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Abstract. We study the predictability of chaotic conserva-  Several methods for quantifying predictability are in use.
tive and dissipative maps in the context of ensemble predicSome of these are based on the linearized system dynam-
tion. Finite-size perturbations around a reference trajectoryics. Characteristic numbers such as singular values of the lin-
are evolved under the full nonlinear system dynamics; thisearized propagator or local Lyapunov exponents describe the
evolution is characterized by error growth factors and inves-evolution of infinitesimally small initial perturbations around
tigated as a function of prediction time and initial perturba- a reference trajectorySgmith et al, 1999 and many refer-
tion size. The distribution of perturbation growth is studied. ences thereinkKalnay, 20029. The orientation of the initial

We then focus on the worst-case predictability, i.e., the max-error in state space is crucial. However, such methods can-
imum error growth over all initial conditions. The estimate not necessarily be expected to correctly capture the evolution
of the worst-case predictability obtained from the ensembleof finite initial perturbations, particularly for large prediction
approach is compared to the estimate given by the largedimes. The issue of finite initial errors can be tackled us-
singular value of the linearized system dynamics. For smalling ensembles, i.e., considering the evolution of an ensemble
prediction times, the worst-case error growth obtained fromof initial perturbations of finite size under the full nonlin-
the nonlinear ensemble approach is exponential with predicear dynamics of the system. Ensemble integrations are today
tion time; for large prediction times, a power-law dependenceroutinely used in operational numerical weather forecasting
is observed the scaling exponent of which depends systemafseeKalnay, 2002 for an overview). Again, the orientation
ically on the initial error size. The question is addressed ofof the initial perturbations is of crucial importance. The di-
how large an ensemble is necessary to reliably estimate theections of fastest error growth are of particular importance
maximum error growth factor. A power-law dependence of since they limit predictability. Two different methods of ini-
the error in the estimate of the growth factor on the ensembilédialising the ensemble have been established. Some groups
size is established empirically. Our results are valid for sev-use the fastest growing directions of the linearized system,
eral markedly different chaotic conservative and dissipativethe singular vectors, as initial errors for the ensemble inte-
systems, perhaps pointing to quite general features. grations Buizza 1996; others prefer a more involved pro-
cedure called breeding based on the full nonlinear system to
initialise the errorsToth and Kalnay1993 1997. Recently,

the structure of local bred vectors in geographical space has
been investigated and used to define a local dimension of at-
L i i , mospheric flow which, in some sense, carries information on
Prediction is a major goal in many areas of science. The, | yredictability Patil et al, 2003). A connection between
value of any predeon IS greatly gnhapced !f mforma_thn spatial degrees of freedom and prediction and predictability
abou_t the uncertainty assomgted Wlth_ it is _a_vallable. This iS55 also been found earligfraedrich et al.1995. Further-

sue is related to the dynamical predictability of a complex,,q e " conditional nonlinear optimal perturbations have been
system. As is well known predictability of a dynamical sys- g jied and compared with singular vectors in order to assess
tem may vary enormously across state space. For examply, o jynortance of the nonlinearity and to find initial pertur-

different current weather conditions lead to predictions Ofbations that will most probably lead to a certain future state

1 Introduction

different reliability. (Mu et al, 2003.
Correspondence tavl. Harle In the present paper, we study some basic problems as-
(m.harle@icbm.de) sociated with the evolution of finite-size errors in nonlinear
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168 M. Harle et al.: Growth of finite errors in ensemble prediction

dynamical systems. We restrict ourselves to low-dimensionalvere obtained with a particular initial distribution of ensem-
chaotic maps here which allow the investigation of very largeble states. Namely, all initial separations are of the same size,
ensembles and large prediction times. We discuss the errafy, the direction in state space is random with equal proba-
growth in ensemble prediction as a function of prediction bility for all directions. Other initial distributions were com-
time and initial perturbation size. Moreover, we address thepared against this choice: firstly, a uniformly random sep-
question of how large an ensemble is needed to obtain reliaration size<dp, and secondly Gaussian distributions with
able estimates of the error growth. standard deviatiodg in all coordinates, both with uniformly
The paper is organised as follows: In Sextve introduce  random direction. These alternative ways of initialising the
the concept of ensembles, as well as the quantities that arensemble were found to lead to almost the same distribu-
later used to quantify the predictability of the initial state. tions of the error growth factors and are therefore not dis-
Section3 gives a brief overview of the model systems stud- cussed in this study. In the case of high-dimensional models
ied, followed by the results in Seet. In particular, we will ~ of real-world processes such as numerical weather predic-
show that the error growth in the worst case depends on pretion, certain directions of initial error can be more probable
diction time in a systematic way. Furthermore, the distri- than others and the initial distribution of the ensemble should
butions of error growth factors converge with a characteris-be changed accordingly.
tic dependence on ensemble size, a fact that can help to de- The initial perturbation sizelp, together with the time
termine the minimal ensemble size needed for a given errohorizonz, are parameters that are varied to study predictabil-
margin. We close with a discussion in Sext. ity. It turned out that both of them have a strong influence on
the predictability. In practice, the sizé,nsof the ensemble
is very important since it is limited by the available comput-
ing power. Therefore, results for different valuesh\f,sare

. . . compared with each other to determine a minimal value of
In ensemble studies, not only a single trajectory of the system

; (
is followed over a certain period of time, but a whole bunch, Nenslneeded to ensure a reasonable estimaie g, for ex-
or ensemble, of trajectories. These are typically initialised2MP'€:
at some timeg around the current state vecto(ry) of the
reference trajectory (also called the “true” trajectory): 3 Model systems

2 Ensemble prediction and error growth factors

xjlto) =x(io) + €, j=1.... Nens @D the dynamical systems studied have to be simple enough to
Nensis the size of the ensemblg; (1o) denote the initial state  remain feasible even for large ensembles and long predic-
vectors of the ensemble members ancare the initial sep- ~ tion times. On the other hand, they ought to show typical
arations from the reference trajectory. All states, the refer-chaotic behaviour. Based on these premises, we chose two-
ence as well as all ensemble members, evolve according tdimensional chaotic maps. The standard map is a conserva-
the full nonlinear system dynamics. After some prediction tive system well studied in the context of Hamiltonian chaos
time z, for each ensemble member the error growth factor(Lichtenberg and Liebermat992 Chirikov, 1979:

mE.T) is calculated as the ratio between the distance from the

. S x1(ta41) = x1(tn) + x2(tn) (mod 2r)
: ; 3
reference trajectory and the initial distance: x2(th+1) = x2(ty) + K sin(x1(t,+1))  (mod 21). 3)

||xf(t°~+ P xlo+ Ol (2) The phase space of this sytem consists of islands of regu-
1% (t0) — x (o) | lar motion and layers of chaotic motion between the closed

Distances are measured in the Euclidian metric throughougurves of regular motion. The relative size of the chaotic
this paper. The error growth factors are used to characterl2yer depends on the nonlinearity parameterwe investi-
ize the predictability of the state(sg). To this end, the 9ate this system for two extreme casesKat0.6, a value

minimum, maximum and average growth faméﬁfn(x(to)), for which the chaotic layer is o<_:cupying avery small portion
(1) (1) of state space, and &=4.2, with the chaotic layer spread

n ma>_<(x (I.O)) andma"g(.x(tc’)) of the ensemble are considered. out over a large part of state space. The trajetory is always
To simplify the notation, we will from now on suppress the . ... . . : : .

o ) initialised in the chaotic layer. The dynamics of this system
explicit dependence of the error growth factm% onx(f0).  are shown in Figl for the parameter values considered here.
The maximal error growth facton iy obviously describes The quasiperiodicity mapQrebogi et al. 1985 is more
the worst case regarding predictability over the timeCor- involved and has the form

.retsponiinglymt%i)n stands fortt:e besthcalsotla, anéf,)gt can be X1(bur1) = x1(t) + c1 + capr(x () (mod D @
interpreted as the error growth one should expect on average,_, — o (t) 4 Co - (t mod
There are a number of free parameters to be set, some 0)%2( n1) = x2(tn) + €2+ c3p2(x () ( 3

which will be varied in order to study the dependence of pre-where we use the parameter sgts0.2, ¢=0.3, c3=0.6 and
dictability on their values. All results presented in Sekt. ¢1=0.42,¢>=0.3, c3=1.6. For these parameter sets, and for

mi” (x(10) =
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& Table. Parameter values used for the quasiperiodicity map.

i A; K;
S E 1 —-0.2681366365 0.9854608430
2 —0.9106755940 0.5044604561
3 0.3117202638 0.9470747252
4 —0.0400397884 0.2335010550
o o

i B; Ji
1 0.0881861167 0.9903072286
2 —0.5650288998 0.3363069701
) . 3 0.1629954873 0.2980492123
Fig. 1. Dynamics of the standard map Et=0.6 (left panel) and 4  —0.8039888198 0.1550646728

K=4.2 (right panel).

o
—

of the standard map, made us choose this system for our in-
vestigation. Another reason for comparing these systems will
become clear in the next section. Furthermore, comparing
different systems allows one to draw more general conclu-
sions than considering only one possibly special case.

The modulo operations are only applied once the distances
of ensemble states from the true state have been calculated.
This ensures that no artefacts are produced by shifting some
ensemble members that happened to cross the boundary of
the unit cell.

X2

Fig. 2. Dynamics of the quasiperiodicity map at parameter val- 4 Results

ues ofc1=0.2, ¢=0.3, ¢3=0.6 (left panel) and:1=0.42, ¢»=0.3,

c3=1.6 (right panel). In this section, we compare distributions of error growth fac-
torsm(™ as defined in Sec® and extract information about

. . .., thedependence of the worst-case predictability on prediction
the expressions fgr; andpz given below, the quasiperiodic- e - ‘and initial errordy. Also, we show a general conver-
ity map 1S dissipative. For the ,f'r5t pgra_meter values the Sy.s'gence behaviour of these distributions and present results for
tem is only very weakly chaotic, while in the second case Tihe minimal ensemble siz&™" needed for a given conver-
is considerably more chaotic and also more dissipative. Note)ocq jevel, i.e., a given orror

: . : ror margin
that parameters determines the strength of the nonlinearity. = 1 jnitial stateso contributing to the distributions of er-
An overview of the dynamics can be seen in Eg.

: " , ror growth factors are obtained by chopping up a long tra-
The nonlinearitiep, andp> are given by jectory (1@ iterations) into consecutive pieces of length
Thus, the number of initial states for a prediction time hori-

_ 1 i
p1(x(tn)) = E( A1 sin(2r (x1(tn) + K1)+ zon oft is 1P/z. All results are based on the same initial

Az Sin(2r (x2(tn) + K2))+ distributions for each.
A3 SiN2r (x1(tn) + x2(tn) + K3))+ The maximum error growth factor over the ensemble,
AgSin(2m (x1(ty) — x2(t,) + K4))) , mﬁf,gx is arguably the most important of the statistical quan-

) tities considered, since it is the one that limits predictability

] (Ziehmann et a).2000. Large enough an ensemble is re-
Bz sin2n (xa(tn) + J2))+ quired to obtain a good estimate mfr. It will be shown
Basin(Z (xa(t) + x2(t) + J3)) + below that the quantitiear(ﬁgx, mfgl)n andmé%— that can all

By sin(2m (x1(ty) — x2(tn) + J4))> . be regarded as measures of predictability — are not equally

costly to determine up to a specified error margin.

pa(x(t)) = 2 ( Bisin@r(xa(ny) + J)+

The values of the constants, K;, B;, J; are shown in Ta-

ble 1. 4.1 Distributions of error growth factors

At these parameter values, there exists a chaotic layer cov-
ering almost the whole state space of the system. This, alongfter calculating the error growth factors for many initial
with its structure that is substantially more complex than thatstates in the chaotic layer, one can get a first impression of
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Fig. 3. Standard mapK=0.6): Distributions of error growth fac-  Fig. 4.  As Fig. 3, but for the quasiperiodicity map{=0.2,

tors miphx (solid), m") (dashed) anehlyy (dotted) forr=1 (top) ~ c3=0.3,c3=0.6).

andr=2 (bottom). Ensemble size Mens=20 000; initial perturba-

tion size isdp=0.001.
On the other hand, the quasiperiodicity map exhibits more
Gaussian-like distributions, cut off =0 in the case of

the occurring values by looking at the distributionmﬁn, mgl)n This difference expresses a fundamental difference of

m4gandmidy. The corresponding histograms are shown in the underlying dynamical systems, enabling us to draw gen-

Fig. 3 for the standard map and in Figsfor the quasiperiod- ~ €ral conclusions not restricted to the particular systems under

icity map. In the case of the standard map the distribution ofinvestigation. _

m%)ﬂ does not change its general structure when going from It should _be noted that for the standard_ map, Fh.e size of
t the system i€sig=27, whereas for the quasiperiodicity map

t=1 to =2, but the small values become more frequen heref A fih bsol
Likewise, the high values ofia increase in weight. The bop=1. Therefore, initial errors of the same absolute sige
have different relative sizes for the different systems.

distributions oﬁng,)g andmﬁﬁgxgenerally become broader and

flatter and are shifted towards higher values when increasing , Dependence of the worst-case error growth on predic-
the prediction time. For the quasiperiodicity map the broad- tion time and initial perturbation size
ening and shifting is much more pronounced ;ﬁv)g,)g and

mthx. For mr('r;)n the same behaviour can be seen as in thewe now focus on the right end of the distribution/ofpiy,

standard map, small values are found more often. i.e., the largest error growth factor found when comparing all
These figures clearly show an important difference be-initial positions,m ™)

tween the two systems: The distributions for the standard @ _ )

map have very sharp peaks near the ends of the distributiond? = Q}g;‘ Mmax(* (10))- ®)
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Fig. 5. Standard mapK =4.2): Dependence off™ ont. The

curves represent different valuesdgf, from 104 (top) to 3x1071

(bottom). The dotted line shows an exponential increase, see text 10°
for details.t is shown on a logarithmic scale.

=

10

. Fig. 7. Comparison o (¥ (symbols) and: (™ (solid line) for the
standard mapK=4.2; upper panel) and the quasiperiodicity map
(c1=0.42,¢2=0.3, c3=1.6; lower panel).

Fig. 6. As Fig. 5, but for the quasiperiodicity map{=0.42,  comparison, the dotted line in Figs.and6 shows(c®)",
c2=0.3, c3=16). Here, the values ofy range from 10 (top)  wheres @ is the largest singular value of the linearized map
to 210" (bottom). For some values @, M(*) was only calcu-  for one time step. This means that foe 1, the error grows at
lated for 1G:7<20. most by a factor of ¥, provided the linearisation is valid. If,
after one iteration, the error lies in the direction of maximal

This quantity represents the worst case for a prediction of 11or growth of the new state(ro+1), the growth over two

. . . 2 Ly
time = when the initial state is not known. The dependenceiterations will be(c?)“. Thus, the fact that the solid lines
of M@ ont is shown in Fig5 for the standard map and in are below the dotted lines in Figsand6 seems reasonable,
Fig. 6 for the quasiperiodicity map. The plots clearly show because errors will very rarely happen to point in the least

an exponential increase for small values of predictable directions over several iterations.
For small initial errorsdy and short times one expects Actually, it is more appropriate to compab&™ with o (),
a growth of M according to the singular Va|u1a1(f> of the the largest singular value when linearizing the map aver
linear propagator over iterationsJ?: steps. This gives an indication of where the linearisation
breaks down. For example, in the case of the quasiperiodicity
ol.(t)(x(to)) = ‘ J" (x(t0)) vl@(x(to))H @) map this happens at=4 or r=5 for do=10"2 but already at

t=2 for do=10"1 (Fig. 7). The influence of the nonlinearity
whereJ" is the product of Jacobians along the trajectory anddoes not lead to an increase of error growth. In fact the errors
vf’)(x (1)) are the right singular vectors with moduli 1. For do not grow as fast as in the linear system, which can already

www.nonlin-processes-geophys.net/13/167/2006/ Nonlin. Processes Geophys., 13618066
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10°

10°15 I I I I I I I I I I
10 20 50 100 1000 10000

Nens

Fig. 9. Standard mapK =0.6): Convergence of estimatesmﬁ%x
o (circles) with ensemble size

(squares)mayg (diamonds) andnﬁgi)n
characterized by linear correlationt=1; dp=0.2.

4.3 Minimal ensemble size

In order to define a minimal siz&" of an ensemble, one
needs a quantitative measure of how close the results for a
given ensemble siz&ens are to the hypothetical results for
an infinite ensemble. Thi¥Zhe will of course depend on the
prediction timer and the size of the initial errafy. In the
following, we will use the largest ensemblgd,s=20 000) as
areference, because it is our best approximation to an infinite
ensemble. Results for smaller ensembles are judged by how
close they are to the reference. Measurement of this close-
ness or “convergence” of ensembles is done in two ways,

and the quasiperiodicity mapy=0.42, c—03, c3=16: lower one using the full spatially-resolved data, and one using his-

. ; ) tograms.
panel), based on Fig5.and6. Linear least-squares fits were made i L
for z>10 in those figures, except for the quasiperiodicity map at 1 Ne first approach looks at each initial stagand com-

Fig. 8. Double-logarithmic plot of scaling exponeatof M ()
for large . Results for the standard mag £4.2; upper panel)

do=10"* where onlyt>12 were used; error bars represent one pares results for, saymﬁﬁéyNe”s(xo) obtained by using dif-
standard deviation. ferent ensemble sizes with the corresponding value for the
reference ensembléz,,(ﬁgx(xo)zmggafv ensZZOOOO(xo).
Measurement of convergence of the ensemble is done by

be guessed from looking at Figsand6. This is due to the  calculating the linear correlatim”betweennﬁ,ﬁ;;(Ne“S(xo) and

folding in state space that occurs because of the nonlinearityaggx(xc,) for all xo, giving an ideal value of=1 for ex-

The behaviour o™ for large times is qualitatively dif- actly proportional data sets ame=0 for uncorrelated data

ferent. The double-logarithmic plots of Figsand6 suggest ~ Sets. Thus, 4r is the error introduced by using a finite en-
a power-law semble size. Its dependence Bg,sis shown in Figs9 and
10for the standard map & =0.6 andK=4.2, respectively,
and for the quasiperiodicity map in Figkl and12. For en-
M® ~ e, (8) sembles that are large enough, a power-law decrease of 1
can be seen in all cases. Fo f,)g, this is valid over the en-
tire range ofNens but the error 1-r is typically orders of

(7)

Values of the exponent were obtained from the intervale ) 9
magnitude larger than the errors fﬂhﬂn andmmax-

[10, 20] (except for the smallesty in the quasiperiodicity
map) and are shown in Fi§. A power-law dependence af If the ensemble is very small, the errorrﬂ;ﬁ;i)n can remain
ondp is found to agree well with the data. almost constant at a high value, especially in the case of the
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10°° b . 109 i
10.12 | a 10—12 | _
10715 [ 1 1 1 1 1 1 1 1 L] 10715 L | | | 1 1 1 1 1 L
10 20 50 100 1000 10000 10 20 50 100 1000 10000
Nens Nens
Fig. 10. As Fig.9, but for the standard map &t=4.2. Fig. 12. As Fig. 9, but for the quasiperiodicity map{=0.42,
¢2=0.3, c3=1.6).
100 I I I I I I I I I I
N ] tors m over initial error orientation. Therefore it becomes
103 | i more difficult to find the global maximum, i.en,ﬂf.;x.
C 7 The power-law behaviour mentioned above, obeyed for
_10°8 F _ large Nens can be expressed as a scaling expopent
- B i
10'9 I~ — l —r ~ Nensy. (9)
1012 - . This exponent is extracted from the data shown in Fgs.
N ] 12, for example, by applying a linear least squares fit over a
10715 - S S - suitable interval ofVens The values of/ for mg% andmr(ﬁgx
10 20 50 100 1000 10000 are plotted in Figl3for r=1 andr=>5. We find that for 5y,
Nens the scaling exponent is constant and close tel for a wide

range of initial errorsiyp and prediction times. Formﬁﬁ;x,
however, the behaviour for larger times is different, showing
an increase for already quite large errdgsin the case of
the standard map. In these casesr Hoes not reach as low
values as for smalledp, so the higher values gf can be

standard map ak'=4.2. The range of ensemble sizes for e resylt of incomplete convergence towards the asymptotic
which this behaviour occurs extends towards increadigg (1)

. . behaviour. For the quasiperiodicity m remains close
for larger timest (not shown), whereas it depends only very d P Y Mafax

K do. In th ineriodici his al to —4 for almost the whole range ab, even up to higher
weakly ondo. '(q,)t € quasiperiodicity map, this almost con- g1 e of7. One has to keep in mind that fitting a straight

stant error ofn;;, can never be found as pronounced as in jine 1o the data is not straightforwardd andr are too large.
the case of the standard map. The error bars in Figl3 reflect this uncertainty.

We find that when the initial errors are small, omfy), The second approach to measuring the convergence of the
depends considerably on This is most likely due to the results regarding the ensemble size does not use the spatial
dependence of the error growth facterson the initial per-  jnformation contained in the data. This means that the val-
turbation direction in state space. If the smallest vahﬁn ues Ofmg%x, for example, are not associated with the state
is attained only for a narrow interval of initial directions, to which they originally belong. Instead, the data is stored in
small ensembles can be expected to produce a bad estimatgstograms. These can then be compared for different ensem-
of mﬁﬁi)n. When initial errors are not smamﬁﬁgx also shows ble sizesNens Where the largest ensemble is again used as a
a strong dependence an This comes from the fact that reference. In order to determine the convergence of the en-
longer prediction times together with larger initial errors cre- semble, we calculate the relative entropy between pairs

ate many more peaks in the distribution of error growth fac-of histograms. The relative entropy of a distributip(w)

Fig. 11. As Fig. 9, but for the quasiperiodicity map{=0.2,
¢2=0.3, ¢3=0.6).

www.nonlin-processes-geophys.net/13/167/2006/ Nonlin. Processes Geophys., 13618066
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0.00001 0.0001 0.001 0.01 0.10.3

10—9 | | | | | | | | | |
0.001 0.003 0.01 0.1 0.3 10 20 50 100 1000 10000

dg Nens

Fig. 13. Scaling exponent of 1—r for largeNens Top panelisfor ~ Fig. 14. Relative entropye| for the standard map(=0.6), r=1,

the standard mapk(=4.2), bottom panel for the quasiperiodicity dO( )0 .001 (upper(p?nel) andy=0. 2((I§)wer panel). Points are for
T

map ¢1=0.42, c=0.3, c3=1.6). The points shown Ay (Squares)  max (Sauares)payg (circles) andn i (diamonds).

andméﬁ,)g (diamonds), solid lines connect points foe1, dotted
lines fort=>5. Error bars indicate two standard deviations.
too, but not as clearly. This fact can be attributed to the loss
. . . ' of information that occurs when one puts all data in one his-
with respect to a reference distributi is defined as s .

P g0m) togram and forgets about the spatial information. For the
p(m) (10) relative entropy, the convergencemf;i)n is almost as good

qg(m)’ as the one ofz{th but this holds only for sufficently small

where in our caseg(m) is the reference histogram of a large do andr.

ensemble, ang(m) is the histogram for a smaller ensemble  In addition, a y-statistic was computed from the his-
Size_ The relative entropy can be interpreted as the amour{pgrams obtained with different ensemble sizes. This turned
of information lost due to the finiteness of the ensemble. It isOut to behave in the same qualitative way as the relative en-
widely used and has a sound theoretical badsngerkamp  tropy. Therefore, itis considered no more useful for our pur-
1994). For identical distributions a value ofe=0 is ob-  POse than the measures already introduced.

tained. The results for the standard map are shown inl&ig. For practical purposes, the asymptotic behaviour of the er-
(cf. Fig. 9 for the corresponding linear correlation data). The ror growth factors with respect to ensemble size is not very
analogous graphs for the quasiperiodicity map are plotted irhelpful. What is helpful, however, is the actual ensemble size
Fig. 15 (cf. Fig. 12). Overall, the behaviour cfe is less  needed for the error to drop below a predefined margin, say,
systematic than that of the linear correlation coefficient. Thee=10-3. Defining this error again as the deviation from the
power law-behaviour found for the latter can be seen herecaseNens=20 000, we arrive at the values shown in Fig.

srel(plg) = / dm pGm)In 20
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Fig. 15. As Fig. 14, but for the quasiperiodicity map{=0.42,

Fig. 16. Minimal ensemble sizevin needed for the error
¢2=0.3, c3=1.6). 9 ens

in mﬁﬁgx to drop below a given margia. Calculated from data

as shown in Figs9-12, using linear interpolation in the double-
(7)

for m{%y. For larger initial errorsl, one finds yet another logarithmic plot. Top panel shows results for the standard map
power law, (K =4.2) with e<10~°, bottom panel for the quasiperiodicity map

_ (c1=0.42, cp=0.3, c3=1.6) with e <10~3.
Nghe ~ do”, (11)

for small tq |nt(=Trmed|ate9 prediction tlmes. Even smaller  gemple Sizé\’é“niQ, the results for the Bnon map show much
error margins, like=10"", were also considered, but these |ggg dependence ag. N™1 increases less than one order of
. ens

eventually lead to a levelling off at the largest ensemble Siz%agnitude for a change df from 105 to 0.3 and 7 <5.
used. In all cases considered we found a regiotyefalues T

indicative of the power law in Eql1@). From the investiga-
tions done so far, a simple dependencg afin r or ¢ could 5 Conclusions
not be established.

Apart from the systems for which results have been shownwie studied the growth of errors in two paradigmatic chaotic
we have also done the same studies for tfendh map  systems, the standard map and the quasiperiodicity map, that
(Hénon 1976 or seelichtenberg and Liebermari992.  differ significantly in their distributions of local error growth
At the parameter values we usatk=1.4 andb=0.3, this  factors. To this end, we followed ensembles of sizgsfor
system is strongly dissipative and exhibits a chaotic attraca timer, with all ensemble members initialised with a fixed
tor. Despite these fundamental differences from the othekrror magnitude oflg.
systems considered, the same qualitative results have beenwe have shown that the error growth of the worst case, i.e.,
found. Specifically, the scaling exponent ofdis y~—1  the largest error growth factar ™, depends on the predic-

for mg,)g and y~—4 for m,(ﬁgx Regarding the minimal en- tion timet in a systematic way. For small times, there is an
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exponential increase according to the largest singular valuégems as well. Furthermore, minimal ensemble sizes needed
of the linearized map. This does no longer hold if the predic-for a given error margin can be estimated using a few ensem-
tion time is large. Then one observes a crossover to a regimbles at small prediction times and typical error valuegy.

of power-law growthM ®~t%. The scaling exponent of These findings can be of help in deciding on the usefulness
this power law has been found to depend on the gjzef of increasing the ensemble size.

initial errors, presumably according to a power law as well.

To find a minimal ensemble siZég‘,fQ needed for reliable Acknowledgementsie wish to thank J. Kurths, A. Politi and
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For the linear correlation coefficient, a power-law has beenReviewed by: J. Anderson and another referee
shown to exist for large ensemble sizes;rt~Nend. The
scaling exponeny is constant over a wide range of initial
error sizesly and prediction times, at values ofy~—1 for

the mean error growth ang~—4 for the maximum eror  p,;i;75 R.: Optimal perturbation time evolution and sensitivity of
growth. A dependence of ondp may only arise forr and ensemble prediction to perturbation amplitude, Quart. J. Roy.
do large enough. Meteorol. Soc., 121, 1705-1738, 1996.

Of course, this only addresses the presumably asymptoti€hirikov, B. V.: A universal instability of many-dimensional oscil-
behaviour ofy. The absolute value of the error, the error _ lator systems, Phys. Rep., 52, 263-379, 1979. _
made by using a rather small ensemble, need not directly reI_:raedrlch, K., Ziehmann, C., gnd Sielmann, F.: Estimates of Spatial
late to the value of . For the cases studied herein, the maxi- _ Degrees of Freedom, J. Climate, 8, 361-369, 1995.

() - . . Grebogi, C., Ott, E., and Yorke, J.: Attractors on Antorus:
m‘!m error grOWth"m&}X'S typlc_ally the one conv_ergmg mqst Quasiperiodicity versus Chaos, Physica D, 15, 354—-373, 1985.
quickly. It can be reliably estimated with only intermediate parie, M. and Feudel, U.: On the relation between predictability
ensemble sizes. Or, conversely, for a given error maegin and homoclinic tangencies, Int. J. Bif. Chaos, 15, 2523-2534,
the minimal ensemble siz€J\¢ is not very large. 2005.

As alternatives to ensembles, predictability can be de-Hénon, M.: A two-dimensional mapping with a strange attractor,
scribed by local divergence rates calculated from the lin- Commun. Math. Phys., 50, 69-77, 1976. _
earised system. Different definitions of such rates are in use;ionerkamp, J.: Stochastic Dynamical Systems, Wiley-VCH, 1994.
like local Lyapunov exponents or maximum growth expo-  <ainay, E.. Atmospheric modeling, data assimilation and pre-
nentsp, the latter being defined on the basis of singular vaI-L. dictability, Cambrndge_ University Pres§, 2002. _

. ichtenberg, A. J. and Lieberman, M. A.: Regular and Chaotic Dy-
ueso qf the_z Jacobian. For very small errofs gnd short namics, Springer, Berlin, second edn., 1992.
prediction timest, one expects ensemble studies and IocaIMu, M., Duan, W. S., and Wang, B.: Conditional nonlinear op-
exponents to yield the same results. However, the choice of timal perturbation and its applications, Nonlin. Processes Geo-
local exponent does matter, as different definitions can lead phys., 10, 493-501, 2003, mbutp://www.nonlin-processes-
to different outcomes. The local Lyapunov exponents, for geophys.net/10/493/2003/
example, show a connection to other dynamical properties oPatil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A., and Ott, E.: Local
the system such as homoclinic tangenciar{e and Feudel Low Dimensionality of Atmospheric Dynamics, Phys. Rev. Lett.,
2009. On the other hand, the maximum growth exponents 86, 5878-5881, 2001. _ _
are a purely local quantity, in the sense that they dependsn_“th’ L. A, Zlghmg_nn,_c., and'Fraedrlch, K.: Uncertainty dynam-
only on the systems states visited during the time span ics and predictability in chaotic systems, Quart. J. Roy. Meteorol.

. . . . Soc., 125, 2855-2886, 1999.
Since they are defined through the singular values, there iS0th 7. and Kalnay, E.. Ensemble forecasting at NMC: the gen-

a clear correspondence betweeffax and the largest maxi-  eration of perturbations, Bull. Amer. Meteorol. Soc., 74, 2317—
mum growth exponent for the same initial state. This corre- 2330, 1993.

spondence breaks down, as expected, wigear r becomes  Toth, Z. and Kalnay, E.: Ensemble Forecasting at NCEP and the
too large. Breeding Method, Mon. Wea. Rev., 125, 3297-3319, 1997.

In conclusion, we note that the determination of a minimal Ziehmann, C., Smith, L. A., and Kurths, J.: Localized Lyapunov
ensemble size for a given purpose and, consequently, for a exponents and the prediction of predictability, Phys. Lett. A, 271,
given acceptable error is always system-dependent. In prac- 237-251, 2000.
tice, the choice of ensemble size is often based on feasibility
and experience. There does not seem to be any hard and fast
rule about this. Still, the behaviour of the scaling exponent
is a general one that can be expected to be found in other sys-
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