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Abstract. We study the predictability of chaotic conserva-
tive and dissipative maps in the context of ensemble predic-
tion. Finite-size perturbations around a reference trajectory
are evolved under the full nonlinear system dynamics; this
evolution is characterized by error growth factors and inves-
tigated as a function of prediction time and initial perturba-
tion size. The distribution of perturbation growth is studied.
We then focus on the worst-case predictability, i.e., the max-
imum error growth over all initial conditions. The estimate
of the worst-case predictability obtained from the ensemble
approach is compared to the estimate given by the largest
singular value of the linearized system dynamics. For small
prediction times, the worst-case error growth obtained from
the nonlinear ensemble approach is exponential with predic-
tion time; for large prediction times, a power-law dependence
is observed the scaling exponent of which depends systemat-
ically on the initial error size. The question is addressed of
how large an ensemble is necessary to reliably estimate the
maximum error growth factor. A power-law dependence of
the error in the estimate of the growth factor on the ensemble
size is established empirically. Our results are valid for sev-
eral markedly different chaotic conservative and dissipative
systems, perhaps pointing to quite general features.

1 Introduction

Prediction is a major goal in many areas of science. The
value of any prediction is greatly enhanced if information
about the uncertainty associated with it is available. This is-
sue is related to the dynamical predictability of a complex
system. As is well known predictability of a dynamical sys-
tem may vary enormously across state space. For example,
different current weather conditions lead to predictions of
different reliability.
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Several methods for quantifying predictability are in use.
Some of these are based on the linearized system dynam-
ics. Characteristic numbers such as singular values of the lin-
earized propagator or local Lyapunov exponents describe the
evolution of infinitesimally small initial perturbations around
a reference trajectory (Smith et al., 1999 and many refer-
ences therein;Kalnay, 2002). The orientation of the initial
error in state space is crucial. However, such methods can-
not necessarily be expected to correctly capture the evolution
of finite initial perturbations, particularly for large prediction
times. The issue of finite initial errors can be tackled us-
ing ensembles, i.e., considering the evolution of an ensemble
of initial perturbations of finite size under the full nonlin-
ear dynamics of the system. Ensemble integrations are today
routinely used in operational numerical weather forecasting
(seeKalnay, 2002, for an overview). Again, the orientation
of the initial perturbations is of crucial importance. The di-
rections of fastest error growth are of particular importance
since they limit predictability. Two different methods of ini-
tialising the ensemble have been established. Some groups
use the fastest growing directions of the linearized system,
the singular vectors, as initial errors for the ensemble inte-
grations (Buizza, 1996); others prefer a more involved pro-
cedure called breeding based on the full nonlinear system to
initialise the errors (Toth and Kalnay, 1993, 1997). Recently,
the structure of local bred vectors in geographical space has
been investigated and used to define a local dimension of at-
mospheric flow which, in some sense, carries information on
local predictability (Patil et al., 2001). A connection between
spatial degrees of freedom and prediction and predictability
has also been found earlier (Fraedrich et al., 1995). Further-
more, conditional nonlinear optimal perturbations have been
studied and compared with singular vectors in order to assess
the importance of the nonlinearity and to find initial pertur-
bations that will most probably lead to a certain future state
(Mu et al., 2003).

In the present paper, we study some basic problems as-
sociated with the evolution of finite-size errors in nonlinear
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dynamical systems. We restrict ourselves to low-dimensional
chaotic maps here which allow the investigation of very large
ensembles and large prediction times. We discuss the error
growth in ensemble prediction as a function of prediction
time and initial perturbation size. Moreover, we address the
question of how large an ensemble is needed to obtain reli-
able estimates of the error growth.

The paper is organised as follows: In Sect.2 we introduce
the concept of ensembles, as well as the quantities that are
later used to quantify the predictability of the initial state.
Section3 gives a brief overview of the model systems stud-
ied, followed by the results in Sect.4. In particular, we will
show that the error growth in the worst case depends on pre-
diction time in a systematic way. Furthermore, the distri-
butions of error growth factors converge with a characteris-
tic dependence on ensemble size, a fact that can help to de-
termine the minimal ensemble size needed for a given error
margin. We close with a discussion in Sect.5.

2 Ensemble prediction and error growth factors

In ensemble studies, not only a single trajectory of the system
is followed over a certain period of time, but a whole bunch,
or ensemble, of trajectories. These are typically initialised
at some timet0 around the current state vectorx(t0) of the
reference trajectory (also called the “true” trajectory):

x̃j (t0) = x(t0) + εj , j = 1, . . . , Nens (1)

Nensis the size of the ensemble,x̃j (t0) denote the initial state
vectors of the ensemble members andεj are the initial sep-
arations from the reference trajectory. All states, the refer-
ence as well as all ensemble members, evolve according to
the full nonlinear system dynamics. After some prediction
time τ , for each ensemble member the error growth factor
m

(τ )
j is calculated as the ratio between the distance from the

reference trajectory and the initial distance:

m
(τ )
j (x(t0)) =

‖x̃j (t0 + τ) − x(t0 + τ)‖

‖x̃j (t0) − x(t0)‖
(2)

Distances are measured in the Euclidian metric throughout
this paper. The error growth factors are used to character-
ize the predictability of the statex(t0). To this end, the
minimum, maximum and average growth factorm

(τ )
min(x(t0)),

m
(τ )
max(x(t0)) andm

(τ )
avg(x(t0)) of the ensemble are considered.

To simplify the notation, we will from now on suppress the
explicit dependence of the error growth factorsm

(τ )
j onx(t0).

The maximal error growth factorm(τ )
max obviously describes

the worst case regarding predictability over the timeτ . Cor-
respondingly,m(τ )

min stands for the best case, andm
(τ )
avg can be

interpreted as the error growth one should expect on average.
There are a number of free parameters to be set, some of

which will be varied in order to study the dependence of pre-
dictability on their values. All results presented in Sect.4

were obtained with a particular initial distribution of ensem-
ble states. Namely, all initial separations are of the same size,
d0, the direction in state space is random with equal proba-
bility for all directions. Other initial distributions were com-
pared against this choice: firstly, a uniformly random sep-
aration size≤d0, and secondly Gaussian distributions with
standard deviationd0 in all coordinates, both with uniformly
random direction. These alternative ways of initialising the
ensemble were found to lead to almost the same distribu-
tions of the error growth factorsm and are therefore not dis-
cussed in this study. In the case of high-dimensional models
of real-world processes such as numerical weather predic-
tion, certain directions of initial error can be more probable
than others and the initial distribution of the ensemble should
be changed accordingly.

The initial perturbation sized0, together with the time
horizonτ , are parameters that are varied to study predictabil-
ity. It turned out that both of them have a strong influence on
the predictability. In practice, the sizeNens of the ensemble
is very important since it is limited by the available comput-
ing power. Therefore, results for different values ofNensare
compared with each other to determine a minimal value of
Nensneeded to ensure a reasonable estimate ofm

(τ )
max, for ex-

ample.

3 Model systems

The dynamical systems studied have to be simple enough to
remain feasible even for large ensembles and long predic-
tion times. On the other hand, they ought to show typical
chaotic behaviour. Based on these premises, we chose two-
dimensional chaotic maps. The standard map is a conserva-
tive system well studied in the context of Hamiltonian chaos
(Lichtenberg and Lieberman, 1992; Chirikov, 1979):

x1(tn+1) = x1(tn) + x2(tn) (mod 2π)

x2(tn+1) = x2(tn) + K sin(x1(tn+1)) (mod 2π) .
(3)

The phase space of this sytem consists of islands of regu-
lar motion and layers of chaotic motion between the closed
curves of regular motion. The relative size of the chaotic
layer depends on the nonlinearity parameterK. We investi-
gate this system for two extreme cases: atK=0.6, a value
for which the chaotic layer is occupying a very small portion
of state space, and atK=4.2, with the chaotic layer spread
out over a large part of state space. The trajetory is always
initialised in the chaotic layer. The dynamics of this system
are shown in Fig.1 for the parameter values considered here.

The quasiperiodicity map (Grebogi et al., 1985) is more
involved and has the form

x1(tn+1) = x1(tn) + c1 + c3p1(x(tn)) (mod 1)
x2(tn+1) = x2(tn) + c2 + c3p2(x(tn)) (mod 1)

(4)

where we use the parameter setsc1=0.2,c2=0.3,c3=0.6 and
c1=0.42, c2=0.3, c3=1.6. For these parameter sets, and for
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Fig. 1. Dynamics of the standard map atK=0.6 (left panel) and
K=4.2 (right panel).
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Fig. 2. Dynamics of the quasiperiodicity map at parameter val-
ues ofc1=0.2, c2=0.3, c3=0.6 (left panel) andc1=0.42, c2=0.3,
c3=1.6 (right panel).

the expressions forp1 andp2 given below, the quasiperiodic-
ity map is dissipative. For the first parameter values the sys-
tem is only very weakly chaotic, while in the second case it
is considerably more chaotic and also more dissipative. Note
that parameterc3 determines the strength of the nonlinearity.
An overview of the dynamics can be seen in Fig.2.

The nonlinearitiesp1 andp2 are given by

p1(x(tn)) =
1

2π

(
A1 sin(2π(x1(tn) + K1))+

A2 sin(2π(x2(tn) + K2))+

A3 sin(2π(x1(tn) + x2(tn) + K3))+

A4 sin(2π(x1(tn) − x2(tn) + K4))
)

,

p2(x(tn)) =
1

2π

(
B1 sin(2π(x1(tn) + J1))+

B2 sin(2π(x2(tn) + J2))+

B3 sin(2π(x1(tn) + x2(tn) + J3))+

B4 sin(2π(x1(tn) − x2(tn) + J4))
)

.

(5)

The values of the constantsAi , Ki , Bi , Ji are shown in Ta-
ble 1.

At these parameter values, there exists a chaotic layer cov-
ering almost the whole state space of the system. This, along
with its structure that is substantially more complex than that

Table. Parameter values used for the quasiperiodicity map.

i Ai Ki

1 −0.2681366365 0.9854608430
2 −0.9106755940 0.5044604561
3 0.3117202638 0.9470747252
4 −0.0400397884 0.2335010550

i Bi Ji

1 0.0881861167 0.9903072286
2 −0.5650288998 0.3363069701
3 0.1629954873 0.2980492123
4 −0.8039888198 0.1550646728

of the standard map, made us choose this system for our in-
vestigation. Another reason for comparing these systems will
become clear in the next section. Furthermore, comparing
different systems allows one to draw more general conclu-
sions than considering only one possibly special case.

The modulo operations are only applied once the distances
of ensemble states from the true state have been calculated.
This ensures that no artefacts are produced by shifting some
ensemble members that happened to cross the boundary of
the unit cell.

4 Results

In this section, we compare distributions of error growth fac-
torsm(τ ) as defined in Sect.2 and extract information about
the dependence of the worst-case predictability on prediction
time τ and initial errord0. Also, we show a general conver-
gence behaviour of these distributions and present results for
the minimal ensemble sizeNmin

ens needed for a given conver-
gence level, i.e., a given error marginε.

The initial statesx0 contributing to the distributions of er-
ror growth factors are obtained by chopping up a long tra-
jectory (105 iterations) into consecutive pieces of lengthτ .
Thus, the number of initial states for a prediction time hori-
zon of τ is 105/τ . All results are based on the same initial
distributions for eachτ .

The maximum error growth factor over the ensemble,
m

(τ )
max, is arguably the most important of the statistical quan-

tities considered, since it is the one that limits predictability
(Ziehmann et al., 2000). Large enough an ensemble is re-
quired to obtain a good estimate ofm

(τ )
max. It will be shown

below that the quantitiesm(τ )
max, m

(τ )
min andm

(τ )
avg – that can all

be regarded as measures of predictability – are not equally
costly to determine up to a specified error margin.

4.1 Distributions of error growth factors

After calculating the error growth factors for many initial
states in the chaotic layer, one can get a first impression of
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Fig. 3. Standard map (K=0.6): Distributions of error growth fac-

torsm
(τ )
max (solid), m(τ )

min (dashed) andm(τ )
avg (dotted) forτ=1 (top)

andτ=2 (bottom). Ensemble size isNens=20 000; initial perturba-
tion size isd0=0.001.

the occurring values by looking at the distribution ofm
(τ )
min,

m
(τ )
avg andm

(τ )
max. The corresponding histograms are shown in

Fig. 3 for the standard map and in Fig.4 for the quasiperiod-
icity map. In the case of the standard map the distribution of
m

(τ )
min does not change its general structure when going from

τ=1 to τ=2, but the small values become more frequent.
Likewise, the high values ofm(τ )

max increase in weight. The
distributions ofm(τ )

avgandm
(τ )
maxgenerally become broader and

flatter and are shifted towards higher values when increasing
the prediction time. For the quasiperiodicity map the broad-
ening and shifting is much more pronounced form

(τ )
avg and

m
(τ )
max. For m

(τ )
min, the same behaviour can be seen as in the

standard map, small values are found more often.

These figures clearly show an important difference be-
tween the two systems: The distributions for the standard
map have very sharp peaks near the ends of the distributions.

0

0.02

0.04

0 1 2

re
l. 

fr
eq

ue
nc

y

m

0

0.02

0.04

0 2 4

re
l. 

fr
eq

ue
nc

y

m

Fig. 4. As Fig. 3, but for the quasiperiodicity map (c1=0.2,
c2=0.3, c3=0.6).

On the other hand, the quasiperiodicity map exhibits more
Gaussian-like distributions, cut off bym=0 in the case of
m

(τ )
min. This difference expresses a fundamental difference of

the underlying dynamical systems, enabling us to draw gen-
eral conclusions not restricted to the particular systems under
investigation.

It should be noted that for the standard map, the size of
the system is̀Std=2π , whereas for the quasiperiodicity map
`Qp=1. Therefore, initial errors of the same absolute sized0
have different relative sizes for the different systems.

4.2 Dependence of the worst-case error growth on predic-
tion time and initial perturbation size

We now focus on the right end of the distribution ofm
(τ )
max,

i.e., the largest error growth factor found when comparing all
initial positions,M(τ ):

M(τ )
= max

x(t0)
m(τ )

max(x(t0)). (6)
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Fig. 5. Standard map (K=4.2): Dependence ofM(τ ) on τ . The
curves represent different values ofd0, from 10−4 (top) to 3×10−1

(bottom). The dotted line shows an exponential increase, see text
for details.τ is shown on a logarithmic scale.
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Fig. 6. As Fig. 5, but for the quasiperiodicity map (c1=0.42,
c2=0.3, c3=1.6). Here, the values ofd0 range from 10−4 (top)
to 2×10−1 (bottom). For some values ofd0, M(τ ) was only calcu-
lated for 10≤τ≤20.

This quantity represents the worst case for a prediction of
time τ when the initial state is not known. The dependence
of M(τ ) on τ is shown in Fig.5 for the standard map and in
Fig. 6 for the quasiperiodicity map. The plots clearly show
an exponential increase for small values ofτ .

For small initial errorsd0 and short timesτ one expects
a growth ofM(τ ) according to the singular valueσ (τ )

1 of the
linear propagator overτ iterationsJτ :

σ
(τ )
i (x(t0)) =

∥∥∥Jτ (x(t0)) v
(τ )
i (x(t0))

∥∥∥ (7)

whereJτ is the product of Jacobians along the trajectory and
v

(τ )
i (x(t0)) are the right singular vectors with moduli 1. For
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Fig. 7. Comparison ofM(τ ) (symbols) andσ (τ ) (solid line) for the
standard map (K=4.2; upper panel) and the quasiperiodicity map
(c1=0.42,c2=0.3, c3=1.6; lower panel).

comparison, the dotted line in Figs.5 and6 shows(σ (1))
τ
,

whereσ (1) is the largest singular value of the linearized map
for one time step. This means that forτ=1, the error grows at
most by a factor ofσ (1), provided the linearisation is valid. If,
after one iteration, the error lies in the direction of maximal
error growth of the new statex(t0+1), the growth over two

iterations will be(σ (1))
2
. Thus, the fact that the solid lines

are below the dotted lines in Figs.5 and6 seems reasonable,
because errors will very rarely happen to point in the least
predictable directions over several iterations.

Actually, it is more appropriate to compareM(τ ) with σ (τ ),
the largest singular value when linearizing the map overτ

steps. This gives an indication of where the linearisation
breaks down. For example, in the case of the quasiperiodicity
map this happens atτ=4 or τ=5 for d0=10−2 but already at
τ=2 for d0=10−1 (Fig. 7). The influence of the nonlinearity
does not lead to an increase of error growth. In fact the errors
do not grow as fast as in the linear system, which can already
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Fig. 8. Double-logarithmic plot of scaling exponentα of M(τ )

for large τ . Results for the standard map (K=4.2; upper panel)
and the quasiperiodicity map (c1=0.42, c2=0.3, c3=1.6; lower
panel), based on Figs.5 and6. Linear least-squares fits were made
for τ≥10 in those figures, except for the quasiperiodicity map at
d0=10−4 where onlyτ≥12 were used; error bars represent one
standard deviation.

be guessed from looking at Figs.5 and6. This is due to the
folding in state space that occurs because of the nonlinearity.

The behaviour ofM(τ ) for large times is qualitatively dif-
ferent. The double-logarithmic plots of Figs.5 and6 suggest
a power-law

M(τ )
∼ τα. (8)

Values of the exponentα were obtained from the intervalτ ∈

[10, 20] (except for the smallestd0 in the quasiperiodicity
map) and are shown in Fig.8. A power-law dependence ofα

ond0 is found to agree well with the data.
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10-15

Fig. 9. Standard map (K=0.6): Convergence of estimates ofm
(τ )
max

(squares),m(τ )
avg (diamonds) andm(τ )

min (circles) with ensemble size
characterized by linear correlationr. τ=1; d0=0.2.

4.3 Minimal ensemble size

In order to define a minimal sizeNmin
ens of an ensemble, one

needs a quantitative measure of how close the results for a
given ensemble sizeNens are to the hypothetical results for
an infinite ensemble. ThisNmin

ens will of course depend on the
prediction timeτ and the size of the initial errord0. In the
following, we will use the largest ensemble (Nens=20 000) as
a reference, because it is our best approximation to an infinite
ensemble. Results for smaller ensembles are judged by how
close they are to the reference. Measurement of this close-
ness or “convergence” of ensembles is done in two ways,
one using the full spatially-resolved data, and one using his-
tograms.

The first approach looks at each initial statex0 and com-
pares results for, say,m(τ ),Nens

max (x0) obtained by using dif-
ferent ensemble sizes with the corresponding value for the
reference ensemble,m̂

(τ )
max(x0)=m

(τ ),Nens=20000
max (x0).

Measurement of convergence of the ensemble is done by
calculating the linear correlationr betweenm(τ ),Nens

max (x0) and
m̂

(τ )
max(x0) for all x0, giving an ideal value ofr=1 for ex-

actly proportional data sets andr=0 for uncorrelated data
sets. Thus, 1−r is the error introduced by using a finite en-
semble size. Its dependence onNens is shown in Figs.9 and
10 for the standard map atK=0.6 andK=4.2, respectively,
and for the quasiperiodicity map in Figs.11 and12. For en-
sembles that are large enough, a power-law decrease of 1− r

can be seen in all cases. Form
(τ )
avg, this is valid over the en-

tire range ofNens, but the error 1−r is typically orders of
magnitude larger than the errors form

(τ )
min andm

(τ )
max.

If the ensemble is very small, the error ofm
(τ )
min can remain

almost constant at a high value, especially in the case of the
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Fig. 10. As Fig.9, but for the standard map atK=4.2.
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Fig. 11. As Fig. 9, but for the quasiperiodicity map (c1=0.2,
c2=0.3, c3=0.6).

standard map atK=4.2. The range of ensemble sizes for
which this behaviour occurs extends towards increasingNens
for larger timesτ (not shown), whereas it depends only very
weakly ond0. In the quasiperiodicity map, this almost con-
stant error ofm(τ )

min can never be found as pronounced as in
the case of the standard map.

We find that when the initial errors are small, onlym
(τ )
min

depends considerably onτ . This is most likely due to the
dependence of the error growth factorsm on the initial per-
turbation direction in state space. If the smallest valuem

(τ )
min

is attained only for a narrow interval of initial directions,
small ensembles can be expected to produce a bad estimate
of m

(τ )
min. When initial errors are not small,m(τ )

max also shows
a strong dependence onτ . This comes from the fact that
longer prediction times together with larger initial errors cre-
ate many more peaks in the distribution of error growth fac-
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10-6

10-9

10-12

10-15

Fig. 12. As Fig. 9, but for the quasiperiodicity map (c1=0.42,
c2=0.3, c3=1.6).

tors m over initial error orientation. Therefore it becomes
more difficult to find the global maximum, i.e.,m

(τ )
max.

The power-law behaviour mentioned above, obeyed for
largeNens, can be expressed as a scaling exponentγ :

1 − r ∼ Nens
γ . (9)

This exponent is extracted from the data shown in Figs.9–
12, for example, by applying a linear least squares fit over a
suitable interval ofNens. The values ofγ for m

(τ )
avg andm

(τ )
max

are plotted in Fig.13for τ=1 andτ=5. We find that form(τ )
avg,

the scaling exponentγ is constant and close to−1 for a wide
range of initial errorsd0 and prediction timesτ . For m

(τ )
max,

however, the behaviour for larger times is different, showing
an increase for already quite large errorsd0 in the case of
the standard map. In these cases, 1−r does not reach as low
values as for smallerd0, so the higher values ofγ can be
the result of incomplete convergence towards the asymptotic
behaviour. For the quasiperiodicity map,m

(τ )
max remains close

to −4 for almost the whole range ofd0, even up to higher
values ofτ . One has to keep in mind that fitting a straight
line to the data is not straightforward ifd0 andτ are too large.
The error bars in Fig.13 reflect this uncertainty.

The second approach to measuring the convergence of the
results regarding the ensemble size does not use the spatial
information contained in the data. This means that the val-
ues ofm(τ )

max, for example, are not associated with the state
to which they originally belong. Instead, the data is stored in
histograms. These can then be compared for different ensem-
ble sizesNens, where the largest ensemble is again used as a
reference. In order to determine the convergence of the en-
semble, we calculate the relative entropysrel between pairs
of histograms. The relative entropy of a distributionp(m)
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Fig. 13. Scaling exponentγ of 1−r for largeNens. Top panel is for
the standard map (K=4.2), bottom panel for the quasiperiodicity

map (c1=0.42, c2=0.3, c3=1.6). The points showm(τ )
max (squares)

andm
(τ )
avg (diamonds), solid lines connect points forτ=1, dotted

lines forτ=5. Error bars indicate two standard deviations.

with respect to a reference distributionq(m) is defined as

srel(p|q) = −

∫
∞

0
dm p(m) ln

p(m)

q(m)
, (10)

where in our caseq(m) is the reference histogram of a large
ensemble, andp(m) is the histogram for a smaller ensemble
size. The relative entropy can be interpreted as the amount
of information lost due to the finiteness of the ensemble. It is
widely used and has a sound theoretical basis (Honerkamp,
1994). For identical distributions a value ofsrel=0 is ob-
tained. The results for the standard map are shown in Fig.14
(cf. Fig.9 for the corresponding linear correlation data). The
analogous graphs for the quasiperiodicity map are plotted in
Fig. 15 (cf. Fig. 12). Overall, the behaviour ofsrel is less
systematic than that of the linear correlation coefficient. The
power law-behaviour found for the latter can be seen here,
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Fig. 14. Relative entropysrel for the standard map (K=0.6), τ=1,
d0=0.001 (upper panel) andd0=0.2 (lower panel). Points are for

m
(τ )
max (squares),m(τ )

avg (circles) andm(τ )
min (diamonds).

too, but not as clearly. This fact can be attributed to the loss
of information that occurs when one puts all data in one his-
togram and forgets about the spatial information. For the
relative entropy, the convergence ofm

(τ )
min is almost as good

as the one ofm(τ )
max, but this holds only for sufficently small

d0 andτ .

In addition, aχ2-statistic was computed from the his-
tograms obtained with different ensemble sizes. This turned
out to behave in the same qualitative way as the relative en-
tropy. Therefore, it is considered no more useful for our pur-
pose than the measures already introduced.

For practical purposes, the asymptotic behaviour of the er-
ror growth factors with respect to ensemble size is not very
helpful. What is helpful, however, is the actual ensemble size
needed for the error to drop below a predefined margin, say,
ε=10−3. Defining this error again as the deviation from the
caseNens=20 000, we arrive at the values shown in Fig.16
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Fig. 15. As Fig. 14, but for the quasiperiodicity map (c1=0.42,
c2=0.3, c3=1.6).

for m
(τ )
max. For larger initial errorsd0, one finds yet another

power law,

Nmin
ens ∼ d0

β , (11)

for small to intermediate prediction timesτ . Even smaller
error margins, likeε=10−9, were also considered, but these
eventually lead to a levelling off at the largest ensemble size
used. In all cases considered we found a region ofd0-values
indicative of the power law in Eq. (11). From the investiga-
tions done so far, a simple dependence ofβ on τ or ε could
not be established.

Apart from the systems for which results have been shown,
we have also done the same studies for the Hénon map
(Hénon, 1976; or seeLichtenberg and Lieberman, 1992).
At the parameter values we used,a=1.4 andb=0.3, this
system is strongly dissipative and exhibits a chaotic attrac-
tor. Despite these fundamental differences from the other
systems considered, the same qualitative results have been
found. Specifically, the scaling exponent of 1−r is γ≈−1
for m

(τ )
avg andγ≈−4 for m

(τ )
max. Regarding the minimal en-
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Fig. 16. Minimal ensemble sizeNmin
ens needed for the error

in m
(τ )
max to drop below a given marginε. Calculated from data

as shown in Figs.9–12, using linear interpolation in the double-
logarithmic plot. Top panel shows results for the standard map
(K=4.2) with ε<10−6, bottom panel for the quasiperiodicity map
(c1=0.42,c2=0.3, c3=1.6) with ε<10−3.

semble sizeNmin
ens , the results for the H́enon map show much

less dependence ond0. Nmin
ens increases less than one order of

magnitude for a change ofd0 from 10−5 to 0.3 and 1≤τ≤5.

5 Conclusions

We studied the growth of errors in two paradigmatic chaotic
systems, the standard map and the quasiperiodicity map, that
differ significantly in their distributions of local error growth
factors. To this end, we followed ensembles of sizeNens for
a timeτ , with all ensemble members initialised with a fixed
error magnitude ofd0.

We have shown that the error growth of the worst case, i.e.,
the largest error growth factorM(τ ), depends on the predic-
tion timeτ in a systematic way. For small times, there is an
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exponential increase according to the largest singular value
of the linearized map. This does no longer hold if the predic-
tion time is large. Then one observes a crossover to a regime
of power-law growth,M(τ )

∼τα. The scaling exponentα of
this power law has been found to depend on the sized0 of
initial errors, presumably according to a power law as well.

To find a minimal ensemble sizeNmin
ens needed for reliable

statements about predictability, we have studied various mea-
sures, namely the linear correlation coefficientr, the relative
entropysrel and theχ2-statistics. Here,r was computed us-
ing spatially resolved data, whereas the other two were based
on histograms.

For the linear correlation coefficient, a power-law has been
shown to exist for large ensemble sizes, 1−r∼Nens

γ . The
scaling exponentγ is constant over a wide range of initial
error sizesd0 and prediction timesτ , at values ofγ≈−1 for
the mean error growth andγ≈−4 for the maximum error
growth. A dependence ofγ on d0 may only arise forτ and
d0 large enough.

Of course, this only addresses the presumably asymptotic
behaviour ofγ . The absolute value of the error, the error
made by using a rather small ensemble, need not directly re-
late to the value ofγ . For the cases studied herein, the maxi-
mum error growthm(τ )

max is typically the one converging most
quickly. It can be reliably estimated with only intermediate
ensemble sizes. Or, conversely, for a given error marginε,
the minimal ensemble sizeNmin

ens is not very large.
As alternatives to ensembles, predictability can be de-

scribed by local divergence rates calculated from the lin-
earised system. Different definitions of such rates are in use,
like local Lyapunov exponentsλ or maximum growth expo-
nentsρ, the latter being defined on the basis of singular val-
uesσ of the Jacobian. For very small errorsd0 and short
prediction timesτ , one expects ensemble studies and local
exponents to yield the same results. However, the choice of
local exponent does matter, as different definitions can lead
to different outcomes. The local Lyapunov exponents, for
example, show a connection to other dynamical properties of
the system such as homoclinic tangencies (Harle and Feudel,
2005). On the other hand, the maximum growth exponents
are a purely local quantity, in the sense that they depend
only on the systems states visited during the time spanτ .
Since they are defined through the singular values, there is
a clear correspondence betweenm

(τ )
max and the largest maxi-

mum growth exponent for the same initial state. This corre-
spondence breaks down, as expected, whend0 or τ becomes
too large.

In conclusion, we note that the determination of a minimal
ensemble size for a given purpose and, consequently, for a
given acceptable error is always system-dependent. In prac-
tice, the choice of ensemble size is often based on feasibility
and experience. There does not seem to be any hard and fast
rule about this. Still, the behaviour of the scaling exponentγ

is a general one that can be expected to be found in other sys-

tems as well. Furthermore, minimal ensemble sizes needed
for a given error margin can be estimated using a few ensem-
bles at small prediction timesτ and typical error valuesd0.
These findings can be of help in deciding on the usefulness
of increasing the ensemble size.
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