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Optimal Galerkin approximations of partial differential equations
using principal interaction patterns

F. Kwasniok*

Max-Planck-Institut fu¨r Meteorologie, Bundesstrasse 55, D-20146 Hamburg, Germany
~Received 2 December 1996!

A method of constructing minimal systems of ordinary differential equations modeling the dynamics of
nonlinear partial differential equations is presented. Characteristic spatial structures called principal interaction
patterns are extracted from the system according to a nonlinear variational principle based on a dynamical
optimality criterion and used as basis functions in a Galerkin approximation. The potential of the method is
illustrated using the Kuramoto-Sivashinsky equation as an example. As to the number of modes required to
capture the dynamics of the complete system a reduced model based on principal interaction patterns yields a
considerable improvement on more conventional approaches using Sobolev eigenfunctions or Karhunen-Loe`ve
modes as basis functions and is far more efficient than a dynamical description based on Fourier modes.
@S1063-651X~97!14105-8#

PACS number~s!: 05.45.1b, 02.60.2x, 02.70.2c
d

m
y-
m
el
d
te
a
dy
e-
D
te

h
ee
n
o
bl
ie
g
d
g
rie
tic
th
th
ica
al

nt
pe

-
ve

in
ear
ense.
en-

re-
n-
ese
ann
as
ac-
fine
ient

o-
a

w-
lus-
as-
g
tem
e and
eth-

el
e-
a-
cal
ts
Uhl
ta

s-
ti-
to
tem
e

s:
I. INTRODUCTION

The standard approach to the numerical study of the
namical behavior of partial differential equations~PDEs! a
priori vested with an infinite number of degrees of freedo
consists in their approximation by finite-dimensional d
namical systems. Given the well known fact that the dyna
ics of PDEs are often confined to attractor sets of relativ
low dimension, the construction of minimal dynamical mo
els capturing the principal properties of the complete sys
is an interesting task. A class of frequently used approxim
tion schemes is formed by the Galerkin methods. The
namical field is expanded into a finite set of tim
independent global basis functions; projection of the P
onto these basis functions yields a finite-dimensional sys
of ordinary differential equations~ODEs! for the time evo-
lution of the expansion coefficients. The efficiency of suc
dynamical description, i.e., the number of degrees of fr
dom required to capture the dynamics of the PDE, depe
crucially on a proper choice of the basis functions. The m
traditional approach lies in using eigenfunctions of a suita
chosen linear differential operator, commonly Four
modes, as basis functions. Despite the compact and ele
mathematical framework of these Fourier-Galerkin metho
they often provide a system of equations that is much lar
than the true dimensionality of the system since Fou
modes are completely general and not adapted to the par
lar system under consideration. Hence information on
dynamics of the system has to be incorporated into
choice of the basis functions in order to arrive at a dynam
description reflecting more closely the intrinsic dimension
ity of the system.

Up to now modes obtained from a Karhunen-Loe`ve ~KL !
decomposition ~also referred to as principal compone
analysis, empirical orthogonal function analysis, or pro
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orthogonal decomposition! are widely used as basis func
tions in a Galerkin approximation of a PDE in order to arri
at a low-dimensional model@1–6#. The KL eigenfunctions
allow for an optimal spatial representation of an attractor
high- or even infinite-dimensional phase space by a lin
subspace of given dimension in a mean least-squares s
The KL approach has been extended to the Sobolev eig
functions by Kirby @7#. However, the optimality criterion
defining the KL modes and the Sobolev eigenfunctions,
spectively, does not refer to the time evolution of the tru
cated system obtained when projecting the PDE onto th
modes. Thus, as has been first pointed out by Hasselm
@8#, a methodology referring simultaneously to spatial
well as temporal features of the system by taking into
count the dynamics of the reduced model in order to de
the basic spatial patterns may be the even more effic
~although the considerably more cumbersome! approach
when searching for a minimal model. Following the prop
sition of Hasselmann, a general algorithm for reducing
high-dimensional Fourier-Galerkin approximation to a lo
dimensional dynamical system has been derived and il
trated in the context of a geophysical fluid system by Kw
niok @9#. A set of spatial structures is obtained by minimizin
the error in the time derivative between the complete sys
and the reduced system in a mean least-squares sens
used as a basis in a dynamical description. The same m
odology has been used by Achatzet al. @10# and Achatz and
Schmitz@11# in order to arrive at a low-dimensional mod
of baroclinic wave life cycles, a nonlinear oscillatory ph
nomenon in the field of dynamic meteorology. A similar sp
tiotemporal strategy for constructing reduced dynami
models of complex systems in the vicinity of critical poin
based on the theory of synergetics has been derived by
et al. @12,13# and used for the analysis of experimental da
by Jirsaet al. @14# and Friedrich and Uhl@15#.

In the present study the methodology outlined by Kwa
niok @9# is developed further by deriving an improved op
mality criterion for defining the basis functions taking in
account the nonlinear time evolution of the reduced sys
over a finite time interval rather than only the local tim
5365 © 1997 The American Physical Society
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5366 55F. KWASNIOK
derivative. Reduced models of the Kuramoto-Sivashin
equation are constructed using this method. The questio
addressed to what extent these low-dimensional system
capable of capturing the principal properties of the comp
system.

The paper is organized as follows: in Sec. II the meth
ology for deriving a reduced model from a PDE is outlin
in general. In Sec. III the model system used as an illus
tive example is introduced and the methodology is applied
this particular system. Then the results are given and
cussed. The paper is concluded in Sec. V. In the two App
dices the numerical details of the algorithm are given.

II. METHODOLOGY

We start out with a partial differential equation

]u

]t
5D~u!, ~1!

whereu is a function ofn-dimensional space and time:

u5u~x,t !, x5~x1 ,...,xn! ~2!

andD is a nonlinear differential operator, which is assum
to be polynomial inu and its spatial derivatives. Equation~1!
is considered on a bounded spatial domainV,Rn subject to
appropriate boundary conditions. Nearly all nonlinear PD
treated in theoretical physics~the Navier-Stokes equation
and various derivates, the Kuramoto-Sivashinsky equat
the Ginzburg-Landau equation, the Korteweg–de Vr
equation, numerous reaction-diffusion equations, etc.! fall
into this class. The phase space of Eq.~1! is some infinite-
dimensional Hilbert spaceH~V! of sufficiently smooth func-
tions fromV into the real numbers. A scalar product is i
troduced inH, which usually is of the form

@g,h#5E
V
L~g!L~h!dx ~3!

for two arbitrary functionsg,hPH with a suitably chosen
linear operatorL.

The system reduction is now achieved in two steps: fi
the PDE is cast into a finite-dimensional dynamical desc
tion using a standard Fourier-Galerkin procedure. Secon
variational principle is applied in this finite- but high
dimensional phase space in order to identify a lo
dimensional subspace optimally suited for the construc
of a reduced model.

A. Spectral basis

Usually a basis ofH is given by an infinite, denumerable
complete set$ f m ;mPN% of eigenfunctions of some appro
priately chosen self-adjoint linear differential operator d
pending on the spatial domainV and the boundary condi
tions. Commonly, the functionsf m are Fourier modes
Considering the finite-dimensional subspaceF spanned by
the firstN functions

F5Span$ f 1 ,...,f N%, ~4!

u is expanded into a truncated series
y
is
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e
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uF5 (
m51

N

um f m . ~5!

Here and in the following the subscriptF signifies quantities
associated with the Fourier-Galerkin approximation of E
~1!. Insertion of the expansion of Eq.~5! into Eq. ~1! and
projection onto the adjoint functions yields an autonomo
system ofN first-order ordinary differential equations for th
time evolution of the expansion coefficients:

u̇m5F f m* ,DS (
n51

N

un f nD G , m51,...,N ~6!

The adjoint functions are defined as the functionsfm*PF
satisfying

@ f m* , f n#5dmn , m,n51,...,N. ~7!

Often the functionsf m form an orthonormal set~having f m*
5 f m then!. But sometimes it may be desirable to consid
several scalar products involving different spatial derivativ
that correspond to particular physical quantities, e.g., kin
energy in the case of a fluid system~cf. @9# and Sec. III of
this paper!. Therefore the more general notation involvin
the adjoint modes is used here. In the following we assu
the truncation limitN to be large enough that the dynamic
system of Eq.~6! captures the long-term behavior of the PD
of Eq. ~1! monitored by statistical quantities~e.g., moments
or Fourier spectra! and dynamical characteristics~e.g.,
Lyapunov exponents or attractor dimensions! within suffi-
cient accuracy; all properties of Eq.~1! will be identified
with the corresponding properties of Eq.~6!.

It is convenient to separate the dynamical fielduF into the
mean state and the deviation from it:

uF5^uF&1ûF5 (
m51

N

~^um&1ûm! f m ~8!

^ & denotes the ensemble average over the attractor on w
the asymptotic motion of the dynamical system of Eq.~6!
resides. Equation~6! then becomes

u̇̂m5F f m* ,DS ^uF&1 (
n51

N

ûn f nD G , m51,...,N. ~9!

B. Principal interaction patterns

We now consider anL-dimensional subspaceP,F
spanned by only a limited number of linearly independe
spatial modespi , which will be called principal interaction
patterns~PIPs!:

P5Span$p1 ,...,pL%, L!N. ~10!

In order to simplify the notation from now on greek indice
always run from 1 toN, latin ones from 1 toL if not explic-
itly indicated otherwise. Each PIPpi is a linear combination
of the standard basis functions:

pi5(
m

Pm i f m , ~11!
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55 5367OPTIMAL GALERKIN APPROXIMATIONS OF PARTIAL . . .
P being the (N3L) matrix with the vectors of Fourier coef
ficients of the PIPs as its columns. The anomaly fieldûF is
expanded into a series of PIPs:

uPIP5^uF&1ûPIP5^uF&1(
i
zipi . ~12!

The subscript PIP indicates quantities associated with
PIP approximation of Eq.~1!. A linear projection operator
ZP is defined that operates fromH into P and maps a func-
tion gPH onto its projection onto PIP space

g→ZP~g!5(
i

@pi* ,g#pi ~13!

with the adjoint patternspi*PP defined by

@pi* ,pj #5d i j . ~14!

A reduced model is given by the projection of Eq.~1! onto
PIP space

]ûPIP
]t

5ZP„D~uPIP!…, ~15!

which is equivalent to the system of modal equations for
amplitudes of the PIPs:

żi5Fpi* ,DS ^uF&1(
j
zj pj D G . ~16!

Note that Eqs.~10!–~16! are completely general. A truncate
model as given in Eq.~16! can be derived for any
L-dimensional subspaceP#F spanned byL arbitrary lin-
early independent spatial modespi . Especially forpi5 f i
andL5N one returns to the system of Eq.~9!.

C. Uniqueness of the patterns

If D(u) is polynomial inu and its spatial derivatives o
maximum degreel the system of modal equations for the P
amplitudes@Eq. ~16!# takes the form

żi5Ki
~0!1(

j 1
Ki j 1

~1!zj 11 (
j 1 , j 2

Ki j 1 j 2
~2! zj 1zj 21•••

1 (
j 1 ,...,j l

Ki j 1 ...j l
~ l ! zj 1•••zj l, ~17!

where K ( i ) are the tensors of coupling coefficients det
mined by the spatial structure of the patterns and the oper
D. It is now obvious that the PIPs are only determined
within a linear transformation. Consider a matrixP repre-
senting a set of patterns$p1 ,...,pL% and an arbitrary regula
linear transformationT in L-dimensional space. The tran
formed matrix is thenP85PT representing a set of pattern
$p18 ,...,pL8% with pi85( jTji pj ; the transformed expansio
coefficients arezi85( jTi j

21zj . One then hasûPIP5( izipi
5ûPIP8 5( izi8pi8 . Transforming the coupling coefficient
K ( i ) according to the rules for tensors of (i11)th order
e

e

-
tor
o

Kj 1••• j i11
8~ i ! 5 (

k1 ,...,ki11

Tj 1k1
21 Tk2 j 2•••Tki11 , j i11

Kk1 ...ki11

~ i ! ~18!

one obtains a system of differential equations of the sa
form as Eq.~17! for the amplitudes of the transformed pa
terns:

żi85Ki8
~0!1(

j 1
Ki j 1

8~1!zj 18 1 (
j 1 , j 2

Ki j 1 j 2
8~2! zj 18 zj 28 1•••

1 (
j 1 ,...,j l

Ki j 1 ...j l
8~ l ! zj 18 •••zj l8 . ~19!

Now ]ûPIP/]t5( i żi pi5]ûPIP8 /]t5( i żi8pi8 holds. Hence the
dynamical systems of Eqs.~17! and~19! are equivalent in the
respect thatûPIP and ûPIP8 remain identical if they are identi
cal at some initial time and also in the long-term behavior
statistical and dynamical properties ofûPIP andûPIP8 are iden-
tical. Especially the error functionx, which will be intro-
duced in Sec. II D is invariant under the transformati
x(P8;tmax)5x(P;tmax). Put differently,P andP8 are associ-
ated with the same projection operatorZP and thus lead to
equivalent reduced systems.

One may eliminate this gauge freedom by referring
some normal form for the matrix of patterns. One possi
way to do so is~in analogy to the KL modes! to impose the
constraints so that the patterns form an orthonormal set
that their amplitudes are pairwise uncorrelated with the p
terns ordered according to descending mean squared am
tude:

@pi ,pj #5(
m,n

MmnPm iPn j5d i j , ~20!

^zizj&5(
m,n

~MGM !mnPm iPn j5d i jl i
PIP, l i

PIP.l i11
PIP .

~21!

The symmetric, positive definite metricM is the representa
tion of the scalar product in the spaceF:

Mmn5@ f m , f n# ~22!

andG is the covariance matrix of the Fourier components
ûF :

Gmn5^ûmûn&. ~23!

Often the metricM is diagonal; in particular, for all scala
products considered in Sec. III in the context of t
Kuramoto-Sivashinsky equation this is the case. Moreov
some convention concerning the sign of the patterns ha
be adopted. From now on the PIPs are always assumed
orthonormal in space (pi*5pi) and uncorrelated in time. The
orthonormality in space facilitates the formulation of th
variational principle in Sec. II D and greatly reduces t
computational effort involved in the corresponding nume
cal minimization procedure~cf. Sec. II D and Appendix A!.
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5368 55F. KWASNIOK
D. The variational principle

Consider some initial conditionûF
05(mûm

0 f m character-
ized by the Fourier coefficientsûm

0 at initial time t50. Let
ûF

t 5(mûm
t f m be the state obtained when integrating t

high-dimensional Fourier-Galerkin approximation forward
time from t50 to t5t with initial condition ûF

0. Consider
now the projection of the initial condition onto PIP spa
ûPIP
0 5( izi

0pi with zi
05@pi ,ûF

0 #. Let ûPIP
t 5( izi

tpi be the
state obtained when integrating the reduced system forw
in time from t50 to t5t with initial condition ûPIP

0 . ûPIP
t is

different from the projection of the complete system onto
PIP spaceZP(ûFt )5( i z̃i

tpi with z̃i
t5@pi ,ûF

t #. An error func-
tion is introduced that measures the spatially and tempor
integrated squared error between the state given by the
model and that given by the reduced model normalized
the spatially integrated variance of the system:

Q~ ûF
0,P;w!5

1

Var E0
`

@ ûPIP
t 2ûF

t ,ûPIP
t 2ûF

t #w~t!dt, ~24!

Var5^@ ûF ,ûF#&5(
m

^ûm
2 &. ~25!

w(t) is an arbitrary non-negative weight function satisfyi
*0

`w(t)dt51. In the present studyw(t) is taken to be

w~t!5H 1

tmax
for 0<t<tmax

0 for t.tmax

~26!

with the free parametertmax.0. For N large enoughQ is
independent ofN if tmax is not too large. Taking the en
semble average over all initial conditionsûF

0 on the attractor
yields an error function that depends only on the pattern
and the parametertmax:

x~P;tmax!5^Q~ ûF
0,P;tmax!&. ~27!

The optimal set of patterns is determined by minimizing
error functionx. In practice the ensemble average is replac
by the average over a finite number of realizations ofQ with
initial conditionsûF

0 taken at uncorrelated times from a lon
time series generated by an integration of the system of
~9! assuming ergodicity of the flow. Introducing the proje
tion of the error at timet onto the patterns

« i
t5@pi ,ûPIP

t 2ûF
t #5zi

t2 z̃i
t ~28!

the error function can be split into two parts:

x5x11x2 ~29!

with

x1~P!512
1

Var (i l i
PIP ~30!

and
rd

e

ly
ull
y

et

e
d

q.

x2~P;tmax!5
1

Var tmax
E
0

tmax

(
i

^~« i
t!2&dt. ~31!

x1 simply measures the mean squared error due to the
jection of ûF onto PIP space and does not depend on
dynamical behavior of the reduced system;x2 represents the
error in PIP space and refers to the dynamics of the
model. The maximum integration timetmax remains as a free
parameter of the method. It may be taken as a character
time scale of the system based on some physical knowle
or reasoning or obtained from mathematical techniques~e.g.,
a dominant period in the temporal power spectrum of
system or the inverse of the largest Lyapunov exponen
the case of a chaotic system!.

In order to actually evaluate the error functionx the tem-
poral integral in Eq.~31! has to be approximated by a finit
sum,

J5
1

tmax
E
0

tmax

(
i

~« i
t!2dt5 (

k51

K

(
i
wk~« i

tk!2, ~32!

wheretk are equally spaced~for simplicity! mesh points in
the interval@0, tmax# @tk5(k/K)tmax# and the weightswk are
given by some quadrature rule. When using, e.g., the Si
son quadrature rule the weights are

w2k215
4

3K
, k51,...,

K

2
, ~33!

w2k5
2

3K
, k51,...,

K

2
21, ~34!

wK5
1

3K
. ~35!

K then has to be an even integer.
The variational principle poses a high-dimensional no

linear minimization task~with theNL elements ofP as vari-
ables! that has to be solved numerically by iterative tec
niques. The gradient ofx with respect to the components o
P can be calculated efficiently using an adjoint method ori
nating from the theory of optimal control. See the Appen
ces for details on the calculation techniques of the numer
minimization procedure.

The methodology originally proposed by Hasselmann@8#
and used by Kwasniok@9#, Achatzet al. @10# and Achatz and
Schmitz@11# may be viewed as a first-order approximatio
of that illustrated here. In these former studies~and also in
the papers@12–15#! the optimality criterion defining the pat
terns only refers to the local time derivative of the reduc
system whereas now the dynamical behavior over a fi
time interval is taken into account. This more recent a
proach intuitively can be expected to be more powerful~al-
though computationally more expensive! than the former
one. For example, think of a periodic system. Then the ne
method withtmax set at the oscillation period will be mor
efficient at finding a reduced model reproducing the corr
amplitude and frequency of the oscillations than the form
method, which just looks at the local time derivative. Esp
cially the problem of ill posedness should be less severe w
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55 5369OPTIMAL GALERKIN APPROXIMATIONS OF PARTIAL . . .
the newer technique. Imagine two sets of patterns, wh
differ only slightly from each other. Then the errors in th
time derivative of the reduced models associated with th
pattern sets are usually also nearly identical whereas an
function based on the time evolution over a finite time can
expected to provide a better discrimination between the
pattern sets.

E. Karhunen-Loève modes as a limiting case

In the limit tmax→0 the termx2 vanishes. One is then lef
with the problem of finding anL-dimensional subspace suc
that the mean squared projection errorx1 is minimal. As is
well known the solution to this minimization problem
given by the KL decomposition. The KL modese% are given
by the eigenvectors of the eigenvalue problem

GME5Ediag~l1
KL ,...,lN

KL !, ~36!

whereE is the (N3N) matrix with the Fourier component
of the KL modes as its columns

e%5(
m

Em% f m . ~37!

The matrixGM as a product of symmetric, positive defini
matrices can be diagonalized in a real basis and has only
and positive eigenvalues. The eigenvalues are in descen
order (l%

KL.l%11
KL ). The KL modes form an orthonorma

set:

@e% ,es#5(
m,n

MmnEm%Ens5d%s . ~38!

The amplitudes of the KL eigenfunctionsw%5@e% ,ûF# are
pairwise uncorrelated and the second moment of eac
given by the corresponding eigenvalue

^w%ws&5(
m,n

~MGM !mnEm%Ens5d%sl%
KL . ~39!

The sum of all eigenvalues is equal to the spatially integra
variance of the system:

Var5(
%

l%
KL . ~40!

The global minimum ofx1 is attained when taking the eigen
functions corresponding to theL largest eigenvalues. Th
value of the error function is then

x1512
1

Var (i l i
KL . ~41!

The PIP approach may be viewed as a nonlinear extensio
the KL method. For short integration timestmax the error
functionx is dominated by the termx1 ; the optimal patterns
are then very close to the KL modes. With increasingtmax
more and more information on the dynamical behavior of
truncated model is included.
h
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III. THE KURAMOTO-SIVASHINSKY EQUATION

As a model system to illustrate the method outlined
Sec. II we consider the rescaled Kuramoto-Sivashinsky~KS!
equation in one space dimension

]u

]t
14

]4u

]x4
1aF]2u]x2

1
1

2 S ]u

]xD
2G50 ~42!

subject to periodic boundary conditions

u~x,t !5u~x12p,t ! ;t ~43!

at a584.25 where a limit cycle solution is observed. Th
case has already been treated in the literature in the con
of reduced models using Sobolev eigenfunctions as b
functions@7#.

The following class of scalar products is introduced:

@g,h#b5
1

2p E
0

2p ]bg

]xb

]bh

]xb dx5~21!bF]2bg

]x2b ,hG
0

,

b50,1,2,... . ~44!

For each scalar product and a given set of patternspi a linear
projection operatorZb

P can be defined according to Eq.~13!.
For all b the projector is self-adjoint with respect to th
corresponding scalar product

@g,Zb
P~h!#b5@Zb

P~g!,h#b ;g,hPH ~45!

and idempotent

Zb
P
„Zb
P~g!…5Zb

P~g! ;gPH. ~46!

Note that the Burgers type nonlinearity in the KS equat
conserves the integral quantityI k5(1/2p)*0

2p(]u/]x)kdx
for all kPN. I 1 is the spatial average of]u/]x and vanishes
for all times. I 25@u,u#1 is similar to a kinetic energy; for
k>3 I k does not represent a particular physical quant
When separatingu into the time mean and the anomalies t
term that is nonlinear in the anomalies conserves the qua
Î k5(1/2p)*0

2p(]û/]x)kdx for all kPN. One hasÎ 150 for
all times. Î 25@ û,û#1 may be termed a turbulent kinetic en
ergy.

A. Spectral basis

The appropriate set of basis functions for the present
ample is

$ f m ;m51,...,N%5$& coskx,& sin kx;k51,...,kmax%.
~47!

The modes are orthonormal with respect to@•,•#0 :

@ f m , f n#05dmn . ~48!

When truncating at wave numberkmax the number of modes
is N52kmax. The wave number zero mode is omitted
order to remove the mean drift of Eq.~42! as is usually done.
Note that the dynamical system generated by a Galerkin
cedure using a Fourier basis as given in Eq.~47! is identical
for all scalar products out of the class introduced in Eq.~44!
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5370 55F. KWASNIOK
as can be immediately seen considering the correspon
adjoint modesfm* . Test calculations revealed that a truncat
model using the Fourier modes up to wave numberkmax
515 ~30 degrees of freedom! is sufficient to capture the
long-term dynamics of the KS equation monitored by fi
and second moments as well as temporal Fourier spect
the selected parameter valuea584.25. The model is inte
grated in time using a de-aliased pseudospectral trans
method@16# for the evaluation of the nonlinear term bas
on a discrete Fourier transform on a grid consisting of
equally spaced mesh points~employing the fast Fourie
transform algorithm!. Given the extreme stiffness and sen
tivity to the numerical accuracy of ODE models deriv
from the KS equation a variable-order, variable-step ba
ward differentiation formula is used as ODE integrator w
the error tolerance set at 10212 per time unit. Figure 1 illus-
trates the time evolution of the solution. The system exhib
periodic behavior; the variability is spatially localized at t
edges of the interval~cf. also Fig. 4!. Already from visual
inspection of Fig. 1 it is intuitively clear that the system is
fact very low dimensional and that the dynamical descript
based on Fourier modes requiring 30 degrees of freedo
far from optimal.

B. Principal interaction patterns

According to the general outline in Sec. IIuF is separated
into the time mean̂ uF& and the anomaliesûF . ûF is ex-
panded into a series of PIPs. Projection of the KS equa
onto the PIP basis yields the system of modal equations

żi5
1

2 (
j ,k

ai jkzjzk1(
j
bi j zj1ci , ~49!

where the interaction coefficients are given by

ai jk5~21!b11aF]2bpi
]x2b ,

]pj
]x

]pk
]x G

0

5aik j , ~50!

FIG. 1. Solution to the Kuramoto-Sivashinsky equation ata
584.25.
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n
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n

bi j5~21!b11F]2bpi
]x2b , 4

]4pj
]x4

1a
]2pj
]x2

1a
]^uF&

]x

]pj
]x G

0

,

~51!

ci5~21!b11F]2bpi
]x2b , 4

]4^uF&
]x4

1a
]2^uF&

]x2

1
a

2 S ]^uF&
]x D 2G

0

. ~52!

The interaction coefficients can be evaluated numerically
ing the pseudospectral transform method. In general
some choice of patterns the tensors of interaction coefficie
a,b,c depend on the scalar product used in the projecti
Only if the PIP space is identical with the space spanned
the Fourier modes up to a certain wave number do all sc
products of Eq.~44! generate the same dynamical syste
Especially the full system of Sec. III A is the same for allb.
The difference is due to the fact that in the special case
Fourier subspace the projection operatorZb

P and the operator
of spatial differentiation]/]x commute for allb whereas in
the general case they do not.

For completeness we remark that the projection proced
using the scalar product@•,•#b is equivalent to formulating
the KS equation for]bu/]xb rather thanu @by b-fold spatial
differentiation of Eq.~42!#, expanding]bûF /]x

b rather than
ûF into a series of PIPs and using the scalar product@•,•#0 in
the projection.

In view of the conserved integral quantities of the K
equation one may ask if these conservation properties
adopted by truncated models. The corresponding quant
in the subspaceP are Î k

P5(1/2p)*0
2p(]ûPIP/]x)

kdx. Î 1
P by

construction vanishes for all times and is thus trivially co
served by all PIP models. Fork>2 the conservation proper
ties depend on the scalar product used in the projection
the caseb51 the nonlinear terms in a PIP model for arb
trary sets of patterns conserve the truncated turbulent kin
energyÎ 2

P5@ ûPIP,ûPIP#1 but in general notÎ k
P for k>3. This

conservation statement can be shown by considering the
duced model in the form of Eq.~15! and using integration by
parts as well as the properties of the projector given in E
~45! and~46!. The nonlinear interaction coefficients then sa
isfy the relationship

ai jk1ajik1aki j50, ~53!

as can be readily verified from Eq.~50! using integration by
parts. For all other scalar productsÎ k

P is for all k>2 gener-
ally not conserved by the nonlinear terms apart from the c
of a Fourier subspace where the models coincide for alb.
Especially the nonlinear terms of the complete system
Sec. III A @when written as an anomaly model like Eq.~9!#
conserve the truncated turbulent kinetic energyÎ 2

F

5@ ûF ,ûF#1 but not Î k
F5(1/2p)*0

2p(]ûF /]x)
kdx for k>3.

IV. RESULTS AND DISCUSSION

PIP models have been extracted from the KS equa
based on four realizations of the error functionQ corre-
sponding to initial conditions separated by 0.2 system u
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~su!. This small ensemble size here is due to the simple
riodic structure of the present system; in the case of a cha
system a much higher number of realizations is neces
dependent on the dimension of the underlying attractor@17#.
The integration timetmax is taken to be 0.02 su, which i
about a quarter of the oscillation period of the system. W
this value oftmax one already gets the same results as w
tmax equal to the oscillation period, which is the canonic
choice fortmax in the case of a periodic system. The sa
pling interval of the data is 0.005 su corresponding toK
54 mesh points for the approximation of the temporal in
gral in the error function. Calculations have been done
the scalar products@•,•#0 , @•,•#1 , and@•,•#2 . Starting out
with two PIPs and using progressively more modes, fo
three and five PIPs turned out to be the minimum numbe
patterns to capture all essentials of the long-term behavio
the KS equation at the selected parameter valuea584.25 for
@•,•#0 , @•,•#1 , and @•,•#2 , respectively. The good perfor
mance of the scalar product@•,•#1 may be due to the fac
that it stands out against the others as to conservatio
turbulent kinetic energyÎ 2

P by the nonlinear terms. In the
following the presentation of the results is restricted to
caseb51.

Figure 2 gives the spatial structure of the three PIPs
tracted from the system. For comparison also the first th
KL modes~also with respect to@•,•#1! are shown. Table I
gives the fraction of variance captured by these three P
and KL modes, respectively. The first and second PIP
KL eigenfunction are virtually indistinguishable from on
another; they together account for 99.68% of the varianc
the system and are indispensable for any dynamical des
tion. In the third mode significant differences occur, es
cially in the zones of high variability at the edges of t
interval. An expansion of the third PIP in terms of the K

FIG. 2. First ~solid!, second~dotted!, and third ~dashed! PIP
~thick lines! and KL mode~thin lines!.

TABLE I. Fraction of variance captured by three PIPs and K
modes.

i l i
KL/Var ( j51

i l j
KL/Var l i

PIP/Var ( j51
i l j

PIP/Var

1 0.8045 0.8045 0.8045 0.8045
2 0.1923 0.9968 0.1923 0.9968
3 0.0023 0.9991 0.0021 0.9989
e-
tic
ry

h
h
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modes reveals significant contributions up to the tenth
mode.

When integrating the reduced model based on the th
KL modes shown in Fig. 2 forward in time the amplitude
grow without bounds; i.e., this model does not posses
stable attractor and thus completely fails to capture the lo
term dynamics of the complete system whereas the mo
based on the three PIPs has a stable attractor and reprod
all principal dynamical and statistical properties~as dis-
cussed in detail below!. This is due to the fact that the prop
erty of dissipativity inherent in the KS equation is n
adopted by the truncated KL model since the dissipat
term mainly acts at the small spatial scales~high wave num-
bers! whereas the leading KL modes are dominated by la
spatial scales. The third PIP has significantly larger contri
tions from higher wave numbers than the third KL mod
Hence the dissipation is captured better by the PIP sp
than by the KL space leading to the superior performance
the PIP model.

Now the ability of the three-dimensional PIP model@for
convenience hereafter referred to as PIP~3! model# to repro-
duce the long-term behavior of the complete system is inv
tigated in detail. For comparison also the performance
reduced models based on four KL modes@KL ~4! model#,
five KL modes@KL ~5! model#, and the Fourier modes up t
wave number 10@F~20! model# is shown. In the F~20! model
only the anomalies are truncated at wave number 10 but
full mean statêuF& is used to allow for a direct compariso
to the other models.

In Fig. 3 the mean state obtained from the complete s
tem and from the reduced systems is given. The PIP~3!
model reproduces the mean state perfectly as well as
KL ~5! model and the F~20! model. The KL~4! model has a
slight but significant error.

Figure 4 illustrates the variance^u2&2^u&2 as a function
of the space coordinate. The accordance for the PIP~3! model
is perfect; the same holds for the KL~5! model. The KL~4!
and the F~20! model both have large errors.

In order to check whether the reduced models are abl
capture the behavior of the complete system in the time
main Fig. 5 shows the temporal Fourier spectrum ofu(x0),
wherex0 is a representative position in space taken as

FIG. 3. Mean state obtained from a simulation with 30 Four
modes~complete system, solid!, 20 Fourier modes~identical with
solid!, 3 PIPs~identical with solid!, 4 KL modes~dashed!, and 5
KL modes~identical with solid!.
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position of maximum variance at the left edge of the interv
x0'0.3326. All models reproduce the periodicity. One re
ognizes the basic frequency of the limit cycle; the high
harmonics are not shown. The Fourier spectrum is rep
duced perfectly in the PIP~3! simulation as well as with the
KL ~5! model. The KL~4! simulation has a large shift in fre
quency; in the F~20! model the frequency is slightly too low

Last, we compare the geometrical structure of the lim
cycle in phase space in the complete system and in the
duced systems. For this purpose, Fig. 6 shows the projec
of the limit cycle onto the plane spanned by the first tw
PIPs or KL modes, respectively, since these are virtu
identical. The PIP~3! and the KL~5! model actually yield
perfect agreement; in the KL~4! simulation the amplitude o
the limit cycle is too large in accordance with Fig. 4. T
F~20! model cannot be compared to the other models h
since the first two PIPs are not fully contained in the su
space spanned by the Fourier modes up to wave numbe

A plot of the solution obtained from a simulation with th
PIP~3! model ~not shown! is indistinguishable from Fig. 1
The same holds for the KL~5! model. With the KL~4! and the
F~20! model the errors in amplitude and frequency of t
oscillations are clearly visible.

FIG. 4. Variance obtained from a simulation with 30 Four
modes~complete system, solid!, 20 Fourier modes~dot-dashed!, 3
PIPs ~dotted!, 4 KL modes~dashed!, and 5 KL modes~identical
with solid!.

FIG. 5. Fourier spectrum ofu(x0) obtained from a simulation
with 30 Fourier modes~complete system, solid!, 20 Fourier modes
~dot-dashed!, 3 PIPs ~dotted!, 4 KL modes ~dashed!, and 5 KL
modes~long-dashed!.
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We also considered reduced models based on Sob
eigenfunctions as introduced by Kirby@7#. A model using
four patterns slightly improves on the KL~4! simulation; but
in order to obtain a performance that is as good as that of
PIP~3! model five modes are necessary as with KL mode

The minimum number of patterns involved in the mode
based on KL modes and Sobolev eigenfunctions, resp
tively, is much lower here than is reported in@7#. This may
be due to several reasons: first, the reduced model in@7# is
formulated for the complete state rather than the anoma
Given the fact that the system under consideration her
characterized by relatively small fluctuations around a la
amplitude mean state~cf. Figs. 3 and 4! a reduced mode
formulateda priori as an anomaly model may be expected
be more efficient since the dynamical interactions betw
the mean state and the anomaly patterns are fully prese
and the anomaly field is captured better with an expans
concentrating on the anomalies. Secondly, only the sc
product@•,•#0 has been considered by Kirby. Moreover,
the former study the calculation of the KL modes and So
lev eigenfunctions is based on a Fourier-Galerkin appro
mation truncated at wave number 10, which is not fully co
verged; this also may influence the results.

We also extracted PIP models from the KS equation w
the algorithm illustrated in@9# and found a PIP model with
four degrees of freedom that performs nearly as good as
PIP~3! model described above but did not succeed in desc
ing the dynamics with three patterns.

V. CONCLUSIONS

An algorithm for constructing minimal systems of ODE
modeling the dynamics of nonlinear PDEs has been ill
trated. Characteristic spatial structures are obtained fro
nonlinear minimization procedure based on a dynamical
timality criterion and used as basis functions in a Galer
approximation. The method is applied to a limit cycle so
tion of the KS equation. As to the number of modes requi
to capture the principal dynamical and statistical proper
of the PDE a dynamical description based on PIPs provid
considerable improvement on more conventional techniq
using Sobolev eigenfunctions or KL modes as basis fu
tions, a PIP model with three patterns being as good a

FIG. 6. Projection of the limit cycle obtained from a simulatio
with 30 Fourier modes~complete system, solid!, 3 PIPs~dotted!, 4
KL modes~dashed!, and 5 KL modes~identical with solid! onto the
plane spanned by the first two PIPs.
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model based on five KL modes or Sobolev eigenfunctio
and is far more efficient than a model based on Fou
modes. Moreover, the present algorithm improves on a
viously published PIP algorithm@9#. The methodology of the
present paper has also been successfully applied to the
plex Ginzburg-Landau equation in a chaotic regime@17#.

Presumably, the reduced systems obtained from
method illustrated here are the minimal systems attaina
from a PDE when using a linear Galerkin projection. A po
sibility to arrive at an even further reduced dynamical d
scription may be offered by combining an optimization pr
cedure of the type introduced here with a nonlinear Galer
scheme, i.e., by projecting the PDE onto an optimized n
linear approximate inertial manifold rather than an optimiz
linear subspace. This may be worth pursuing further in fut
research but clearly lies outside the scope of the pre
study.

APPENDIX A:
MINIMIZATION OF THE ERROR FUNCTION

The minimization of the error function with respect to th
patterns is performed numerically using a quasi-Newton
gorithm with Broyden-Fletcher-Goldfarb-Shanno update
the approximated Hessian matrix@18,19#. The algorithm re-
quires exact evaluation of the error function and its gradi
for arbitrary sets of patterns.

The fact that the constraints of Eqs.~20! and ~21! do not
restrict the solution of the minimization problem but are on
imposed to remove the ambiguity in the representation of
subspaceP can be exploited to facilitate the calculations
the following manner. Imagine an arbitrary (N3L) matrix
P̄ with linearly independent columns representing a set
linearly independent patterns$ p̄1 ,...,p̄L%. A functionW is
defined that mapsP̄ onto its normal form; i.e., onto the
~uniquely defined! equivalent (N3L) matrix P5W( P̄) cor-
responding to a set of patterns$p1 ,...,pL% satisfying the con-
s,
r
e-

m-

e
le
-
-
-
in
-
d
e
nt

l-
f

t

e

f

straints. The mapW consists of two parts. First, the pattern
p̄i are orthonormalized using the standard Gram-Schm
procedure. One ends up with a matrixP' corresponding to a
set of orthonormal patterns$p1

' ,...,pL
'%, which are related to

the patternsp̄i by pi
'5( j (T1) j i p̄ j , whereT1 is an upper

triangular (L3L) matrix. LetC' be the covariance matrix o
the amplitudes zi

' of the patterns pi
' : Ci j

'5^zi
'zj

'&
5(m,n(MGM )mnPm i

' Pn j
' . C' can be diagonalized by a

real, orthonormal (L3L) matrix T2 : T2
t C'T2

5diag(l1
PIP,...,lL

PIP). Then the matrixP5P'T25 P̄T1T2
represents a set of patterns$p1 ,...,pL% with pi
5( j (T2) j i pj

'5( j (T1T2) j i p̄ j , which satisfies the constraint
of both Eq. ~20! and Eq. ~21!. Eventually some sign
convention is applied to the patternspi . One then has
x1( P̄)5x1(P), x2( P̄;tmax)5x2(P;tmax), and x( P̄;tmax)
5x(P;tmax). The elements ofP̄ are used as variables in th
numerical minimization procedure~not applying any con-
straints!; at each step of the minimizationP5W( P̄) is cal-
culated as described above. Thenx1 is calculated according
to Eq. ~30! and the tensors of interaction coefficientsa, b,
c, andx2 are evaluated using the patternspi .

Classical perturbation theory for symmetric matrices a
plied to C' yields for the first-order variation ofx1 with
respect to the elements ofP̄:

]x1

] P̄mr

52
1

Var
(
i , j ,k

]Cjk
'

] P̄mr

~T2! j i ~T2!ki . ~A1!

Forming ]Cjk
' /] P̄mr from the Gram-Schmidt procedure

straightforward using only elementary analysis and is the
fore not given in detail here. The gradient ofx2 is

]x2

] P̄mr

5(
n,i

]x2

]Pn i

]Pn i

] P̄mr

~A2!

with
]x2

]Pmr
5

1

Var K ]J

]Pmr
L 5

1

Var H K ]J

]zr
0 ûm

0 L 22(
k51

K

wk^« r
tkûm

tk&1(
i , j

F K ]J

]ari j
L Lm i j12K ]J

]air j
L Q im j G

1(
i

F K ]J

]bri
L Ym i1 K ]J

]bir
L J imG1 K ]J

]cr
L PmJ , ~A3!

Lm i j5~21!b11aF]2b f m

]x2b ,
]pi
]x

]pj
]x G

0

, ~A4!

Q im j5~21!b11aF]2bpi
]x2b ,

] f m

]x

]pj
]x G

0

, ~A5!

Ym i5~21!b11F]2b f m

]x2b ,4
]4pi
]x4

1a
]2pi
]x2

1a
]^uF&

]x

]pi
]x G

0

, ~A6!

J im5~21!b11F]2bpi
]x2b ,4

]4f m

]x4
1a

]2f m

]x2
1a

]^uF&
]x

] f m

]x G
0

, ~A7!
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Pm5~21!b11F]2b f m

]x2b ,4
]4^uF&

]x4
1a

]2^uF&
]x2

1
a

2 S ]^uF&
]x D 2G

0

. ~A8!
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]Pn i /] P̄mr can be obtained from]Ci j
'/] P̄mr by standard

first-order perturbation theory for symmetric matrices a
plied to C'. The formulas ~A4!–~A8! are evaluated by
means of the pseudospectral transform method. In the ca
b51 the relation

Lm i j1Q im j1Q jm i50 ~A9!

holds. The expressions]J/]zi
0, ]J/]ai jk , ]J/]bi j , and

]J/]ci are calculated efficiently using an adjoint techniq
~see Appendix B!.

Hence by introduction of the mapW the variational prin-
ciple is formulated as an unconstrained minimization pr
lem; the error function and its derivatives only have to
considered for orthonormal pattern sets and the algori
automatically supplies the PIP model in its normal form d
fined in Sec. II C. This greatly reduces the computation ti
since the computational effort involved in the mapW and its
derivatives is negligible compared to that involved in t
ensemble of integrations of the PIP model necessary
evaluatex2 and its derivatives.

APPENDIX B: THE ADJOINT METHOD

Adjoint techniques originating from the theory of optim
control are an efficient tool to iteratively solve variation
problems. They allow for the economical calculation of t
gradient of an error function of the type considered here w
respect to initial, boundary, or parametric conditions of
system under consideration. Adjoint methods are wid
used in the fields of meteorology, oceanography, and clim
research for many types of problems including variatio
data assimilation, parameter fitting, determination of op
mally growing perturbations, and sensitivity analysis~see
@20# for an overview!. The mathematical foundations of th
adjoint formalism can be found, e.g., in@21–25#. In the fol-
lowing the adjoint method is briefly described in the form
which it is relevant in the present context.

Given an autonomous nonlinear system of first-order
ferential equations inL-dimensional phase space,

ż5G~z;q!, z5~z1 ,...,zL! ~B1!

depending on a set of adjustable parametersq
5(q1 ,...,qR), an error function

J~z0,q!5 (
k51

K

(
i
wk~« i

tk!2 ~B2!

is defined where«tk5(«1
tk,...,«L

tk) is the error between the

stateztk5(z1
tk,...,zL

tk) obtained when integrating the syste
of Eq. ~B1! forward in time fromt50 to t5tk with initial
condition z05(z1

0,...,zL
0) and a given set of dataz̃tk

5( z̃1
tk,...,z̃L

tk):
-

of

-

m
-
e

to

h
e
y
te
l
-

-

« i
tk5zi

tk2 z̃i
tk. ~B3!

tk andwk are defined as in Sec. II D. In the present cont
the system of Eq.~B1! has to be identified with the PIP
model@Eqs.~16! and~49!, respectively#, the initial condition
is zi

05@pi ,ûF
0 # and the dataz̃i

tk are given by the projection o
the state of the complete system at timetk onto the PIPs
z̃i

tk5@pi ,ûF
tk#.

At this point the set of adjoint equations is introduced:

ẏi52(
j

]Gj

]zi
yj , i51,...,L, ~B4!

j̇ i52(
j

]Gj

]q i
y j , i51,...,R. ~B5!

Equations~B1!, ~B4!, and~B5! together form an autonomou
system of 2L1R first-order ordinary differential equations
which is nonlinear in the variableszi and linear in the vari-
ables yi and j i . An operator Stk ,tk21 is defined by
(ytk21,jtk21)5Stk ,tk21(ytk,jtk), where (ytk21,jtk21)5
(y1

tk21,...,yL
tk21,j1

tk21,...,jR
tk21) is the state obtained whe

integrating the adjoint system backward in time fromt5tk
to t5tk21 with initial condition (ytk,jtk)
5(y1

tk,...,yL
tk,j1

tk,...,jR
tk). Stk ,tk21 depends on the whole

trajectory zt of the nonlinear system on the interv
@tk21 ,tk#. Using the main results from the theory of optim
control and exploiting the linearity of the adjoint equations
yi and j i the following algorithm can be proven: settin
yi

tK50, j i
tK50 and calculating successively

~ytK21,jtK21!5StK ,tK21~ytK1wK«tK,jtK!

A

~ytk21,jtk21!5Stk ,tk21~ytk1wk«
tk,jtk!

A

~y0,j0!5St1,0~yt11w1«
t1,jt1!, ~B6!

with Stk ,tk21 referring to the trajectoryzt in the interval
@0,tmax# defined by the initial conditionz0 one gets

yi
05

1

2

]J

]zi
0 , ~B7!

j i
05

1

2

]J

]q i
. ~B8!

Hence first one integrates the nonlinear system@Eq. ~B1!#
forward in time fromt50 to t5tmax with initial condition
z0 to obtain the errors«tk and calculateJ. Then one back-
ward integration of the adjoint system fromt5tmax to t50
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according to Eq.~B6! yields all components of the gradien
of J with respect to the initial condition and the system p
rameters. In the course of the forward integration of the n
linear system the trajectoryzt has to be stored at sufficientl
many points in the interval@0,tmax# since it is needed for the
backward integration of the adjoint system.

In the case of the PIP model derived from the Kuramo
Sivashinsky equation@Eq. ~49!# the vector of system param
etersq is formed by the elements of the interaction tens
a, b, and c taking into account the symmetry of the qu
dratic interaction coefficients (ai jk5aik j ):

$q i ; i51,...,R%5$ai jk ; i , j ,k51,...,L; j>k%

ø$bi j ; i , j51,...,L%ø$ci ; i51,...,L%. ~B9!

This yieldsR5 1
2L

31 3
2L

21L independent parameters. Th
set of corresponding adjoint variables is
id
-
-

-

s

$j i ; i51,...,R%5$v i jk ; i , j ,k51,...,L; j>k%

ø$h i j ; i , j51,...,L%ø$w i ; i51,...,L%. ~B10!

The adjoint equations read:

ẏi52(
j ,k

ajikzkyj2(
j
bj i y j , ~B11!

v̇ i jk52
1

2
zjzkyi , ~B12!

ḣ i j52zjyi , ~B13!

ẇ i52yi . ~B14!
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