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ABSTRACT: When statistically postprocessing temperature forecasts, it is almost always assumed that the future tem-

perature follows a Gaussian distribution conditional on the output of an ensemble prediction system. Recent studies,

however, have demonstrated that it can at times be beneficial to employ alternative parametric families when post-

processing temperature forecasts that are either asymmetric or heavier-tailed than the normal distribution. In this article, we

compare choices of the parametric distribution used within the ensemble model output statistics (EMOS) framework to

statistically postprocess 2-m temperature forecast fields generated by the Met Office’s regional, convection-permitting

ensemble prediction system, MOGREPS-UK Specifically, we study the normal, logistic, and skew-logistic distributions. A

flexible alternative is also introduced that first applies a Yeo–Johnson transformation to the temperature forecasts prior to

postprocessing, so that they more readily conform to the assumptions made by established postprocessing methods. It is

found that accounting for the skewness of temperature when postprocessing can enhance the performance of the resulting

forecast field, particularly during summer and winter and in mountainous regions.
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1. Introduction

Surface temperature forecasts are of high demand to several

industries, and also to the general public. It is therefore im-

perative that these forecasts are accurate and reliable, some-

thing that is typically not true for forecasts (either point

forecasts or ensembles) generated from operational prediction

systems. An a posteriori adjustment of the forecast is therefore

necessary to alleviate systematic errors, while simultaneously

quantifying the predictive uncertainty. To achieve this, state-

of-the-art statistical postprocessing methods issue probabilistic

forecasts in the form of predictive distributions. Although non-

and semiparametric postprocessing approaches have recently

received increased attention in the literature (e.g., Van

Schaeybroeck and Vannitsem 2015; Taillardat et al. 2016;

Henzi et al. 2020; Bremnes 2020), established postprocess-

ing methods usually make distributional assumptions re-

garding the weather variable being forecast.

Several studies have therefore considered the appropriate

statistical distributions to employ when postprocessing a

range of weather variables. For nonnegative variables such

as wind speed, the distribution should have a nonnegative

support (Thorarinsdottir and Gneiting 2010; Messner et al.

2014; Scheuerer and Möller 2015), while that for precipita-

tion should be nonnegative, but also contain a positive

probability of being exactly zero (Sloughter et al. 2007;

Scheuerer 2014; Scheuerer and Hamill 2015). For temper-

ature, on the other hand, the normal distribution is almost

invariably employed, both in a postprocessing context and

throughout the wider field of atmospheric science (Von

Storch and Zwiers 2001).

This is in part due to the appealing properties possessed by

the normal distribution, which has led to its implementation in

various branches of statistical modeling. For example, the

normal distribution is widely used in linear regression (Klein

et al. 1959; Glahn and Lowry 1972; Gneiting et al. 2005), time

series models (Möller and Groß 2020), and spatial statistics

(Scheuerer and König 2014; Scheuerer and Büermann 2014;

Feldmann et al. 2015); it is conjugate to itself, and is thus

convenient for Bayesian approaches (Stephenson et al. 2005;

Siegert et al. 2016b; Barnes et al. 2019); while it also generalizes

easily to multiple dimensions, making it the canonical choice

for multivariate analysis (Schuhen et al. 2012; Feldmann et al.

2015; Barnes et al. 2019).

Because the normal distribution is so widely applied in

studies concerning temperature, theoretical developments in

statistical postprocessing models are often trialed first on

temperature forecasts. The studies listed above are numerous

examples of this, as are more recent approaches to ameliorate

conventional postprocessing methods (Messner et al. 2017;

Rasp and Lerch 2018; Schuhen et al. 2020). Nonetheless,

Gebetsberger et al. (2018) have recently questioned the unin-

hibited use of the normal distribution as a means for post-

processing temperature forecasts. In particular, the authors

suggest instead that the logistic and Student’s t distributions are

at times more appropriate, potentially because their heavier

tails can account for the additional uncertainty that arises when

estimating postprocessing parameters (Siegert et al. 2016a).

Moreover, the empirical distribution of temperature ob-

servations is regularly found to exhibit skew, often in par-

ticular seasons (Von Storch and Zwiers 2001). Although

postprocessing is concerned with the conditional distribution

of temperature given the numerical weather model output

(and potentially other predictors) rather than its unconditional,
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or climatological distribution, it is common to postprocess

using a parametric distribution that resembles the climatological

distribution of the response variable. In doing so, the forecast

avoids assigning nonzero probabilities to weather events that

cannot occur, while also capturing the limiting case where the

outcome is independent of any predictors, in which instance the

conditional distribution reverts to the variable’s climatological

distribution.

Therefore, Gebetsberger et al. (2019) propose recali-

brating temperature forecasts using a Type-I generalized

logistic distribution within the nonhomogeneous regres-

sion (NR), or ensemble model output statistics (EMOS),

framework (Gneiting et al. 2005). The Type-I generalized

logistic distribution extends the ordinary logistic distribution

by including an additional shape parameter, thereby permit-

ting skewed predictive distributions. Alternatively, asymmetric

predictive distributions could be obtained by transforming the

temperature forecasts prior to postprocessing, so that they

conform to the assumptions made by more recognizable and

convenient statistical methods, before applying the inverse

transformation to the recalibrated forecasts. Hemri et al.

(2015), for example, apply the well-known Box–Cox transfor-

mation to rainfall runoff before implementing nonhomoge-

neous Gaussian regression. There has previously been little

interest in applying such transformations to temperature.

In this article, we consider both of these approaches to

generate skewed predictive distributions when statistically

postprocessing gridded temperature forecast fields over the

United Kingdom, issued by the Met Office’s high-resolution,

convection-permitting ensemble prediction system, MOGREPS-

UK MOGREPS-UK forecasts can be postprocessed using

IMPROVER (https://github.com/metoppv/improver; Evans et al.

2020), a library of algorithms in development at the Met Office

that utilize Rose and Cylc suites (Oliver et al. 2018, 2019) to

postprocess and verify weather forecasts, and the work

presented herein therefore builds upon the existing func-

tionality within IMPROVER. In particular, we postprocess

MOGREPS-UK temperature forecast fields using EMOS

with a normal, logistic and Type-I generalized logistic dis-

tribution, and compare the resulting forecasts to those

generated using nonhomogeneous Gaussian regression af-

ter having first applied a nonlinear transformation to the

MOGREPS-UK ensemble output. It is demonstrated that

relaxing the assumption of symmetry in the predictive dis-

tribution when postprocessing temperature ensemble fore-

casts can enhance the performance of the resulting forecast

fields, particularly during summer and winter and in moun-

tainous regions.

The model and data used to illustrate this are discussed in

the following section. In section 3, we briefly discuss asym-

metric variants of the normal and logistic distributions, as

well as transformations that can be applied to address skew

within samples of data. These approaches are then extended

for use within the nonhomogeneous regression framework in

section 4. Methods for parameter estimation and forecast

verification are also discussed in section 4. Section 5 presents

the performance of forecasts postprocessed using these var-

iants of NR and comments on the choice of data to use when

evaluating the performance of the gridded forecast fields.

Finally, section 6 presents the conclusions.

2. Data

This study utilizes daily 2-m temperature forecasts extracted

from the Met Office’s MOGREPS-UK ensemble forecasting

system (Hagelin et al. 2017) at lead times of 12, 24, and 36 h.

The forecasts were issued in the 1-yr period between

1 January and 31 December 2018, during which time the

model employed a 2.2-km horizontal resolution over the

United Kingdom, and generated ensemble forecasts com-

prised of 12 members. The forecasts are initialized at 0300 UTC

and thus validate at 1500 or 0300 UTC, allowing both day- and

nighttime temperature predictions to be assessed.

Commonly, the aim of operational forecasting centers is to

obtain a calibrated forecast field, from which predictions can

be made for any location of interest. To do so, statistical

postprocessing methods rely on an archive of historical fore-

casts and observations that adequately span the spatial domain

under consideration, from which to learn previous errors of the

prediction system. The spatial coverage afforded by weather

recordings at synoptic stations, however, is typically inade-

quate: recordings over seas and oceans are generally particu-

larly sparse (Hamill 2018). Postprocessing methods that utilize

only the observations provided by this irregular network of

stations are therefore unsuited to address the forecast biases at

all locations on the domain, meaning systematic errors remain

present in the postprocessed forecast field.

Instead, it would be desirable if the observations were

available on a grid, similar to that of the forecasts. For this

purpose, it is common to treat the analysis fields of a high-

resolution numerical weather prediction model as the ob-

servations when postprocessing, rather than the recordings

available at synoptic stations. The model analysis is the

‘‘best guess’’ of the atmospheric state at a particular time

given the meteorological data to hand, as identified using

data assimilation (Kalnay 2003). Although recent advances

in data assimilation have made a significant contribution to

the improved performance of numerical weather models

(Alley et al. 2019), the analysis field is still prone to errors.

Therefore, although using model analyses to train post-

processing methods accounts for data scarcity, the resulting

forecasts typically underestimate the uncertainty present in

reality (Feldmann et al. 2019).

An approach to combine both the model analyses and the

weather observations at synoptic stations might be desirable

when training postprocessing methods, but given the lack of

such an approach, the postprocessingmethods discussed herein

are trained using model analyses. The analyses used are from

the Met Office’s deterministic, convective-scale UKV model,

which operates on a domain with varying resolution, comprised

of an inner domain with a resolution of 1.5 km, and a sur-

rounding 4-km resolution area (Tang et al. 2013). Bilinear in-

terpolation is used to map the MOGREPS-UK ensemble

forecasts onto the smoother, inner domain of the UKV grid-

space prior to postprocessing, and any further references to the

UKV model domain relate to its inner domain. The result is a
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forecast grid consisting of roughly half a million grid points

(810 latitude points, 621 longitude points).

TheUKVmodel domain is displayed in Fig. 1, alongwith the

mean observed temperature field estimated over 2018. The

average temperature generally decreases as latitude increases,

with highest temperatures in the southeast of the United

Kingdom and northern France, as expected. To demonstrate

that the annual climatological temperature distribution is

skewed, Fig. 2 displays the sample skewness of the temperature

observations at each grid point, estimated over the same pe-

riod. The sample skewness is defined as the Fisher–Pearson

coefficient of skew, equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n2 1)

p
n2 2

1

n
�
n

i51

(y
i
2 y)3

�
1

n
�
n

i51

(y
i
2 y)

2

�3/2 , (1)

where the temperature observations are denoted by y, with

local mean y, and n represents the number of observations

from which the skewness is estimated. The empirical tem-

perature distribution across the entire year is generally neg-

atively skewed in the northwest region of the domain,

whereas inland temperatures tend to be slightly positively

skewed. The ensemble member forecasts tend to capture this

general behavior well (not shown). Figure 2 also illustrates

that the skew varies further in particular seasons, with the

temperature more negatively skewed in winter and more

positively skewed in summer. Since the negative skew in

winter and the positive skew in summer are a result of the

occurrence of more extreme low or high temperatures in

these seasons, postprocessing methods that account for skew

may be better suited to capture these more extreme weather

events (Williams et al. 2014).

3. Accounting for skew

a. Skewed distributions

Although skewed distributions are not at all uncommon,

recognized extensions of symmetric distributions, such as

the normal and logistic distributions, to account for pos-

sible skewness are comparatively sparse. Azzalini (1985)

introduced a very general class of skewed distributions

whose probability density function (PDF) is of the fol-

lowing form:

g(y;l)5 2f (y)F(ly) , (2)

where f denotes a PDF that is symmetric about zero (e.g.,

the normal or logistic PDF), with corresponding cumulative

distribution function (CDF) F. The shape parameter

l controls the skew of the distribution and, since f is sym-

metric, g encompasses f when this shape parameter is zero.

Although distributions of this type are theoretically ap-

pealing, the resulting distribution functions are typically

complex and difficult to manipulate (Gupta and Kundu

2010). Instead, the Type-I generalized logistic distribution

(Johnson et al. 1995) provides a convenient, more accessible

alternative that Gupta and Kundu (2010) argue is more appro-

priate for practical studies. As such, Gebetsberger et al.

(2019) propose employing this distribution to postprocess

temperature forecasts.

The probability density function of the Type-I generalized

logistic distribution is

f
GL

(y;m,s,l)5
l exp

�
2
y2m

s

�
s
h
11 exp

�
2
y2m

s

�il11
, (3)

and its CDF is

F
GL

(y;m,s, l)5
1h

11 exp
�
2
y2m

s

�il . (4)

The distribution is governed by a location parameter m and

positive scale s and shape l parameters. Unlike the skewed

logistic distribution in the form of Eq. (2), the first four central

moments of this generalized logistic distribution can all be

expressed in closed-form, in terms of the polygamma function

(Gupta and Kundu 2010). However, examples of this distri-

bution’s PDF in Fig. 3 suggest that it is unsuited to model

heavily positive skew. Indeed, using the equation for the

skew of the Type-I generalized logistic distribution pre-

sented in Gebetsberger et al. (2019) and properties of pol-

ygamma functions, it is possible to prove that the skewness

of this distribution increases monotonically with the shape

parameter l, is bounded below by 22 and is bounded above

by about 1.14. Yet further extensions of the logistic distri-

bution exist—Johnson et al. (1995), for example, outlined

four types of generalized logistic distributions, the simplest of

which is the Type-I generalized logistic distribution charac-

terized by Eqs. (3) and (4)–though, as with Eq. (2), increasing

the complexity of the parametric distribution makes inference

increasingly difficult.

FIG. 1. Average observed temperature (K) across 2018 at

1500 UTC on the UKVmodel domain. The black points represent

the 116 weather stations at which temperatures are considered in

section 5b.
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b. Transformations

Alternatively, rather than changing the distribution with

which to represent temperature, transformations could be ap-

plied to temperature values so that they more readily conform

to the assumptions made by particular, more desirable distri-

butions. For example, it is often convenient to transform var-

iables so that they appear more symmetric, allowing the

implementation of more familiar statistical methods (Wilks

2019). As such, general purpose transformations have been

developed to transform datasets so that they more closely

resemble a sample from a Gaussian distribution. Arguably the

most well-known example of this is the Box–Cox transforma-

tion (Box and Cox 1964).

However, the Box–Cox transformation is only suitable for

nonnegative quantities. Although it is possible to include an

additional shift parameter in the Box–Cox transformation

that ensures all data are positive, Yeo and Johnson (2000)

introduced a more unified approach to transform quantities

defined on the entire real line:

c(z; t)5

8>>><
>>>:

[(z1 1)
t21]/t , z$ 0, t 6¼ 0,

log(z1 1) , z$ 0, t5 0,

2[(2z1 1)
22t21]/(22 t) , z, 0, t 6¼ 2,

2log(2z1 1), z, 0, t5 2,

(5)

where t is a parameter that controls the shape of the resulting

distribution. When t is equal to one, we recover the identity

transformation. For values of t smaller than one, on the other

hand, the upper tail of the support is contracted, while the

lower tail is extended, suggesting the variable at hand is posi-

tively skewed, whereas the opposite is true when t . 1. In the

following sections, we compare this transformation with the

Type-I generalized logistic distribution as a means of gener-

ating skewed predictive distributions when statistically post-

processing temperature forecasts. To maintain consistency

with Gebetsberger et al. (2019), the Type-I generalized logistic

distribution is hereafter referred to as the skew-logistic distribution.

4. Statistical postprocessing

a. Nonhomogeneous regression

The nonhomogeneous Gaussian regression (NGR) ap-

proach introduced by Gneiting et al. (2005) assumes that the

future temperature is a random variable Y that follows a nor-

mal distribution with amean that depends linearly on themean

of the ensemble member temperature forecasts x and a vari-

ance that depends linearly on their variance s2:

Yjx;N(a
N
1b

N
x, g

N
1 d

N
s2), (6)

where x denotes the vector of M ensemble members (x1, . . . ,

xM), and aN, bN, gN, dN are parameters to be estimated. We

discuss the nature of the parameter estimation in the following

section. The two regression parameters for the distribution’s

location (aN and bN) address the biases in the ensemble mean

forecast, while the two regression parameters controlling the

FIG. 2. Average sample skewness at 1500 UTC on the UKVmodel domain, shown for (left) all days, (center) all summer days, and (right)

all winter days during 2018. The sample skewness is defined as the Fisher–Pearson coefficient of skew, as given in the text.

FIG. 3. Examples of the probability density function of the

standard (i.e., location equal to zero, scale equal to one) Type-I

generalized logistic distribution for various values of the shape

parameter. The density function of the standard normal distribu-

tion is also displayed (dotted black line).
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spread of the forecast distribution (gN and dN) account for

dispersion errors in the ensemble.

This approach, which falls into the broad class of distri-

butional regression methods (Klein et al. 2015), can be ex-

tended to employ alternative parametric distributions, in

which case it is more generally referred to as nonhomoge-

neous regression (NR) or ensemble model output statistics

(EMOS). Gebetsberger et al. (2018), for example, propose

utilizing a logistic distribution within this framework:

Yjx;L(a
L
1b

L
x,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
L
1 d

L
s2

q
). (7)

As in Eq. (6), the location parameter and the square of the

scale parameter depend linearly on the ensemble mean and

variance, respectively.

The skew-logistic distribution then extends Eq. (7) through

the inclusion of an additional shape parameter:

Yjx;L(a
S
1b

S
x,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
S
1 d

S
s2

q
, l

S
), (8)

where L(m, s, l) represents the skew-logistic (i.e., Type-I

generalized logistic) distribution with location m, scale s, and

shape l, whereas L(m, s) denotes the ordinary logistic distri-

bution with location m and scale s (and shape equal to one).

Last, rather than changing the distribution to be used

within NR, we consider a suitable transformation of the

temperature forecasts and observations prior to post-

processing. Hemri et al. (2015) implement a similar ap-

proach whereby the Box–Cox transformation is applied to

rainfall runoff before postprocessing the transformed

forecasts using nonhomogeneous Gaussian regression.

Since temperature is not constrained to be positive, we

instead apply the Yeo–Johnson transformation [Eq. (5)]

to the temperature data, but similarly implement nonho-

mogeneous Gaussian regression to postprocess the trans-

formed forecasts. In particular, the approach proceeds as

follows. The forecasts and observations in the training

dataset are first standardized by removing the mean tem-

perature observed in the training data, and dividing by the

standard deviation of these temperature observations:

y
j
*5

y
j
2 yffiffiffiffiffi
y
y

p , x
m,j
* 5

x
m,j

2 yffiffiffiffiffi
y
y

p , (9)

for all m5 1, . . . ,M, j5 1, . . . , N, where j indexes over the N

forecast–observation pairs in the training dataset, and xm,j

represents the mth ensemble member on the jth forecast in-

stance. The sample mean and variance of the N observations

yj in the training data are represented by y and yy, respec-

tively. Although this standardization could be performed

individually for each grid point under consideration as a way

to incorporate localized information (Dabernig et al. 2020),

the mean and standard deviation are calculated across all grid

points here to ensure a fair comparison with the alternative

NR approaches considered in this study. Moreover, this

standardizationmay not always be necessary, but it means the

resulting temperature forecasts do not depend on the original

unit of measurement.

Having standardized the forecasts and observations, the

shape parameter of the Yeo–Johnson transformation is es-

timated by finding the value t̂ that maximizes the (profile)

likelihood of a Gaussian distribution given the transformed

and standardized temperature observations in the training

dataset, c(yj*; t), as described in Yeo and Johnson (2000).

The standardized temperature observations yj* and ensemble

members xm,j* in the training dataset are then transformed ac-

cording to c(� ; t̂), before fitting a nonhomogeneous

Gaussian regression model [Eq. (6)] to these transformed,

standardized forecasts and observations. Using the same

value of t to transform the temperature forecasts and ob-

servations ensures they remain on the same scale.

Unlike the variations of NR described above, this approach

does not assume that the future temperature follows a partic-

ular parametric distribution, but rather that the standardized

and Yeo–Johnson transformed temperature is normally dis-

tributed. Therefore, in order to generate a forecast for the

future, untransformed temperature, it is necessary to sample

from the predictive distribution issued by NGR for the trans-

formed temperature, before applying the inverse of the Yeo–

Johnson transformation, and finally recentering and rescaling

using y and yy.

b. Parameter estimation

The normal and logistic NR methods described above re-

quire four postprocessing coefficients to be estimated, whereas

the skew-logistic distribution includes also a fifth. These pa-

rameters are generally estimated by minimizing a loss, or

penalty function over a set of past forecasts and observations,

referred to as the training dataset. The training dataset used in

this study consists of forecasts issued during a rolling time

window comprised only of the 30 days directly preceding the

current forecast initialization time. In estimating a new set of

coefficients for each forecast, this time-adaptive training win-

dow can account for the behavior of recent model errors

(Gneiting et al. 2005).

To address locally varying biases when postprocessing,

on the other hand, it is common to fit separate post-

processing models either at every location under consid-

eration (Thorarinsdottir and Gneiting 2010), or for groups

of locations based on proximity (Scheuerer and Hamill 2015),

local climatological properties (Hamill et al. 2017; Friedli et al.

2021), or local characteristics of the forecast (Lerch and Baran

2017). Due to the extensive number of grid points considered

here, elaborate methods to group together locations are com-

putationally expensive, while site-specific postprocessing is

infeasible. For this reason, one postprocessing model is fit to

temperature forecasts across all grid points, which is the cur-

rent framework implemented within IMPROVER. Such an

approach has the benefit that the resulting postprocessing

model can be applied to forecasts at all locations, including

those for which past observations are not available. Moreover,

because the postprocessing methods are applied to temperature

forecasts aggregated over a substantially large number of grid

points, there is always sufficient data from which to estimate re-

liable postprocessing coefficients: a 30-day rolling window

consists of over 15 million temperature forecast–observation
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pairs (30 3 810 3 621). Results presented in the following

section are thus insensitive to the length of the training win-

dow (not shown).

There are two common choices for the loss function to use

when estimating the coefficients over the training window. The

first is the logarithmic or negative log-likelihood score, the

minimization of which is equivalent to maximum likelihood

estimation. Maximum likelihood estimation is used consistently

throughout statistics due to its attractive theoretical properties

(Gebetsberger et al. 2018; Wilks 2019) and it can easily be im-

plemented for the skew-logistic forecast distribution using the

probability density function given in Eq. (3). However, it has

become routine in postprocessing studies to estimate parameters

by minimizing the continuous ranked probability score (CRPS),

since the resulting forecast distributions tend to be sharper

(Gneiting et al. 2005). The CRPS is defined as

CRPS(F , y)5

ð‘
2‘

[F(u)21(u$ y)]2 du , (10)

where 1(�) denotes the indicator function. Due to its continued

use as a tool for both parameter estimation and also forecast

verification, analytical solutions to this integral have been de-

rived for several parametric distributions. Gneiting et al.

(2005), for example, present a closed-form expression for the

CRPS of a Gaussian predictive distribution:

CRPS[N(m,s2), y]5s

(
y2m

s

h
2F

�y2m

s

�
21

i

1 2f
�y2m

s

�
2

1ffiffiffiffi
p

p
)
, (11)

where f(�) andF(�) represent the PDF and CDF, respectively,

of the standard normal distribution, while Taillardat et al.

(2016) and Jordan et al. (2017) derive the CRPS for the logistic

distribution:

CRPS[L(m,s), y]5 y2m2s2 2s logF
L

�y2m

s

�
, (12)

where FL is the CDF of the standard logistic distributionL(0, 1).

To evaluate the CRPS for the skew-logistic distribution,

Gebetsberger et al. (2019) use numerical integration tech-

niques. In the appendix, we show that the CRPS for the stan-

dard skew-logistic distribution can be expressed as the

following infinite series:

CRPS[L(0, 1, l), y]52logF
L
(y)1�

‘

k51

1

k
[12Fk

L(y)]

22�
‘

k50

1

k1 l
[12Fk1l

L (y)]1�
‘

k50

1

k1 2l
.

(13)

The convergence of this series is fast, but becomes slower if there

exist observations in the training data that lie in the extreme

upper tail of the forecast distribution, that is, observations

for which FL(y) approaches the radius of convergence, 1.

It is also shown in the appendix that there is an analytical

representation of the CRPS for all rational values of the shape

parameter (i.e., l 5 a/b with a, b 2 N). For example, if a 5 1

and b 5 2, then the CRPS becomes

CRPS[L(0, 1, 1/2), y]5 y1 4 log
11F21/2

L (y)

2
. (14)

Similarly to the CRPS of the logistic distribution, we have that

CRPS[L(m,s,l), y]5sCRPS
h
L(0, 1, l),

y2m

s

i
, (15)

and Eqs. (13) and (14) therefore easily extend to all possible

values of the location and scale parameters.

Gebetsberger et al. (2018) argue that, since both esti-

mators are consistent, maximum likelihood and minimum

CRPS estimation should both yield calibrated forecasts

if a suitable parametric distribution is employed in the

statistical postprocessing model. However, if invalid distribu-

tional assumptions are made by the statistical model, then

training the approach byminimizing the CRPS results in overly

sharp forecasts, whereas the logarithmic score, in penalizing

poorer forecasts more heavily, encourages the postprocessing

method to overestimate the forecast spread. Therefore, to as-

sess the distributional assumptions made by the different

postprocessing methods compared in this study, parameter

estimation is performed using both minimum CRPS and

maximum likelihood estimation.

In all cases, to ensure the regression coefficients for the scale

of the predictive distributions are positive, the loss function is

minimized with respect to j5
ffiffiffi
g

p
and k5

ffiffiffi
d

p
rather than g and

d directly, and the shape parameter of the skew-logistic dis-

tribution is similarly estimated using a square root link function

to ensure positiveness. This shape parameter is estimated si-

multaneously to the model’s other regression parameters,

while the coefficients of the NGR postprocessing method ap-

plied to Yeo–Johnson transformed temperatures are estimated

after having obtained t̂, as described previously. However, due

to the extensive amount of data provided by the high-

resolution MOGREPS-UK forecast fields, minimum CRPS

estimation for the skew-logistic distribution becomes compu-

tationally infeasible here, and results are therefore only pre-

sented usingmaximum likelihood estimation for this approach.

Nonetheless, we demonstrate in section 5b that minimum

CRPS estimation with the skew-logistic distribution is readily

applicable to other settings where smaller training datasets are

in place.

c. Forecast verification

Although nonhomogeneous regression issues forecasts in

the form of predictive distributions, it is often more practical,

and thus more common, to deal with a finite number of en-

semble members. Therefore, after having postprocessed the

raw forecast using nonhomogeneous regression, an ensemble is

generated from the 12 evenly spaced (1/13, 2/13, . . . , 12/13)

quantiles of the postprocessed forecast distribution. In the case

of the transformed temperatures, these sampled quantiles are

then subjected to the inverse Yeo–Johnson transformation to

generate forecasts for the (untransformed) temperature, as is

described at the end of section 4a.
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Methods to verify ensemble forecasts can then be applied.

The most common tool to assess ensemble forecasts is the rank

histogram, which counts the frequency with which the ob-

served temperature value assumes each rank when pooled

among the ensemble members (Thorarinsdottir and Schuhen

2018). Deviation from uniformity in the rank histogram

indicates a miscalibrated ensemble forecast, and systematic

structures to this deviation can be used to diagnose the nature

of any deficiencies in the prediction system (Hamill 2001).

Furthermore, the goal of probabilistic forecasting is often

stated as increasing the sharpness of the forecast, subject to

calibration (Gneiting et al. 2007). The coverage of the en-

semble forecast is the proportion of instances in which the

observed temperature falls between the lowest and highest

ensemble members–more formally, this is the coverage of the

forecast’s 100(M 2 1)/(M 1 1)% prediction interval; in our

study, with M 5 12, this corresponds to the forecast’s 85%

prediction interval. If the observation is equally likely to as-

sume any rank among the ensemble members, then this cov-

erage should be equal to (M 2 1)/(M 1 1), the proportion of

ranks the observation can take on while remaining between the

lowest and highest ensemble member. The range, or width, of

the ensemble members then provides a measure of the forecast

sharpness, and Gneiting et al. (2007) suggest that this spread

should be minimized, subject to achieving the optimal coverage.

To rank and compare the competing forecast distribu-

tions, it is useful to employ an objective measure of forecast

performance. For this purpose, several scoring rules have

been proposed. A scoring rule maps the predictive distri-

bution and its corresponding observation to a numerical

value, thereby objectively quantifying the forecast accuracy.

Such a scoring rule is said to be proper if its statistical ex-

pectation is minimized when the forecast distribution is

equivalent to the distribution from which the observations

arose (Gneiting and Raftery 2007). Therefore, if a fore-

caster has access to the generation mechanism behind the

observations, then there is no incentive for them to issue

anything else as their forecast.

Both the logarithmic score and the CRPS are examples of

proper scoring rules. The logarithmic score is a local score and

thus relies on the predictive density function of the forecast,

which is not readily available for forecasts in the form of an

ensemble. Therefore, although Tödter and Ahrens (2012)

propose a continuous ranked extension of the logarithmic

score that is applicable to ensemble forecasts, the CRPS is

more commonly implemented, since it reduces conveniently to

CRPS(x, y)5
1

M
�
M

j51

jy2 x
j
j2 1

2M2�
M

j51
�
M

k51

jx
j
2 x

k
j , (16)

for an ensemble forecast x with M members. The CRPS is

negatively oriented, so that a lower CRPS indicates a more

skillful forecast. The CRPS thus rewards spread among the

ensemblemembers while penalizing any deviation between the

ensemble members and the observation, thereby assimilating

both the reliability and sharpness of the forecast (Gneiting and

Raftery 2007). The total CRPS is then taken to be the average

CRPS over all forecasts.

The continuous ranked probability skill score (CRPSS) is

also applied here to assess the difference in accuracy be-

tween the various prediction schemes. This skill score is

calculated as the difference between the total CRPS for a

reference forecast scheme and for a competing scheme, di-

vided by the score for the reference (e.g., Wilks 2019). The

skill score is positively oriented and bounded above by one,

with values below zero indicating that the forecast under

consideration performs worse than the reference to which it

is being compared.

Since the aim is to obtain a calibrated forecast field over the

region of interest, the forecasts are evaluated using UKV

model analyses. For computational efficiency, rather than

assessing the forecasts at every grid point on the UKV

model domain, we consider forecasts at every eighth lat-

itudinal coordinate and every sixth longitudinal coordinate

on the domain. Results in the following section have thus

been calculated on a grid of roughly 10 000 locations over

the United Kingdom. Moreover, to better understand the

qualitative behavior of the forecasts, the performance of the

forecasts relative to weather observations at 116 station loca-

tions over the United Kingdom is also illustrated, having bili-

nearly interpolated the forecast field to these sites. The

synoptic stations considered here are displayed in Fig. 1.

5. Results

a. Gridded forecast performance

Rank histograms for the raw ensemble forecasts and those

generated using the various postprocessing methods are dis-

played in Fig. 4 at a lead time of 36 h. The MOGREPS-UK

ensemble prediction system in this case exhibits a pro-

nounced negative bias, failing to capture the higher temper-

ature observations; this is particularly pertinent in summer.

Postprocessing using nonhomogeneous Gaussian regression

trained using minimum CRPS estimation addresses this bias,

though the observed temperature is found to lie outside the

range of ensemble members more often than would be ex-

pected if the ensemble were calibrated, indicating the fore-

cast is underdispersed and hence overconfident. Conversely,

when the NGR approach is trained by minimizing the loga-

rithmic score, the resulting forecasts become overdispersed,

reflecting the higher penalty that the logarithmic score assigns

to overconfident forecasts.

A similar result is presented in Gebetsberger et al. (2018).

The authors therefore propose employing a similar post-

processing framework featuring distributions with heavier

tails, such as the logistic distribution. However, when the

CRPS is chosen as the loss function, the resulting forecasts

are also found here to lack dispersion. When trained by

minimizing the logarithmic score, on the other hand, both

the logistic and skew-logistic NR approaches appear rea-

sonably well calibrated, whereas the NGR forecasts applied

to Yeo–Johnson transformed temperatures are slightly over-

dispersed. Conversely, this transformation-based approach

appears to rectify deficiencies in the alternative methods when

trained using minimum CRPS estimation, though there
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appears to be some remaining structure in the histogram that

indicates a heavier-tailed forecast distribution may be more

appropriate even after transformation. As such, given the large

number of forecasts used to construct these rank histograms, a

chi-squared test for uniformity (e.g., Wilks 2019) indicates that

none of the postprocessing methods produce forecasts that are

perfectly probabilistically calibrated.

The rank histograms in Fig. 4 are constructed using theUKV

model analyses as the observed temperature values. Figure 5

shows the analogous histograms when verifying the ensembles

against temperature recordings at synoptic stations over

the United Kingdom. Since the postprocessing methods

are trained using UKV model analyses, they are suited

to address the discrepancies between the MOGREPS-UK

FIG. 4. Rank histograms for the raw ensemble forecasts and the various postprocessing methods, trained by (left)

minimizing the CRPS and (right) minimizing the logarithmic score, LS (i.e., maximum likelihood) at a lead time of

36 h. TheUKVmodel analyses are treated as the observed values and the ranks have been aggregated over all dates

and locations. The horizontal red line shown at 1/13 is indicative of perfect calibration.
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ensemble forecasts and these analysis fields. The postprocess-

ing methods do not, however, represent the additional uncer-

tainty that arises due to error in the analysis, and also that

induced by downscaling the gridded forecasts to individual

sites. As such, the rank histograms in Fig. 5 suggest the en-

sembles, even after postprocessing, are subject to considerable

bias and dispersion errors, corroborating recent results in

Feldmann et al. (2019). Nonetheless, the approaches based on

Yeo–Johnson transformations reduce the underdispersion

relative to the alternative methods.

The accuracy of the different postprocessing methods can be

compared more formally using the CRPSS (again calculated

across all locations and dates under consideration), available in

Fig. 6. IMPROVER currently implements the NGR approach

trained using minimum CRPS estimation, and this thus

constitutes a canonical choice for the reference scheme

when computing the skill scores. Results are shown for the

forecasts evaluated against both the UKV model analyses

and the station data. In the former case, the two post-

processing methods applied to Yeo–Johnson transformed

FIG. 5. As in Fig. 4, but with temperature recordings at synoptic stations treated as the observed values.
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forecasts provide the largest benefit, with skill scores roughly

equal to 2% at all lead times, and the improvements are yet

larger when the forecasts are assessed using station data,

reaching almost 5% for forecasts 12 h in advance. Surprisingly,

the approaches trained by minimizing the logarithmic score

marginally outperform those designed to minimize the CRPS,

even though forecast accuracy is assessed here using the CRPS.

We note, however, that this is not surprising when the

forecasts are evaluated relative to station observations, since

Fig. 4 illustrates that these approaches tend to be more over-

dispersed than those trained using minimumCRPS estimation.

These methods thus inadvertently account for some of the

additional uncertainty present when forecasting the less pre-

dictable station data, leading to an increased accuracy when

assessed using observations of this type. More generally, this

highlights that evaluating postprocessing methods against ob-

servations that exhibit markedly different characteristics to

those used to train the methods can lead to invalid inferences

regarding the quality of the postprocessing models. For ex-

ample, even if a postprocessing method were capable of de-

termining the exact generating process underlying the analysis

fields in the training dataset, this method would not necessarily

perform best when assessed using weather recordings at syn-

optic stations.

Of course, provided a suitable scoring rule is employed, the

forecasts generated by the postprocessing methods can reliably

be compared regardless of the choice of observations on which

the comparison is based. But if the goal of the study is to gauge

the effectiveness of various postprocessing methods, in terms

of their ability to address the errors that they encounter in the

training dataset, then the different methods should be evalu-

ated using the same type of observations as those with which

they are trained. On the other hand, of course, if the principal

goal is to employ a postprocessing method that provides the

most accurate forecasts at the synoptic weather stations, but

practical constraints mean only model analyses are available to

train the postprocessing methods, then it might be worthwhile

to choose a postprocessing framework that is known to over-

predict forecast uncertainty.

Since the interest here is on comparing the competing

postprocessing methods, all results are henceforth presented

when evaluating forecast performance against the UKVmodel

analysis fields. Table 1, for example, displays the average

CRPS over all locations at a lead time of 12 h. The mean

squared error (MSE) of the ensemble mean forecast is also

presented, as is the average range of the ensemble and the

corresponding coverage. The CRPS for all postprocessing

methods improves upon that of the raw ensemble by over 20%,

while the Yeo–Johnson transformed predictive distributions

generate further improvements upon the other approaches.

The MSEs, on the other hand, are largely indistinguishable

between the different postprocessing methods, suggesting the

improvements are mainly due to a better representation of the

shape of the predictive distribution. The coverage in this case is

the proportion of instances in which the observed temperature

falls within the ensemble members. Since the ensembles are

each comprised of 12members, the optimal coverage is 11/135
0.85. As was observed in the rank histograms, the normal and

logistic distributions trained using minimum CRPS estimation

are underdispersed, issuing coverages that fall below the op-

timal value. Estimating coefficients usingmaximum likelihood,

or allowing the predictive distribution to exhibit skew, on the

other hand, increases the spread of the ensemble members,

and, in turn, produces forecasts that are well-calibrated with

respect to this measure.

The extra flexibility in the skewed forecast distributions is

attributable to the inclusion of an additional parameter: l for

the skew-logistic distribution and t for the Yeo–Johnson

transformation. A time series of this parameter, estimated

for each forecast day in the test dataset, is shown in Fig. 7 for

both day- and nighttime predictions. The distributions of these

parameters indicate that at 1500 UTC, the conditional distri-

bution of the temperature observations given the ensemble

output is negatively skewed in winter (l , 1, t . 1), and

positively skewed in summer (l . 1, t , 1). In autumn and

spring, both coefficients are closer to one, suggesting the

more parsimonious normal and logistic distributions are

suffice during these seasons. For nighttime temperature

FIG. 6. The CRPSS for the different postprocessing methods at each lead time, relative to the NGR approach

trained using minimum CRPS estimation. The forecasts are verified against (left) UKVmodel analyses and (right)

weather station observations. The colors distinguish between the different parametric assumptions, while the line

type reflects the loss function used to train the postprocessing methods. All standard errors in the first plot are

negligible (see Table 2), while those in the second plot are all roughly 0.002 for all lead times. These have been

omitted from the plot to aid interpretation.
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forecasts, there is less variation in the shape coefficients, and

the predictive distributions appear slightly negatively skewed

throughout the year. These results are reinforced by the

continuous ranked probability skill score (CRPSS), which is

used here to measure the improvement of the various NR

approaches relative to the normal forecast distribution trained

byminimizing the CRPS. The CRPSS, displayed separately for

each season in Table 2, indicates that improvements are largest

in summer and winter, though still noticeable in autumn and

spring. The large negative bias in the raw MOGREPS-UK

ensemble forecasts is also apparent in Table 2, with statistical

postprocessing offering the most benefit in spring and summer.

Analogous conclusions are drawn when verifying the forecasts

against the station data (not shown).

Perhaps surprisingly, although the forecasts benefit from the

increased flexibility provided by the Yeo–Johnson transfor-

mation, the skew-logistic forecast distributions perform com-

paratively to the logistic NR approach, both quantitatively

and qualitatively. This is in part explained by the upper bound

on the positive skewness of these forecast distributions, as

discussed in section 2, which can be seen from the fluctuating

behavior of the shape parameter during summer in Fig. 7. This

is further reinforced by the seasonal skill scores inTable 2, where

the quantitative performance of the skew-logistic forecasts

in summer is almost identical to that of the original logistic

forecasts.

Last, not only does the skewness of the unconditional tem-

perature distribution change for different seasons, but Fig. 2

indicates that it varies also for different locations. Figure 8

therefore displays the CRPSS for the forecasts generated using

NGR applied to Yeo–Johnson transformed temperatures,

relative to those using conventional NGR, calculated

separately for each grid point. Both methods are trained

here by minimizing the CRPS over the training data, al-

lowing focus to be placed on the benefits gained by the

more flexible distribution. The Yeo–Johnson-based post-

processing approach performs marginally worse than NGR

at a band of locations over the North Atlantic and the

North Sea, but significantly improves the performance of

the resulting forecasts at inland locations across the United

Kingdom. The accuracy of forecasts at individual grid

points improves by as much as 10%, with the largest benefits

appearing in mountainous regions in northern Scotland, which

agrees with results in Gebetsberger et al. (2019). Schuhen et al.

(2020) have also recently identified deficiencies in the

MOGREPS-UK output and associated NGR postprocessed

forecasts when predicting the temperature at mountainous

locations.

TABLE 1. CRPS, MSE, and the average width and coverage of 85% prediction intervals defined by the range of the ensemble members,

with corresponding standard errors (scaled by 104) displayed in parentheses. Since the ensembles comprise 12 members, an optimal

coverage would be 11/135 0.8462. All metrics have been computed at a lead time of 12 h using the UKVmodel temperature analyses as

observations, and are averaged over all locations and days under consideration. The optimum CRPS, MSE, and coverage among the

different methods is shown in boldface.

CRPS MSE Width Coverage

Raw ensemble 0.5096 (3) 0.7640 (8) 1.4372 (4) 0.6078 (2)

Normal–CRPS 0.3988 (2) 0.5408 (7) 1.7445 (4) 0.7780 (2)

Logistic–CRPS 0.3985 (2) 0.5408 (7) 1.7927 (5) 0.7875 (2)

Yeo–Johnson–CRPS 0.3902 (2) 0.5429 (7) 1.8821 (3) 0.8367 (2)

Normal–LS 0.3909 (2) 0.5415 (7) 2.0197 (2) 0.8654 (2)

Logistic–LS 0.3913 (2) 0.5406 (7) 1.8965 (3) 0.8453 (2)

Yeo–Johnson–LS 0.3896 (2) 0.5440 (7) 2.0851 (4) 0.8714 (2)

Skew-logistic–LS 0.3913 (2) 0.5410 (7) 1.8891 (2) 0.8439 (2)

FIG. 7. Time series of the shape coefficient of the Yeo–Johnson transformation t and skew-logistic predictive

distributions l as estimated over a time-adaptive 30-day training window. The shape is displayed for both (left)

daytime (1500 UTC; 12-h forecasts) and (right) nighttime (0300 UTC; 24-h forecasts) temperatures. The shapes

corresponding to 36-h forecasts are very similar to those displayed for 12-h forecasts.
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b. Local forecast performance

Based on Fig. 8, a suitable extension of the postprocessing

framework implemented herein would be to calibrate grid

points over land and sea separately. More generally, since the

postprocessing methods are trained using temperature fore-

casts and observations aggregated across all (over 500 000) grid

points on the UKVmodel domain, it could be the case that the

error distribution of the ensemble mean forecast becomes

skewed due to the combination of (potentially symmetric)

forecast error distributions across several locations. In this re-

spect, although the previous section demonstrated that skewed

predictive distributions can help to account for this behavior, the

benefits of these approaches may diminish if spatial information

were incorporated into the postprocessing models.

To investigate whether or not this is the case, we restrict

attention to the temperature forecasts at 116 grid points over

the UKV domain, which correspond to the grid points asso-

ciated with the station locations displayed in Fig. 1. The

postprocessing set up is largely similar to before: all methods

considered in the previous section are also compared here,

trained using both maximum likelihood and minimum CRPS

estimation over a rolling 30-day window, with the UKV

temperature analysis fields still treated as the observations.

However, in contrast to the previous setting, a local post-

processing framework is applied, whereby the coefficients of

the various postprocessing methods are estimated separately

at each of the 116 grid points. In addition, results are also

presented here for the skew-logistic NR approach trained

using minimum CRPS estimation, which can feasibly be im-

plemented using the reduced amount of training data; the

training dataset now consists of only 30 forecast–observation

pairs. Details regarding how this approach is implemented

are discussed in the appendix.

Figure 9 displays the rank histograms for the two post-

processing methods that employ a normal predictive distribu-

tion in this localized setting, at a lead time of 36 h. A similar

pattern manifests to that observed in Fig. 4: the forecasts

trained by minimizing the CRPS are noticeably under-

dispersed, whereas those trained using maximum likelihood

overestimate the forecast uncertainty. This is the case also for

the logistic NR approaches (not shown), suggesting even

when grid points are considered individually, there is still the

need to make more flexible parametric assumptions when

postprocessing.

Boxplots of the CRPS for all postprocessing methods, av-

eraged over all locations and test days, are presented in Fig. 10

for the same lead time. First, we note that when applying a local

postprocessing approach, the discrepancy between the pre-

dictability of model analyses and station recordings is still

apparent. The CRPS, which is defined on the same scale as

the temperature values, is larger for forecasts assessed using

the weather station data, reiterating that the postprocessing

methods are less adept at capturing the station-specific tem-

peratures than they are at predicting the UKV analyses. This is

also true for the raw MOGREPS-UK output. In both cases,

however, all postprocessing methods offer substantial im-

provements upon the raw, uncorrected ensemble forecast, as

expected. The postprocessing methods in Fig. 10 have been

ordered according to their median CRPS value, which is lowest

for the two methods that employ a Yeo–Johnson transforma-

tion, regardless of whether UKV analyses or station recordings

have been used to assess the forecasts.

TABLE 2. CRPSS (scaled by 100) for the prediction systems relative to nonhomogeneous Gaussian regression trained using minimum

CRPS estimation, displayed separately for each season. Standard errors (computed using 1000 nonparametric bootstrap resamples and

scaled by 100) are displayed in parentheses next to the score. The skill scores have been computed at a lead time of 12 h using the UKV

model temperature analyses as observations, and are averaged over all locations and days under consideration. The optimum skill score in

each season among the different methods is shown in boldface.

Autumn Spring Summer Winter Total

Raw ensemble 219.24 (0.07) 232.73 (0.09) 242.73 (0.13) 210.57 (0.05) 227.81 (0.04)

Logistic–CRPS 20.10 (0.00) 0.12 (0.00) 0.04 (0.00) 20.01 (0.00) 0.07 (0.00)

Yeo–Johnson–CRPS 1.12 (0.01) 1.01 (0.02) 3.29 (0.02) 3.18 (0.01) 2.16 (0.01)

Normal–LS 1.47 (0.01) 1.65 (0.01) 1.94 (0.01) 2.92 (0.01) 1.97 (0.01)

Logistic–LS 1.39 (0.01) 1.15 (0.01) 2.38 (0.01) 2.67 (0.01) 1.89 (0.01)

Yeo–Johnson–LS 1.39 (0.01) 1.22 (0.01) 3.14 (0.02) 3.49 (0.02) 2.31 (0.01)

Skew-logistic–LS 1.32 (0.01) 1.22 (0.01) 2.38 (0.01) 2.59 (0.01) 1.88 (0.01)

FIG. 8. Map of the continuous ranked probability skill score

(CRPSS) for the Yeo–Johnson transformed NGR approach, rela-

tive to the standard NGR forecasts, estimated for each grid point

over all of 2018 at a lead time of 12 h. Both methods have been

trained using minimum CRPS estimation, and the gridded UKV

model analysis fields are treated as the observations.
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The corresponding skill scores for all methods are displayed

in Table 3, with the NGR approach trained using minimum

CRPS estimation again chosen as the reference scheme.

Although Fig. 9 suggests that the assumption of normality is

invalid, the skill scores indicate that the alternative NR ap-

proaches offer little improvement upon this baseline approach.

The reason for this appears to be a result of the more flexible

postprocessing methods becoming overfit on the reduced

training dataset, since they require the estimation of an addi-

tional shape parameter. As such, there are a few forecast cases

in which these approaches perform particularly poorly in

comparison with the reference approach, resulting in heavier

tailed distributions of the CRPS values (see Fig. 10). Hence,

although the median CRPS value of the Yeo–Johnson-based

approaches is lower than that of the reference scheme, the

mean is higher, leading to negative skill scores. This sensitivity

to the amount of training data is particularly pertinent for the

skew-logistic approach, since the shape coefficient is esti-

mated simultaneously to the other postprocessing parameters.

The postprocessing approach applied to Yeo–Johnson trans-

formed temperatures, on the other hand, could more easily

be adapted to account for the amount of training data by

estimating the shape coefficient over an augmented dataset,

possibly utilizing information from several locations. The

remaining postprocessing parameters could then be esti-

mated locally, after obtaining a more reliable estimate for t.

6. Discussion

This paper has studied the performance of short-range

temperature forecast fields over the United Kingdom, issued

by the Met Office’s MOGREPS-UK ensemble prediction

system. The MOGREPS-UK forecasts exhibit a strong nega-

tive bias, and statistical postprocessing is therefore necessary to

recalibrate the numerical model output. To do so, a nonho-

mogeneous regression approach is implemented here with four

different choices of the parametric assumptions. Focus is par-

ticularly on the performance of skewed predictive distribu-

tions, including a variant of the logistic distribution that has

recently been proposed to account for changes in the shape of

empirical temperature distributions (Gebetsberger et al.

2019), as well as a novel approach that nonlinearly transforms

the temperature forecasts prior to postprocessing, which can

similarly generate asymmetric predictive distributions.

FIG. 9. Rank histogram for the local NGR forecasts trained using (left) minimum CRPS estimation and (right)

maximum likelihood at a lead time of 36 h. The UKV model analyses are treated as the observed values and the

ranks have been aggregated over all dates and locations. The horizontal red line shown at 1/13 is indicative of

perfect calibration.

FIG. 10. Boxplots of the CRPS for the raw ensemble forecast and the various local postprocessing methods (as

described in section 5b) verified against (left) UKV model analyses and (right) weather station observations at a

lead time of 36 h. The boxes contain the median (orange line) and the lower and upper quartiles of the empirical

CRPS distribution. Values of the CRPS that exceed (fall below) the upper (lower) quartile plus (minus) 1.5 times

the interquartile range are defined as outliers, and have been removed from both plots. The methods have been

ordered by decreasing median CRPS.
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Regardless of the choice of parametric family that is em-

ployed in nonhomogeneous regression, postprocessing yields

forecasts that are significantly more accurate and reliable

than the raw temperature ensemble forecasts, particularly

in summer.

However, it is common to employ a normal distribution

within the NR framework when postprocessing temperature

forecasts, whereas such an approach is found here to be inap-

propriate. In particular, the resulting forecasts are found to be

either under or overdispersed, depending on the loss function

used to train the forecasts, corroborating results inGebetsberger

et al. (2018). Instead, the most accurate forecasts, as measured

using the continuous ranked probability score, are generated by

an approach that applies nonhomogeneous Gaussian regression

after having transformed the temperature forecasts and obser-

vations in the training dataset so that they appear more sym-

metric. This is true when using both high-resolutionUKVmodel

analyses and station data to assess the resulting forecasts, though

we argue that conclusions should be treated with caution in the

latter case, since these observations are less predictable than the

analysis fields, meaning postprocessing methods that overesti-

mate the predictive uncertainty appear more appealing. The

nonlinear transformation implemented here is theYeo–Johnson

transformation (Yeo and Johnson 2000), which belongs to the

more general class of power transformations frequently used in

the wider field of statistical modeling (Wilks 2019). As such, al-

though applied here to temperature forecasts, power transfor-

mations could also easily be implemented when postprocessing

several alternative weather variables (Hemri et al. 2015).

In any case, as in Gebetsberger et al. (2019), the results

presented herein demonstrate the potential benefit provided

by more flexible parametric assumptions when postprocessing

temperature forecasts. We illustrate this when applying a

global postprocessing approach, whereby all grid points are

recalibrated simultaneously, but demonstrate that deficiencies

in conventional methods exist also in more local settings.

However, as when incorporating additional predictors into the

postprocessing model, more complex predictive distributions

render the postprocessing methods more dependent on the

amount of available training data.Moreover, it may be the case

that the more flexible parametric assumptions add information

to the forecast that could alternatively be introduced via

additional predictors, and future studies may wish to investi-

gate this. Nonetheless, as long as the unconditional tempera-

ture distribution exhibits skew, we anticipate that asymmetric

predictive distributions will be beneficial at longer lead times

than those considered here; as the lead time increases, the

observed weather variable becomes independent of the inputs

to the postprocessing model, meaning the conditional distri-

bution of the weather variable reverts to its climatological, or

unconditional distribution (Allen et al. 2020).

Furthermore, all forecasts in this study have been evalu-

ated using both UKVmodel analyses, as well as temperature

recordings at synoptic stations over the United Kingdom.

Assessing the forecasts against model analyses allows the

spatial characteristics of forecast performance to be better

understood; as in Gebetsberger et al. (2019), the benefits of

issuing skewed predictive distributions were particularly

large in mountainous regions, with improvements at indi-

vidual grid points reaching almost 10%. Similar improve-

ments were also observed when verifying forecasts against

temperature recordings at synoptic stations over the United

Kingdom. Although there is still error in these recordings

(Ferro 2017), they generally provide a much more accurate

reflection of the weather that actually materializes. However,

since the postprocessing methods are trained against high-

resolution model analyses, they are designed to correct fore-

cast biases relative to these gridded analysis fields. As such, the

postprocessing methods are poorly suited to capture the ad-

ditional uncertainty present when predicting the station-based

temperature recordings, resulting in underdispersed forecast

distributions. Rank histograms suggest that this underdispersion

is less acute for the approaches that overpredict the uncertainty

in the training data, and this is reflected by measures of forecast

accuracy. The results presented herein therefore call for more

effective approaches of combining the station data and the

analysis fields when postprocessing. This could be achieved, for

example, by treating the postprocessed predictive distributions

trained using the analysis fields as prior distributions when

forecasting the station data, or by suitably assimilating the two

sources of information prior to fitting the postprocessing model.

Finally, this study has considered forecast distributions

constructed using the nonhomogeneous regression (NR)

framework, which generally relies on specifying a unimodal

TABLE 3. CRPSS (scaled by 100) for the prediction systems relative to nonhomogeneous Gaussian regression trained using minimum

CRPS estimation, when a localized postprocessing method is implemented. Standard errors (computed using 1000 nonparametric

bootstrap resamples and scaled by 100) are displayed in parentheses next to the score. The skill score is shown at all lead times using the

UKVmodel temperature analyses as observations, and is averaged over all grid points and days under consideration. The optimum skill

score among the different methods is shown in boldface.

12 h 24 h 36 h

Raw ensemble 242.01 (0.61) 212.22 (0.31) 221.72 (0.42)

Logistic–CRPS 0.30 (0.18) 0.30 (0.11) 0.01 (0.09)

Yeo–Johnson–CRPS 20.04 (0.08) 20.63 (0.15) 20.80 (0.18)

Skew-logistic–CRPS 20.17 (0.18) 22.31 (0.15) 22.31 (0.14)

Normal–LS 20.83 (0.13) 20.79 (0.14) 20.49 (0.11)

Logistic–LS 0.32 (0.20) 0.47 (0.12) 0.10 (0.06)

Yeo–Johnson–LS 21.50 (0.14) 21.00 (0.17) 20.87 (0.18)

Skew-logistic–LS 21.65 (0.23) 22.06 (0.18) 21.78 (0.18)
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predictive distribution centered around the (bias-corrected)

ensemble mean, and with scale or variance that depends on

the ensemble spread. One benefit of the skew-logistic

forecast distribution is that the shape parameter of these

forecast distributions could similarly be estimated using the

ensemble sample skewness as a predictor, to incorporate

flow-dependent shape information provided by the numer-

ical model output. This was not considered here to maintain

comparison with alternative approaches, though this could

easily be investigated in future studies. Alternatively, it

might be the case that if the ensemble members naturally

reflect the skew in the temperature distributions, then a

postprocessing approach that dresses each ensemble mem-

ber individually, such as Bayesian model averaging (BMA;

Raftery et al. 2005), might be able to utilize symmetric

component distributions while also capturing this asymme-

try. This reflects the additional flexibility provided by the

mixture distribution used in BMA compared to NR, since it

uses information independently regarding each ensemble

member. In this sense, postprocessing methods that make

simple assumptions about the conditional distribution of the

weather variable being forecast are at times inadequate.

Suitably transforming the data or utilizing more flexible

parametric distributions (e.g., Allen et al. 2019) are poten-

tial ways of alleviating this, as might be non- or semiparametric

approaches, which have recently received increased atten-

tion in the field of postprocessing (Van Schaeybroeck and

Vannitsem 2015; Taillardat et al. 2016; Henzi et al. 2020;

Bremnes 2020).
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APPENDIX

Minimum CRPS Estimation with the Type-I Generalized
Logistic Distribution

In this appendix we derive expressions of the continuous

ranked probability score (CRPS) for forecasts in the form of

Type-I generalized logistic distributions, with probability

density function (PDF) and cumulative distribution function

(CDF) as defined in Eqs. (3) and (4). Let Fl denote the CDF

of the standard skew-logistic distribution L(0, 1, l). The

CRPS for forecasts in this form is defined as

CRPS[L(0, 1, l), y]5

ð‘
2‘

[F
l
(u)21(u$ y)]2 du

5

ðy
2‘

F2
l(u)du1

ð‘
y

[12F
l
(u)]2 du . (A1)

Without loss of generality, we restrict attention to the

standard skew-logistic distribution, with m 5 0 and s 5 1,

since the CRPS in this case can easily be extended for other

location and scale parameters using Eq. (15). Note now that

the CDF of the standard generalized logistic distribution,

Fl, is simply the standard logistic CDF, FL, raised to the

power of the shape parameter l. Substituting s 5 FL(u)

gives sl 5 Fl(u) and ds 5 s(1 2 s)du, so that Eq. (A1)

becomes

CRPS[L(0, 1, l), y]5

ðFL(y)

0

s2l21

12 s
ds1

ð1
FL(y)

(12 sl)
2

s(12 s)
ds . (A2)

If the shape parameter l is a rational number, that is, l5 a/b

with a, b 2 N, then the CRPS is available in closed-form. Let

y5F1/b
L (u) so that ya 5 Fl(u) and dy 5 [y (1 2 yb)/b]du. Then

Eq. (A2) can be written as

CRPS[L(0, 1, a/b), y]5b

ðF1/b
L

(y)

0

y2a21

12 yb
dy1 b

ð1
F1/b
L

(y)

(12 ya)2

y(12 yb)
dy.

(A3)

The two integrands are now rational functions and the in-

tegrals can be calculated analytically using partial fractions.

For b 5 1, we recover Eq. (A2) with l 5 a, and for all a 2 N

we get

CRPS[L(0, 1, a), y]5 y2 2 logF
L
(y)

1�
a21

k51

1

k
[12 2Fk

L(y)]2�
2a21

k5a

1

k
. (A4)

For a 5 1, this together with Eq. (15) gives Eq. (12) and, e.g.,

for a 5 2 we get

CRPS[L(0, 1, 2), y]5 y1
1

6
2 2F

L
(y)22 logF

L
(y) . (A5)

For b 5 2, the expression valid for all odd a 2 N is still rather

simple:

CRPS[L(0, 1, a/2), y]5 y1 4 log
11F21/2

L (y)

2

1 4 �
(a23)/2

k50

1

2k1 1
[12F

(2k11)/2
L (y)]

2�
a21

k51

1

k
.

(A6)

For a 5 3, for example, we get

CRPS[L(0, 1, 3/2), y]5 y1
5

2
2 4F1/2

L (y)1 4 log
11F21/2

L (y)

2
.

(A7)
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Furthermore, there is an infinite series representation of the

CRPS for all positive real values of l. Going back to Eq. (A2)

and using the power series 1/(12 s)5�‘
k50s

k we find

CRPS[L(0, 1, l), y]5�
‘

k50

ðFL(y)

0

sk12l21 ds

1�
‘

k50

ð1
FL(y)

sk21(12 2sl 1 s2l) ds .

(A8)

Integrating the terms of these series is straightforward, and the

resulting components combine to produce

CRPS[L(0, 1, l), y]52logF
L
(y)1�

‘

k51

1

k
[12Fk

L(y)]

22�
‘

k50

1

k1l
[12Fk1l

L (y)]

1�
‘

k50

1

k1 2l
. (A9)

We remark that both the integration technique for rational

l and the infinite series technique are immediately applicable

also to the CRPS in a couple of other settings. These are (i) the

CRPS of a truncated skew-logistic distribution with any trun-

cation point, (ii) the threshold-weighted CRPS (twCRPS;

Gneiting and Ranjan 2011) of the skew-logistic distribution

with any threshold (when using an indicator weight function) and

(iii) the twCRPSof any truncated skew-logistic distribution. This

might be useful in futureworkwhen postprocessing nonnegative

meteorological variables such as wind speed or precipitation

and/or evaluating the tail of a forecast distribution. Compact

expressions for the CRPS and the twCRPS of the truncated lo-

gistic distribution (l5 1) have beenusedbyAllen et al. (2021) in

the postprocessing of ensemble wind speed forecasts.

However, it is not immediately obvious how to efficiently

utilize these expressions when numerically optimizing the

CRPS for a skew-logistic distribution. One approach would

be to employ symbolic algebra packages to evaluate the

CRPS of the skew-logistic distribution analytically for a se-

quence of rational shape parameters, at a range of possible

values of y. Interpolating this output would then provide a

smooth function that approximates the CRPS at values of

l and y. Then, using Eq. (15), numerical optimization rou-

tines could be used to optimize the smooth interpolant with

respect to the location, scale, and shape parameters over the

training dataset.

Alternatively, numerical optimization routines could use

finite approximations of the infinite series in Eq. (A9).

However, the repeated evaluation of this series is more time

consuming than computing the CRPS for normal and logistic

distributions in Eqs. (11) and (12). This is especially true when

large volumes of data are considered, as is the case here, since

the convergence of the series is slow when observations in the

training data lie in the extreme upper tail of the forecast dis-

tribution, which is more likely to occur when considering larger

archives of data. To illustrate this, Fig. A1 displays the CRPS

for a standard skew-logistic distribution with shape parameter

equal to one-half, approximated using the infinite series in

Eq. (A9) truncated at term K. Even with K 5 500, the series

approximation is not accurate in the extreme upper tail, and a

considerably larger number of terms is required to avoid this.

Increasing the number of terms in the series obviously

increases the time it takes to approximate the CRPS, pro-

hibiting its use in numerical optimization routines. To cir-

cumvent this, we introduce an approximation of the infinite

series in Eq. (A9) that uses a variable number of terms K

depending on the value of y:

K5

8<
:

25, y# 1:5,

100, 1:5, y# 3,

500, 3, y# 5:

(A10)

If y. 5, thenwemake use of the linearity of theCRPS for large y,

and approximate CRPS[L(0, 1, l), y] using CRPS[L(0, 1, l), 5]1
y 2 5, where CRPS[L(0, 1, l), 5] is evaluated using the series

with 500 terms. Figure A1 illustrates that even though at most

500 terms are used in the series using with approach, the re-

sulting approximation of the CRPS performs just as well as

that obtained using 100 000 terms in the series without

employing a linear extrapolation in the upper tail. Hence, the

optimization of the skew-logistic forecast distributions in

section 5b has been performed using this approximation to

the CRPS.
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