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Regime predictability in atmospheric low-order
models augmented with stochastic forcing is
studied. Atmospheric regimes are identified as
persistent or metastable states using a hidden Markov
model analysis. A somewhat counterintuitive,
coherence resonance-like effect is observed: regime
predictability increases with increasing noise level up
to an intermediate optimal value, before decreasing
when further increasing the noise level. The enhanced
regime predictability is due to increased persistence
of the regimes. The effect is found in the Lorenz ’63
model and a low-order model of barotropic flow
over topography. The increased predictability is
only present in the regime dynamics, that is, in a
coarse-grained view of the system; predictability of
individual trajectories decreases monotonically with
increasing noise level. A possible explanation for the
phenomenon is given and implications of the finding
for weather and climate modelling and prediction are
discussed.

1. Introduction
A striking feature of the atmospheric circulation is that
despite its turbulent and chaotic nature the same large-
scale flow structures tend to recur over and over again.
Much of the low-frequency variability of the atmosphere
appears to be contained in a few teleconnection
patterns such as the North Atlantic Oscillation and the
Pacific/North American pattern. Such persistent and
recurrent flow patterns are commonly called atmospheric
regimes.

Initially, synoptic meteorologists identified atmo-
spheric regimes in weather maps on an intuitive basis
[1,2]. Later, a more systematic framework for regime

2014 The Author(s) Published by the Royal Society. All rights reserved.
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identification based on probability density modelling was adopted [3–6]. The temporal evolution
of the regimes was taken into account by studying transition probabilities between the regimes
[7–9]. Most recently, a unified spatio-temporal concept of atmospheric regimes was proposed
based on hidden Markov model (HMM) analysis [10–12] and finite-element clustering [13].

While atmospheric regimes and regime transitions occur in deterministic models often
a stochasticity assumption is invoked when explaining regime behaviour. Stochastic noise,
representing the effect of unresolved scales and processes, can trigger chaotic itinerancy between
different regimes by kicking the system out of the basin of attraction of one regime and into
another. This has been studied early on by adding stochastic terms to atmospheric low-order
models [14,15].

A particular aspect of atmospheric regimes is their prediction and predictability [12,13,16].
It appears conceivable that persistent regimes are the most predictable flow structures and that
their time scale of predictability is larger than the time scale of predictability of individual flow
trajectories. This would be obviously relevant to numerical weather prediction, in particular given
the fact that even state-of-the-art weather prediction models occasionally miss regime transitions
owing to model error.

This paper investigates the regime behaviour in atmospheric low-order models with stochastic
forcing focusing on regime predictability. In §2, the use of HMMs for identification of regimes is
briefly summarized. Section 3 introduces some useful diagnostics to interpret the HMMs. In §§4
and 5, the regime behaviour of the Lorenz ’63 model and a simple model of barotropic flow over
topography with noise are studied. Section 6 gives some general concluding remarks.

2. Identification of atmospheric regimes
Atmospheric regimes are here identified as persistent or metastable states using an HMM analysis
[10–12,17,18]. An HMM is a nonlinear spatio-temporal statistical technique which determines
simultaneously clusters in state space based on probability density modelling and regime
transitions in a time series. We here use a discrete Gaussian HMM. The HMM has a finite number
K of hidden, that is, not directly observable, states or regimes. The integer variable c takes values
from 1 to K, denoting which regime the system is in. Conditional on being in regime c = i,
an output vector x is observed according to a Gaussian density with mean μi and covariance
matrix Γ i,

p(x | c = i) ∼N (μi, Γ i). (2.1)

Transitions between the regimes are governed by a Markov chain with time step δt described by
a time-independent (K × K) transition matrix A with elements

Aij = p(cn+1 = j | cn = i). (2.2)

The matrix A is a row-stochastic matrix, that is, Aij ≥ 0 and
∑

j Aij = 1. The initial probability

distribution over the regimes is ξi = p(c1 = i). The parameters of the HMM are the means {μi}K
i=1,

the covariance matrices {Γ i}K
i=1, the transition matrix A and the initial distribution ξ . Given a

time series of length N with sampling interval δt, {x1, . . . , xN}, the parameters are estimated by
maximizing the likelihood L(x1, . . . , xN) using the Baum–Welch algorithm [17–19], which is a
special case of an expectation–maximization algorithm [20]. The algorithm also gives the time
series of posterior probabilities

νi,n = p(cn = i | x1, . . . , xN). (2.3)

The number of regimes K is a hyper-parameter of the HMM which has to be fixed a priori,
determining the overall complexity of the HMM. In keeping with the philosophy of atmospheric
regimes as metastable states, K is here determined by trying different values and looking for a
gap in the eigenvalue spectra of the transition matrices A [10–12] (see §3b).
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3. Markovian regime diagnostics
A couple of useful diagnostics are introduced, which facilitate the interpretation of the HMMs.

(a) Stationary distribution
A stationary or invariant distribution of the Markov chain is given by a stochastic vector
π = (π1, . . . ,πK) (where πi denotes the probability of being in regime i) satisfying

π = πA. (3.1)

According to the Perron–Frobenius theorem, the transition matrix A possesses a leading
eigenvalue λ1 = 1 and the corresponding (left-)eigenvector has non-negative entries. Generically,
the eigenvector is unique (up to normalization) and represents the stationary distribution to
which all initial distributions converge. A sufficient condition for this is that A is primitive, that
is, Ak > 0 for some integer k ≥ 1.

(b) Predictability time scales
The remaining eigenvalues {λ2, . . . , λK} of the transition matrix A (generically) have modulus
smaller than one. Their (left-)eigenvectors describe deviations from the stationary distribution as
modes in probability space and the modulus of the eigenvalue determines the rate of decay under
time evolution. Each eigenvalue can be associated with a predictability time scale τi given by the
e-folding time of the decay of the corresponding probability mode

τi = − δt
log |λi|

. (3.2)

If the regime dynamics are indeed Markovian, then τi should be independent of the time step
δt. Ideally, this should be checked [11,12] by fitting HMMs with different choices of δt. The
eigenvalues {λ2, . . . , λK} and corresponding time scales {τ2, . . . , τK} offer a natural criterion for
determining the number of regimes K. One would try HMMs with various choices for K, look for
a gap in the eigenvalue spectra of the transition matrices and keep only the eigenvalues closest to
one associated with the longest time scales τi [10–12].

(c) Residence time
The number of steps m the Markov chain spends in regime i at any one visit follows a geometric
distribution, corresponding to the waiting time for the first success in a Bernoulli trial process with
success probability 1 − Aii. We have p(m = k) = Ak−1

ii (1 − Aii) and P(m ≤ k) = 1 − Ak
ii. The mean

residence time in regime i is given as

〈θi〉 = δt
1 − Aii

. (3.3)

An overall mean residence time of the system can be defined as the weighted average of the mean
residence times

〈θ〉 =
∑

i

πi〈θi〉 = δt
∑

i

πi

1 − Aii
. (3.4)

For Markovian regime dynamics, the residence times are independent of the time step δt.

(d) Recurrence time
A point in any of the regimes will eventually leave that regime and return to it at some later
time. The Smoluchowski recurrence time of regime i is the average time elapsing between a point
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leaving regime i and then returning to it again. It is given by [21]

〈ζi〉 = (1 − πi)
πi(1 − Aii)

δt. (3.5)

An average recurrence time of the whole system is

〈ζ 〉 =
∑

i

πi〈ζi〉 = δt
∑

i

1 − πi

1 − Aii
. (3.6)

For Markovian regime dynamics, the recurrence times are independent of the time step δt.

(e) Entropy
A (negatively oriented) measure of the predictability of a point starting initially in regime i is
given by the entropy

Hi = −
∑

j

Aij log Aij. (3.7)

The entropy of the Markov chain as a whole [7,22] is the average with respect to the stationary
distribution of the entropies of the individual regimes,

H =
∑

i

πiHi = −
∑

i

πi
∑

j

Aij log Aij. (3.8)

The total entropy H is a measure of the uncertainty in the future time evolution of a point
randomly drawn from the stationary distribution. The entropies depend on the time step δt.

4. Lorenz ’63 system
The first example system considered is the classical Lorenz model [23] augmented with stochastic
noise [8,12,24]. The governing equations are

ẋ = −sx + sy + ση1,

ẏ = −xz + rx − y + ση2

and ż = xy − bz + ση3,

⎫⎪⎪⎬
⎪⎪⎭ (4.1)

where η1, η2 and η3 are pairwise independent white Gaussian noise processes with zero mean
and unit variance. The standard parameter values s = 10, r = 28 and b = 8/3 are used. The noise
standard deviation σ is a parameter to be varied. The model is integrated in time numerically
using the Euler–Maruyama scheme with step size 5 × 10−5. In the deterministic system (σ = 0),
the motion settles onto a chaotic attractor with two butterfly-wing-shaped lobes; the trajectory
switches irregularly between the two lobes. On each of the wings, the state vector spirals around
the unstable fixed point. The attractor is very robust against noise. It is gradually deformed when
increasing the noise level but the pronounced two-wing shape is still intact and very similar to the
deterministic case up to noise levels as large as σ = 10. After discarding transient motion, 10 000
time units worth of data are archived at a sampling interval of δt = 0.1, resulting in a time series
of length N = 100 000.

We first investigate the predictability of the system in the classical sense, that is, the
predictability of individual trajectories as a function of the noise level. This is done using analogue
or locally constant prediction based on nearest neighbours [25,26]. The dataset is split into a
learning dataset and a verification dataset of length 50 000 each. For each point in the verification
dataset, the M nearest neighbours in the learning dataset with respect to the Euclidian norm are
found. A prediction of the future time evolution is given as the average over the future time
evolutions of the points in the neighbourhood. Figure 1 shows the predictive skill measured
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Figure 1. Lorenz ’63 system: RMSE of analogue prediction for σ = 0 (solid), σ = 1 (dashed), σ = 3 (dotted) and σ = 5
(dotted-dashed).

by the RMSE for some representative noise levels. The skill is optimized with respect to the
number of nearest neighbours. An optimal value is found to be approximately M = 10 for σ = 0
and M = 40 for σ > 0. For large lead times, the RMSE of the analogue predictor asymptotes to
the RMSE of the climatology forecast, which is equal to the square root of the total variance of
the system. Here, the total variance of the system is virtually independent of the noise level.
Expectedly, the predictability decreases monotonically with increasing noise level at all lead
times. The deterministic case (σ = 0) shows some return of skill carrying the period of oscillations
on the wings but this is not our concern here.

The HMM analysis is performed only on the variable x (x = x). The time series of x alone
already contains the regime information. Moreover, the problems associated with the strong
non-Gaussianity of the Lorenz attractor are less severe when working only in one dimension.
HMMs with numbers of regimes K = 2, K = 3, K = 4 and K = 5 were fitted. Figure 2 displays the
eigenvalue spectra of the transition matrices and the corresponding predictability time scales.
The eigenvalues are all real here. There is a distinct gap after the second eigenvalue in both the
deterministic and the noise-driven system, corresponding to a clear time-scale separation. We
therefore only consider HMMs with K = 2. The regime behaviour of the system is described by the
two-wing structure of the attractor. For σ = 0, the means of the full state vector (x, y, z) conditional
on the regimes, that is, the means with respect to the posterior distribution νi,n, are (−6.41, −6.41,
23.59) and (6.35, 6.35, 23.52), close to the unstable steady state on each of the wings. They change
only slowly when increasing the noise level. These results are consistent with earlier findings
using the full state vector in the HMMs [12].

The predictability time scale τ2 (figure 3a) substantially increases with increasing noise level up
to σ ≈ 3.2, before decreasing when further increasing the noise level. The increase in τ2 is almost
25% relative to the value at σ = 0. The mean residence times (figure 3b) show the same pattern,
an increase by almost 25% up to σ ≈ 3.2 and then a decrease. The entropies (figure 3c) behave
correspondingly, indicating increased predictability at intermediate noise levels. We here have a
complete symmetry between the two regimes owing to the symmetry in the Lorenz equations.
The increased regime predictability is due to enhanced persistence of the regimes. This is also
evidenced by the transition matrices which at σ = 0 and σ = 3.2 are

A(σ=0) =
(

0.942 0.058
0.059 0.941

)
and A(σ=3.2) =

(
0.952 0.048
0.048 0.952

)
. (4.2)

Owing to the symmetry of the system, we have an equipartition between the regimes in the
stationary distribution (figure 3d). All deviations are within the statistical sampling fluctuations.
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Figure 2. Lorenz ’63 system: (a) eigenvalues of the transitionmatriceswith numbers of regimes K = 2 (solid), K = 3 (dashed),
K = 4 (dotted) and K = 5 (dotted-dashed) for noise levels σ = 0 (+) and σ = 3.2 (X). (b) Corresponding predictability
time scales.

The results are statistically highly significant. The points on the curves in figure 3 refer to
integrations with different initial conditions and noise realizations. The fluctuations between
neighbouring points give an indication of the sampling uncertainty, which is fairly small.

The increased persistence of the regimes is also visible by eye from the time series of the system
(figure 4). To expand on this in more detail, the whole distribution of regime residence times is
considered. A data point is classified to be in the regime which has the larger posterior probability
νi,n. Figure 5 gives the cumulative distribution of residence times for both regimes together as they
are symmetric. The geometric distributions from the Markov model are also indicated. For σ = 0,
the residence times are actually quantized with the period of the oscillations on the wings (about
0.7 time units) as a regime can only be left where the wings merge, that is, after an integer number
of oscillations. This feature is still visible in the noise-driven system. At intermediate noise level,
the distribution of regime residence times is shifted to larger values. In particular, long residence
times are more likely. For example, at σ = 0, 5% of residence times are larger than 4.25; at σ = 3.2,
5% of residence times are larger than 6.2.

5. Barotropic atmospheric low-order model
We consider a low-order model of large-scale barotropic flow over topography displaying regime
behaviour. The system is very similar to the model proposed in the seminal paper by Charney &
DeVore [27]. We here actually use the formulation derived by De Swart [28] and also used by
Crommelin et al. [29] which has a more general zonal forcing profile and a slightly different scaling
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Figure 3. Lorenz ’63 system. (a) Predictability time scale τ2 as a function of the noise level. (b) Mean residence time of regime
1 (dashed) and regime 2 (dotted) as well as overall mean residence time (solid) as a function of the noise level. (c) Entropy
of regime 1 (dashed) and regime 2 (dotted) as well as total entropy of the system (solid) as a function of the noise level.
(d) Stationary probability of regime 1 (dashed) and regime 2 (dotted) as a function of the noise level.
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Figure 4. Lorenz ’63 system: sample time series of x for noise levels (a) σ = 0, (b) σ = 3.2 and (c) σ = 8. At intermediate
noise level, the distribution of regime residence times is shifted to larger values.
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Figure5. Lorenz ’63 system: cumulativedistributionof regime residence times for noise levelsσ = 0 (solid),σ = 3.2 (dashed)
and σ = 8 (dotted). Thick lines give the distribution inferred from the posterior regime probabilities, while thin lines the
cumulative geometric distribution from the Markov model.

than the original model by Charney and DeVore. In the following, the model setting is briefly
summarized. For more details on the derivation as well as the bifurcation and regime structure of
the model, see [28,29]. Here, the model is augmented with stochastic noise.

The model is based on the non-dimensional quasi-geostrophic barotropic vorticity equation
in a β-plane channel. The governing equation is

∂

∂t
∇2ψ + J(ψ , ∇2ψ + γ h) + β

∂ψ

∂x
= −C∇2(ψ − ψ∗), (5.1)

where ψ is the streamfunction, h is the topography, ψ∗ is a streamfunction forcing and J is the
Jacobian operator. The equation is considered on the rectangular domain [0, 2π ] × [0, bπ ]. The
streamfunction is periodic in the x-direction: ψ(x, y, t) =ψ(x + 2π , y, t). At y = 0 and y = bπ , we
have the boundary conditions ∂ψ/∂x = 0 and

∫2π
0 (∂ψ/∂y) dx = 0. The streamfunction is expanded

into a double Fourier series and only the very large-scale components up to zonal wavenumber 1
and meridional wavenumber 2 are kept, resulting in six real modes, two zonal components and
four wave components. The topography is chosen as a wave (1, 1) profile: h(x, y) = cos(x) sin(y/b).
The streamfunction forcing profile is purely zonal: ψ∗ =ψ∗(y). Galerkin projection of the vorticity
equation onto the basis functions and adding stochastic forcing yields a system of six stochastic
differential equations for the streamfunction expansion coefficients as follows:

ẋ1 = γ̃1x3 − C(x1 − x∗
1) + ση1,

ẋ2 = −α1x1x3 + β1x3 − Cx2 − δ1x4x6 + ση2,

ẋ3 = α1x1x2 − β1x2 − γ1x1 − Cx3 + δ1x4x5 + ση3,

ẋ4 = γ̃2x6 − C(x4 − x∗
4) + ε(x2x6 − x3x5) + ση4,

ẋ5 = −α2x1x6 + β2x6 − Cx5 − δ2x3x4 + ση5

and ẋ6 = α2x1x5 − β2x5 − γ2x4 − Cx6 + δ2x2x4 + ση6.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

Here ηi are pairwise independent Gaussian white noises with zero mean and unit variance.
σ is the standard deviation of the stochastic forcing. The variables x1 and x4 refer to the zonal
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Figure 6. Barotropic low-order model: RMSE of analogue prediction for σ = 0 (solid), σ = 0.005 (dashed), σ = 0.01
(dotted) andσ = 0.015 (dotted-dashed).

components, the other variables to the wave components of the flow. The model coefficients are

αm = 8
√

2
π

m2

4m2 − 1
b2 + m2 − 1

b2 + m2 ,

βm = βb2

b2 + m2 ,

γ̃m = γ
4m

4m2 − 1

√
2b
π

,

γm = γ
4m3

4m2 − 1

√
2b

π (b2 + m2)
,

δm = 64
√

2
15π

b2 − m2 + 1
b2 + m2

and ε= 16
√

2
5π

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

In the above equations, the terms with βm are due to the Coriolis force, the terms with γm and
γ̃m describe topographic interactions, the terms with αm, δm and ε are nonlinear advection terms
and the terms with C represent Newtonian damping towards the forced zonal streamfunction
profile. The free parameters of the model are the zonal forcing (x∗

1 and x∗
4), the damping time scale

(C), the Coriolis parameter (β), the topographic scale height (γ ) and the length–width ratio of the
channel (b). We here use the parameter setting (x∗

1, x∗
4, C,β, γ , b) = (0.95, −0.76095, 0.1, 1.25, 0.2, 0.5)

at which the deterministic model exhibits chaotic behaviour with regime transitions [29]. These
parameters are within a physically reasonable range. The regime behaviour in the model is owing
to a combination of topographic and barotropic instabilities [29]. At each considered noise level,
the system is integrated numerically using the Euler–Maruyama scheme with step size 2 × 10−4.
A post-transient time series of length N = 100 000 is archived with a sampling interval δt = 1.

Again, the predictability of individual trajectories is investigated. An analogue predictor using
nearest neighbours with respect to the Euclidean norm is constructed as before. The length of the
learning and verification datasets is 50 000 each. In figure 6, the RMSE for some representative
noise levels is displayed. The number of nearest neighbours is M = 15 for σ = 0 and M = 40 for
σ > 0. At long lead times, the errors converge to the square root of the total variance of the system,
which slightly increases with increasing noise level. The predictability of the system decreases
monotonically with increasing noise level at all lead times.

The HMM analysis is performed in the space of the two zonal flow components (x = (x1, x4)).
Figure 7 shows the eigenvalue spectra of the transition matrices and corresponding predictability
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Figure 7. Barotropic low-order model: (a) eigenvalues of the transition matrices with numbers of regimes K = 2 (solid), K =
3 (dashed), K = 4 (dotted) and K = 5 (dotted-dashed) for noise levels σ = 0 (+) and σ = 0.006 (X). (b) Corresponding
predictability time scales.

time scales for K = 2, K = 3, K = 4 and K = 5. Again, all of the eigenvalues are real. There is a
gap in the time scale after the second eigenvalue, but the third eigenvalue increases in the noisy
system. An HMM with K = 2 quite strongly underestimates the time scale; this may be due to the
strong non-Gaussianity of the probability density of the system. Moreover, visual inspection of
the regimes in physical space suggests three regimes (see below). We therefore here choose the
HMM with K = 3.

The streamfunction fields associated with the regimes (calculated as the means of the full state
vector of the system conditional on the regimes) are displayed in figure 8 for σ = 0. Regime 1 is
a zonal flow regime, regime 3 is a blocking-like regime. Regime 2 has an intermediate character,
corresponding to a weakly blocked flow. An HMM with K = 2 merges regime 1 and regime 2,
which is not satisfactory as they are physically quite distinct. The position of the regimes in state
space is fairly robust under noise up to about σ = 0.01, experiencing only a gradual drift. For even
higher noise level, all regimes attain a more and more blocked character while still being distinct.

The regime behaviour extracted by the HMM is also visible in time series of the system
(figure 9). In the (x1, x4)-plane, the regime centres for σ = 0 are located at μ1 = (0.922, −0.622),
μ2 = (0.865, −0.448) and μ3 = (0.774, −0.372). The long time scale τ2 is associated with the
blocking regime versus the two others. The shorter time scale τ3 is associated with transitions
between the zonal and the weakly blocked regime. The zonal and the blocking regime correspond
to maxima in the probability density in the (x1, x4)-plane; the weakly blocked regime is not visible
in the probability density [29].

The predictability time scales (figure 10a) increase with increasing noise level up to an
intermediate value, before decreasing when further increasing the noise level. τ2 increases by
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Figure 8. Barotropic low-order model: streamfunction fields associated with (a) regime 1, (b) regime 2 and (c) regime 3
calculated as means with respect to the posterior distribution νi,n. Thick lines are streamlines, while thin lines are contours
of scaled topographyγ h. Dashed lines/contours indicate negative values, solid lines/contours zero and positive values. Contour
interval is 0.09 in non-dimensional units for both streamfunction and topography.

about 50% and reaches its maximum at σ = 0.006; τ3 more than doubles and attains its maximum
at σ = 0.0085. The mean residence times (figure 10b) peak at an intermediate noise level for
all three regimes. This is particularly prominent for the blocking regime at σ = 0.006 with a
doubling of the mean residence time compared with the value at σ = 0. The mean recurrence time
(figure 10c) of the blocking regime gradually decreases with increasing noise level; for the other
two regimes it peaks at an intermediate noise level. The entropies (figure 10d) indicate maximum
regime predictability at intermediate noise level, which is σ = 0.0075 for the total entropy. The
stationary probability distribution (figure 10e) changes under stochastic forcing. The blocking
regime gains in population while becoming more persistent, before dropping again in favour
of the weakly blocked regime. The population of the zonal regime does not change much. The
changes in the regime dynamics are visible in the time series of the system (figure 9c,d). The noise-
driven model shows a preference for long blocking episodes and the time scale of the switches
between the zonal and the weakly blocked regime is prolonged.
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Figure 9. Barotropic low-order model: sample time series of x1 and x4 for noise levelsσ = 0 ((a) and (b)) andσ = 0.006 ((c)
and (d)).

The transition matrices at σ = 0 and σ = 0.006 are

A(σ=0) =

⎛
⎜⎝0.941 0.059 0.000

0.048 0.943 0.009
0.000 0.012 0.988

⎞
⎟⎠ and A(σ=0.006) =

⎛
⎜⎝0.976 0.024 0.000

0.020 0.969 0.011
0.000 0.007 0.993

⎞
⎟⎠ . (5.4)

They reflect the increased persistence of all three regimes. At σ = 0, there is an almost closed
cycle between the zonal and the weakly blocked regime. This corresponds to long episodes
without blocking visible in the time series around t = 1000 and t = 4200 (figure 9a,b). This cycle
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Figure 10. Barotropic low-order model. (a) Predictability time scales τ2 (solid) and τ3 (dashed) as a function of the noise level.
(b)Mean residence time of regime 1 (dashed), regime 2 (dotted-dashed) and regime 3 (dotted) aswell as overallmean residence
time (solid) as a function of the noise level. (c)Mean recurrence time of regime 1 (dashed), regime 2 (dotted-dashed) and regime
3 (dotted) as well as overall mean recurrence time (solid) as a function of the noise level. (d) Entropy of regime 1 (dashed),
regime 2 (dotted-dashed) and regime 3 (dotted) as well as total entropy of the system (solid) as a function of the noise level.
(e) Stationary probability of regime 1 (dashed), regime 2 (dotted-dashed) and regime 3 (dotted) as a function of the noise level.

generates the long mean recurrence time of the blocking regime. Under stochastic forcing, the
cycle gradually opens up.

It can be noted that the increase in the regime predictability time scales for the noise-driven
system is robust against the choice of the number of regimes K (figure 7).

6. Discussion
Predictability in the Lorenz ’63 system and a barotropic atmospheric low-order model with
stochastic noise was investigated. In both models, predictability in the classical sense, that is,
predictability of individual flow trajectories, decreases monotonically with increasing noise level.
This goes with the intuition that adding uncertainty to the system results in information loss
and reduced predictability. By contrast, in both models, regime predictability increases when
adding a moderate stochastic forcing, before decreasing for large amounts of stochastic forcing.
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The enhanced predictability is due to an increased persistence of the regimes. The effect is loosely
similar to a coherence resonance [30] where the output of an excitable system is most coherent at
an intermediate optimal noise level.

This study uses a simple additive stochastic forcing with the same standard deviation for
all variables and no correlations between the noise terms. It appears to be likely that the
effect of increased regime predictability could be optimized with a more sophisticated choice
of stochastic noise.

A possible explanation for the findings lies in the mechanism of perturbed heteroclinic
connections as the underlying dynamics of regime transitions [8,9,29]. In order to exit a regime
the system has to follow a particular trajectory along the unstable direction of that regime. This
acts as a bottleneck. A small amount of noise prevents the system from finding the exit path
and thus increases the persistence of the regimes. Only at large enough noise levels, the diffusion
effect takes over and facilitates the regime transitions. Preferred regime transition paths have been
found in the Lorenz ’63 system [8], in intermediate complexity atmospheric models [8,9] and in
reanalysis data [7].

The present results have been obtained with very simple models and it remains to be seen if
they carry over to more realistic atmospheric models. They generally hint at the likely importance
of sub-grid-scale variability for setting the dynamical structure of atmospheric regimes. It has
recently been shown that quite a high model resolution is necessary to faithfully simulate the
nonlinear features of regimes found in the real atmosphere [31]. Atmospheric regimes appear
to be a complex phenomenon involving many spatial and temporal scales. It has also been
shown that stochastic parametrizations can improve a model’s regime behaviour, in particular
the occurrence of blocking [32]. Stochastic terms may have a function for the model’s regime
predictability to match the regime predictability of the real atmosphere but this certainly needs
further investigation.
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