below N0 one clearly recognizes
in both Fig. 1 and Fig. 2 that the penetration ratio does
not merely reflect the growth rate but is substantially
modified by the frequencies. Figure 3 displays the ei-
genfunction of the radiating mode of parallel instability
for a 5 1.1 at the wavenumber of maximum growth
rate, namely k* 5 0.85, together with the corresponding
profile of horizontal velocity. Also shown is the hori-
zontally averaged vertical momentum flux associated
with the instability given by ^ũw̃& ; k*[Re( ) Im(f*)f9*
2 Re(f*) Im( )], where ũ and w̃ are the horizontalf9*
and vertical instability velocity, respectively, and the
angle brackets denote the average over the horizontal
coordinate. Moreover, the horizontally averaged gen-
eration of kinetic energy due to vertical shear given by
2^ũw̃&uz ; 2k*[Re( ) Im(f*) 2 Re(f*) Im( )]f9 f9 u9* * *
is displayed. The eigenfunction attains its far-field be-
havior of free wave propagation at about | z | 5 2.3l0.
The penetration ratio is D 5 21.91. The radiating char-
acter of the mode is clearly visible. The minima of the
amplitude of the eigenfunction are located at the critical
levels. The shear contribution to the generation of ki-
netic energy has large positive values in the region of
instability. Hence, shear instability is the dominant
physical mechanism behind this mode, independent of
the fact that the basic state is also convectively unstable.
The momentum flux decreases monotonically with in-
creasing | z | and has still considerable magnitude in the
far-field regions as there are no critical levels outside
the center of instability.

b. Intermediate R

At R 5 0.6, instability still occurs only in convec-
tively supercritical situations. The quantities character-
izing the instability at R 5 0.6 and a 5 1.3 are shown
in Fig. 4. There is a solution branch at small to inter-
mediate wavenumbers for all azimuths. The growth rate
increases from a 5 08 to a 5 908. The instability fre-
quencies are smaller than N0 for all azimuths. These
modes exhibit strong horizontal-scale selection. They
have large values of absolute penetration ratio that de-
crease from a 5 08 to a 5 908. As an example, the
eigenfunction of parallel instability at the wavenumber
of largest growth rate (k* 5 0.84) is shown in Fig. 5.
The far-field regions begin at about | z | 5 1.7l0. The
penetration ratio is D 5 21.15. Substantial radiation
from the center of instability into the outer regions is
present. The structure of the eigenfunction is similar to
that in Fig. 3. The minima of the amplitude at the critical
levels are more pronounced. Thus, the inner region is
narrower in this example. Also the vertical momentum
flux and the shear contribution to kinetic energy gen-
eration show similar behavior as in Fig. 3, but the decay
in the outer regions is faster. Again, the mode is essen-
tially due to shear instability. This mode has a growth
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FIG. 3. Real part (solid), imaginary part (dashed), and amplitude (dotted–dashed) of the fastest growing instability
mode (a), velocity profile (b), horizontally averaged vertical momentum flux (c), and generation of kinetic energy due
to shear (d) for R 5 0, a 5 1.1, a 5 08, and k

*
5 0.85. Crosses in (b) indicate critical levels. Penetration ratio is D

5 21.91.
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FIG. 4. Frequency (a), growth rate (b), and penetration ratio (c) as
in Fig. 1, but for R 5 0.6 and a 5 1.3.

rate of 0.000 978 s21. The largest absolute penetration
ratio that is possible for an instability of this growth
rate with arbitrary profiles of horizontal velocity and
static stability in the center region is 1.25 (cf. section
2b). Interestingly, this value is almost reached by the
IGW configuration considered here. At larger k*, there

are branches of purely convective instability for a 5 08
and a 5 308. Growth rates for a 5 308 are smaller than
for a 5 08. These convective modes have almost zero
penetration ratio as their frequencies lie well above N0.
For a 5 608 and a 5 908, these convective branches
are completely suppressed.

c. R → 1

For low-frequency gravity waves—that is, R → 1—
shear instability takes precedence over convective in-
stability. In Fig. 6, the instability is displayed for R 5
0.95 and a 5 1.1. Growth rate depends only weakly on
azimuth (cf. Dunkerton 1997). The modes are clearly
dominated by shear instability with distinct horizontal-
scale selection even at convectively supercritical IGW
amplitude. The frequencies are well below N0 in the
whole range of wavenumbers. At the wavenumber of
maximum growth rate, the modes have a very small
absolute penetration ratio.

Figure 7 illustrates a convectively subcritical situa-
tion, that is, a case of pure shear instability, namely R
5 0.95 and a 5 0.7. The band of wavenumbers exhib-
iting instability becomes narrower. The growth rates de-
crease distinctly compared to the case with a 5 1.1; the
dependence of the growth rate on azimuth becomes
much stronger than with a 5 1.1. Figure 8 gives the
eigenfunction of the parallel instability at the wavenum-
ber of maximum growth rate (k* 5 0.85). The far-field
regime is reached at about | z | 5 1.2l0. The penetration
ratio is D 5 21.00. Here, a limitation of the penetration
ratio as an indicator of radiation becomes visible. The
mode has a relatively large value of | D | (only slightly
smaller than that of the mode in Fig. 5), and a zoomed
view of the mode for | z | . 1.2l0 (not shown) does
indeed reveal that the mode is characterized in the far-
field regions by a slowly decreasing amplitude. How-
ever, the amplitude of the eigenfunction has already de-
creased to negligible values before reaching the far-field
regime. The eigenfunction and the momentum flux
sharply decrease to zero at the critical levels at about
60.85l0. Right in front of the critical levels, there are
regions in which an increase of kinetic energy of the
primary wave takes place. Such behavior is completely
in line with the well known phenomenon of a linearly
propagating wave that approaches a critical level and is
not able to pass it (Lighthill 1978). Hence this mode is
from a physical point of view clearly a nonradiating
one. We conclude that a large absolute penetration ratio
can only be taken as an indicator of radiation if there
are no critical levels outside the region in which the
instability is effectively generated. Configurations with
critical levels close to the far-field regions are not able
to radiate.

Additionally to the representative examples shown so
far, Fig. 9 gives a summarizing overview on parameter
space for a 5 08, where most radiating modes occur.
The regions of instability and large absolute penetration



15 MAY 2003 1265K W A S N I O K A N D S C H M I T Z

FIG. 5. Eigenfunction (a), velocity profile (b), vertical momentum flux (c), and kinetic energy generation due to
shear (d) as in Fig. 3, but for R 5 0.6, a 5 1.3, a 5 08, and k

*
5 0.84. Penetration ratio is D 5 21.15.
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FIG. 6. Frequency (a), growth rate (b), and penetration ratio (c) as
in Fig. 1, but for R 5 0.95 and a 5 1.1.

FIG. 7. Frequency (a), growth rate (b), and penetration ratio (c) as
in Fig. 1, but for R 5 0.95 and a 5 0.7.

ratio are indicated in the k*–a plane for the three con-
sidered values of R. Here, | D | 5 1 (decrease of the
amplitude of the instability eigenfunction in the far-field
regions by a factor e within a wavelength) is a natural
threshold value to classify modes as radiating or non-
radiating, respectively. At R 5 0, there is a region of
shear instability extending from intermediate to small

instability wavenumbers. These modes have a large ab-
solute penetration ratio if the basic-state amplitude is
not too large. All instability modes at R 5 0 have no
critical levels outside the very region of instability (as
in the example in Fig. 3), and inspection of the eigen-
functions shows that all modes with large absolute pen-
etration ratio are indeed radiating. A domain of non-
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FIG. 8. Eigenfunction (a), velocity profile (b), vertical momentum flux (c), and kinetic energy generation due to
shear (d) as in Fig. 3, but for R 5 0.95, a 5 0.7, a 5 08, and k

*
5 0.85. Penetration ratio is D 5 21.00.

radiating modes of convective instability reaches from
intermediate to infinitely large instability wavenumbers.
The overall picture for R 5 0.6 is very similar to that
for R 5 0. The regions of shear and convective insta-

bility are now separated; larger basic-state amplitudes
are required for shear instability to set in. Again, for all
modes, only a single pair of critical levels in the center
region occurs and the modes with large absolute pen-
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FIG. 9. Neutral curves (solid) and isoline | D | 5 1 of the fastest
growing mode (dashed) in the case a 5 08 for R 5 0 (a), R 5 0.6
(b), and R 5 0.95 (c).

etration ratio are radiating. At R 5 0.95, convective
instability is suppressed. Shear instability sets in at in-
termediate instability wavenumbers already for convec-
tively subcritical amplitudes. Part of these shear modes
possess a large absolute penetration ratio. However, all
instabilities at R 5 0.95 have further critical levels out-

side the center of instability as already shown for the
example k* 5 0.85 and a 5 0.7 (cf. Fig. 8 and the
corresponding discussion above). The eigenfunctions
and the corresponding momentum fluxes and kinetic
energy generation terms show that even the instabilities
with large absolute penetration ratios are nonradiating.

The question as to the physical importance of radi-
ating instabilities as a mechanism for gravity wave
breakdown and generation of turbulence rises. On the
one hand, for all IGW configurations that support ra-
diating instabilities, there are nonradiating instabilities
at larger horizontal wavenumbers and/or other azimuths
having larger growth rates than the radiating modes.
This seems to limit the role of the radiating modes. On
the other hand, there are some points in favor of a dom-
inant role of radiating instabilities. First, Dunkerton and
Robins (1992) have found in a nonlinear simulation of
a gravity wave critical layer that radiating modes at
intermediate wavenumbers can grow to considerable
amplitude prior to nonradiating modes at large wave-
numbers, despite having a smaller growth rate within
linear theory. They attribute this to a nonlinear cascade
of energy causing intermediate instability wavenumbers
to grow first. Second, instabilities at large wavenumbers
that are always nonradiating will be suppressed in model
simulations due to scale-selective horizontal diffusion,
thus stressing the radiating modes compared to the non-
radiating ones. Finally, the fact that strong turbulence
in the mesosphere does not necessarily occur in regions
of most unstable conditions (Lübken et al. 1994) sug-
gests the possibility of an important role of radiating
modes provided local instability is the dominant mech-
anism in the generation of turbulence at all. A treatment
of the problem by means of nonlinear simulation at high
resolution in a domain large enough to encompass sig-
nificant radiation would be most interesting to shed light
on all these issues.

4. Summary and conclusions

The vertical radiation of local convective and shear
instabilities arising from internal inertio-gravity waves
(IGW) has been examined within linear stability theory.
A steady, plane-parallel Boussinesq flow with vertical
profiles of horizontal velocity and static stability resem-
bling an IGW packet without mean vertical shear has
been used as a dynamical framework. The influence of
frequency and amplitude of the primary gravity wave,
as well as orientation and horizontal wavenumber of the
instability on vertical radiation, has been investigated
by tracing the instability for a couple of representative
IGW configurations. The radiation of an instability
mode is measured by the extent to which the eigen-
function penetrates from the region of instability into
the adjacent stable regions of the wave field as given
by the penetration ratio. Radiating modes have been
found at small to intermediate instability wavenumbers
for basic-state gravity waves with high to intermediate
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frequencies and moderately convectively supercritical
amplitudes. Radiation is then strongest when the hori-
zontal wavevector of the instability is aligned parallel
to the horizontal wavevector of the basic-state gravity
wave. Transverse instabilities are always nonradiating.
The radiating modes are modes of hybrid shear–con-
vective instability since they only exist under convec-
tively supercritical conditions but clearly appear to be
shaped by shear instability. Convective instabilities that
are found at large instability wavenumbers or strongly
convectively supercritical amplitudes, as well as shear
instabilities of low-frequency basic-state gravity waves,
are nonradiating. The radiation of an instability is re-
lated to the existence of critical levels. A mode is able
to radiate only if there are no critical levels outside the
region of instability of the primary gravity wave.

The physical importance of the radiating instabilities
versus the nonradiating ones in gravity wave saturation
and generation of turbulence certainly cannot be finally
assessed on the basis of the linear stability analyses
presented here. The question as to the extent to which
linear theory is reliable in each of the different examined
situations remains. Nonlinear high-resolution numerical
simulations of the different IGW configurations may
provide valuable further information.
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