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ABSTRACT

Nonlinear deterministic reduced models of large-scale atmospheric dynamics are constructed. The dy-
namical framework is a quasigeostrophic three-level spectral model with realistic mean state and variability
as well as Pacific–North America (PNA) and North Atlantic Oscillation (NAO) patterns. The study ad-
dresses the problem of finding appropriate basis functions for efficiently capturing the dynamics and a
comparison between different choices of basis functions; it focuses on highly truncated models, keeping only
10–15 modes. The reduced model is obtained by a projection of the equations of motion onto a truncated
basis spanned by empirically determined modes. The total energy metric is used in the projection; the
nonlinear terms of the low-order model then conserve total energy. Apart from retuning the coefficient of
horizontal diffusion, no empirical terms are fitted in the dynamical equations of the low-order model in
order to properly preserve the physics of the system. Using the methodology of principal interaction
patterns (PIPs), a basis is derived that carefully compromises minimizing tendency error with maximizing
explained variance in the resolved modes. A new PIP algorithm is introduced that is more compact and
robust than earlier PIP algorithms; a top-down approach is adopted, removing modes from the system one
by one.

The mean state and standard deviation of the streamfunction as well as transient momentum fluxes are
well reproduced by a PIP model with only 10 modes. Probability density functions are accurately modeled
and autocorrelation functions are captured fairly well using 15 modes. Reduced models based on PIPs are
substantially superior to reduced models based on empirical orthogonal functions (EOFs). The leading PIPs
have a higher projection onto the PNA and NAO teleconnection patterns than the corresponding EOFs.
Both with EOFs and PIPs, the interactions between the resolved modes are predominantly linear and the
improvement of PIP models on EOF models stems entirely from better modeling these linear interactions
although the full nonlinear tendencies are optimized. There is considerable influence of smaller-scale modes
on the large-scale modes due to nonlinear coupling that is not well captured by either EOFs or PIPs. This
nonlinear backscattering possibly plays a role in generating the low-frequency variability of the model. The
results call for a nonlinear and/or stochastic closure scheme in which PIPs may be suitable basis functions.

1. Introduction

The construction of reduced atmospheric models,
that is, models that explicitly deal only with a limited
number of essential degrees of freedom while keeping
as much realism as possible, has attracted some atten-
tion in recent years. The motivation for such studies is
twofold. First, one may regard such work as scientifi-
cally interesting in its own right from a theoretical point
of view, as it addresses the fundamental question of

how many degrees of freedom are necessary to capture
the dynamics to some accuracy. This is related to the
dimension and complexity of the underlying attractor.
Second, one may hope that low-order models, because
of their compactness, can provide conceptual insight
into atmospheric processes and mechanisms. In current
weather prediction or climate models, such insight is
not possible because of the enormous complexity and
richness in simulation detail. Reduced models then
could be useful tools for climate studies, prediction pur-
poses, or data assimilation. Admittedly, it is not yet
clear whether this latter goal can be achieved.

We focus here on low-order models that are nonlin-
ear and deterministic. The strategy for deriving such
low-order models is to first identify the essential de-
grees of freedom of large-scale atmospheric dynamics;
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the reduced model is then derived by projecting a dy-
namical model of atmospheric flow onto these essential
structures; and if appropriate, a closure scheme is ap-
plied to account for the unresolved modes and pro-
cesses.

A crucial issue in the context of reduced models is
how to determine adequate basis functions for effi-
ciently spanning the dynamics. Classical approaches
based on spherical harmonics (e.g., Lorenz 1963; Char-
ney and de Vore 1979) are not well suited here since
only a very limited degree of realism can be expected
from such models. Empirically determined basis func-
tions achieve a much more efficient compression of
phase space. The most obvious choice when searching
for optimal empirical modes is empirical orthogonal
functions (EOFs). They allow for an optimal represen-
tation of atmospheric fields with a given number of
basis functions. EOFs have been successfully used as
basis functions in atmospheric low-order models
(Rinne and Karhila 1975; Selten 1995, 1997; Achatz and
Branstator 1999; D’Andrea and Vautard 2001; Achatz
and Opsteegh 2003).

However, EOFs are not optimized for the purpose of
constructing reduced models since their derivation does
not refer to the dynamics of the underlying system. A
framework to arrive at more efficient dynamical de-
scriptions is offered by the method of principal inter-
action patterns (PIPs; Hasselmann 1988; Kwasniok
1996, 1997a, 2004; Crommelin and Majda 2004). PIPs
are based on a dynamically motivated variational prin-
ciple taking the temporal evolution of the underlying
system into account. They have been shown to lead to
low-order models with fewer degrees of freedom than
with EOFs. For a turbulent barotropic model, a PIP
model using 40 patterns performs as well as an EOF
model with 100 modes (Kwasniok 2004).

A separate class of reduced models is formed by
purely linear models with stochastic forcing (Newman
et al. 1997; Branstator and Haupt 1998; Whitaker and
Sardeshmukh 1998; Zhang and Held 1999; Winkler et
al. 2001). The linear operator may either be empirically
determined or arise from a linearization of the equa-
tions of motion about some basic state. Such models are
not explicitly dealt with in the present paper but the
question of finding proper basis functions is also rel-
evant in that context. It has recently been shown in the
framework of linearized stochastically forced dynamics
that truncated models based on EOFs are far from op-
timal for systems with strongly nonnormal linear opera-
tors, as is the case in shear flow problems (Farrell and
Ioannou 2001).

Recently, nonlinear stochastic atmospheric models of
very low order have been derived both in a barotropic

and baroclinic framework (Franzke et al. 2005; Franzke
and Majda 2006). They are based on a general stochas-
tic mode reduction strategy for complex nonlinear sys-
tems (Majda et al. 1999, 2003). Finding optimal basis
functions is also an issue there, as EOF-based models
turn out to exhibit climate drift (Franzke and Majda
2006).

In the present paper, the work on PIPs is extended to
a more complex atmospheric model. The potential of
dynamically motivated basis functions is investigated in
the context of a baroclinic model with realistic variabil-
ity. A modified PIP approach is derived in order to
make the PIP calculations feasible and more robust.

The paper is structured as follows. In section 2, the
atmospheric model used as the dynamical framework
for the present investigation is introduced. Then the
procedure of arriving at reduced models is described.
Section 4 addresses the question of deriving appropri-
ate basis functions for a reduced atmospheric model.
The results obtained for the baroclinic quasigeostrophic
model considered here are given and discussed in sec-
tion 5. The paper closes with a summarizing and con-
cluding section.

2. The atmospheric model

a. The quasigeostrophic model equations

In the present study, a baroclinic quasigeostrophic
(QG) model on the sphere is used as the dynamical
framework. The adiabatic part of the model is given by
the QG potential vorticity equation in pressure coordi-
nates. Standard vertical discretization onto three
equally spaced pressure levels here located at 250, 500,
and 750 hPa yields the dynamical equations

�q1

�t
� J��1, q1� � D1��1, �2� � S1, �1�

�q2

�t
� J��2, q2� � D2��1, �2, �3� � S2, �2�

�q3

�t
� J��3, q3� � D3��2, �3� � S3, �3�

with

D1��1, �2� � kNR1,2
�2��1 � �2� � kH�8q̂1, �4�

D2��1, �2, �3� � �kNR1,2
�2��1 � �2�

� kNR2,3
�2��2 � �3� � kH�8q̂2,

�5�
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D3��2, �3� � �kNR2,3
�2��2 � �3� � kE�2�3

� kH�8q̂3, �6�

where �i denotes the streamfunction and qi the poten-
tial vorticity at pressure level i � 1, 2, 3. All quantities
are nondimensional using the earth’s radius a as the
unit of length and the inverse of the angular velocity of
the earth’s � as the unit of time. Here J and �2 stand for
the nondimensional Jacobian and Laplacian operators
on the sphere, respectively. Potential vorticity is related
to the streamfunction by

q1 � �2�1 � R1,2
�2��1 � �2� � 2�, �7�

q2 � �2�2 � R1,2
�2��1 � �2� � R2,3

�2��2 � �3� � 2�,

�8�

and

q3 � �2�3 � R2,3
�2��2 � �3� � 2� � h, �9�

where 	 denotes the geographic longitude and 
 is
the sine of geographic latitude. The Rossby defor-
mation radii R1,2 and R2,3 have dimensional values of
575 and 375 km, respectively. The h represents
a nondimensional topography that is related to the
actual dimensional topography of the earth h* by h �
2
0h*/H, where 
0 is the sine of some average geo-
graphic latitude taken to be 45°N and � is a scale
height set to 8 km. The three pressure levels can be
considered midpoints of three layers of equal pres-
sure thickness �p � 250 hPa. Equations (1)–(3) in-

corporate the boundary conditions (�/p)| p�pt
�

(�/p)|p�pb
� 0 at the upper boundary of the top

layer (pt � 125 hPa) and the lower boundary of the
lowest layer (pb � 875 hPa). The zonal and meri-
dional velocities of the flow at level i are given by
ui ��� 1 � 
2(�/
) and �i � (1/� 1 � 
2)(�/	).
The model is considered on the Northern Hemisphere.
The boundary condition of no meridional flow, that is,
vanishing streamfunction, is applied at the equator on
the three model levels: �i(	, 0) � 0; i � 1, 2, 3.

The dissipative terms on the right-hand side of Eqs.
(1)–(3) are Newtonian temperature relaxation, Ekman
damping on the lowest level, and a strongly scale-
selective horizontal diffusion of vorticity and tempera-
ture. The q̂i is the time-dependent part of potential vor-
ticity at level i, that is, q̂1 � q1 � 2
, q̂2 � q2 � 2
, and
q̂3 � q3 � 2
 � h. The coefficient of temperature re-
laxation represents a radiative time scale of 25 days; the
linear drag damps the wind at 750 hPa on a spindown
time scale of 1.5 days. The terms S1, S2, and S3 are
sources of potential vorticity that are independent of
time but spatially varying.

Introducing a streamfunction vector � � (�1, �2,
�3)T encompassing the three vertical levels, and analo-
gously for all other fields, the relationship between
streamfunction and the time-dependent part of poten-
tial vorticity can be expressed as

q̂ � �T�, �10�

where T is the operator

T � �
��2 � R1,2

�2 �R1,2
�2 0

�R1,2
�2 ��2 � R1,2

�2 � R2,3
�2 �R2,3

�2

0 �R2,3
�2 ��2 � R2,3

�2� �11�

acting on all three vertical levels. The operator T is
invertible on the hemisphere with the present boundary
condition. The dynamical equations of the QG model
for the streamfunction can be written in compact
form as

��

�t
� G��� � T�1�J��, q� � D��� � S�. �12�

The vector Jacobian operator J is to be understood as
the Jacobian operator J applied on each of the vertical
levels. Here D � (D1, D2, D3)T is the vector of dissi-
pation terms and S � (S1, S2, S3)T is the vector of dia-
batic source terms.

The streamfunction is expanded into a series of
spherical harmonics: �i � �N0

��1�i,�Y� and i � 1, 2, 3.
The functions Y� are the real spherical harmonics nor-
malized in a way that (1/4�) �� Y�Y� d� � ��� holds
where �� d� � �2�

0 ��1
�1 d
 d	 denotes integration over

the surface of the sphere. The expansion is triangularly
truncated at total wavenumber 30. Only odd modes are
used because of the hemispheric domain and the
boundary conditions at the equator. The number of
degrees of freedom in the model is N0 � 465 for each
level and N � 3N0 � 1395 in total.

The variability exhibited by the QG model depends
crucially on the diabatic source terms S1, S2, and S3. To
get a model behavior close to that of the real atmo-
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sphere, the forcing terms are determined by requiring
that when computing potential vorticity tendencies
from Eqs. (1)–(3) for a large number of observed at-
mospheric fields, the average of these tendencies must
be zero (Roads 1987). The motivation behind this pro-
cedure is to allow the ensemble of fields used in such a
computation to be representative of a statistically stable
long-term behavior of the model. The source terms are
then given as

S � �J��, q��obs � �D����obs, �13�

where �·�obs denotes the average over an ensemble of
observed fields. The data used to estimate S were re-
analysis data of vorticity in the Northern Hemisphere
from the European Centre for Medium-Range
Weather Forecasts (ECMWF) for each day in January
from 1979 to 1994 at the three pressure levels. Actually,
the values for 750 hPa were not available and thus ob-
tained by linear interpolation between 700 and 775 hPa.
The source terms S1, S2, and S3 depend on the coeffi-
cients of the dissipative terms kN, kE, and kH [see Eq.
(13)]; kN and kE were fixed a priori to the values given
above. An adequate value for the coefficient of hori-
zontal diffusion was found empirically by demanding
that the slope of the kinetic energy spectrum at large
wavenumbers in the T30 model matches that observed
in the reanalysis data. The model was integrated for
1000 days for several values of kH and the resulting
forcing terms. It was found that the slope matches best
if the horizontal diffusion damps harmonics of total
wavenumber 30 at a time scale of 1 day.

b. Model statistics versus reanalysis data

The model was integrated in time using the param-
eters and the forcing obtained as described above. The
nonlinear terms were calculated using the spectral
transform method; a variable-order, variable-step Ad-
ams routine from the Numerical Algorithms Group
(NAG) library was used as the numerical scheme with
error tolerance set to 10�7. After discarding the first
5000 days in order to eliminate transient behavior, daily
data for a period of 50 000 days were archived. All
model statistics quoted in the present paper were cal-
culated from this dataset.

Figure 1 shows the mean streamfunction at 500 hPa
in the January reanalysis data from 1979 to 1994 and in
the QG model. The agreement is very close. Also the
mean states at 250 and 750 hPa are reproduced very
well (not shown). In Fig. 2, the standard deviation of
the streamfunction at 500 hPa is given. The most domi-
nant features are the two areas of high variability in the
Atlantic and the Pacific regions. These are well cap-
tured regarding their positions and amplitudes. The
pattern of variability at 250 hPa is also dominated by
these two centers of activity and is also very well mod-
eled (not shown); however, the model has too much
variance on the 250-hPa level. Table 1 summarizes
the pattern correlation between the QG model and
ECMWF reanalysis data for various fields. The mean
streamfunction and mean zonal velocity show high pat-
tern correlations on all levels. The standard deviation
of streamfunction and also potential vorticity that has a

FIG. 1. Mean streamfunction at 500 hPa from (a) ECMWF reanalysis data and (b) the QG model. Units are 107 m2 s�1.
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considerably smaller spatial scale are extremely well
reproduced. The transient momentum fluxes turn out
to be harder to model, but at least on the two upper
levels they are reasonably well captured. Figure 3
shows the correlation maps of the points (58°N, 173°W)
and (58°N, 26°W), calculated from low-pass-filtered
(Blackmon 1976) streamfunction at 500 hPa. The
model exhibits realistic Pacific–North America and
North Atlantic Oscillation patterns. The North Atlantic
Oscillation pattern is actually very similar to the eastern
Atlantic pattern in the original analysis by Wallace and
Gutzler (1981). We conclude that the model reproduces
the main features of the extratropical atmospheric vari-
ability well enough to serve as a framework to test the
idea of PIP-based reduced models.

The QG model used here is very similar to that in-
troduced by Marshall and Molteni (1993). The present
model has a higher horizontal resolution. The Rossby
deformation radii in the two models are different but so
are the level spacings, and the corresponding profiles of
static stability are very close. Moreover, it was found
that the mean state, the variability, and the teleconnec-
tion patterns are quite insensitive with respect to the

precise values of the Rossby deformation radii given
that the diabatic forcing is calculated according to Eq.
(13) for the chosen values. In the QG model by Mar-
shall and Molteni (1993), the coefficient of the linear
drag on the lowest level depends on the land–sea mask.
This complication is avoided here, yet the present
model is as close to reanalysis data as that by Marshall
and Molteni (1993), in details even better. A compari-
son of the model by Marshall and Molteni (1993) with
ECMWF reanalysis data is given by Franzke and Majda
(2006).

c. Quadratic adiabatic invariants

A class of scalar products for two sufficiently smooth
functions f � ( f1, f2, f3)T and g � (g1, g2, g3)T is intro-
duced as

�f, g�0 �
1

4��i�1

3 �
�

figi d� �14�

and

�f, g�� � �f, T�g�0 � � 1, 2, 3, . . . . �15�

The operator T is self-adjoint with respect to the scalar
product [·, ·]0: [f, Tg]0 � [Tf, g]0. Each of the scalar
products has a norm associated with it:

||f||� � �f, f��
1�2 � � 0, 1, 2, . . . . �16�

The QG equations possess an infinite number of
adiabatic integral invariants. Among them are total en-

TABLE 1. Pattern correlation of various fields in the QG model
with the corresponding fields in ECMWF reanalysis data.

Level ��� �u� ����2� ��q̂�2� �u����

250 hPa 0.99 0.93 0.98 0.97 0.73
500 hPa 0.99 0.92 0.99 0.98 0.64
750 hPa 0.96 0.92 0.97 0.94 0.37

FIG. 2. Same as in Fig. 1 but for standard deviation of streamfunction.
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ergy as the sum of kinetic and available potential en-
ergy,

E � �
1
2
��, q̂�0 �

1
2
��, ��1, �17�

and potential enstrophy,

V �
1
2
�q̂, q̂�0 �

1
2
��, ��2. �18�

The unit of energy (more precisely energy per unit
area) is �2�2�p/g, where g is acceleration due to grav-

ity; the unit of potential enstrophy (more precisely po-
tential enstrophy per unit area) is �2�p/g.

In the spectral basis, the vector of streamfunction �
is a vector of length N encompassing all spherical har-
monic components at all three levels. The order of the
components is given by � � (�1,1, �2,1, �3,1, · · · ,
�1,N0

, �2,N0
, �3,N0

)T and accordingly for all other fields.
The matrix representation of the operator T in the spec-
tral basis is a symmetric, positive definite N � N matrix
M, the total energy metric of the spectral model. It has
a tridiagonal structure; there is a 3 � 3 block for each
spherical harmonic component on the diagonal of M
given by

M	 � �
n	�n	 � 1� � R1,2

�2 �R1,2
�2 0

�R1,2
�2 n	�n	 � 1� � R1,2

�2 � R2,3
�2 �R2,3

�2

0 �R2,3
�2 n	�n	 � 1� � R2,3

�2� , �19�

where n� is the total wavenumber of the spherical har-
monic Y�. All other elements of M are zero. This
greatly facilitates the actual computations. The scalar

products for two functions f and g in the spectral basis
are [f, g]� � fTM�g for � � 0, 1, 2, . . . .

Total energy in the spectral model is

E�
1
2�	�1

N0

n	�n	� 1���1,	
2 ��2,	

2 ��3,	
2 ��

1
2

R1,2
�2�

	�1

N0

��1,	��2,	�
2�

1
2

R2,3
�2�

	�1

N0

��2,	��3,	�
2�

1
2
�TM� �20�

FIG. 3. PNA and NAO patterns in the QG model: Correlation maps of low-pass-filtered streamfunction at 500 hPa for the points
(a) (58°N, 173°W) and (b) (58°N, 26°W).
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and potential enstrophy is given as

V �
1
2 �	�1

N0

�q̂1,	
2 � q̂2,	

2 � q̂3,	
2 � �

1
2
q̂Tq̂ �

1
2
�TM2�.

�21�

The nonlinear terms of the spectral model conserve
both total energy and potential enstrophy as the con-
tinuous model does for the continuous forms of total
energy and potential enstrophy. When formulating the
model as an anomaly model about the time mean state,
analogous statements to those given above hold for the
anomaly total energy and the anomaly potential enstro-
phy.

3. Reduced models

Now reduced models are constructed within a perfect
model approach; the QG three-level T30 model is re-
garded as the reference model and the goal is to derive
a low-order model that captures the principal proper-
ties of the long-term behavior of the T30 model with as
few degrees of freedom as possible.

a. Projection onto the essential degrees of freedom

An L-dimensional subspace of the N-dimensional
phase space of the T30 model is considered that
is spanned by only a limited number of spatial modes
{p1, . . . , pL}. The modes form an orthonormal system
with respect to the scalar product [·, ·]� : [pi, pj]� � �ij.
The patterns {p1, . . . , pL} are meant to represent the
essential degrees of freedom of large-scale atmospheric
dynamics and remain to be determined. The low-order
model is formulated as an anomaly model. The stream-
function is separated into the mean state and the
anomalies:

� � ��� � �
. �22�

Here and in the following, �·� denotes the ensemble
average over the attractor of the T30 model; in practice,
it is replaced by the average over an ensemble of data
points taken from the long-term integration of the
model assuming ergodicity of the system. The dynami-
cal equation for the streamfunction anomalies is

��


�t
� T�1J��
, q̂
� � B�
 � C �23�

with the modified linear operator

B�
 � T�1�J��
, �q�� � J����, q̂
� � D��
��

�24�

and the effective forcing of the anomalies given by

C � T�1�J����, �q�� � D����� � S�. �25�

The streamfunction anomalies are expanded into a se-
ries of empirical patterns:

�
 ��
i�1

L

zipi. �26�

The dynamical equations of the reduced model are gen-
erated by Galerkin projection of the QG model equa-
tions onto the modes {p1, . . . , pL} with respect to the
scalar product [·, ·]�:

żi � �pi, G���� � �
i�1

L

zipi���. �27�

The reduced model is a quadratically nonlinear system
of L first-order differential equations

żi � �
j,k�1

L

Aijkzjzk ��
j�1

L

Bijzj � Ci, �28�

where the tensors of interaction coefficients are
given by

Aijk �
1
2
�pi, T�1J�pj, �Tpk� � T�1J�pk, �Tpj���,

�29�

Bij � �pi, Bpj��, �30�

and

Ci � �pi, C��. �31�

There are no additional empirical terms in the dynami-
cal equations of the low-order model at this stage be-
yond those already introduced in setting up the QG
model. For a given set of patterns, the low-order model
is completely determined by the QG equations; this
ensures that the physics of the QG model is properly
preserved in the reduced model. We will discuss later
the question of improving the low-order model by em-
pirically fitting terms in the dynamical equations, often
referred to as an empirical closure scheme.

b. Conservation properties of reduced models

In view of the conserved quantities of both the con-
tinuous QG equations and the spectral model, one may
ask if these conservation properties are also adopted by
reduced models. One may expect reduced models that
inherit the conservation properties of the underlying
equations of motion to perform better than models for
which this is not the case. Particularly, conservation of
at least one of the two quadratic integral quantities by
the nonlinear terms guarantees that no nonlinear insta-
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bilities occur when integrating the low-order model in
time. Conservation properties have indeed been shown
to be beneficial for the performance of atmospheric
low-order models (e.g., Kwasniok 1996, 2004).

In the following, the conservation properties of the
reduced model of Eqs. (27) and (28), respectively, are
studied for the scalar products [·, ·]0, [·, ·]1, and [·, ·]2 that
have a physical meaning as the norm streamfunction,
the total energy, and the potential enstrophy scalar
product, respectively. The deliberations of Selten
(1995) for a barotropic model are extended to the baro-
clinic model used here; moreover, several different sca-
lar products are considered whereas in the work of
Selten (1995), attention is restricted to the norm
streamfunction metric. A projection operator P� is in-
troduced that projects a function f � ( f1, f2, f3)T onto
the subspace spanned by the modes {p1, . . . , pL} with
respect to the scalar product [·, ·]�:

P�f � �
i � 1

L

�pi, f��pi. �32�

The modes {p1, . . . , pL} are assumed to form an or-
thonormal system with respect to [·, ·]�, that is, [pi, pj]�
� �ij. If necessary they have to be orthonormalized with
respect to the scalar product considered using a Gram–
Schmidt procedure. The projection operator P� is idem-
potent:

P�
2 � P�, �33�

and self-adjoint with respect to the respective scalar
product

�f, P�g�� � �P�f, g��, �34�

but in general not with respect to other scalar products.
Moreover, we will subsequently make use of the facts
that the operator T is self-adjoint with respect to all
scalar products out of the class introduced here:

�f, Tg�� � �Tf, g��, �35�

and the Jacobian is orthogonal to its arguments with
respect to the norm streamfunction scalar product

�f, J�f, g��0 � �g, J�f, g��0 � 0. �36�

It turns out to be crucial whether the projection opera-
tor P� commutes with the operator T, that is, P�T � T
P� or not. This condition has a physical interpretation.
If P� commutes with T, the anomaly potential vorticity
q̂� � �T�� is represented by the same patterns as the
corresponding streamfunction anomaly field, that is,
Tpi ∈ span{p1, . . . , pL} for any i � 1, . . . , L. This is the
case for an expansion in spherical harmonics since
spherical harmonics are eigenfunctions of �2 but gen-
erally not for empirically determined modes. If P� com-
mutes with T it also commutes with all powers of T and
it follows that the projection operators P� are identical
for all �. This means that all scalar products out of the
class considered here generate the same reduced
model. The anomaly total energy of a state in the re-
duced model is Er � 1⁄2[P���, P���]1 and its tendency
due to the nonlinear terms is [P���, P�T

�1J(P���, �T
P���)]1. The anomaly potential enstrophy is Vr �
1⁄2[P���, P���]2 and its nonlinear tendency is [P���,
P�T

�1J(P���, �T P���)]2.
When using the norm streamfunction metric [·, ·]0

(anomaly) total energy is not conserved since

�P0�
, P0T
�1J�P0�
, �TP0�
��1 � �P0�
, TP0T

�1J�P0�
, �TP0�
��0 � 0, �37�

unless P0 commutes with T; (anomaly) potential enstrophy is also not conserved since

�P0�
, P0T
�1J�P0�
, �TP0�
��2 � �P0�
, T2P0T

�1J�P0�
, �TP0�
��0 � 0, �38�

unless P0 commutes with T.
With the total energy metric [·, ·]1 total energy is conserved as

�P1�
, P1T
�1J�P1�
, �TP1�
��1 � �P1�
, T�1J�P1�
, �TP1�
��1 � �P1�
, J�P1�
, �TP1�
��0 � 0,

�39�

but not potential enstrophy unless P1 commutes with T.
When employing the total energy metric energy is given
by Er � 1⁄2�L

i�1z2
i and energy conservation is equivalent

to the condition

Aijk � Ajik � Akij � 0 �40�

for the nonlinear interaction coefficients, which are
given by

Aijk �
1
2
�pi, J�pj, �Tpk� � J�pk, �Tpj��0. �41�
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Equation (40) can be shown from Eq. (41) using inte-
gration by parts. The failure of the nonlinear terms of
the reduced model to conserve anomaly potential en-
strophy is not necessarily a disadvantage. The subspace
of the low-order model can be expected to contain pri-
marily large-scale structures; from the classical picture
of an enstrophy cascade from large scales to small
scales, it follows that under the nonlinear dynamics of
the full spectral model potential enstrophy in the sub-
space of the reduced model is also not conserved, but
there is an outflow to the small scales not resolved in
the reduced model. So nonlinear terms not conserving
potential enstrophy augmented by additional viscosity

to capture the outflow of potential enstrophy may be
appropriate. One may object that total energy in the
subspace of the resolved patterns is also not conserved
under the nonlinear dynamics of the spectral model.
However, the situation is different from that with po-
tential enstrophy. Due to the inverse cascade of kinetic
energy occurring in two-dimensional turbulence, en-
ergy is somehow confined to the large scales. Conser-
vation of energy by the reduced dynamics therefore
seems appropriate.

Usage of the potential enstrophy metric [·, ·]2 leads to
the conservation of potential enstrophy in the reduced
model since

�P2�
, P2T
�1J�P2�
, �TP2�
��2 � �P2�
, T�1J�P2�
, �TP2�
��2 � �P1�
, TJ�P1�
, �TP1�
��0

� �TP1�
, J�P1�
, �TP1�
��0 � 0, �42�

but not energy unless P2 commutes with T. Using the
scalar product [·, ·]2 is equivalent to expanding q̂� rather
than �� into a series of empirical patterns and then
using the scalar product [·, ·]0 in the projection.

It can be summarized that for low-order models
based on spherical harmonics, all three scalar products
[·, ·]0, [·, ·]1, and [·, ·]2 generate the same dynamical
model that conserves both total energy and potential
enstrophy; particularly, the full T30 model does. For
empirical modes, the three models are generally all dif-
ferent and have different conservation properties. It is
not possible to conserve both energy and potential en-
strophy and a choice has to be made. Following the
discussion above and keeping in mind that there are
many geophysical fluid systems without an enstrophy-
like invariant at all, even in the continuous equations,
we feel that it is more important to conserve energy
than potential enstrophy; therefore the total energy
scalar product [·, ·]1 is used throughout this study.

For completeness, it is noted that there are alterna-
tive formulations of reduced models with different con-
servation properties (Selten 1995). They involve a pro-
jection of both streamfunction and potential vorticity
inside and/or outside the Jacobian in the definition of
the reduced model, thus enforcing that streamfunction
and potential vorticity are represented by the same pat-
terns. It is then possible to conserve both energy and
potential enstrophy. However, these formulations leave
the framework of linear Galerkin projection and have
undesirable properties (e.g., the nonlinear coupling be-
tween a triad of modes depends on which other modes
are used in the low-order model, which is unphysical).
Therefore these alternative formulations are not con-
sidered in the present work.

4. Basis functions

Reduced models can be derived as outlined in the
previous section for any orthonormal basis of patterns.
Now the question of how to determine basis functions
that capture the essential dynamics of the system with
as few modes as possible arises.

a. Empirical orthogonal functions

When looking for empirically determined modes, the
most straightforward choice is EOFs. EOFs offer an
optimal representation of the anomaly streamfunction
field in the mean least squares sense (here measured in
the total energy metric) with a given number of modes
L. They are calculated as eigenvectors of the eigen-
value problem

�Mei � �iei, �43�

where � is the covariance matrix of the spectral com-
ponents of streamfunction in the T30 model. The eigen-
values 	i give the variance accounted for by each EOF.
The EOFs form an orthonormal system with respect to
the total energy metric: [ei, ej]1 � eT

i Mej � �ij. It is
computationally more convenient to solve the symmet-
ric eigenvalue problem

M1�2�M1�2ẽi � �iẽi �44�

and then to transform according to ei � M�1/2ẽi.
EOFs have two appealing properties: first, they have

a clearly understandable theoretical basis, and second,
they can be obtained quite easily and robustly even for
high-dimensional systems since they involve only a
symmetric eigenvalue problem. This makes them a
prime candidate for basis functions in a reduced model.
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EOFs have been used as basis functions in atmospheric
low-order models in recent years (Selten 1995, 1997;
Achatz and Branstator 1999; D’Andrea and Vautard
2001; Achatz and Opsteegh 2003). When proposing a
more ambitious scheme for deriving basis functions,
one clearly has to address the questions of whether that
new scheme is still feasible and whether the improve-
ment of that new scheme on EOFs is large enough to
justify a more complicated computation.

b. Principal interaction patterns

A more advanced choice of basis functions is princi-
pal interaction patterns. The method of PIPs takes the
dynamics of the underlying system into account in or-
der to define the basis functions. A cost function is
introduced that measures either the mean squared ten-
dency error of the reduced model (Hasselmann 1988;
Kwasniok 1996) or the mean-squared error between
trajectories of the reduced and the full model (Kwas-
niok 1997a,b, 2001, 2004; Crommelin and Majda 2004).
The PIPs are determined by minimizing this cost func-
tion with respect to the patterns subject to [pi, pj]1 � �ij.
This poses a high-dimensional nonlinear minimization
task. The approach based on trajectories is generally
more powerful than a cost function referring only to the
tendencies. However, the algorithm based on trajecto-
ries is computationally quite expensive unless the sys-
tem under consideration is relatively simple. Therefore
we stick to local tendencies in the present work. Even
minimization of a tendency-based cost function is quite
tedious for the model under investigation here since all
patterns are treated at the same time and the calcula-
tion has to be repeated for a different truncation
level L.

Therefore a novel PIP algorithm is proposed that is
more compact and robust than earlier PIP algorithms.
A top-down approach is adopted, removing modes
from the system one by one. The large minimization
problem is divided into several smaller ones. Having a
subspace of K patterns left, the mode to be removed,
the Kth PIP, is determined by minimizing the tendency
error of the reduced model build on the remaining K �
1 modes. The PIPs then have a definite order as EOFs
have and are independent of the truncation level L of
the reduced model in which they are employed. More-
over, the minimization problem may be expected to be
less ill conditioned when dealing only with one pattern
at a time. Suppose the system is already projected on-
to a subspace of dimension K spanned by the modes
{r1, . . . , rK} that are orthonormal: [ri, rj]1 � �ij. The
algorithm to determine the mode to be removed next,
the Kth PIP pK, is as follows.

• Step 1: The basis {r1, . . . , rK} is rotated to the basis
{s1, . . . , sK}, which is uncorrelated and ordered by
decreasing variance. Here si is given by si � �K

j�1Ujirj,
where U is the orthogonal matrix with the eigenvec-
tors of the covariance matrix of the modes {r1, . . . ,
rK} as its columns, ordered by decreasing correspond-
ing variance. The modes {s1, . . . , sK} span the same
subspace as the modes {r1, . . . , rK} do and are or-
thonormal: [si, sj]1 � �ij.

• Step 2: Let v � �K
i�1�isi be an arbitrary linear com-

bination of the modes {s1, . . . , sK}. The cost function

2�v� � 2�	1, · · ·, 	K� � ��
i�1

K�1

�żi � ż*i �
2�

�45�
is minimized with respect to the coefficients � �
(�1, · · · , �K), subject to the constraint | |v| |2

1 � �K
i�1�

2
i

� 1. Here, żi is the tendency of the mode xi in a
reduced model according to Eq. (27) of the order L �
K � 1 based on the modes {x1, . . . , xK�1} and ż*i �
[xi, (��/t)]1 is the (full nonlinear) tendency of the
mode xi in the QG model. The modes {x1, . . . , xK�1}
span the (K � 1)-dimensional subspace orthogonal to
v. They are obtained by applying Gram–Schmidt or-
thogonalization to the set of modes {v, sK�1, . . . s1},
mapping it to the set {v, xK�1, . . . x1}. The modes {x1,
. . . , xK�1} satisfy [xi, xj]1 � �ij and [v, xi]1 � 0. The
result of the minimization is denoted by vmin �
�K

i�1�
min
i si.

• Step 3: Set p�K � vmin � �sK and then pK � p�K/| |p�K| |1

as the Kth PIP.
• Step 4: Gram–Schmidt orthogonalization is applied

to the set of modes {pK, sK�1, . . . , s1}, mapping it to
the set {pK, yK�1, . . . , y1}. The modes {y1, . . . , yK�1}
span the (K � 1)-dimensional subspace orthogonal to
pK; they satisfy [yi, yj]1 � �ij and [pK, yi]1 � 0.

The K value is reduced by 1 and steps 1–4 are re-
peated, taking the mode {r1, . . . , rK} as the modes {y1,
. . . , yK�1} from the previous stage until K � 2. The final
stage K � 2 yields p2 and p1 as the remaining modes.
The patterns generated by this algorithm are orthonor-
mal ([pi, pj]1 � �ij); they are generally not uncorrelated.

The PIP algorithm becomes unpractical when ap-
plied to the full QG model; a prior reduction of the
system using EOFs is advisable. Introducing a param-
eter Kmax, the PIPs are set equal to the EOFs for K �
Kmax. The algorithm is started with K � Kmax setting
the modes {r1, · · · , rKmax

} as {e1, · · · , eKmax
}, the first Kmax

EOFs.
The minimization of the cost function in step 2 poses

a nonlinear minimization problem with K variables that
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has to be solved numerically. The constraint | |v| |2
1 � 1 is

treated easiest by including a normalization of v into
the definition of the cost function, turning the minimi-
zation problem into an unconstrained one. This was
then solved using a quasi-Newton method, actually the
routine E04DGF from the NAG library. The required
gradient of the cost function with respect to � was pro-
vided approximately using the computationally cheap
method of first-order forward finite differences. It
could be provided exactly, making the algorithm even
faster. Details on forming the gradient of cost functions
like the one in Eq. (45) are discussed by Kwasniok
(1996, 1997a). The minimization was started with v �
sK, that is, (�1, . . . , �K�1, �K) � (0, . . . , 0, 1) as an
initial guess. Because of the rotation in step 1, sK is the
mode with the smallest explained variance in the space
of the remaining modes. In the absence of other prior
knowledge it seems reasonable to take the EOF-like
approach of removing the least energetic mode as a
starting point from which to optimize. The number of
iterations in the minimization procedure was limited to
five independent of K. This is clearly not enough to
solve the minimization problem up to machine preci-
sion. However, the goal here is to roughly estimate the
potential of the PIP method, particularly in comparison
to EOF models. Moreover, the cost function is derived
from a finite sample of data, inevitably causing some
statistical uncertainty in its value. It is therefore not
necessary to locate the minimum of the cost function
very accurately.

Here � is a nonnegative parameter of the method.
For � � 0, the PIPs are determined purely by minimiz-
ing the cost function. Contrastingly, for � → �, the
information of the cost function is neglected and for
any K the least energetic of the remaining modes is
removed from the system. The PIPs are then just the
EOFs for all K. For finite values of �, the method com-
promises minimizing tendency error with maximizing
explained variance. First of all, � is a regularization
parameter as it is often introduced in inverse problems.
The cost function of Eq. (45) involves higher-order mo-
ments of the system and can always be expected to be
ill conditioned. This ill conditioning is resolved by mix-
ing the cost function with the prior knowledge that the
modes should not deviate too much from the EOFs
(Kwasniok 1996), having in mind that EOFs perform
well in a reduced model and can certainly serve as a
starting point upon which to improve. But the meaning
of the parameter � goes beyond this. Apart from ill
conditioning and statistical uncertainties due to the em-
pirical nature of the cost function, it is conceivable that
the relationship between local tendency error and the
behavior in a long-term integration is not monotonic. A

mixture between minimizing tendency error and cap-
turing variance in order to ensure that the large-scale
structures are kept may be more desirable than strictly
minimizing tendency error. This point will be expanded
upon later when discussing the results.

5. Results and discussion

Reduced models have been derived from the QG
model as outlined in sections 3 and 4. The parameter
Kmax was set to 25. For K � 25, the Kth PIP is identical
to the Kth EOF. For K � 25, the subspace spanned by
the first K PIPs is identical to the subspace spanned by
the first K EOFs. The cost function  2 was evaluated
using an ensemble of 5000 data points, separated by 5
days in order to reduce serial correlation. The calcula-
tion of the PIPs is then feasible on a current worksta-
tion within a couple of hours; on a high-performance
computer it would be much faster. In the following,
results are reported for � � 1; the dependence of the
PIPs and corresponding low-order models on � will be
discussed later.

a. Enhanced horizontal diffusion

When integrating the reduced models in time, it turns
out that both PIP and EOF models have systematically
too much variance. The mean squared amplitudes of
the modes at the truncation limit, being many times
larger than in the spectral model, are especially in-
flated. This problem is well known with low-order mod-
els (e.g., Selten 1995; Kwasniok 1996). A remedy is the
introduction of additional dissipation into the linear op-
erator of the system. Analogous to the horizontal dif-
fusion necessary in the spectral model, an enhanced
dissipation in the linear term of the reduced model acts
as a crude closure scheme to account for the interac-
tions of the resolved modes with the neglected modes.
In the present study, the strategy is to stick as closely as
possible to the governing equations of the system and
to introduce only as few empirical components as pos-
sible into the dynamical equations of the reduced
model. Additional dissipation is introduced by retuning
only the coefficient of horizontal diffusion acting on the
anomalies in the reduced model. From each of the three
model levels, there are two terms in the low-order
model involving horizontal diffusion: �kH�

8�q̂i� and
�kH�

8q̂�i . The terms �kH�
8�q̂i� are left unchanged; in

the anomaly terms �kH�
8q̂�i , the coefficient kH is re-

placed by a value kr
H in the reduced model. The

changed coefficient is determined in the following man-
ner. The low-order model is integrated in time for a
couple of values kr

H larger than kH; transient behavior is
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discarded. The mean anomaly total energy is estimated;
1000 days of daily data are sufficient to obtain a mod-
erately accurate estimate. It is empirically observed
that the variance of the reduced model decreases
monotonically when increasing the value of kr

H; it even-
tually decreases to virtually zero when kr

H takes large
values. The appropriate value of kr

H for the reduced
model is determined as the value for which the mean
anomaly total energy of the reduced model matches the
mean anomaly total energy of the spectral model pro-
jected onto the retained PIPs or EOFs, respectively.
The value of kr

H depends on the truncation level L.
Here only a single parameter that has a clearly un-

derstandable meaning is fitted empirically in the low-
order model; everything else is determined by the un-
derlying equations of motion. This is in contrast to re-
cent work on nonlinear reduced models where the
complete linear operator of the reduced model is de-
termined empirically (Achatz and Branstator 1999;
Achatz and Opsteegh 2003; Kwasniok 2004). We do not
argue against such extensive empirical closure schemes
in general. They may be necessary and appropriate,
particularly when leaving the perfect model approach,
for then unresolved processes as well as unresolved
scales have to be accounted for. Fitting the whole linear
operator has been shown to improve the simulation of
selected quantities; however, it renders a physical inter-
pretation of the low-order model doubtful. It is cer-
tainly of value to first determine basis functions captur-
ing the genuine physics of the system optimally; even

when applying an extensive empirical closure scheme
later, such basis functions can be expected to need
smaller closure corrections and to perform better than
other choices. Especially when using the reduced model
for climate change studies, it should be beneficial to
keep any terms fitted to the current climate to a mini-
mum.

b. Long-term behavior of the reduced models

Long-term integrations of PIP and EOF models were
made at various truncation levels using enhanced hori-
zontal diffusion determined as described above; 50 000
days of daily data were archived after discarding 5000
days of integration in order to get rid of transient mo-
tion. All statistics of the reduced models quoted here
are based on this ensemble of data. In the following,
results are discussed for the truncation levels L � 10
and L � 15.

The climatological mean state of streamfunction at
500 hPa in reduced models with 10 PIPs and 10 EOFs is
given in Fig. 4. The correspondence with the mean state
of the QG model (Fig. 1b) is very close for both models;
the EOF model has some distortions.

In Figs. 5 and 6, the standard deviation of stream-
function at 500 hPa in PIP and EOF models with 10
modes and the T30 model projected onto the respective
patterns is displayed. The PIP model captures the pat-
tern of variability and also the amplitudes very well.
With the EOF model, there are considerable errors
both in position and amplitude of the maxima.

FIG. 4. Mean streamfunction at 500 hPa in the reduced models with (a) 10 PIPs and (b) 10 EOFs. Units are 107 m2 s�1.
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Figures 7 and 8 show the transient momentum fluxes
�u�1��1� at 250 hPa in low-order models based on 10 PIPs
and 10 EOFs, respectively, and in the T30 model pro-
jected onto the respective patterns. The PIP model is
quite accurate; the EOF model performs clearly worse.

In Table 2, the performance of PIP and EOF models
with 10 and 15 modes is summarized for all three ver-

tical levels. The pattern correlation of the mean stream-
function, the streamfunction standard deviation, and
the transient momentum fluxes in the various reduced
models with the corresponding fields in the QG model
projected onto the respective modes used in the re-
duced model are given. It should be noted that the
pattern correlation between two standard deviation

FIG. 6. Same as in Fig. 5 but for the (a) QG model projected onto 10 EOFs and (b) reduced model using 10 EOFs.

FIG. 5. Standard deviation of streamfunction at 500 hPa in the (a) QG model projected onto 10 PIPs and (b) reduced model using
10 PIPs. Units are 107 m2 s�1.
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patterns is strongly biased toward high positive values
since both fields are by construction positive every-
where. This leads to a high correlation even for a rela-
tively poor agreement; only a value of 0.95 or higher
indicates a really good accordance. A similar bias oc-
curs when comparing two climatological mean states
using the pattern correlation because the mean stream-

function field has negative sign almost everywhere on
all three levels. Both with 10 and 15 modes, the PIP
model outperforms the corresponding EOF model in
all quantities. Moreover, the PIP model with 10 modes
already outperforms the EOF model with 15 modes in
all quantities. The improvement is most prominent in
the transient momentum fluxes, which are harder to

FIG. 7. Transient momentum fluxes at 250 hPa in the (a) QG model projected onto 10 PIPs and (b) reduced model using 10 PIPs.
Units are m2 s�2.

FIG. 8. Same as in Fig. 7 but for the (a) QG model projected onto 10 EOFs and (b) reduced model using 10 EOFs.
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capture in a low-order model than the mean state and
the standard deviation of streamfunction.

The probability density functions of the first four
PIPs in the full QG model and a reduced model using
15 PIPs are shown in Fig. 9, and accordingly for EOFs
in Fig. 10. The probability densities of the leading EOFs
as well as PIPs are very close to Gaussian. The PIP
model with 15 modes models them quite accurately; the
EOF model with 15 modes is clearly worse, having
drifts in the mean, errors in variance, and skews not
present in the QG model.

In Fig. 11, the autocorrelation functions of the first 4
PIPs in the QG model and in a reduced model using 15

PIPs are displayed. The corresponding information for
EOFs is given in Fig. 12. The slowly decaying autocor-
relation of the first and the fourth PIP is reproduced
but the correlation time scale is too long in the low-
order model. The relatively fast decay of the autocor-
relations of the second and third PIP are captured; how-
ever, the reduced model exhibits some oscillations that
are not present in the QG model. The model based on
15 EOFs performs clearly worse than the model based
on 15 PIPs. The autocorrelation of the first EOF is well
captured up to a lag of 15 days but then turns to nega-
tive values, which is not the case in the QG model. In
the second, third, and fourth EOF, the reduced model

FIG. 9. Probability density function of the (a) first, (b) second, (c) third, and (d) fourth PIP in the QG model (solid) and the
reduced model using 15 PIPs (dashed).

TABLE 2. Pattern correlation of various fields in a reduced model based on 10 (numbers on left) or 15 (numbers on right) PIPs or
EOFs with the corresponding fields in the QG model projected onto the respective modes used in the reduced model.

Level

��� ����2� �u����

10/15 PIPs 10/15 EOFs 10/15 PIPs 10/15 EOFs 10/15 PIPs 10/15 EOFs

250 hPa 1.00/1.00 0.99/0.99 0.98/0.99 0.89/0.97 0.88/0.92 0.67/0.85
500 hPa 1.00/1.00 0.98/0.99 0.98/0.99 0.89/0.97 0.76/0.81 0.56/0.71
750 hPa 1.00/1.00 0.95/0.99 0.98/0.99 0.88/0.96 0.77/0.81 0.56/0.70
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exhibits pronounced spurious oscillatory behavior. The
low-frequency variability appears to be very hard to
model correctly in a highly truncated deterministic low-
order model; it seems to be generated by the interaction
of quite a large number of modes on different spatial
scales.

The PIP algorithm was run for � � 0, � � 0.5, � � 1,
� � 2, � � 5, and � � 10. For � → �, the PIPs coincide
with the EOFs. Actually, with � � 5 the PIPs are al-
ready very close to and with � � 10 virtually indistin-
guishable from the EOFs and so is the performance of
the corresponding reduced models. The patterns with
� � 1 discussed above perform best in a long-term
integration. In the following, these patterns are meant
when referring to PIPs. With � � 0.5 and � � 2, the
models are slightly better than EOF models but worse
than PIP models. When setting � � 0, the patterns are
determined purely by the cost function of Eq. (45); they
will be referred to as purely tendency-based modes.
Interestingly, the low-order models built on them per-
form worse than with any other choice of � discussed
here. In particular, they are clearly worse than PIP
models and considerably worse than EOF models (not

shown). This holds for all statistical quantities shown
above and both truncation levels L � 10 and L � 15.

c. Tendency analysis

The question arises of which processes or flow situ-
ations are better captured by PIPs than by EOFs lead-
ing to their superior performance. To shed some light
on why PIP models outperform EOF models, a ten-
dency analysis was done. Three empirical bases are
considered: EOFs, PIPs (� � 1), and purely tendency-
based modes (� � 0). Figure 13 illustrates the correla-
tion between the tendency vectors in the reduced
model and the full QG model for the three bases as a
function of the number of retained modes. The corre-
lation is given for the full tendency and separately for
the linear and the nonlinear part. Figure 14 discusses
the magnitude of tendencies in the reduced model and
the full QG model for the different modes; again, a
separate look at the linear and nonlinear parts of the
tendencies is informative. The statistics presented in
Figs. 13 and 14 are based on 25 000 days of daily data
different from the data sample used to calculate the
PIPs and also the EOFs. The statistical uncertainty in

FIG. 10. Probability density function of the (a) first, (b) second, (c) third, and (d) fourth EOF in the QG model (solid) and the
reduced model using 15 EOFs (dashed).
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all quantities is negligible and therefore not indicated in
detail. PIPs have a considerably higher tendency corre-
lation than EOFs; purely tendency-based modes again
reach a clearly higher tendency correlation. For the lin-
ear part of the tendencies, the results are very similar to
those for the full tendencies but the level of correlation
is higher for all three bases. In the nonlinear tendencies
there is virtually no difference between the three bases,
and the level of correlation is much poorer than for the
linear part and the full tendencies. More than 30 modes
are necessary to reach a modest correlation of 0.6. PIPs
are characterized by somewhat larger tendencies than
EOFs in the QG model and by clearly larger tendencies
in the reduced models. The purely tendency-based
modes have much larger tendencies than PIPs and
EOFs in both the QG model and the reduced models.
The picture for the linear tendencies is very much the
same as for the full tendencies. In the magnitude of the
nonlinear tendencies there is hardly any difference be-
tween PIPs and EOFs both in the T30 and the low-
order models. The largest part of the tendencies of the
leading modes in the QG model comes from the linear
operator, but there are considerable nonlinear contri-
butions. The ratio of the mean squared moduli of the

linear and nonlinear tendencies lies between about 4.5
with L � 3 and 2.8 with L � 30 for both EOFs and
PIPs. In the reduced models, the dominance of the lin-
ear terms in the tendencies is much more prominent,
particularly for highly truncated models. The ratio be-
tween the magnitudes of linear and nonlinear terms in
the PIP models is as large as about 53, 20, and 11 for
L � 5, L � 10, and L � 15. The corresponding figures
for EOFs are 44, 13, and 9.

The information provided by Figs. 13 and 14 can be
summarized into three main points. First, in all three
bases, the interactions among the leading modes are
predominantly linear and the improvement of PIPs on
EOFs stems entirely from better capturing these linear
interactions although the full nonlinear tendencies en-
ter into the cost function. The linear dynamics of the
system is quite concentrated onto a relatively small
number of large-scale patterns, resulting in high corre-
lations for the linear part of the tendencies even in
severely truncated low-order models. The nonlinear
tendencies are very small and only weakly correlated
with the nonlinear tendencies in the QG model. This is
consistent with the picture of large-scale atmospheric
flow as stochastically driven linear wave dynamics

FIG. 11. Autocorrelation function of the (a) first, (b) second, (c) third, and (d) fourth PIP in the QG model (solid) and the reduced
model using 15 PIPs (dashed).
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(Newman et al. 1997; Branstator and Haupt 1998; Whi-
taker and Sardeshmukh 1998; Zhang and Held 1999;
Winkler et al. 2001). Capturing the linear dynamics
appears to be sufficient to model the climatological
mean state, variance pattern, and transient momentum
fluxes.

Second, there are significant nonlinear contributions
in the tendencies of the large-scale modes in the T30
model; this is consistent with a recent study on mean
phase space tendencies by Branstator and Berner
(2005). This nonlinear part does not stem from inter-
actions between the resolved modes but from nonlinear
coupling of the resolved modes with unresolved modes.
This nonlinear backscattering cannot be attributed to a
few particular patterns but involves a large number of
modes at intermediate and small spatial scales and can
therefore not be captured in a highly truncated basis
either by PIPs or EOFs. Given that even with PIPs,
considerable errors in the autocorrelation functions re-
main, it may be concluded that the nonlinear backscat-
tering from smaller scales to the large scales plays a role
in generating the low-frequency variability of the QG
model.

Third, the purely tendency-based modes have a con-

siderably higher tendency correlation and also a smaller
mean squared tendency error (not shown) than PIPs,
yet in a long-term integration they perform worse than
PIPs and even EOFs. On the other hand, for example,
at L � 15 PIPs are only slightly better than EOFs in the
tendencies but are considerably better in a long-term
integration. This shows that the cost function based on
tendencies has to be taken with caution. A smaller ten-
dency error leads to better long-term behavior, but only
up to a certain point; strict minimization of the ten-
dency error proves detrimental. PIPs have a careful
balance between minimizing tendency error and maxi-
mizing explained variance in the resolved modes. This
is in accordance with the results of Kwasniok (1996). It
is an interesting question whether a cost function based
on trajectories rather than tendencies (Kwasniok
1997a, 2001, 2004; Crommelin and Majda 2004) leads to
an improvement on the present PIP models, particu-
larly regarding the nonlinear terms and the low-
frequency variability.

All PIP calculations presented here use the param-
eter setting Kmax � 25. The dependence of the reduced
models on the choice of Kmax has not been investigated
in detail. There may be potential for further improve-

FIG. 12. Autocorrelation function of the (a) first, (b) second, (c) third, and (d) fourth EOF in the QG model (solid) and the
reduced model using 15 EOFs (dashed).
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ment on the present PIP models with a larger value of
Kmax.

When dealing with nonlinear minimization problems
the question of suboptimal local minima arises. Surpris-
ingly, this seems to be more a problem for smaller val-
ues of K than for larger ones. The inhomogeneities in
the tendency correlation at K � 7 with PIPs and at K �
4 with purely tendency-based modes (Fig. 13) indicate

that the algorithm probably got stuck in a local mini-
mum of the cost function there, whereas for larger K it
does not seem to be a problem.

Given the dominance of the linear terms in the re-
duced models, the question arises if a cost function
measuring only the mean squared error between the
linear tendency in the reduced model and the linear
tendency in the QG model already yields the same re-
sults. This actually turned out to be the case but with
some caution. The parameter � then has to be shifted to
higher values. Minimizing a cost function based on only
linear tendencies with � � 1 leads to reduced models
that are superior to EOF models but not as good as the
PIP models with � � 1, based on full nonlinear tenden-
cies (not shown); with � � 1.5 one gets results very
close to those discussed above (not shown). Although
the minimization is dominated by the linear terms the
nonlinear tendencies in the cost function appear to
have the effect of a regularization. When using only the
linear tendencies from the start, the cost function is of
second order in the data and can be expressed as a
function of only the covariances of the QG model, mak-
ing the algorithm much faster. However, the depen-
dence of the cost function on the patterns is still of
higher order and the problem remains a nonlinear mini-
mization task. It should be noted that even when using
only the linear tendencies in the cost function, the
present approach is conceptually different from the
method of principal oscillation patterns as reviewed by
von Storch et al. (1995). Principal oscillation patterns
are the normal modes of an empirical linear operator in
the subspace of the leading EOFs whereas in the
present work a subspace different from the EOF sub-
space is identified.

The linear operator occurring in shear flow problems
such as the large-scale atmospheric circulation is ge-
nerically strongly nonnormal (e.g., Farrell and Ioannou
1993). A method of constructing reduced representa-
tions of nonnormal linear operators is given by bal-
anced truncation (Farrell and Ioannou 2001). Balanced
truncation provides a nearly optimal solution to the
problem of finding a truncated dynamical model of a
system governed by a stable linear operator under uni-
tary stochastic forcing. A substantial improvement of
balanced truncation on EOF truncation has been dem-
onstrated for such systems (Farrell and Ioannou 2001).
The QG model formulated as an anomaly model about
the climatological mean state [Eq. (23)] has a 19-
dimensional unstable manifold; hence, balanced trun-
cation is not applicable here. The fastest growth rate
corresponds to an e-folding time of 7.0 days. The rela-
tive roles of transient perturbation growth versus per-
turbation growth due to unstable modes are not clear. It

FIG. 13. (a) Correlation between tendency vectors in the QG
model and the reduced model for PIPs (solid), EOFs (dashed),
and purely tendency-based modes (dotted). (b) As in (a) but for
the linear part of tendencies. (c) As in (a) but for the nonlinear
part of tendencies.
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is conceivable that the superior performance of PIP
models compared to EOF models is related to better
capturing the nonnormal structure of the linear opera-
tor. It may be informative to investigate the linear op-
erators of the EOF and PIP models using frequency
response functions and pseudospectra and to compare
them with each other and the linear operator of the full
QG model.

d. Explained variance and spatial structure of PIPs

It is naturally interesting how much variance is ex-
plained by the various empirical modes. Figure 15
shows the explained variance of the individual modes
and the cumulative variance for EOFs, PIPs (� � 1),
and purely tendency-based modes (� � 0). The EOFs
are by definition optimal in this measure and any other
basis is worse. PIPs have only a moderate loss in ex-
plained variance compared to EOFs. The compression
of phase space is still very good and the leading modes
still carry a high explained variance. For example, the

first 10 PIPs capture 29.7% of the mean anomaly total
energy whereas the first 10 EOFs explain 31.9%. For 15
patterns, the figures are 38.9% and 40.8%, respectively.
With the purely tendency-based modes, quite a lot of
explained variance is lost; especially, the leading pat-
terns, except for the first, are not high-variance modes
any more.

To quantify the similarity or dissimilarity in the spa-
tial structure of the different empirical bases used in
the present paper, a measure of distance between two
spaces is introduced. For two linear spaces P (1)

L �
span{p(1)

1 , · · · , p(1)
L } and P (2)

L � span{p(2)
1 , · · · , p(2)

L }, each
of dimension L, with [p(1)

i , p(1)
j ]1 � �ij and [p(2)

i , p(2)
j ]1 �

�ij, the distance between them is defined as

dist�P L
�1�, P L

�2�� � 1 �
1
L �i, j�1

L

�pi
�1�, pj

�2��1
2. �46�

The measure dist is symmetric: dist(P (1)
L , P (2)

L ) �
dist(P (2)

L , P (1)
L ). The value of dist always lies between

zero and one. It is zero if and only if the spaces are

FIG. 14. (a) Mean squared modulus of tendency vector for PIPs (solid), EOFs (dashed), and purely tendency-based modes (dotted).
Upper curves refer to the full QG model, lower curves to the reduced model based on the respective modes. (b) As in (a) but for the
linear part of tendencies. (c) As in (a) but for the nonlinear part of the tendencies. Additionally, the lowermost curves give the squared
modulus of the forcing terms in the different bases. (d) Ratio between mean squared linear tendency and mean squared nonlinear
tendency for PIPs (solid), EOFs (dashed), and purely tendency-based modes (dotted). Lower curves refer to the full QG model, upper
curves to the reduced model based on the respective modes.

OCTOBER 2007 K W A S N I O K 3471



identical; it is one if and only if the spaces are orthogo-
nal with respect to the total energy scalar product. It is
important to note that the measure dist compares
spaces rather than individual modes. For any two bases
spanning the same space (e.g., EOFs and rotated
EOFs), the distance is zero although the individual
modes may all be different. This is appropriate in the
context of reduced models since a reduced model is
determined by the subspace it is based on; a rotation of
the basis functions leads to a dynamically equivalent
model due to the tensor structure of the interaction
coefficients (Kwasniok 1996). A distance between two
linear spaces can be defined with respect to any scalar
product in exactly the same way as above.

In Fig. 16, the distance between EOF and PIP space
and the distance between EOF space and the space
spanned by the purely tendency-based modes are given
as a function of dimension. The PIP space is noticeably
different from the EOF space, particularly for low di-
mensions, although the loss in explained variance is
only moderate. The purely tendency-based modes are
clearly more distinct from the EOFs than the PIPs are,
except for the first pattern, which is relatively close to
the first EOF.

Finally, some light is shed on the question of to what
extent the well-known teleconnection patterns of low-
frequency variability project onto the leading PIPs and
EOFs. The components of the PIPs and EOFs at 500
hPa were orthonormalized with respect to the norm
streamfunction metric on that level using a Gram–
Schmidt procedure. Then the Pacific–North America
(PNA) and North Atlantic Oscillation (NAO) telecon-
nection patterns at 500 hPa shown in Fig. 3 were pro-
jected onto each PIP or EOF, respectively, with respect
to norm streamfunction, and subsequently recon-
structed from their PIP and EOF expansions. The pat-
tern correlation between the original PNA and NAO
patterns and their reconstructions is given in Table 3 for
various numbers of modes. Both teleconnection pat-
terns have a higher projection onto the leading PIPs
than onto the leading EOFs. For the PNA pattern, the
advantage of PIPs is quite small (except with 5 modes)
since the PNA pattern is already distinguished by its
high explained variance. For the NAO pattern, the im-
provement of PIPs on EOFs is more pronounced. The
NAO pattern does not carry a particularly high vari-
ance but seems to play an important role in the linear
planetary wave dynamics. This is in accordance with a
recent diagnostic dynamical study on teleconnection
patterns (Franzke and Feldstein 2005).

6. Conclusions

Nonlinear deterministic reduced atmospheric models
are constructed in the framework of a QG three-level
model with realistic variability and reasonable PNA
and NAO patterns. The reduced model is generated by
Galerkin projection of the QG model equations onto
empirically determined basis functions. The total en-
ergy metric is employed in the projection; the nonlinear

FIG. 15. (a) Explained variance and (b) cumulative explained
variance of PIPs (solid), EOFs (dashed), and purely tendency-
based modes (dotted).

FIG. 16. Distance of PIP space (solid) and space of purely ten-
dency-based modes (dotted) from EOF space as a function of
dimension (see text for explanation).
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terms of the low-order model conserve anomaly total
energy. No empirical terms are introduced into the dy-
namical equations apart from retuning the coefficient
of horizontal diffusion. Basis functions for efficiently
spanning the dynamics are derived using the method of
PIPs and compared with the more conventional EOFs.
A novel PIP algorithm is introduced that removes
modes from the system one by one and holds a careful
balance between minimizing tendency error and maxi-
mizing explained variance in the resolved modes. The
mean streamfunction, the variance of the streamfunc-
tion, as well as the transient momentum fluxes are well
reproduced by a PIP model with 10 degrees of freedom.
With 15 PIPs, probability density functions are accu-
rately modeled; however, in the autocorrelation func-
tions a considerable error remains. Models based on
PIPs markedly outperform models based on EOFs. A
tendency analysis reveals that, both with EOFs and
PIPs, the interactions between the leading patterns are
predominantly linear and the improvement of PIPs on
EOFs comes entirely from better capturing these linear
interactions. In the full QG model, there is a significant
nonlinear contribution in the tendencies of the leading
EOFs and PIPs. It stems from nonlinear coupling of the
large-scale modes with a large number of unresolved
smaller-scale modes and is not captured in a highly
truncated model, either with EOFs or with PIPs. This
nonlinear backscattering appears to play a role in form-
ing the low-frequency variability in the QG model.

For future research, it would be most interesting to
combine the PIP approach with a stochastic closure
scheme in order to arrive at a nonlinear stochastic low-
order model. This may be either a systematic strategy
for stochastic mode reduction as proposed recently
(Majda et al. 1999, 2003; Franzke et al. 2005; Franzke
and Majda 2006) or an empirical scheme.
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