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Optimal Galerkin approximations of partial differential equations
using principal interaction patterns

F. Kwasniok
Max-Planck-Institut fu Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany
(Received 2 December 1996

A method of constructing minimal systems of ordinary differential equations modeling the dynamics of
nonlinear partial differential equations is presented. Characteristic spatial structures called principal interaction
patterns are extracted from the system according to a nonlinear variational principle based on a dynamical
optimality criterion and used as basis functions in a Galerkin approximation. The potential of the method is
illustrated using the Kuramoto-Sivashinsky equation as an example. As to the number of modes required to
capture the dynamics of the complete system a reduced model based on principal interaction patterns yields a
considerable improvement on more conventional approaches using Sobolev eigenfunctions or Karhueen-Loe
modes as basis functions and is far more efficient than a dynamical description based on Fourier modes.
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[. INTRODUCTION orthogonal decompositignare widely used as basis func-
tions in a Galerkin approximation of a PDE in order to arrive

The standard approach to the numerical study of the dyat a low-dimensional moddlL—6]. The KL eigenfunctions
namical behavior of partial differential equatioBDE9 a  allow for an optimal spatial representation of an attractor in
priori vested with an infinite number of degrees of freedomhigh- or even infinite-dimensional phase space by a linear
consists in their approximation by finite-dimensional dy-Subspace of given dimension in a mean least-squares sense.
namical systems. Given the well known fact that the dynam-The KL approach has been extended to the Sobolev eigen-
ics of PDEs are often confined to attractor sets of relativelfunctions by Kirby [7]. However, the optimality criterion
low dimension, the construction of minimal dynamical mod- 4€fining the KL modes and the Sobolev eigenfunctions, re-

els capturing the principal properties of the complete Systen§pectively, does not refer to the time evolution of the trun-

is an interesting task. A class of frequently used approxima(}ateOI system obtained when projecting the PDE onto these

tion schemes is formed by the Galerkin methods. The dy[nodes. Thus, as has bee.n fII’SF pointed out by Hass_elmann
] . . . - . [8], a methodology referring simultaneously to spatial as
namical field is expanded into a finite set of time-

: . o o ell as temporal features of the system by taking into ac-
independent global basis functions; projection of the PD ount the dynamics of the reduced model in order to define

onto these bgsis funptions yiglds afinite—dimen;ional systeMhe basic spatial patterns may be the even more efficient
of .ordlnary dlfferent'lal equat'lo'n@DEs? for "[h'e time evo- (although the considerably more cumberspnagproach
lution qf the expansion (_:oeﬁlments. The efficiency of such a;,en searching for a minimal model. Following the propo-
dynamical description, i.e., the number of degrees of freesjtion of Hasselmann, a general algorithm for reducing a
dom required to capture the dynamics of the PDE, dependgigh-dimensional Fourier-Galerkin approximation to a low-
crucially on a proper choice of the basis functions. The mostiimensional dynamical system has been derived and illus-
traditional approach lies in using eigenfunctions of a suitablytrated in the context of a geophysical fluid system by Kwas-
chosen linear differential operator, commonly Fourierniok[9]. A set of spatial structures is obtained by minimizing
modes, as basis functions. Despite the compact and elegahie error in the time derivative between the complete system
mathematical framework of these Fourier-Galerkin methodsand the reduced system in a mean least-squares sense and
they often provide a system of equations that is much largensed as a basis in a dynamical description. The same meth-
than the true dimensionality of the system since Fouriebdology has been used by Achatizal.[10] and Achatz and
modes are completely general and not adapted to the partic&chmitz[11] in order to arrive at a low-dimensional model
lar system under consideration. Hence information on thef baroclinic wave life cycles, a nonlinear oscillatory phe-
dynamics of the system has to be incorporated into th@omenon in the field of dynamic meteorology. A similar spa-
choice of the basis functions in order to arrive at a dynamicatiotemporal strategy for constructing reduced dynamical
description reflecting more closely the intrinsic dimensional-models of complex systems in the vicinity of critical points
ity of the system. based on the theory of synergetics has been derived by Uhl
Up to now modes obtained from a Karhunen-ze¢KL ) et al.[12,13 and used for the analysis of experimental data
decomposition(also referred to as principal component by Jirsaet al.[14] and Friedrich and URI15].
analysis, empirical orthogonal function analysis, or proper In the present study the methodology outlined by Kwas-
niok [9] is developed further by deriving an improved opti-
mality criterion for defining the basis functions taking into
*FAX: +49-40-41173298. Electronic address: account the nonlinear time evolution of the reduced system
kwasniok@dkrz.de over a finite time interval rather than only the local time
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derivative. Reduced models of the Kuramoto-Sivashinsky N

equation are constructed using this method. The question is Ug= E u,f,. 5)
addressed to what extent these low-dimensional systems are p=1

capable of capturing the principal properties of the complet

system Here and in the following the subscriptsignifies quantities

. . . associated with the Fourier-Galerkin approximation of Eq.
The paper is organized as follows: in Sec. Il the method-(l)_ Insertion of the expansion of E¢5) into Eq. (1) and

ology for deriving a reduced model from a PDE is outlined projection onto the adjoint functions yields an autonomous

In general. In_ S_ec. lll the model system used as an '”l.JStraéystem ofN first-order ordinary differential equations for the
tive example is introduced and the methodology is applied t

this particular system. Then the results are given and di;%-Ime evolution of the expansion coefficients:

cussed. The paper is concluded in Sec. V. In the two Appen- N
dices the numerical details of the algorithm are given. u,= f; ,D( ;1 uvfy) , m=1,...N (6)
Il. METHODOLOGY The adjoint functions are defined as the functiderSE]-'
We start out with a partial differential equation satisfying
du [f*.f,]=6,,, wm,v=1,...N. (7
2= D), (1) ’ ’
Often the functiond , form an orthonormal sethaving f7,
whereu is a function ofn-dimensional space and time: =f, then. But sometimes it may be desirable to consider
several scalar products involving different spatial derivatives
u=u(x,t), X=(Xg,....Xp) (2)  that correspond to particular physical quantities, e.g., kinetic

energy in the case of a fluid systefef. [9] and Sec. Il of
andD is a nonlinear differential operator, which is assumedthis pape)*_ Therefore the more genera| notation invo|ving
to be polynomial iru and its spatial derivatives. Equatiéh)  the adjoint modes is used here. In the following we assume
is considered on a bounded spatial dom@i@ R" subject to  the truncation limitN to be large enough that the dynamical
appropriate boundary conditions. Nearly all nonlinear PDEssystem of Eq(6) captures the long-term behavior of the PDE
treated in theoretical physidghe Navier-Stokes equations of Eq. (1) monitored by statistical quantitige.g., moments
and various derivates, the Kuramoto-Sivashinsky equatiorgr Fourier spectta and dynamical characteristicée.g.,
the Ginzburg-Landau equation, the Korteweg—de Vrieg yapunov exponents or attractor dimensipmsthin suffi-
equation, numerous reaction-diffusion equations,) ef@l  cient accuracy; all properties of E¢l) will be identified
into this class. The phase space of En.is some infinite-  with the corresponding properties of E).

dimensional Hilbert spack/((2) of sufficiently smooth func- It is convenient to separate the dynamical fiejdinto the
tions from Q into the real numbers. A scalar product is in- mean state and the deviation from it:

troduced inH, which usually is of the form

N
[g.h]=f0£(g>£<h>dx 3) “F=<“F>+UF:M§1 ((u) Tty 8

. . . ) () denotes the ensemble average over the attractor on which
for two arbitrary functionsg,heH with a suitably chosen o asymptotic motion of the dynamical system of E).

linear operatorc. o _ _ __resides. Equatiof6) then becomes
The system reduction is now achieved in two steps: first,

the PDE is cast into a finite-dimensional dynamical descrip- _
tion using a standard Fourier-Galerkin procedure. Second, a Oﬂz
variational principle is applied in this finite- but high-
dimensional phase space in order to identify a low-
dimensional subspace optimally suited for the construction B. Principal interaction patterns
of a reduced model.

. w=1..N. (9

f* ,D(<uF>+ 21 ava)

We now consider anL-dimensional subspacéCF
spanned by only a limited number of linearly independent
spatial modeg;, which will be called principal interaction

Usually a basis of{ is given by an infinite, denumerable, patterns(PIPs:
complete seff ,;ue N} of eigenfunctions of some appro-
priatFe)Iy chos{erl; gelfg/(}jjoint ﬁ]near differential operatF())F: de- P=Spafpy,....p.}, L<N. (10)
pending on the spatial domaid and the boundary condi-
tions. Commonly, the functiond, are Fourier modes.
Considering the finite-dimensional subspa€espanned by
the firstN functions

A. Spectral basis

In order to simplify the notation from now on greek indices
always run from 1 tdN, latin ones from 1 td. if not explic-
itly indicated otherwise. Each PIB, is a linear combination
of the standard basis functions:

f:SpaJ{fl,...,fN}, (4)

=> Pt 11
u is expanded into a truncated series P % ps 11



55 OPTIMAL GALERKIN APPROXIMATIONS OF PARTIAL . .. 5367

P being the \XL) matrix with the vectors of Fourier coef- . _1 i)
ficients of the PIPs as its columns. The anomaly figldis Kjl“'ji+1_kl,”2,l<-+l T iy T g i Kk ok, (18)
expanded into a series of PIPs: '

one obtains a system of differential equations of the same
uPIP:<uF>+aPIP:<uF>+Zi Zp;. (12) Igm;as Eq.(17) for the amplitudes of the transformed pat-

The subscript PIP indicates quantities associated with the
PIP approximation of Eq(1). A linear projection operator 2 =K+ KV + > KB 2 2 4o
2" is defined that operates frofi into 77 and maps a func- Il R
tion g e H onto its projection onto PIP space
Ijl...j| Jl JI

+ > KWLzl (19
JI

9—2"(9)=2 [p glp, (13
Now dUpp/ dt==,z;p;= dUp, dt=2,z p; holds. Hence the
dynamical systems of Eq&l7) and(19) are equivalent in the
respect thatipp and Uy, remain identical if they are identi-
* =g 14 cal at some initial time and also in the long-term behavior all
[P .pj]1=d . (14 o . e g :
statistical and dynamical propertieswfr andup, are iden-

A reduced model is given by the projection of Eq) onto tical. ESpeCially the error fUnCtiOW, which will be intro-

with the adjoint patterng;* e P defined by

PIP space duced in Sec. IID is invariant under the transformation
X(P'; Tmad = X(P; Tmay- Put differently,P andP’ are associ-
lpyp » ated with the same projection operatsf and thus lead to
o~ 2 (D(upip)), (15  equivalent reduced systems.

One may eliminate this gauge freedom by referring to
Some normal form for the matrix of patterns. One possible
way to do so igin analogy to the KL modggo impose the
constraints so that the patterns form an orthonormal set and
that their amplitudes are pairwise uncorrelated with the pat-
. (16)  terns ordered according to descending mean squared ampli-

tude:

which is equivalent to the system of modal equations for th
amplitudes of the PIPs:

2i=

ot | (we)+ S 2

Note that Eqs(10)—(16) are completely general. A truncated
model as given in EQ.(16) can be derived for any [pi ,Pj]=2 M,,PLiP.i= 6, (20)
L-dimensional subspacBC F spanned byL arbitrary lin- By
early independent spatial modes. Especially forp;=f;
andL =N one returns to the system of E®).
(zZ)=2 (MI'M),,P,iP =8\ "", A=\

o, v

C. Uniqueness of the patterns (21

If D(u) is polynomial inu and its spatial derivatives of ) » o )
maximum degreé the system of modal equations for the PIP The Symmetric, positive definite metrM is the representa-
amplitudeg Eq. (16)] takes the form tion of the scalar product in the spage

: M, =[f..f.] (22)
Zi:Ki(O)+j2 Kl(lll)ZJl—’_JE] Ki(jzl)jzzjlzj2+... M M
1 112
andI is the covariance matrix of the Fourier components of
(I Ug:
+j1§j. T A 0

_ , N T,,=(0,0,). (23
where K() are the tensors of coupling coefficients deter-
mined by the spatial structure of the patterns and the operat@stten the metricM is diagonal; in particular, for all scalar
within a linear transformation. Consider a matixrepre-  Kyramoto-Sivashinsky equation this is the case. Moreover,
senting a set of patterqp,,...,o.} and an arbitrary regular some convention concerning the sign of the patterns has to
linear transformation in L-dimensional space. The trans- pe adopted. From now on the PIPs are always assumed to be
formed matrix is therP’ =PT representing a set of patterns grthonormal in spacep(* = p;) and uncorrelated in time. The
{P1,-. L} with pi=2;T;p;; the transformed expansion orthonormality in space facilitates the formulation of the
coefficients arez/ =3;T;;"z;. One then hadipp=2izp;  variational principle in Sec. 11D and greatly reduces the
=Upp=2iz{p; . Transforming the coupling coefficients computational effort involved in the corresponding numeri-
K1 according to the rules for tensors df{1)th order cal minimization procedurécf. Sec. || D and Appendix A
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D. The variational principle 1
X2(Pi Tmad = g

fonain (eD2dr. (3D

Consider some initial conditiofi==x,0°f, character-
ized by the Fourier coefficienn&g at initial timet=0. Let
Uf=3,07f, be the state obtained when integrating thex1 Simply measures the mean squared error due to the pro-
high-dimensional Fourier-Galerkin approximation forward injection of U onto PIP space and does not depend on the
time fromt=0 to t= 7 with initial condition 2. Consider dynamical behavior of the reduced systeyp;represents the
now the projection of the initial condition onto PIP space€fTor in PIP space and refers to the dynamics of the PIP
ﬂg|p:2i20pi with Z?Z[pi ,ag]_ Let OE|P:EiZiTpi be the Model. The maximum integration time,,, remains as afree_ _
state obtained when integrating the reduced system forwarg@rameter of the method. It may be taken as a characteristic
in time fromt=0 to t= = with initial condition ﬁg.p. 00,p is time scale of the system based on some physical knowledge

different from the projection of the complete system onto thell feasoning or obtained from mathematical technidees,

PIP spaceg™(0Z) = =,Z7p; with Z'=[ p; ,4Z]. An error func- a dominant period in the temporal power spectrum of the

T ; system or the inverse of the largest Lyapunov exponent in
tion is introduced that measures the spatially and temporall}llFe case of a chaotic systm

integrated squared error between the state given by the fu In order to actually evaluate the error functigrihe tem-

model and that given by the reduced model normalized b . . . -
the spatially integrated variance of the system: ¥)ora| integral in Eq(31) has to be approximated by a finite

Var mnax

sum,
QP P-w)=ir[fﬂ —0F 05— OFIw(7)d7, (24 1 (= K
P Var Jo PR TR ’ 3= (eD)?dr=2 X wi(e[9?%, (32
Tmax J 0 i k=1 "
Var=([ g ,QFDZZ <ai>. (25) Whgrerk are equally spacetfor simplicity) mes_h points in
u the intervall0, 72 [ 7= (kK/K) 7nax] @and the weightsv, are

given by some quadrature rule. When using, e.g., the Simp-
w(7) is an arbitrary non-negative weight function satisfying son quadrature rule the weights are
Jow(7)d7=1. In the present studw(7) is taken to be

4 k=1 < (33
Wok-1= 5 =1....5,
for 0<7<7pa 3K 2
W(7)=19 Tmax (26) 2 K
0 for T> Tmax W2k=3—K, kzl,...,ﬁ— , (34)
with the free parametef,,5,>0. For N large enoughQ is
independent oN if 7,4 iS not too large. Taking the en- W :i (35)
semble average over all initial condition$ on the attractor K73K"
yields an error function that depends only on the pattern set )
and the parametermax: K then has to be an even Integel’.
The variational principle poses a high-dimensional non-
X(P; Trmad = (Q(02, P: 7). (27)  linear minimization taskwith theNL elements oP as vari-

ables that has to be solved numerically by iterative tech-
ghiques. The gradient of with respect to the components of
¢ can be calculated efficiently using an adjoint method origi-
nating from the theory of optimal control. See the Appendi-
ces for details on the calculation techniques of the numerical
nimization procedure.
The methodology originally proposed by Hasselm&sih
and used by Kwasniol@], Achatzet al.[10] and Achatz and
Schmitz[11] may be viewed as a first-order approximation
28) of that illustrated here. In these former studiasd also in
the paper$12—15) the optimality criterion defining the pat-
terns only refers to the local time derivative of the reduced
system whereas now the dynamical behavior over a finite
time interval is taken into account. This more recent ap-
X=x1txe (29 proach intuitively can be expected to be more poweféld
though computationally more expensivéhan the former
one. For example, think of a periodic system. Then the newer
method with 7,5 Set at the oscillation period will be more
x1(P)=1— i 2 )\iPIP (30) effici_ent at finding a reduced model_rep_roducing the correct
Var 5 amplitude and frequency of the oscillations than the former
method, which just looks at the local time derivative. Espe-
and cially the problem of ill posedness should be less severe with

The optimal set of patterns is determined by minimizing th
error functiony. In practice the ensemble average is replace
by the average over a finite number of realizationQokith
initial conditionsd? taken at uncorrelated times from a long ©©
time series generated by an integration of the system of Ed].q'
(9) assuming ergodicity of the flow. Introducing the projec-
tion of the error at timer onto the patterns

T__ T NTl—5T_ 57T
&{=[Pi Upp—Ug]=2{~Z

the error function can be split into two parts:

with
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the newer technique. Imagine two sets of patterns, which Ill. THE KURAMOTO-SIVASHINSKY EQUATION

differ only slightly from each other. Then the errors in the . . .
time derivative of the reduced models associated with thes eﬁ\sllaw??:gﬁlsi?(lasrtfhme rtgsglaljztéaéirg]rﬁortg?tsr;\?gsﬁ%[g;d n
pattern sets are usually also nearly identical whereas an errQr.

. ’ . L ion in on imension
function based on the time evolution over a finite time can beequat 0 one space dimensio

expected to provide a better discrimination between the two au o*u 2u 1 /ou\?
pattern sets. E+4W+a WJFE (5> -0 (42)
E. Karhunen-Loéve modes as a limiting case subject to periodic boundary conditions
In the limit 7,,,,,—0 the termy, vanishes. One is then left U, t)=u(x+2mt) Vit (43)

with the problem of finding ah.-dimensional subspace such

that the mean squared projection erjgris minimal. As is 4t 4=84.25 where a limit cycle solution is observed. This
well known the solution to this minimization problem is case has already been treated in the literature in the context
given by the KL decomposition. The KL modeg are given  of reduced models using Sobolev eigenfunctions as basis
by the eigenvectors of the eigenvalue problem functions[7].

The following class of scalar products is introduced:

I'ME=Ediag\k",... \kD), (36)
1 (27 gfg ¢Ph 9%y
whereE is the (N N) matrix with the Fourier components [9.h]p=5_ f —5 ——g dx=(-1)#|—3 h| ,
d T IXP gx X
of the KL modes as its columns 0
8=0,1,2... . (44)

Ce™ % Erelu- 37 For each scalar product and a given set of pattpyrslinear

projection operatozg can be defined according to Ed.3).
The matrixI'M as a product of symmetric, positive definite For all 8 the projector is self-adjoint with respect to the
matrices can be diagonalized in a real basis and has only readrresponding scalar product
and positive eigenvalues. The eigenvalues are in descending » »
order (\j->\55,). The KL modes form an orthonormal [9.25(M1s=[25(9).h]s Vg.heH (45

set: and idempotent

[€0.€]= 2 M E 0 0= 8,0 (39) ZN(ZH9)=2}9) VgeH. (46)
N

Note that the Burgers type nonlinearity in the KS equation
The amplitudes of the KL eigenfunctiomgz[eg,GF] are conserves the integral quantiuz(1/277)[3”(au/o7x)"dx
pairwise uncorrelated and the second moment of each ifer all ke N. |, is the spatial average @i/ dx and vanishes
given by the corresponding eigenvalue for all times.1,=[u,u], is similar to a kinetic energy; for
k=3 I, does not represent a particular physical quantity.
When separating into the time mean and the anomalies the
term that is nonlinear in the anomalies conserves the quantity
Ik=(1/2772f§“((90/(9x)kdx for all ke . One had ;=0 for
The sum of all eigenvalues is equal to the spatially integratedll times.l,=[0,u], may be termed a turbulent kinetic en-
variance of the system: ergy.

(WoW, )= ME (MIM) ,,E 1oE o= 8o, A5, (39)

Var= E )\ZL _ (40) A. Spectral basis
@ The appropriate set of basis functions for the present ex-

. . ) . , ample is
The global minimum ofy, is attained when taking the eigen-

functions corresponding to the largest eigenvalues. The  {f ;u=1,...N}={v2 coskx,v2 sinkx;k=1,... Kmayg

value of the error function is then (47)
1 The modes are orthonormal with respecf to- ]y:
xi=1- = 2 M. (4D
var 5 !
: [f,u,’fv]ozgp,v' (48)

The PIP approach may be viewed as a nonlinear extension &¥hen truncating at wave numbky,,, the number of modes
the KL method. For short integration times,,, the error is N=2k,,,. The wave number zero mode is omitted in
function y is dominated by the termg, ; the optimal patterns order to remove the mean drift of E@L2) as is usually done.
are then very close to the KL modes. With increasing,  Note that the dynamical system generated by a Galerkin pro-
more and more information on the dynamical behavior of thecedure using a Fourier basis as given in &) is identical
truncated model is included. for all scalar products out of the class introduced in @d)
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*Pp; ' 7°p; d(Ug) Ip;
>+ -

L=(—1)8*+1 4 +
bij=(=1) X2 o Y Tox ax  ox |,
(51)
9*Pp,  d¥u %u
SO i O W
X X X
S @ Ug
\o‘::\\“\::“\\\“\\\‘ E( Ix ) (52

The interaction coefficients can be evaluated numerically us-
ing the pseudospectral transform method. In general for
some choice of patterns the tensors of interaction coefficients
a,b,c depend on the scalar product used in the projection.
Only if the PIP space is identical with the space spanned by
the Fourier modes up to a certain wave number do all scalar
products of Eq.44) generate the same dynamical system.
FIG. 1. Solution to the Kuramoto-Sivashinsky equationaat Especially the full system of Sec. Ill A is the same for All
=84.25. The difference is due to the fact that in the special case of a
Fourier subspace the projection opera.':@rand the operator
as can be immediately seen considering the correspondingf spatial differentiatiors/9x commute for all3 whereas in
adjoint moded}; . Test calculations revealed that a truncatedthe general case they do not.
model using the Fourier modes up to wave numkgg, For completeness we remark that the projection procedure
=15 (30 degrees of freedomis sufficient to capture the using the scalar produgt,- ], is equivalent to formulating
long-term dynamics of the KS equation monitored by firstthe KS equation fopu/ox” rather tharu [by B-fold spatial
and second moments as well as temporal Fourier spectra differentiation of Eq.(42)], expanding?®Ug /9x? rather than
the selected parameter value=84.25. The model is inte- Ug into a series of PIPs and using the scalar proflugt], in
grated in time using a de-aliased pseudospectral transforithe projection.
method[16] for the evaluation of the nonlinear term based In view of the conserved integral quantities of the KS
on a discrete Fourier transform on a grid consisting of 48quation one may ask if these conservation properties are
equally spaced mesh pointemploying the fast Fourier adopted by truncated models. The corresponding quantities
transform algorithm Given the extreme stiffness and sensi-in the subspac® arel] = (1/27) [3"(dlpp/ dx)*dx. 17 by
tivity to the numerical accuracy of ODE models derived construction vanishes for all times and is thus trivially con-
from the KS equation a variable-order, variable-step backserved by all PIP models. F&e=2 the conservation proper-
ward differentiation formula is used as ODE integrator withties depend on the scalar product used in the projection. In
the error tolerance set at 18 per time unit. Figure 1 illus- the case3=1 the nonlinear terms in a PIP model for arbi-
trates the time evolution of the solution. The system exhibitsrary sets of patterns conserve the truncated turbulent kinetic
periodic behaylor; the vanablhty is spatially Iocahzeq at the energyl »=[Upip,Upppl; but in general not for k=3. This
edges of the intervalcf. also Fig. 4. Already from visual ~ conservation statement can be shown by considering the re-
inspection of Fig. 1 it is intuitively clear that the system is in gyced model in the form of E415) and using integration by
fact very low dimensional and that the dynamical descriptioyarts as well as the properties of the projector given in Egs.
based on Fourier modes requiring 30 degrees of freedom ig5) and(46). The nonlinear interaction coefficients then sat-
far from optimal. isfy the relationship

B. Principal interaction patterns Bjkt i+ A =0, (53
According to the general outline in Sec.ug is separated as can be readily verified from E¢p0) using integration by
into the time meanug) and the anomaliesr. Ur is ex-  parts. For all other scalar produdtg is for all k=2 gener-
panded into a series of PIPs. Projection of the KS equatioally not conserved by the nonlinear terms apart from the case
onto the PIP basis yields the system of modal equations of a Fourier subspace where the models coincide foBall
Especially the nonlinear terms of the complete system of
Sec. Il A [when written as an anomaly model like E§)]
conserve the truncated turbulent kinetic enerdy

=[{,0e]s but notl=(1/2m) f27 (a0 19x)*dx for k=3.

o1
Zi:i % aijkzl'zk‘i‘; biij+Ci, (49)

where the interaction coefficients are given by
IV. RESULTS AND DISCUSSION

PIP models have been extracted from the KS equation
=ay;, (500 based on four realizations of the error functignh corre-
0 sponding to initial conditions separated by 0.2 system units

7o, p; 9
IX?P " 9x ox

ap=(—1F"ta
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FIG. 2. First(solid), second(dotted, and third (dashedl PIP FIG. 3. Mean state obtain_ed from a_ simulatiorl With 30 Eourier
(thick lines and KL mode(thin lines. modes(complete system, solid20 Fourier modesidentical with

solid), 3 PIPs(identical with solid, 4 KL modes(dashed, and 5

. . . . KL modes(identical with solid.
(su). This small ensemble size here is due to the simple pe- ( d

riodic structure of the present system; in the case of a chaotic

system a much higher number of realizations is necessarjiodes reveals significant contributions up to the tenth KL
dependent on the dimension of the underlying attralcta. mode.

The integration timer,,, iS taken to be 0.02 su, which is ~ When integrating the reduced model based on the three
about a quarter of the oscillation period of the system. WithKL modes shown in Fig. 2 forward in time the amplitudes
this value ofr,,, one already gets the same results as withd"0W without bounds; i.e., this model does not possess a
Tmax €0Ual to the oscillation period, which is the canonicalStable attractor and thus completely fails to capture the long-
choice for 7, in the case of a periodic system. The sam-term dynamics of the complete system whereas the model
pling interval of the data is 0.005 su correspondingkto Pased on the three PIPs has a stable attractor and reproduces
=4 mesh points for the approximation of the temporal inte-2ll principal dynamical and statistical properti¢as dis-
gral in the error function. Calculations have been done fofussed in detail belowThis is due to the fact that the prop-
the scalar products-,- 1o, [-,- 11, and[ -,-],. Starting out erty of dissipativity inherent in the KS equation is not
with two PIPs and using progressively more modes, four,adopted.by the truncated KL mc_)del since the dissipation
three and five PIPs turned out to be the minimum number oferM mainly acts at the small spatial scalbigh wave num-
patterns to capture all essentials of the long-term behavior d7€rS whereas the leading KL modes are dominated by large

the KS equation at the selected parameter valge4.25 for ~ SPatial scales. The third PIP has significantly larger contribu-
[-,-Jo, [+»-11, @nd[-,-],, respectively. The good perfor- tions from higher wave numbers than the third KL mode.

mance of the scalar produft, -], may be due to the fact Hence the dissipation is _captured better.by the PIP space
that it stands out against the others as to conservation ¢fian by the KL space leading to the superior performance of

turbulent kinetic energﬁ;’ by the nonlinear terms. In the the PIP model.

following the presentation of the results is restricted to the Now_the ability of the three-dimensional PIP modtgir
caseB=1. convenience hereafter referred to as(BJfnodel to repro-

. . . duce the long-term behavior of the complete system is inves-
Figure 2 gives the spatial structure of the three PIPs ex: ; ) )
- : tigated in detail. For comparison also the performance of
tracted from the system. For comparison also the first three duced dels based f KL 4 d
KL modes(also with respect t¢-,-];) are shown. Table | reduced models based on four moc[eg_( ) model,
) ) ' 1 ) five KL modes[KL (5) model, and the Fourier modes up to
gives the fraction of variance captured by these three PIPS ber 10E(20 del is sh In the 20 del
and KL modes, respectively. The first and second PIP an ave numboer Q (20) mode] is shown. In the F20) mode
' . nly the anomalies are truncated at wave number 10 but the

KL eigenfunction are virtually indistinguishable from one full . : )
_ . mean stat&ur) is used to allow for a direct comparison
another; they together account for 99.68% of the variance otfg the other models

the system and are indispensable for any dynamical descrip- In Fig. 3 the mean state obtained from the complete sys-

tion. In the third mode significant differences occur, espe- o
cially in the zones of high variability at the edges of the tem and from the reduced systems is given. The(§IP

) . ; ; model reproduces the mean state perfectly as well as the
interval. An expansion of the third PIP in terms of the KL KL (5) model and the £20) model. The Ki(4) model has a

slight but significant error.

Figure 4 illustrates the variande?)—(u)? as a function
of the space coordinate. The accordance for thé3pHrodel
is perfect; the same holds for the K&) model. The Kl(4)
and the F20) model both have large errors.

TABLE |. Fraction of variance captured by three PIPs and KL
modes.

[ MUvar o SioNGvar AFivar S N PIvar

1 0.8045 0.8045 0.8045 0.8045 In order to check whether the reduced models are able to
2 0.1923 0.9968 0.1923 0.9968 capture the behavior of the complete system in the time do-
3 0.0023 0.9991 0.0021 0.9989 main Fig. 5 shows the temporal Fourier spectrumufy),

wherex, is a representative position in space taken as the
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FIG. 6. Projection of the limit cycle obtained from a simulation
FIG. 4. Variance obtained from a simulation with 30 Fourier wjth 30 Fourier modegcomplete system, solid3 PIPs(dotted, 4
modes(complete system, solid20 Fourier modegdot-dashelf 3~ KL modes(dashed and 5 KL modesgidentical with solid onto the
PIPs (dotted, 4 KL modes(dashed, and 5 KL modes(identical  plane spanned by the first two PIPs.
with solid).

We also considered reduced models based on Sobolev
position of maximum variance at the left edge of the interval:eigenfunctions as introduced by Kird¥]. A model using
Xo~0.3326. All models reproduce the periodicity. One rec-four patterns slightly improves on the K4) simulation; but
ognizes the basic frequency of the limit cycle; the higherin order to obtain a performance that is as good as that of the
harmonics are not shown. The Fourier spectrum is repropIP(3) model five modes are necessary as with KL modes.
duced perfectly in the PIB) simulation as well as with the  The minimum number of patterns involved in the models
KL (5) model. The KL(4) simulation has a large shift in fre- pased on KL modes and Sobolev eigenfunctions, respec-
quency; in the E20) model the frequency is slightly too low. tively, is much lower here than is reported[ifl. This may

Last, we compare the geometrical structure of the limitpe due to several reasons: first, the reduced modgt]iis
cycle in phase space in the complete system and in the réormulated for the complete state rather than the anomalies.
duced systems. For this purpose, Fig. 6 shows the projectiogiven the fact that the system under consideration here is
of the limit cycle onto the plane spanned by the first twocharacterized by relatively small fluctuations around a large
PIPs or KL modes, respectively, since these are virtuallyamplitude mean staté&f. Figs. 3 and % a reduced model
identical. The PIEB) and the KL5) model actually yield formulateda priori as an anomaly model may be expected to
perfect agreement; in the K&) simulation the amplitude of be more efficient since the dynamical interactions between
the limit cycle is too large in accordance with Fig. 4. The the mean state and the anomaly patterns are fully preserved
F(20) model cannot be compared to the other models herand the anomaly field is captured better with an expansion
since the first two PIPs are not fully contained in the Sub-concentrating on the anomalies. Secondly, only the scalar
space spanned by the Fourier modes up to wave number 1goduct[ -, -], has been considered by Kirby. Moreover, in

A plot of the solution obtained from a simulation with the the former study the calculation of the KL modes and Sobo-
PIP(3) model (not shown is indistinguishable from Fig. 1. |ev eigenfunctions is based on a Fourier-Galerkin approxi-
The same holds for the KB) model. With the KI(4) and the  mation truncated at wave number 10, which is not fully con-
F(20) model the errors in amplitude and frequency of theyerged:; this also may influence the results.
oscillations are clearly visible. We also extracted PIP models from the KS equation with
the algorithm illustrated in9] and found a PIP model with
four degrees of freedom that performs nearly as good as the
PIR(3) model described above but did not succeed in describ-
ing the dynamics with three patterns.

V. CONCLUSIONS

An algorithm for constructing minimal systems of ODEs
modeling the dynamics of nonlinear PDEs has been illus-
trated. Characteristic spatial structures are obtained from a
nonlinear minimization procedure based on a dynamical op-
timality criterion and used as basis functions in a Galerkin
approximation. The method is applied to a limit cycle solu-

frequency (units of 1/su) tion of the KS equation. As to the number of modes required
to capture the principal dynamical and statistical properties

FIG. 5. Fourier spectrum afi(X,) obtained from a simulation Of the PDE a dynamical description based on PIPs provides a
with 30 Fourier modegcomplete system, solid20 Fourier modes considerable improvement on more conventional techniques
(dot-dashel] 3 PIPs(dotted, 4 KL modes(dashedf and 5 KL  using Sobolev eigenfunctions or KL modes as basis func-
modes(long-dashey tions, a PIP model with three patterns being as good as a

spectral density (nondim. units)
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model based on five KL modes or Sobolev eigenfunctionssgtraints. The mapV consists of two parts. First, the patterns
and is far more efficient than a model based on Fouriep; are orthonormalized using the standard Gram-Schmidt
modes. Moreover, the present algorithm improves on a preprocedure. One ends up with a matfx corresponding to a
viously published PIP algorithii®]. The methodology of the  set of orthonormal patterd®s ,...,pi }, which are related to
present paper has also been successfully applied to the cotive patternsp; by pﬁ=2,~(T1 jip_j, where T, is an upper
plex Ginzburg-Landau equation in a chaotic regirh@]. triangular L X L) matrix. LetC— be the covariance matrix of
Presumably, the reduced systems obtained from théhe amplitudesz of the patterns p; : Cﬁj =(ziizj*>
method illustrated here are the minimal systems attainabl&EW(M1“|\/|)M|:>ti pij_ C' can be diagonalized by a
fr.or.n a PDE yvhen using a linear Galerkin projection. A poS-real,  orthonormal I(XL) matrix Tj: T,CMT,
S|b|_llty to arrive at an even furthe_r_reduced c_Jyr_lam_lcaI de-_ diag(}\fm,___’)\ElF). Then the matrixP=P'T,=PT,T,
scription may be offered by combining an optimization pro-represents a set of patterndp,,...p} with p,

cedure of the type introduced here with a nonlinear Galerkin L — . L !
scheme, i.e., by projecting the PDE onto an optimized non-_fztj)(o-[ﬁ)”g i _(22(1'))”61;3)“5 i (v;ri;chEs\?élr?LlJeas”thes(c):%nestrglnr:s
linear approximate inertial manifold rather than an optimizedO i q. lied t q:[h ' it Oy th hg

linear subspace. This may be worth pursuing further in futur&OYENNON IS applied 1o the patlery . Lne then has

research but clearly lies outside the scope of the presedfl(P)=x1(P), X2(P;Tma) =Xo(Pima), and x(P; 7ma)

study. =x(P;Tmay- The elements oP are used as variables in the
numerical minimization proceduréot applying any con-
APPENDIX A: straintg; at each step of the minimizatidd=)(P) is cal-
MINIMIZATION OF THE ERROR FUNCTION culated as described above. Thenis calculated according

o ) ] to Eqg. (30) and the tensors of interaction coefficiemtsb,
The minimization of the error function with respect to the ¢ andy, are evaluated using the pattems

patterns is performed numerically using a quasi-Newton al- - Classical perturbation theory for symmetric matrices ap-
gorithm wr;h Broyden-EIetcher-GoIdfarb-Shanno_update Ofplied to C* yields for the first-order variation of; with

the_ approximated Hessian matfik8,19. The algorl_thm e respect to the elements BE

quires exact evaluation of the error function and its gradient

for arbitrary sets of patterns. 1 9C
. X1 jk

The fact that the constraints of E¢€0) and(21) do not —=—— > L (T);i(TDu- (A1)
restrict the solution of the minimization problem but are only IP e varijk P,

imposed to remove the ambiguity in the representation of th
subspacéP can be exploited to facilitate the calculations in
the following manner. Imagine an arbitrarf]& L) matrix

P with linearly independent columns representing a set o

ie—'orming acjlk/aP_M, from the Gram-Schmidt procedure is
straightforward using only elementary analysis and is there-
{ore not given in detail here. The gradient pf is

linearly independent patterr{®,,...,p_}. A function W is x> dxs 9P,
defined that maps$ onto its normal form; i.e., onto the pry ~ < P 2P (A2)
(uniquely defineflequivalent N X L) matrix P=W(P) cor- preow v e
responding to a set of patterfys; ,...,p, } satisfying the con- with
|
K
ax 1 [ 43 1 (/a3 ., e 43 N
IP Var<5pur Var EUM 221 Wide, U,L> IEJ Jay, Aij+2 day; O]
+ My (g, (20 A3
i &bri i W” i &_Cr wlo ( )
%Pt ap; ap;
L=(—1)Bt1l,| — & TP 7H)
Ay = (=D ) g 50 ox o (A4)
*Pp, of , ap
o= (—=1)8t1 Y e |
®IMJ (=1) a 2B’ ax ox Oy (A5)
9*Bt ,  a*p 5°p; HUg) ap;
= (—1)8*1 2 Ly - A
Yu=(=1) WP A E T pE e o o (A6)
9*Pp; o 9°f a{(ug) of
= —(_1\B+1 | M “ F/ % n
Fip=(=1) A G T e oy o (A7)
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Pt oMug) X ug) @ ({ug))\?
—(—1)B+1 p F Fy 2 2TF
M=(=1 P/ A B v A ( X (A8)
|
aPyi/o’?P_Mr can be obtained from?Cilj/(?P_Mr by standard glk=z"~7" (B3)

first-order perturbation theory for symmetric matrices ap-

plied to C'. The formulas(A4)—(A8) are evaluated by 7 andw, are defined as in Sec. Il D. In the present context
means of the pseudospectral transform method. In the case fe system of Eq(B1) has to be identified with the PIP
B=1 the relation model[Egs.(16) and(49), respectively, the initial condition

is z)=[p;,U}] and the dat@* are given by the projection of

+0;,=0 (A9)  the state of the complete system at timgonto the PIPs
pa)

At this point the set of adjoint equations is introduced:

Apij T O
holds. The expression@J/&ziO, ddldaij, 9dldb;j, and
adJldc; are calculated efficiently using an adjoint technique
(see Appendix B . Eler

Hence by introduction of the mag/ the variational prin- yi=—2> a_zj yj, i=1..L, (B4
ciple is formulated as an unconstrained minimization prob- ! !
lem; the error function and its derivatives only have to be . JG.
considered for orthonormal pattern sets and the algorithm E=—2, —'y,—,
automatically supplies the PIP model in its normal form de- T 0

fined in Sec. Il C. This greatly reduces the computation time _
since the computational effort involved in the mdpand its ~ £duationsB1), (B4), and(BS) together form an autonomous

derivatives is negligible compared to that involved in theSystem of 2 +R first-order ordinary differential equations,

ensemble of integrations of the PIP model necessary t¥hich is nonlinear in the variables and Iin'ear in.the vari-
evaluatey, and its derivatives. ables y; and &. An operator S«k-1 js defined by

(yTk-1,£k-1) =Sk Tk-1(y"k £7),  where f/7k-1,£k-1) =
(Yt yLENTYLLERTY) s the state obtained when
integrating the adjoint system backward in time fromr,
Adjoint techniques originating from the theory of optimal to t=m_ with initial condition (y™, £7)
control are an efficient tool to iteratively solve variational = (Y. YK EX,... &), STTk1 depends on the whole
problems. They allow for the economical calculation of thetrajectory z of the nonlinear system on the interval

gradient of an error function of the type considered here Wiﬂ‘[ 7e_1,7]. Using the main results from the theory of optimal

respect to initial, boyndary, or pa_ra_metric conditions Of. thecontrol and exploiting the linearity of the adjoint equations in
system under consideration. Adjoint methods are widel

i and ¢, the following algorithm can be proven: settin
used in the fields of meteorology, oceanography, and climatgr, § g a9 P g

research for many types of problems including variationaV' =0, £;=0 and calculating successively
data assimilation, parameter fitting, determination of opti-
mally growing perturbations, and sensitivity analy$see
[20] for an overview. The mathematical foundations of the
adjoint formalism can be found, e.g., [[81-25. In the fol-
lowing the adjoint method is briefly described in the form in (yTk-1, £k-1) = STk Tk=1(y Tk+ W g 'k, £7%)
which it is relevant in the present context.

Given an autonomous nonlinear system of first-order dif-
ferential equations ih-dimensional phase space,

i=1,...R. (B5)

APPENDIX B: THE ADJOINT METHOD

(YyTK-1,£7K-1) = STK TK-1(y K+ W, g K, £7K)

: (y%,€%) =8y +wys™,EM), (B6)
z=G(z;9), z=(z4,.--,2)) (B1)
with S’ 7k-1 referring to the trajectory” in the interval
depending on a set of adjustable parametefs [0,74] defined by the initial conditioz’ one gets
=(%4,...,9g), an error function

o 1a
K yi=5 o (B7)
I 0)=2 2 wi(s])? (B2) !
k=1 i 0_1 93 (BS)
is defined wheres"x=(e1%,...,¢/") is the error between the ' 299

statez’v=(z;,... z) obtained when integrating the system pence first one integrates the nonlinear sysféy. (B1)]
of Eq. (B1) forward in time fromt=0 to t= 7, with initial  forward in time fromt=0 to t= 7, With initial condition
condition z°=(z},....20) and a given set of dat&Z® 20 to obtain the errors™ and calculate). Then one back-
=(Z,...Z2)9): ward integration of the adjoint system froi 7, to t=0
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=

=

according to Eq(B6) yields all components of the gradient
of J with respect to the initial condition and the system pa-
rameters. In the course of the forward integration of the non-
linear system the trajecto/ has to be stored at sufficiently
many points in the intervdl0,r,,,] since it is needed for the The adjoint equations read:
backward integration of the adjoint system.

In the case of the PIP model derived from the Kuramoto-
Sivashinsky equatiofEq. (49)] the vector of system param-
eters¥ is formed by the elements of the interaction tensors
a, b, andc taking into account the symmetry of the qua-

{gi;i:1,...,R}:{wijk;i,j,k:].,...,L;j k}

yi= _% ajikzkyj_; bjiyj, (B1))

dratic interaction coefficientsa(j, = ay;):
{ﬁi ,| =l,...,R}={aijk ,|,J,k=1,,L,J>k}
L}

U{bij;i,jzl,...,L}U{Ci;izl,... (B9)

This yields R=2L%+2L2+L independent parameters. The

set of corresponding adjoint variables is

1

WjjK= =35 42 (B12)

7i=—2Yi, (B13)

@i="Yi. (B14)
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