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Estimation of noise parameters in dynamical system identification with Kalman filters
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A method is proposed for determining dynamical and observational noise parameters in state and parameter
identification from time series using Kalman filters. The noise covariances are estimated in a secondary
optimization by maximizing the predictive likelihood of the data. The approach is based on internal consistency;
for the correct noise parameters, the uncertainty projected by the Kalman filter matches the actual predictive
uncertainty. The method is able to disentangle dynamical and observational noise. The algorithm is demonstrated
for the linear, extended, and unscented Kalman filters using an Ornstein-Uhlenbeck process, the noise-driven
Lorenz system, and van der Pol oscillator as well as a paleoclimatic ice-core record as examples. The approach is
also applicable to the ensemble Kalman filter and can be readily extended to non-Gaussian estimation frameworks
such as Gaussian-sum filters and particle filters.
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I. INTRODUCTION

Identification of system states and parameters from data
is an ubiquitous task in many areas of science. Often a
dynamical model with unknown parameters and time series of
noisy observations are available; the problem of only partial
observation of the system is common. Kalman filters [1,2] are
a standard tool for state and parameter estimation in many
scientific disciplines, for their easy implementation due to the
recursive nature of the algorithm and their applicability even
in high-dimensional state spaces [3,4].

The use of Kalman filters involves the specification of
dynamical and observational noise covariances. State and
parameter estimates are inherently dependent on both the dy-
namical and observational noise covariances. Even the linear
Kalman filter is suboptimal when insufficient information on
the noise statistics is available. Moreover, when identifying
stochastic dynamical systems from data estimation of the
dynamical noise level might be as important and interesting
as estimation of the parameters of the deterministic part of the
system [5].

The noise parameters in Kalman filtering are often assumed
to be known a priori [6] or determined in an ad hoc manner by
fitting some quantity of interest of the system [5]. Algorithms
for estimating noise covariances based on lag-covariances
of the innovations have been proposed in the engineering
community [7–9]. Such approaches are fundamentally limited
to Gaussian estimation.

The present paper discusses an approach based on predic-
tive likelihood (cf. [10,11]) for estimating noise parameters in
Kalman filtering, focusing on nonlinear systems, and nonlinear
Kalman filters. All parameters are optimized simultaneously:
The system states and parameters are estimated continuously
directly in the Kalman filter using the augmented state
approach; the noise parameters are found by maximizing
an appropriate likelihood function. The method is able to
disentangle dynamical and observational noise. The algorithm
is explored using simulated data from known mathematical
systems as well as a paleoclimatic ice-core record. The linear,
the extended, and the unscented Kalman filters are considered.
A basic advantage of the likelihood approach is that it can be
transferred to non-Gaussian estimation frameworks.

II. STATE AND PARAMETER ESTIMATION
WITH KALMAN FILTERS

The framework of a continuous-discrete nonlinear state
space model and the corresponding versions of the Kalman
filter is adopted here. The evolution of a state vector z of
dimension n is assumed to be governed by a continuous-time,
nonlinear stochastic dynamical system

ż = f(z; λ) + ξ , (1)

where λ is a constant parameter vector of dimension p and
ξ is a vector of Gaussian white noises with zero mean
and covariance matrix Q. An augmented state vector x of
dimension na = n + p is formed by merging the state vector
z and the parameter vector λ. Equation (1) together with a
constant dynamics for the parameters

λ̇ = 0 (2)

form the dynamical or state equation of the state space model:

ẋ = fa(x) + ξ a. (3)

ξ a is the augmented noise process vector with corresponding
covariance matrix Qa . At discrete times tk , observations yk of
dimension m are available, which are linked to the state vector
by the observation or measurement equation

yk = h(xk) + εk, (4)

where εk is a vector of white Gaussian observational noises
with zero mean and covariance matrix R. The setting includes
the special case of state estimation only where the system
parameters are assumed to be known, corresponding to an
empty parameter vector with p = 0 and x = z.

Kalman filters are an algorithm for estimating the system
states and parameters given only a time series of noisy
observations {yk}Nk=0. Let x̂k−1|k−1 be the mean estimate of
the augmented state vector and Pk−1|k−1 its covariance matrix
at time step k − 1 having processed all data up to time step
k − 1. Means and covariances are propagated from time tk−1

to tk to yield estimates x̂k|k−1 and Pk|k−1. Then the estimates of
the states and the parameters as well as their uncertainties are
updated using the new observation according to the Kalman
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update equations

x̂k|k = x̂k|k−1 + Kkζ k, (5)

Pk|k = (I − KkHk)Pk|k−1. (6)

Here,

ζ k = yk − h(x̂k|k−1) (7)

is the vector of innovations or residuals and

Kk = Pk|k−1HT
k S−1

k (8)

is the Kalman gain matrix. Hk denotes the linearized observa-
tion function

Hk = ∂h
∂x

∣∣∣∣
x=x̂k|k−1

, (9)

and

Sk = HkPk|k−1HT
k + R (10)

is the (predicted) residual covariance matrix.
Different variants of the Kalman filter differ in how the

means and covariances are propagated between times tk−1 and
tk . The linear Kalman filter is applicable if the augmented state
dynamics are linear, that is, ẋ = Fx + ξ a with a (possibly time-
dependent) matrix F. This is the case if the evolution of z is
linear and we have state estimation only or the parameters enter
only additively. Means and covariances are then propagated by
solving the differential equations

˙̂x = Fx̂, (11)

Ṗ = FP + PFT + Qa (12)

on the time interval [tk−1,tk] with initial conditions x̂(tk−1) =
x̂k−1|k−1 and P(tk−1) = Pk−1|k−1, and then setting x̂k|k−1 =
x̂(tk) and Pk|k−1 = P(tk).

The extended Kalman filter linearizes a nonlinear dynamics
in augmented state space about the current state. Means and
covariances are evolved on the time interval [tk−1,tk] according
to the equations

˙̂x = fa(x̂), (13)

Ṗ = FP + PFT + Qa, (14)

with initial conditions x̂(tk−1) = x̂k−1|k−1 and P(tk−1) =
Pk−1|k−1. We then set x̂k|k−1 = x̂(tk) and Pk|k−1 = P(tk). F now
denotes the Jacobian of fa:

F = ∂fa

∂x

∣∣∣∣
x=x̂

. (15)

The unscented Kalman filter [12,13] keeps the full nonlinear
system dynamics rather than linearizing it. The filter density is
represented by a small number of so-called sigma points that
are propagated through the full nonlinear dynamical equations.
The interval [tk−1,tk] is divided into L equal subintervals of
size h = (tk − tk−1)/L and a sequence of estimates {x̂l ,Pl}Ll=0
is generated. Having arrived at x̂l−1 and Pl−1, we use 2na

sigma points, {xi
l−1|l−1}2na

i=1
, each in augmented state space

of dimension na , given as {x̂l−1 − wj

l−1,x̂l−1 + wj

l−1}
na

j=1. The

vectors {wj

l−1}
na

j=1 are the columns of A where A can be any

matrix satisfying AAT = naPl−1. Here, we calculate A using
the Cholesky decomposition of Pl−1. The sigma points are
transformed as

xi
l|l−1 = xi

l−1|l−1 + hfa
(
xi

l−1|l−1

)
, i = 1, . . . ,2na (16)

and new mean and covariance estimates are given by

x̂l = 1

2na

2na∑

i=1

xi
l|l−1 (17)

and

Pl = 1

2na

2na∑

i=1

(
xi

l|l−1 − x̂l

)(
xi

l|l−1 − x̂l

)T + hQa. (18)

The sequence is initialized with x̂0 = x̂k−1|k−1 and P0 =
Pk−1|k−1. We set x̂k|k−1 = x̂L and Pk|k−1 = PL. The unscented
Kalman filter has the capability of taking full account of a
nonlinear observation function rather than linearizing it by
propagating the sigma points also through the observation
function and then using an alternative formulation of the
Kalman update equations. But we drop this complication as
the observation variables here are just linear projections of the
state.

III. ESTIMATION OF NOISE PARAMETERS

We propose to estimate the noise parameters according
to the maximum likelihood principle. At time step k, the
predictive probability density of the Kalman filter for the
residual ζ k is a Gaussian with zero mean and covariance matrix
Sk . Thus, the predictive ln-likelihood function of the data set
is

ln �(Q,R) = −Nm

2
ln 2π − 1

2

N∑

k=1

(
ln |Sk| + ζ T

k S−1
k ζ k

)
,

(19)

which is inversely proportional to the ignorance score [14] of
the predictions. The Kalman filter is run with different sets of
noise parameters and the likelihood maximized (the predictive
ignorance minimized) with respect to the noise parameters Q
and R. We here focus on the case of only few noise parameters.
No advanced optimization procedure is used; the ln likelihood
is just calculated on a fine enough mesh in noise parameter
space and the maximum found.

The present approach for identifying the noise parameters is
based on internal consistency. For the correct noise parameters,
the predictive uncertainty estimated by the Kalman filter
matches the true predictive uncertainty of the underlying sys-
tem reflected in the data. The sharpness or information content
of the predictions is then neither over- nor underconfident but
in line with the actual predictability of the system. This holds
true at least in the perfect model scenario, that is, if there is a
true model having generated the data which is contained in the
model class prescribed by the system and noise parameters.

For real-world data the situation is less clear, as there is
usually no perfect model known and any assumed model class
has some structural model error. But the likelihood approach
can be expected to be still useful as it picks the best predictive
model within a given model class. Moreover, the likelihood
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function (or some information criterion based on it) then
provides a tool for model selection between different model
classes.

IV. ORNSTEIN-UHLENBECK PROCESS

We start exemplifying the method with the Ornstein-
Uhlenbeck (O-U) process:

ż = −γ z + ση. (20)

η denotes Gaussian white noise with zero mean and unit
variance. The parameter setting γ = 1 and σ = 1 is chosen.
A time series of length N = 5000 with sampling interval
δt = 0.1 is generated by numerical integration. Here and in
the following the Euler-Maruyama scheme [15] with step
size 10−5 is used for the numerical integration of stochastic
systems. Observation of the state z is corrupted by Gaussian
white noise of zero mean and standard deviation τ = 0.25.
Figure 1 displays a piece of the system trajectory and the
corresponding observations. The dimensions are n = 1, p = 1,
na = 2, and m = 1. State estimation only is done with the
linear Kalman filter (LKF); combined state and parameter
estimation is performed with the extended Kalman filter
(EKF). The filter equations [Eqs. (11) and (12) or (13) and
(14), respectively] are integrated using the Euler scheme with
step size δt/100 = 0.001.

Figure 2 shows the ln likelihood as a function of σ for
both state estimation only and combined state and parameter
estimation. The observational noise level is fixed at the true
value τ = 0.25. On a mesh of size 0.005 the maximum of
the likelihood is in both cases located at σ = 0.995, very
close to the true value. The estimate for γ is displayed in
Fig. 3 together with the standard deviation of the estimation
error. The obtained parameter value depends markedly on the
assumed value of σ . At the identified noise level σ = 0.995
the parameter estimate is γ = 0.993 ± 0.032; at the true noise
level σ = 1 it is γ = 0.996 ± 0.032. Figure 4 illustrates the ln
likelihood as a function of both dynamical and observational
noise levels for state estimation only. On a mesh of size 0.005
for σ and 0.0025 for τ the maximum is at σ = 0.995 and
τ = 0.25. Both noise levels are accurately identified. For
combined state and parameter estimation the ln likelihood
looks very similar (not shown). The maximum is at the same
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FIG. 1. Ornstein-Uhlenbeck process: System trajectory (solid)
and observations (+).
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FIG. 2. Ornstein-Uhlenbeck process: ln likelihood as a function
of dynamical noise level σ for state estimation only (solid) as well
as combined state and parameter estimation (dashed). The true value
σ = 1 is indicated by the dotted vertical line. Observational noise
level is τ = 0.25.

position. It is slightly less sharp, thus the identification problem
is slightly more ill-conditioned. This is also visible in the
cross-section at τ = 0.25 shown in Fig. 2.

V. NOISE-DRIVEN LORENZ SYSTEM

Next, we consider the classical Lorenz system [16] aug-
mented with stochastic noise [17]. The governing equations
are:

ż1 = −sz1 + sz2 + ση1, (21)

ż2 = −z1z3 + rz1 − z2 + ση2, (22)

ż3 = z1z2 − bz3 + ση3. (23)

The parameter setting s = 10, r = 28, and b = 8/3 is used
for which the deterministic system exhibits chaotic dynamics.
η1, η2, and η3 are pairwise independent Gaussian white noises
with zero mean and unit variance. The dynamical noise level
is σ = 1. A post-transient data set of length N = 5000 with
sampling interval δt = 0.05 is archived. Only the variable
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FIG. 3. Ornstein-Uhlenbeck process: Estimate of the parameter
γ (solid) with error standard deviation (dashed) as a function of
dynamical noise level σ . The dotted horizontal and vertical lines
indicate the true values γ = 1 and σ = 1. Observational noise level
is τ = 0.25.
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FIG. 4. Ornstein-Uhlenbeck process: ln likelihood as a function
of dynamical and observational noise levels σ and τ for state
estimation only. The true values are σ = 1 and τ = 0.25. Neighboring
contours differ by a factor 100 in likelihood.

z1 is observed subject to Gaussian white noise of zero
mean and standard deviation τ = 0.5. Figure 5 shows the
trajectory and the observations. Here, we have n = 3, p = 3,
na = 6, and m = 1. State estimation only as well as com-
bined state and parameter estimation are performed with the
extended Kalman filter. Equations (13) and (14) are solved
numerically using the Euler scheme with step size δt/100 =
0.0005.

First, the observational noise level is assumed to be known
and the dynamical noise level estimated. The ln-likelihood
function is displayed in Fig. 6. A mesh of size 0.01 is used.
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FIG. 5. Noise-driven Lorenz system: Trajectory of z1 (solid) and
observations (+).
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FIG. 6. Noise-driven Lorenz system: ln likelihood as a function
of dynamical noise level σ for state estimation only (solid) as well
as combined state and parameter estimation (dashed). The true value
σ = 1 is indicated by the dotted vertical line. Observational noise
level is τ = 0.5.

For state estimation only the maximum of the likelihood
is at σ = 1.01, an error of only 1%. For combined state
and parameter estimation the maximum is at the correct
value σ = 1; the parameter estimates and their error standard
deviations then are s = 9.81 ± 0.03, r = 27.78 ± 0.07, and
b = 2.68 ± 0.01. The value of the likelihood is somewhat
higher than with state estimation only; this is a combined effect
of the finiteness of the data sample as well as the errors of the
linear and Gaussian approximations in the extended Kalman
filter. Figure 7 shows the ln likelihood as a function of both
dynamical and observational noise levels for combined state
and parameter estimation. On a mesh of size 0.01 for σ and
0.0025 for τ , the maximum is at σ = 0.99 and τ = 0.5025.
The parameter estimates then are the same as quoted before.
For state estimation only the likelihood looks very similar (not
shown); the maximum is at σ = 1.01 and τ = 0.5025.

The results reported here for the Lorenz system are stronger
than those in Ref. [11]. The dynamical noise level is consid-
erable, giving the system a truly stochastic character, and all
the system and noise parameters are estimated simultaneously,
whereas in Ref. [11] only one-dimensional cross-sections of
the likelihood are considered.

The unscented Kalman filter here yields virtually the same
estimates for the noise levels with slightly more accurate
parameter estimates; however, the extended Kalman filter per-
forms very well and would be considered sufficient. For higher
noise levels the advantage of the unscented Kalman filter
over the extended Kalman filter due to superior covariance
propagation becomes a bit more prominent. For example, with
σ = 2 and τ = 1 the extended Kalman filter has an error of
about 5% in the estimate of σ , whereas the unscented Kalman
filter still identifies σ almost perfectly.

VI. NOISE-DRIVEN VAN DER POL OSCILLATOR

Finally, the noise-driven van der Pol oscillator is consid-
ered. The equations of motion are:

ż1 = z2, (24)

ż2 = μ
(
1 − z2

1

)
z2 − z1 + ση. (25)
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FIG. 7. Noise-driven Lorenz system: ln likelihood as a function of
dynamical and observational noise levels σ and τ for combined state
and parameter estimation. The true values are σ = 1 and τ = 0.5.
Neighboring contours differ by a factor 100 in likelihood.

The parameter setting μ = 3 is adopted. η is a white Gaussian
noise with zero mean and unit variance. The dynamical noise
level is σ = 0.5. The motion of the system evolves on a noisy
limit cycle. A time series of length N = 5000 with sampling
interval δt = 0.1 is generated. Only the variable z1 is observed
with Gaussian white measurement noise of zero mean and
standard deviation τ = 0.15. Figure 8 displays a piece of the
trajectory together with the observations. The dimensions here
are n = 2, p = 1, na = 3, and m = 1. The data are processed
with the unscented Kalman filter (UKF) as the dynamics in
the augmented state space are quite strongly nonlinear. The

-2

 0

 2

 0  5  10  15

z 1
, y

time

FIG. 8. Noise-driven van der Pol oscillator: Trajectory of z1

(solid) and observations (+).
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FIG. 9. Noise-driven van der Pol oscillator: ln likelihood as a
function of dynamical noise level σ for state estimation only (solid)
as well as state and parameter estimation (dashed). The true value
σ = 0.5 is indicated by the dotted vertical line. Observational noise
level is τ = 0.15.

number of subintervals for the propagation of means and
covariances is chosen as L = 100.

Again, we first fix the observational noise level at the true
value and estimate only the dynamical noise level. Figure 9
shows the ln-likelihood function. Both for state estimation
only and combined state and parameter estimation there is
a maximum at the correct value σ = 0.5, using a mesh of
size 0.01. The parameter estimate then is μ = 2.98 ± 0.02.
Figure 10 displays the ln likelihood as a function of both σ
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FIG. 10. Noise-driven van der Pol oscillator: ln likelihood as a
function of dynamical and observational noise levels σ and τ for com-
bined state and parameter estimation. The true values are σ = 0.5 and
τ = 0.15. Neighboring contours differ by a factor of 100 in likelihood.
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FIG. 11. Noise-driven van der Pol oscillator: Mean-squared error
in the estimate of the state z1 as a function of the dynamical
noise level σ for state estimation only (solid) as well as combined
state and parameter estimation (dashed). The true value σ = 0.1
is indicated by the dotted vertical line. Observational noise level
is τ = 0.25.

and τ for combined state and parameter estimation. There
is a maximum at σ = 0.5 and τ = 0.151 25, using a mesh
of size 0.01 for σ and 0.001 25 for τ . The parameter
estimate then is μ = 2.99 ± 0.02. For state estimation only,
the maximum of the likelihood is at σ = 0.5 and τ = 0.1525
(not shown).

State estimation is inherently linked to parameter and
noise-level estimation and can be expected to depend on model
parameters and noise levels. This will be most apparent when
the model is relatively accurate (small dynamical noise level)
and observational uncertainty is large. We, therefore, adopt
the setting σ = 0.1 and τ = 0.25. Figure 11 displays the
mean squared difference between the estimate of z1 and its
true value as a function of σ for fixed observational noise
level. Both for state estimation only and combined state and
parameter estimation the state estimate is optimal for the
correct value σ = 0.1 (on a mesh of size 0.005). The likelihood
has a maximum at σ = 0.105 in both cases (not shown).
The parameter estimate both at σ = 0.1 and σ = 0.105 is
μ = 3.00 ± 0.01.

A summary of the estimation results for the various systems
is given in Table I.
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FIG. 12. δ18O record from the NGRIP ice core during the last
glacial period with the mean value removed.

VII. ICE-CORE RECORD

We now consider a real-world data set where no true model
is available. The record of δ18O as a proxy for northern
hemisphere temperatures from the North Greenland Ice Core
Project (NGRIP) ice core [18] is studied. Figure 12 shows
the record for the last glacial period, ranging from 70 to 20
ky before present (1 ky = 1000 years); the mean value over
that period is removed as the dynamical model is formulated
as an anomaly model. The sampling interval is δt = 0.05 ky
resulting in 1000 data points. The time series displays switches
between the cold stadial and the warm interstadial state.

Brownian motion in a potential landscape [5,19,20] is
adopted as a simple dynamical model:

ż = −U ′(z) + ση. (26)

η denotes a white Gaussian noise with zero mean and unit
variance. The potential is assumed to have the polynomial
form [5,20]

U (z) =
4∑

i=1

aiz
i, (27)

where the coefficients ai are the parameters to be determined.
Noisy observations are available (identified with the isotope
record) with Gaussian white observational noise of zero mean
and standard deviation τ . Here, we have n = 1, p = 4, na = 5,

TABLE I. Summary of the parameter estimation results for the different systems.

System True parameters Estim. quantities Algorithm Estimated parameter values

O-U process γ = 1, σ LKF σ = 0.995
σ = 1, τ = 0.25 γ , σ EKF γ = 0.993, σ = 0.995

σ , τ LKF σ = 0.995, τ = 0.25
γ , σ , τ EKF γ = 0.993, σ = 0.995, τ = 0.25

Lorenz s = 10, r = 28, b = 8/3, σ EKF σ = 1.01
σ = 1, τ = 0.5 s, r , b, σ EKF s = 9.81, r = 27.78, b = 2.68, σ = 1

σ , τ EKF σ = 1.01, τ = 0.5025
s, r , b, σ , τ EKF s = 9.81, r = 27.78, b = 2.68, σ = 0.99, τ = 0.5025

Van der Pol μ = 3, σ UKF σ = 0.5
σ = 0.5, τ = 0.15 μ, σ UKF μ = 2.98, σ = 0.5

σ , τ UKF σ = 0.5, τ = 0.1525
μ, σ , τ UKF μ = 2.99, σ = 0.5, τ = 0.151 25
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FIG. 13. Ice-core record: ln likelihood as a function of dynamical
and observational noise levels σ and τ for combined state and
parameter estimation. Neighboring contours differ by a factor of 10
in likelihood.

and m = 1. Exactly the same time series under the same
dynamical model was processed with the unscented Kalman
filter in Ref. [5]. The observational noise level was set to zero
based on the assumption that the measurement error is small
and negligible compared to the high dynamical noise level. The
dynamical noise level was then found by running the Kalman
filter for different values, integrating the resulting model
in time and searching for a match in certain characteristic
statistical quantities of the system. Matching the variance of
the system yields σ = 3.8; matching the autocorrelation at lag
δt gives σ = 3.7. A compromise value of σ = 3.75 was then
adopted.

Figure 13 shows the ln likelihood as a function of both
dynamical and observational noise levels. On a mesh of size
0.05 for σ and 0.01 for τ the maximum is at σ = 3.8 and

τ = 0.01. The observational noise level is effectively arbitrar-
ily close to zero. Technically, it must not be set exactly to
zero as then the propagated filter covariances may become
not positive definite due to rounding errors, which causes
the Cholesky decomposition in the UKF to break down. The
likelihood is quite flat in the τ direction. But, this is not really
a problem here, as even with a value of, say, τ = 0.15 the
estimation results from the Kalman filter are virtually the same
as with, say, τ = 0.0001 because σ is large and still dominating
the uncertainty. The present results are in close agreement with
Ref. [5] regarding the value of σ and the fact that τ is virtually
zero. The estimated potential coefficients here are a4 = 0.16,
a3 = −0.37, a2 = −0.85, and a1 = 2.38, which is very close
to those reported in Ref. [5] with σ = 3.75.

VIII. DISCUSSION

The method can obviously also be used when the dynamical
equation is given as a discrete map rather than a continuous-
time model. Equation (2) is then replaced with λk = λk−1

and the discrete versions of the Kalman filters are employed.
Technically, the calculations are then even easier as the
propagation of means and covariances from tk−1 to tk can be
done in one single step rather than approximating a continuous
propagation with multiple steps.

The present likelihood approach for determining noise
parameters is also applicable to the ensemble Kalman filter [3],
which is widely used in the weather and climate science
community. Moreover, it can be readily extended to non-
Gaussian state and parameter estimation frameworks such
as Gaussian-sum filters or particle filters. The Gaussian
likelihood in Eq. (19) then needs to be replaced with an
appropriate non-Gaussian likelihood.

In cases where an imperfect deterministic model is
available stochastic terms could be introduced to improve the
model and estimated with the present method. This is in line
with the idea of stochastic parametrization of model error and
uncertainty [21].

The method clearly is only feasible for few noise parame-
ters. In spatially extended systems the covariance matrices Q
and R are large. But typically the entries are not independent
and often they can be written as linear combinations of few
fixed matrices (Q = ∑

i αiQi and R = ∑
j βj Rj ) (cf. [8,9]).

Then the coefficients αi and βj would be determined via the
maximum likelihood principle.
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