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Abstract
Numerical weather prediction (NWP) ensembles often exhibit biases and errors

CorresPo‘?de?’ce in dispersion, so they need some form of postprocessing to yield sharp and
Jakob Benjamin Wessel, Department of . o o .

Mathematics and Statistics, University of well-calibrated probabilistic predictions. The output of NWP models is usually
Exeter, Exeter, UK. at a multiplicity of different lead times and, even though information is often

Email: jw1301 ter.ac.uk . . . . . .

mail: Jwi30l@exeter.ac.u required on this range of lead times, many postprocessing methods in the litera-
Funding information ture are applied either at a fixed lead time or by fitting individual models for each
Engineering and Physical Sciences

Research Council, Grant/Award Number: o ] . ) o ) ]
2696930 training of multiple models if users are interested in information at multiple lead

lead time. However, this is (1) computationally expensive because it requires the

times and (2) prohibitive because it restricts the data used for training postpro-
cessing models and the usability of fitted models. This article investigates the
lead-time dependence of postprocessing methods in the idealized Lorenz’96 sys-
tem as well as temperature and wind-speed forecast data from the Met Office
Global and Regional Ensemble Prediction System (MOGREPS-G). The results
indicate that there is substantial regularity between the models fitted for differ-
ent lead times and that one can fit models that are lead-time-continuous that
work for multiple lead times simultaneously by including lead time as a covari-
ate. These models achieve similar and, in small data situations, even improved
performance compared with the classical lead-time-separated models, whilst
saving substantial computation time.
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1 | INTRODUCTION conditions. These forecasts are generated from multiple
runs of numerical weather prediction (NWP) models, each
Ensemble forecasts have become an essential tool in mete-  with slightly different initial conditions, to quantify the

orology and climate science, providing valuable insights = uncertainty inherent in predicting complex atmospheric
into the range of possible future weather and climate = phenomena. However, ensemble forecasts are often biased
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and have errors in dispersion, which necessitates the
application of statistical postprocessing techniques to
improve their reliability and accuracy (Vannitsem et al.,
2021).

Even though postprocessed forecasts are usually
required by end users at a range of different lead times,
many postprocessing methods in the literature are applied
either at a single lead time (Gneiting et al., 2005; Raftery
et al., 2005; Baran and Lerch, 2018) or by fitting a sep-
arate statistical model for each lead time (Gebetsberger
et al., 2018; Allen et al., 2020; Roberts et al., 2023). This,
however, is (1) computationally expensive, because if users
are interested in multiple lead times it requires the training
of multiple models, and (2) prohibitive, restricting the data
used for training postprocessing models and the usability
of fitted models.

In this work, we will first investigate how the param-
eters of a typical postprocessing method — Ensemble
Model Output Statistics (EMOS), also known as Nonho-
mogeneous (Gaussian) Regression (NGR) — vary over the
lead-time range to see whether there are any regulari-
ties. These results will then be used to see whether it is
possible to fit models that work continuously over lead
times, achieving equal performance to models fitted sep-
arately for each lead time whilst saving computational
costs. The focus of this work is on EMOS/NGR-type tech-
niques. Much more sophisticated postprocessing meth-
ods exist, but EMOS or EMOS extensions are still used
operationally by different forecasting centres (Hess, 2020;
Roberts et al., 2023) and, for the purposes of studying
lead-time dependence of postprocessing methods, EMOS
provides a well-performing and interpretable baseline. As
part of future work, it might be possible to extend this study
to include various other postprocessing methods.

The problem of lead-time dependence has not been
considered much in the postprocessing literature. Pin-
son and Girard (2012); Hemri et al. (2013, 2015), and
Engeland and Steinsland (2014) are interested in the
temporal dependence structure over lead times for appli-
cations to wind speed and hydrological predictions. Hemri
et al. (2015) fit separate models for different lead times
and then smooth postprocessing parameters using cyclic
splines. Here, however, the focus is different, as we are less
interested in multivariate calibration across lead times,
but rather in building computationally cheaper models
that account for the lead-time character within the model
itself rather than requiring subsequent adjustments. For
long-range forecasts ranging from monthly to decadal
timescales, a lead-time-dependent drift (or even trend)
correction is often performed (Schaeybroeck and Vannit-
sem, 2018), and here we argue that such a correction is also
sensible for shorter-range forecasts, together with adjust-
ments for the diurnal cycle. Recently Mlakar et al. (2023)

described neural networks jointly postprocessing forecasts
at all lead times and exploring the importance of covari-
ates at different lead times. The authors also comment
that most approaches in the literature only consider fixed
lead times. Their approach is different from ours, as they
do not systematically consider the effects of lead time on
the postprocessing and how to account easily for these
effects. Rather, this is hidden within the neural network
taking lead time as input.

Most closely related to the present study is the work
by Dabernig et al. (2017a), who calculate standardized
anomalies accounting for seasonality and diurnal cycle
via bivariate splines and define EMOS models between
the ensemble and observational anomalies. However, we
believe that this approach is rather restrictive and that
lead-time dependence as well as the diurnal cycle can be
accounted for directly in the postprocessing model itself.
This is conceptually simpler and computationally cheaper,
providing directly interpretable model parameters and
only requiring one model fit instead of multiple ones.
Furthermore, defining standardized anomalies via splines
requires rather large data sets, and spline estimation, espe-
cially of bivariate splines, can be unstable—particularly
in small training data situations. This makes the method
from Dabernig et al. (2017a) unusable in running-window
training schemes or in the presence of frequent model
updates, where it might be especially interesting to
increase training data by merging across lead times. Fur-
thermore, Dabernig et al. (2017a) argue that, after remov-
ing diurnal and seasonal cycle(s) from the values, the
lead-time character disappears. However, this might not
be the case, especially at longer lead times, due to the
existence of model drift. The approach presented here inte-
grates smoothly into existing postprocessing frameworks,
requiring only small modifications, and is less sensitive to
training data limitations or model upgrades.

This article is organized as follows. Firstly, we will
describe the data and methods used for postprocessing
both in the idealized Lorenz’96 system and also for 2-m
temperature and 10-m wind-speed forecasts from the Met
Office Global and Regional Ensemble Prediction System
(MOGREPS-G). Secondly, we will look at parameter devel-
opment over lead times for postprocessing models in the
Lorenz’96 system and see whether it is possible to fit
models accounting for the lead-time character within the
model. Using an idealized system is advantageous, as it
allows us to isolate a lead-time effect without data limi-
tations. This analysis will then be extended in a second
step by investigating data in a real forecasting system. As
seasonality plays an important role in postprocessing mod-
els using real data, this latter section will first look at
models accounting for seasonality within the model and
then at models trained in a running window, subsequently
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to compare both approaches. A discussion and some
outlooks for future work are given at the end.

2 | DATA

2.1 | Lorenz’96 system

The Lorenz’96 system (Lorenz, 1996) is a highly ideal-
ized model of the atmosphere. It is often used for the
trialling of statistical postprocessing methods (Roulston
and Smith, 2003; Wilks, 2006; Williams et al., 2014; Allen
et al., 2019) as it includes chaotic dynamics but has no
restrictions on data availability for training and evalua-
tion. It is a coupled system of larger-scale variables X; and
subgrid-scale variables Y ;:

7
ka he

— = X1 (X2 — X - Xy +F——) Y, 1
T -1(Xk—2 — Xiey1) — Xic b; Y]

de,k he

FrE —cbY i1k ( Yok — Yjm1k) — cYju + FXka @)

for k=1,...,K and j=1,...,J. The system has
cyclic boundary conditions: Xy_g = Xiix =Xk, Yjr-x =
Yikek = Yjko Yjogk = Yk, and Yjiyp =Y. Here
parameters K =38, J=32, F=20, h=1, b=10, and
¢ = 10 are used to ensure comparability with Wilks (2005,
2006); Williams et al. (2014); Allen et al. (2019). The sys-
tem is integrated in time using a Runge-Kutta 4(5) scheme
for 100,000 model time units (MTUs) and the output is
sampled on a time grid with steps of At = 0.1 MTU. This
is taken as ground truth for the atmospheric conditions.
In the Lorenz’96 system, 1 MTU corresponds to 5 days.

A truncated version of the Lorenz’96 system only
resolving the larger scales, together with a simple
parametrization of the subgrid terms, is used to mimic an
imperfect NWP model:

% = —X-1(Xp—2 — Xjey1) = Xk + F 3)
— (Bo+ BiXi + BX] + B X] + X))

The parameters fy, ... , fs are fitted by regressing unre-
solved tendencies onto powers of X} as in Wilks (2005);
Kwasniok (2012); Christensen et al. (2015); Allen
et al. (2019) and very similar parameter values are
obtained. Based on this NWP model, an ensemble with
20 members is generated by perturbing the atmospheric
ground truth with N(0, 0.1%) noise independently for each
Xk and integrating the NWP system using a Runge-Kutta
4(5) scheme up to 3 MTU (the equivalent of 15 days).
The output is again sampled on a time grid with steps
of At = 0.1 MTU (the equivalent of 0.5 days) and, as the
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ensemble is exchangeable, it is summarised by the mean
and standard deviation. A training data set is generated
using the first 10,000 MTUs of the ground truth, by initial-
izing a forecast every 0.2 MTU (~ 1 day), and a test data
set using the latter 90,000 MTUs by initializing forecasts
every 50 MTUs to ensure approximate independence of
test samples. This leads to a data set containing 50,000
forecast—observation pairs in the training set (only the
data for variable X; are taken, as the X} are exchangeable)
and 12,792 in the test set (1599 forecast observation pairs
for each of the eight X variables, merged).

2.2 | MOGREPS-G forecasts
of temperature and wind speed

To analyse lead-time dependence in an operational fore-
cast system, we use 2-m temperature and 10-m wind-speed
forecasts from MOGREPS-G (Walters et al., 2017; Por-
son et al., 2020), issued between April 1, 2019 and April
1, 2022. MOGREPS-G forecasts consist of 18 ensemble
members (including the unperturbed control run), and
are initialized four times a day at 0000, 0600, 1200, and
1800 UTC. MOGREPS-G has an approximately 20-km hor-
izontal resolution in the midlatitudes. We consider the
forecastinitialized at 0000 UTC and lead times from T + 06
to T + 198 hours (8.25 days) at 6-hr intervals. The fore-
casts are regridded bilinearly to the locations of 30 surface
synoptic observation (SYNOP) stations in the United King-
dom (see Figure 1 for the locations) and verified against
temperature and wind-speed observations (observations of
2-m temperature and 10-min average of 10-m wind speed).
The forecast ensembles are assumed to be exchangeable
and are summarised by the ensemble mean and ensemble
standard deviation.

3 | STATISTICAL
POSTPROCESSING METHODS
3.1 | Ensemble model output statistics
EMOS, also often known as NGR (Jewson et al., 2004;
Gneiting et al., 2005) is one of the most frequently used sta-
tistical postprocessing methods. It models the variable to
forecast with a parametric distribution D(0), the parame-
ters 6 of which depend on the ensemble prediction, which
is often summarised by the ensemble mean and ensemble
standard deviation.

For forecasts in the Lorenz’96 system, as well as 2-m
temperature forecasts from MOGREPS-G, a normal distri-
bution is used throughout this study, although it has been
argued that a distribution with heavier tails might be more
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FIGURE 1

Locations of 30 SYNOP stations used as
observational reference for MOGREPS-G forecasts. Station 20
considered below is indicated by a black dot.

sensible for temperature (Gebetsberger et al., 2018; Allen
et al., 2021). Let T; denote temperature or the Lorenz’96
variable X at a lead time ¢ and xil), ,xEL) the ensem-
ble member forecasts, which we summarise by ensemble
mean m; and ensemble standard deviation s;. The base
EMOS then models the location parameter u of a normal
distribution as a linear function of the ensemble mean and
the scale parameter ¢ as a linear function of the ensemble

standard deviation:

Tidxy", X" ~ N, o), @
He = ap + frmy, (5)
log Ot =Yt + 5t IOgS[- (6)

Here the scale o is log-transformed to ensure 6; > 0 and, to
make sure that parameters are on the same scale, the pre-
dictive ensemble standard deviation is log-transformed as
well. This is nonstandard, as most of the time an identity
link, together with optimization constraints on the param-
eters, is used in EMOS. However, a log link has been used
in multiple publications (Gebetsberger et al., 2018; Lang
et al., 2020) and comparisons for the Lorenz’96 system
and MOGREPS-G forecasts found no performance differ-
ences between identity, quadratic, and log link. Therefore,
the latter is used in this study because the model is sim-
pler to handle, especially when adding covariates, whilst
naturally ensuring positivity.

For wind speed, a truncated normal distribution is used
throughout this study, which has been shown to work well

in Scheuerer and Mdller (2015) and earlier in Thorarins-
dottir and Gneiting (2010) and Lerch and Thorarinsdot-
tir (2013), although the variable of interest is maximum
daily rather than average wind speed in the latter two. Let
W; denote wind speed at a lead time ¢ and xl(l), ,xt(L),
m, Sy, as above, the corresponding forecasts and summary
statistics. The EMOS model for wind speed is

wx®, .. ,fo) ~ No(us, o7), (7
He = ap + prmy, ©))
logo; = y: + 6: logs;. ©))

These models are fitted by minimizing the continu-
ous ranked probability score (CRPS, see Equation 21),
using the R package crch (Messner et al., 2022).
Maximum-likelihood estimation was also explored and
was found not to lead to substantial differences in perfor-
mance. EMOS models are most of the time fitted separately
for each station and lead time ¢. Within the Lorenz’96 sys-
tem, the K variables are exchangeable, and thus a model
fitted to any of them (or the merged data set) can be used
for the other Xj.

3.2 | Lead-time-continuous
postprocessing

In the following, models will be developed that
only require a single fit to a data set of merged
forecast-observation pairs of all lead times and are able to
perform postprocessing for all of these. Such models will
be referred to as lead-time-continuous. The base EMOS
fitted separately for all lead times will be referred to as
lead-time-separated.

Figure 2 shows the development of the parameters
a, Pr, 11, 6¢ of lead-time-separated EMOS models fitted to
X1 in the Lorenz’96 system. As one can see in this situation
without substantial data limitations the parameters vary
fairly smoothly as a function of lead time. For the location
parameter, the intercept a, starts at zero and the multi-
plicative parameter f; at one for small lead times, meaning
that the ensemble mean captures the true dynamics fairly
well. §; then even rises a bit around 2 days, before falling
linearly over lead time. This reflects the decreasing skill of
the ensemble mean in predicting the observations, whilst
the constant correction provided by the intercept «; rises.
Due to the log link, the scale parameters are less inter-
pretable. For small lead times, the intercept y; is strongly
negative and the multiplicative parameter 6; near zero, so
ot isvery small, as the ensemble mean presents a very good
prediction with little uncertainty. &, then rises very fast,
peaking at around a lead time of 3 days before approaching
a seemingly constant value. The intercept y; seems fairly
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FIGURE 2 Dependence on o4 as a function of lead time B¢ as a function of lead time
lead time of parameters of EMOS 1.21
postprocessing models fitted 1.04
separately for each lead time in the 0.81 0.9
Lorenz’96 system. The shaded 5 = )
areas indicate pointwise 95% 0.41 0.81
confidence intervals.
0.01 0.7 1
0 5 10 15 0 5 10 15
Lead time (days) Lead time (days)
1t @s a function of lead time 8 as a function of lead time
01 0.4
= -2 < 0.0
-4 1 -0.4+
0 5 10 15 0 5 10 15

Lead time (days)

stable after 5 days, slightly larger than one, indicating that
the log ensemble spread captures a big part of the true
uncertainty, but a constant correction is needed.

Given the smooth variation of the EMOS parameters as
a function of lead time, one can try to account for this char-
acter using splines. The following lead-time-continuous
EMOS models, including lead time ¢ as a covariate for both
uy and oy, will be analysed:

Model 1:  py; = a + pm; + p1(t), (10)
logoy =y + 6logs; + pa(b). (11)
Model 2:  y; = a + p1()m; + p(b), (12)
logo: =y + p3(t) log s + pa(t). (13)

Here the functions p, ... ,ps are thin plate splines
(Wood, 2003). These models are fitted with penalized max-
imum likelihood using iteratively weighted least squares
(IWLS) and the backfitting algorithm. The amount of
smoothing is chosen in a data-driven way by optimizing
an adjusted AIC whilst fitting the model (see Rigby &
Stasinopoulos, 2005 for an overview of fitting and smooth-
ingestimation). The bamlss package (Umlaufetal., 2018)
is used. Model 1 tries to account for the effect of lead time
by using an additive correction over the level of the inter-
cept a, thus representing lead-time-dependent change in
the latter (the splines themselves have no constant term).
Model 2 extends model 1 by also modelling the multiplica-
tive EMOS parameters, # and &, as splines of lead time
t. We use thin plate splines, as they allow us to account
for flexible nonlinear lead-time-dependent effects. These
models will be evaluated in Section 5.1.

Lead time (days)

Seasonality plays an important role in real data and
so lead-time-separated and lead-time-continuous mod-
els with seasonal components will be presented for the
MOGREPS-G forecasts in the next section.

3.3 | Seasonality and diurnal cycle
Parameters of postprocessing methods but also NWP
forecasting skill tend to vary depending on the time of
year, which means that methods like EMOS need to
account for seasonality. This is usually done by fitting
models in a running window—as originally proposed
by Gneiting et al. (2005)—or by including terms in the
model that adjust for seasonal cycles as in Gebetsberger
et al. (2018); Lang et al. (2020), and Chen et al. (2022).
Dabernig et al. (2017b) and Messner et al. (2017) instead
work on standardized anomalies to which they fit EMOS
models. Such a strategy is also employed by Dabernig
et al. (2017a)—one of the only publications looking at
simultaneous postprocessing for multiple lead times—but
the authors believe that using a running window or includ-
ing adjustments in the model has advantages, as it is
more interpretable and requires fewer model fits (see
Section 1).

When including adjustments within the model, EMOS
is trained on a fixed training period and applied to a testing
data set: here we used data from April 1, 2019-December
31, 2020 for training and from January 1, 2021-April 1,
2022 for testing. Applying EMOS in a running window
requires continuous retraining without a fixed training
and testing period. Window sizes between 30 and 45 days
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have often been found to yield optimal performance for
temperature postprocessing (Gneiting et al., 2005) and
here we use 40 days, which is a common choice in the
literature (Lang et al., 2020). Wind speed has been found
in some cases to have a less pronounced seasonal cycle
(Allen et al., 2022) and might be fitted in a fixed win-
dow. However, Scheuerer and Méller (2015) find a running
window of 60 days to be optimal and in operational sys-
tems even shorter training window lengths are sometimes
used, such as 15 days in the UK Met Office IMPROVER
system (Roberts et al., 2023). As a compromise, we
also work with a training-window size of 40 days for
wind speed.

In the following, we will first outline EMOS models
accounting for seasonality within the model together with
lead-time-continuous models used in that case, to then
show models using a running window.

3.3.1 | Seasonality within the model

To account for seasonal variation, sine and cosine trans-
formations of the day of year (doy) are included in both
the location and scale parameters of the EMOS models.
This is similar to Gebetsberger et al. (2018), who, how-
ever, only allow seasonal variation in the location param-
eter. Cyclic splines as in Lang et al. (2020) were also
tested, but, most likely due to the limited training data
(1 year and 8 months), their estimates proved not fully
reliable and using them did not improve performance.
Thus the conceptually easier parametric model is used.
For each lead time ¢ and for both temperature and wind
speed, the following model is fitted for location and scale

o4 as a function of lead time Bt as a function of lead time

-100

Ot

-200 1.25
1.00

parameters:

doy
Hr = + ﬁtm, + i,u,c,l cos| 2r—

366
doy
+ Aysesin| 2m— |, 14
<”366> (14)
lo + 6;logs; + Agcrcos| 2 doy
= S . —
g0t =Vt ¢t 108 St ot ﬂ366
doy
+ AgseSin| 2r— ). 15
St <”366> ( )

As more flexible seasonal effects using cyclic splines
did not lead to increased performance over simple
sine-cosine transformations, nor give evidence for the
role of higher harmonics in the seasonal cycle, only
first-order ones are used. These models are fitted sepa-
rately for each station and lead time on the training data
set of MOGREPS-G forecasts between April 1, 2019 and
December 31, 2020. Parameters are estimated using mini-
mum CRPS estimation using the R package crch (Mess-
ner et al., 2022). This base model will be referred to as
Separated—-Seasonality Within the Model (S-SWM).

Figure 3 shows the evolution of parameters a;, f, 7,
and &, as a function of lead time ¢ at station 20, which seems
typical within the data set for both temperature and wind
speed. Two effects can be seen. Firstly there seems to be
a substantial diurnal cycle in the parameters—especially
for the location parameters a; and f;, but also for the scale
parameters y; and &;, even though it is less pronounced
there. This cycle can be interpreted directly in terms of
forecasting skill: during the day (1200, 1800 UTC) ensem-
ble forecasts are less skilful, leading to larger intercepts
a; and smaller multiplicative parameters f;, whilst the

oy as a function of lead time Bt as a function of lead time
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Development of EMOS parameters as a function of lead time for models fitted separately for different lead times for (a)

temperature and (b) wind speed (right panel). The dashed line represents the best linear fit. The shaded areas indicate pointwise 95%

confidence intervals.
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behaviour is reversed during the night. Secondly, over the
lead-time range there seem to be general trends in the
parameters. In the location, the intercept a; goes down and
then up for temperature, whilst staying flat for wind speed.
Similarly, the multiplicative parameter f; goes down for
wind speed and up and then down for temperature. In the
scale, the intercept parameter y, rises for both temperature
and wind speed. This indicates decreasing forecasting skill
and increasing uncertainty as the lead time grows. The
6; parameter has more uncertainty than the other param-
eters. It is quite small for small lead times, particularly
for temperature, indicating that at these lead times the
ensemble standard deviation is not indicative of the true
uncertainty. There is an indication of an upwards trend
over the lead time; however, given the large confidence
bands this might not be robust.

Given this parameter evolution, it seems that when
building lead-time-continuous models it is important to
account for the effects of the diurnal cycle and general
drift. During model building it was found to be beneficial
to account for the two effects separately. There are differ-
ent ways of doing so, but, given that this data set is at
six-hourly resolution, we decided to include a factor or cat-
egorical variable, yi04, accounting for the time of day tod,
and to model the effect of lead time, ¢, with a linear approx-
imation. If more lead times were available, one could use
factors with more levels, random effects to regularise the
factor levels, sine-cosine transformations of the time of
day, or spline terms. However, even with a MOGREPS-G
data set at one-hourly resolution, accounting for the diur-
nal cycle using a factor for the hour of the day was found
to perform reasonably well.

The following model is fitted as lead-time-continuous
for both temperature and wind speed separately to each
station, again using minimum CRPS estimation:

M=o+ ﬁml + Yy tod + d)u

doy
+ Auccos 27[36 + Aussin| 2z

+ y/,,ctodxﬂ,,cxcos< 36

6
doy

%)

doy doy
2 2
+ A(,ccos< 7r366>+/1(,ssm 7[366>

+ lllgctoXmchCOS< TZ)
doy

) 17)

+ Wustod X Aus ><s1n<

logo; =y + 6logs; + Yo tod + Pot

)
(

+ WostodX/lasXSHl(
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This model will in the following be referred
to as Continuous-Seasonality Within the Model
(C-SWM). It corresponds to a standard EMOS with
non-lead-time-dependent intercepts (a,y) and multi-
plicative parameters (f,6), which is, however, fitted
on a data set of merged lead times. Similarly to the
lead-time-separated model, sine-cosine transformations
of the day of year are included to account for seasonality,
with non-lead-time-dependent parameters. To account
for the effects of the diurnal cycle, the time of day tod is
treated as a factor variable (yi0q) With four levels for the
four forecast times each day (0000, 0600, 1200, 1800 UTC)
and included as a main effect and in interaction with each
of the seasonal terms to adjust for seasonal variations in
the diurnal cycle. This leads to time-of-day-dependent
intercepts and seasonality parameters for both loca-
tion and scale. To account for lead-time-dependent
drift, a linear term (¢,.t) is included. Except for the
time-of-day—seasonality interaction, only additive lead
time adjustments are used and especially the multi-
plicative parameters f and é do not vary with lead time,
seasonal cycle, or diurnal cycle. This will be discussed
later.

3.3.2 | Seasonality in a running window

In a running window, the base EMOS (Section 3.1)
is fitted separately for each lead time. This model
will be abbreviated as Separated-Running Window
(S-RWIN). For lead-time-continuous postprocessing,
the following model is fitted for both temperature and
wind speed, abbreviated Continuous-Running Window
(C-RWIN):

Hr = + ﬁmt + YWy tod + d)ﬂta (18)

logo; =y +61ogs; + Wotod + Pot. (19)

Here the time of day is included again as a factor or cat-
egorical variable (yiq) to account for the diurnal cycle
and ¢,t and ¢,t are terms accounting for forecast drift
or trends. Again, all adjustments for lead-time effects
are additive and the multiplicative parameters f and 6
are constant across lead time. Both lead-time-separated
and lead-time-continuous models are fitted using
minimum CRPS estimation on a running window of
length 40 days.

An overview of all lead-time-separated and
lead-time-continuous models considered, together with
their abbreviations, is provided in Table 1.
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TABLE 1 Overview of postprocessing models fitted to MOGREPS-G data.
Abbreviation Model Training period Stations Lead time
S-SWM EMOS including seasonality terms Fixed Separate for each station Separated
C-SWM EMOS including seasonality terms, time of Fixed Separate for each station Continuous

day, and lead time

S-RWIN EMOS Running window Separate for each station Separated
C-RWIN EMOS including time of day and lead time Running window Separate for each station Continuous

4 | VERIFICATION can also define a skill score:

The goal of statistical postprocessing has been phrased 2= CRPS(F ii),y(i))

CRPSS =1 - (22)

by Gneiting et al. (2005) as maximizing sharpness subject
to calibration. Calibration is usually assessed by inves-
tigating probability integral transform (PIT) histograms
(Gneiting et al., 2007; Thorarinsdottir and Schuhen, 2018),
which are histograms of the predictive cumulative dis-
tribution function (CDF) evaluated at the observation.
These histograms should be uniform if the forecast is
calibrated, whilst a U-shape indicates underdispersion
and an inverse U-shape overdispersion. In the case of
ensemble forecasts, verification rank histograms can be
used instead, which show the distribution of the rank
of the observation within the ensemble (Anderson, 1996;
Hamill and Colucci, 1997). These should again be uni-
form under the assumption of calibration. The amount
of (mis)calibration shown by PIT histograms can also be
summarised numerically by the reliability index (RI, Tho-
rarinsdottir & Schuhen, 2018; Delle Monache et al., 2006),
which is

RI = §|§i—§|. (20)

Here I is the number of bins in the histogram and ¢; the
observed proportion of PIT values in bin i.

Proper scoring rules can be used to assess calibration
and sharpness together. One of the most common proper
scores is the CRPS (Hersbach, 2000):

CRPS(F.y) = / [F@) -y <z)Pdz.  (21)

Here F represents the issued predictive CDF and y the cor-
responding observation. The CRPS is negatively oriented,
meaning that a smaller score implies better performance.
Closed-form expressions exist for the CRPS for forecasts
issued as normal (Gneiting et al., 2005) and truncated
normal (Thorarinsdottir and Gneiting, 2010) distributions.
When comparing a model F; with a baseline model F, we

" CRPS(FY, y)y

Here F(()l), Fil) L. ,F(()"), F i") are predictive CDFs for obser-
vations yV, ... ,y™ given by model F; and F,. The con-
tinuous ranked probability skill score (CRPSS) can be
interpreted directly as the relative improvement over the
baseline, with 100 x CRPSS representing the percentage
improvement or decrease.

For evaluating multivariate forecasts across all lead
times (the forecasts issued at a common issue date), the
energy score (Gneiting et al., 2008) and the p-Variogram
score (Scheuerer and Hamill, 2015) are used:

1
ES(F,y) = Ex-rlIX -yl — EEX,X’~F||X =X, (23)

d
Varp(F,y) = ZWU(D’i -y’ — Ex-r|X; —Xj|p)2, (24)

Lj=1

with non-negative weights w;;. These are all taken as w;; =
1 here and p = 0.5. The X; and y; correspond to the ith
elements of the d-dimensional vectors. In this work, evalu-
ation of the energy and p-Variogram scores is done via their
formulation for an ensemble of L multivariate samples
x® . XD from F:

L
S5 DIXO X7, @29)

L
1 .
ES(F.y) =7 Y IX? ~yll -
i=1 i,j=1
: 1 < P ’
v = Sou (-l - P -0 ).
i,j=1 k=1

(26)

Here we use an ensemble of L =500 draws from
the predictive distributions issued. The R package
scoringRules (Jordan et al., 2019) is used for
evaluating the CRPS, energy, and p-Variogram scores.

85U8017 SUOWILIOD BAIIRID) 3|cedldde ays Aq peusenob are saoiie YO ‘8sn JO S3|nJ oy AreiqiT 8UlIUO AB|IA UO (SUORIPUOO-pUe-SLLBY/LICO" A3 1M AReIq e |UO//SANY) SUORIPUOD Pue SWs | 81 88S [Z0Z/0T/70] Uo ARiqiTauliuo /(1M ‘erxa JO AiseAun Aq Ty b/Z00T 0T/10pAw0d A8 |imAreIq Ul U0 SIeWL//SANY WO1j papeolumod ‘T9. ‘202 ‘X0L8LLYT



WESSEL ET AL.

Quarterly Journal of the ERMets

To assess forecasts of certain values, the
threshold-weighted CRPS (Gneiting and Ranjan, 2011),

twCRPS(F,y) = / [F(z) — 1{y < 2}IP0(@)dz,  (27)

can be used for some non-negative weight function
(z). Here we use an indicator function as weight func-
tion w(z) = 1(z > r) with some threshold 7, to evaluate
behaviour in the upper tail only. To our surprise, no
closed-form expressions of the threshold-weighted CRPS
for predictive normal and truncated normal distributions
could be found in the literature. Thus we derived expres-
sions in these cases and verified them against numerical
integration. These expressions are given in the Appendix
for reference.

5 | RESULTS AND DISCUSSION

5.1 | Lorenz’96 system
After introducing both the data as well as methods used
in this study, we now come to results in the Lorenz’96
system. EMOS models 1 and 2 (lead-time-continuous
models, Equations 10-13) are fitted and compared with
lead-time-separated EMOS models (Equations 4-6).
Figure 4 shows the CRPS as a function of lead time for the
different models.

The performance of the lead-time-continuous model
2 is virtually identical to that of the lead-time-separated

2 2
" EMOS model
o / Lead-time-continuous 1
% — Lead-time-continuous 2

1 ’/ Lead-time-separated

/'//
/
0{ 7
0 5 10 15
Lead time (days)
FIGURE 4 CRPSas a function of lead time for the

lead-time-continuous models 1 and 2 compared with
lead-time-separated EMOS in the Lorenz’96 system. The green line
corresponding to the lead-time-continuous model 2 is hidden
behind the blue line representing the lead-time-separated model,
thus indicating equal performance in terms of CRPS.
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model. The performance of model 1 (which excludes inter-
actions between lead time and ensemble covariates in both
location and scale parameters) is slightly worse. Models
without an effect for lead time for one of u; or o; were
also tested, but yielded strongly worse performance and
calibration (not shown).

To assess calibration, we investigate PIT histograms.
Figure 5 shows the histograms for a lead time of 5
days (histograms for other lead times are similar). The
PIT histogram for model 1 has an indication of overdis-
persion, some of which also seems to remain for the
lead-time-continuous model 2, which, however, is bet-
ter calibrated. It seems that the interactions included in
model 2 are important to capture the main aspects of
the distribution. The lead-time-separated EMOS seems to
have good calibration (RI 0.061) and a slight edge over
the lead-time-continuous model 2 (RI 0.072), however not
strongly so.

5.2 | MOGREPS-G forecasts
52.1 | Seasonality within the model
Now we  compare lead-time-continuous and

lead-time-separated postprocessing for the MOGREPS-G
forecasts. We consider the seasonal models (S-SWM and
C-SWM) in this section and the running-window models
(S-RWIN and C-RWIN) in the next section.

Figure 6 shows the CRPS averaged over all sta-
tions as a function of lead time, for lead-time-separated
(S-SWM) and lead-time-continuous (C-SWM) mod-
els. Across all lead times, no substantial differences
in performance between the lead-time-continuous
and lead-time-separated models can be seen for both
temperature and wind speed.

Figure 7 shows the PIT histograms (with 20 bins)
merged across locations for 48-hr lead time for both
lead-time-continuous (C-SWM) and separated (S-SWM)
models for temperature and wind speed. In both models,
some miscalibration remains for temperature and wind
speed. Temperature forecasts seem to have a left tail that is
too light and a right tail that is too heavy, which indicates
that a skewed distribution might be more appropriate for
the data, which has also been found in Allen et al. (2021).
Wind-speed forecasts seem to have some amount of
overdispersion after postprocessing, indicating overcor-
rection of the usually underdispersive raw ensemble. No
substantial differences between the lead-time-continuous
and separated model can be seen for temperature and
wind speed. This remains similar over the lead times (not
shown). The distribution across locations of differences
in the reliability index RI between S-SWM and C-SWM
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Lead-time-continuous EMOS 1 | | Lead-time-continuous EMOS 2 | | Lead-time-separated EMOS
FIGURE 5 PIT histograms
for a lead time of 5 days for the
lead-time-continuous models 1
and 2 and the lead-time-separated
EMOS in the Lorenz’96 system.
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PIT perfect calibration.
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FIGURE 6
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(b)

CRPS as a function of lead time averaged over all stations for lead-time-continuous (C-SWM, orange) and

lead-time-separated EMOS (S-SWM, black) that include seasonality adjustments within the model. (a) Temperature. (b) Wind speed.

Lead-time-continuous (C-SWM) i Lead-t

(S-SWM)
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PIT
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FIGURE 7

Lead-t (C-SWM) 1

Lead-time-separ: (S-SWM)

0.00 0.25 0.50 0.756 1.00 0.00
PIT

(b)

PIT histograms for 48-hr predictions merged across stations for the lead-time-continuous (C-SWM, left) and

lead-time-separated EMOS (S-SWM, right) that include seasonality adjustments within the model. The red horizontal lines indicate perfect

calibration. (a) Temperature. (b) Wind speed.
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FIGURE 8
across locations of the difference in

Distribution 0.06 -
reliability index (RI) between
lead-time-continuous (C-SWM)
and lead-time-separated (S-SWM)
temperature models including

0.03

seasonality adjustments within the

model, shown as a function of lead 0.00

time. The solid line represents the

mean, whilst the bars indicate one

standard deviation. -0.03 -

RI (lead-time-continuous) - RI(lead-time-separated)
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is plotted against lead time in Figure 8 for the tempera-
ture forecasts. If this difference is negative, it means that
the lead-time-continuous model has better calibration and
vice versa if it is positive. As one can see, no substantial dif-
ference occurs at any lead time. This is the same for wind
speed (not shown).

Training for the models was done on a portable com-
puter under a 64-bit Windows 10 operating system (Intel
Quad Core i5-1145G7 @ 2.60 GHz, 16 Gb RAM), without
parallelisation. For temperature, the mean training time
per location was 2.69 s (standard deviation 0.178 s) for the
lead-time-continuous models (C-SWM) and 31.89s (3.82
s) for the separated ones (S-SWM). For wind speed, train-
ing times were 7.45s (1.79 s) for C-SWM and 99.22s (7.61
s) for S-SWM models. This amounts to computational sav-
ings of around 90%, even though it is important to note
that the times are generally quite small. Out-of-sample
model application times are negligible compared with the
model training times but were also improved using the
lead-time-continuous models. In an operational context,
where models might need to be loaded from disk into
memory for application, this might be important.

Alternative models to the lead-time-continuous model
C-SWM were also tested. Firstly, for temperature the
interaction between the diurnal and seasonal cycles in
Equations 16 and 17 seems to be crucial for the model
performance. Models without this interaction have sig-
nificantly worse performance, especially at earlier lead
times—both overall, but even more strongly at stations
with a considerable diurnal cycle. For wind speed, it seems
that the interaction does not add much to the model per-
formance and models removing it have similar (but not
better) performance at all lead times. This is most likely
due to the less pronounced diurnal and seasonal cycles
that wind speed has. Secondly, it seems that the main
lead-time/drift effect ¢, - is not too important for model
performance in terms of CRPS, even though parameter

48 72 96 120 144 168 192

Lead time (hours)

plots (see Figure 3) indicated such an effect. Models remov-
ing this effect did have similar (but not better) performance
and ¢, , was generally estimated to be very small for both
temperature and wind speed. This is different from mod-
els in a running window. Experiments using splines to
capture an additive lead-time effect—albeit fitted using
maximum likelihood—did also not indicate substantial
nonlinear effects after removing the diurnal cycle and,
when not accounting explicitly for the diurnal cycle (e.g.,
using the above tod factor), splines mainly reproduced
it and had worse performance in terms of CRPS than
C-SWM models in Equations 16 and 17. Models includ-
ing interactions between the diurnal cycle or lead time and
the ensemble mean and standard deviation were tested;
however, no increase in performance was observed. This
stands in contrast to the parameter plots in Figure 3 indi-
cating a diurnal cycle and trend in f; and ;. One expla-
nation is that these multiplicative parameters might not
be as crucial as one might expect and the adjustments
provided by them can be partly obtained by additive cor-
rections. Related to this is the fact that experiments fixing
the multiplicative ensemble mean parameter g to differ-
ent values and estimating all other parameters through
CRPS minimization led to only slightly-worse perform-
ing models (in terms of CRPS). Especially for the C-SWM
models, the CRPS seemed very robust to different speci-
fications of # (not shown). This is somewhat surprising,
as the EMOS model contains very few parameters in total,
which, however, seem to take similar roles in correcting
and recalibrating the forecast. Thus, even though in the
lead-time-continuous model (C-SWM, Equations 16 and
17) the multiplicative correction is lead-time-independent,
this aspect can be adjusted for using additive corrections.
Simplified models without the main lead-time effect and
without interactions between diurnal and seasonal cycle
for wind speed have been tried; however, interestingly they
did not improve in performance compared with the full
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C-SWM model in Equations 16 and 17. It seems that, given
the amount of training data available, this model adjusts
well to the noninformativeness of some covariates.

To understand the performance of the lead-time-
separated models (S-SWM) better, we analyse how
lead-time-dependent their performance is. More con-
cretely, we look at the lead times ¢ at which a
lead-time-separated EMOS, trained on a data set consist-
ing of forecast—observation pairs of lead time ¢, performs
well for postprocessing. All forecasts considered here are
initialised at the same time of day (0000 UTC), which
means that each lead time corresponds to a single time
of day. First experiments show that a model trained for
a given time of day (e.g., 1200 UTC), but employed at
another (e.g., 1800 UTC) have a strongly worse perfor-
mance there compared with any model trained for this
time of day (any model trained for 1800 UTC). Figure 9
therefore shows the CRPS skill score of models trained
for a certain lead time (e.g., for 6 hr, x-axis) and employed
at another lead time (e.g., 30 hr) relative to the appropri-
ate model for this lead time (e.g., 30 hr), grouped by time
of day (figure panels). The ith model (colour) here indi-
cates the ith model for a certain time of day, so the ith
model for time of day 0600 UTC is the model for lead time
i X 24h + 6h. Several effects can be observed. Firstly, it
seems that models trained for later lead times have much
worse performance at earlier lead times (up to 15% worse)
and models trained for earlier lead times (especially cat-
egory 0 and 1) have worse performance at longer lead
times; however, this is not symmetric, as performance
gets only up to 5% worse. Secondly, it seems for models in
the middle category (model numbers 3-6) that before the

lead time they are trained for they usually have strongly
negative skill scores, but afterwards seem to give decent
performance. This means, for example, that for 0600 UTC
a model trained for lead time 2 * 24 + 6 = 54h can also
be used at j x 24+ 6 for j > 2. This might also add an
explanation for the performance of lead-time-continuous
EMOS without drift term ¢,, -t because, even though this
term is insinuated by the parameter plots (Figure 3), early
to middle lead time models (necessarily without drift)
still have strong performance at later lead times, thus the
lead-time-continuous model (C-SWM) does not need to
reproduce it.

5.2.2 | Seasonality in a running window

Now we compare lead-time-separated and lead-time-
continuous postprocessing for the running-window mod-
els (S-RWIN and C-RWIN). Figure 10 shows the CRPS
as a function of lead time for lead-time-continuous
(C-RWIN) and separated (S-RWIN) model for temperature
(Figure 10a) and wind speed (Figure 10b). Performance is
similar at short lead times, but the lead-time-continuous
models have considerably improved performance at longer
lead times. At a lead time of 6 days, for example, the
improvement corresponds to a reduction in CRPS by 4.4%
for temperature and 5.6% for wind speed, fairly stable
across all stations.

Figure 11 again shows the PIT histograms merged
across locations for 48-hr predictions of temperature
(Figure 11a) and wind speed (Figure 11b). There is again
some slight indication of skew for temperature, and for

00 UTC

0.00

-0.05

-0.10

-0.15

Model number
-0

CRPSS

-0.05

FIGURE 9 CRPSSof the ith
model of each time-of-day category for

|
NOoO s WN -

predictions at another lead time ¢,
respective to the lead-time-separated
model trained for ¢. The ith model of
each time-of-day category hereby refers
to the model trained for lead time

24h X i + tod: for example model 2 for

0 24 48 72 96 120 144 168 192 O 24 48 72 96 120 144 168 192

Lead time (hours)

1200 UTC corresponds to the model
trained for 2 X 24h + 12h = 60h.
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FIGURE 10 CRPSas a function of lead time averaged over all stations for lead-time-continuous (C-RWIN, orange) and

lead-time-separated EMOS (S-RWIN, black), trained in a running window of 40 days. (a) Temperature. (b) Wind speed.
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(b)

PIT histograms for 48-hr predictions merged across all stations for the lead-time-continuous (C-RWIN, left) and

lead-time-separated EMOS (S-RWIN, right) trained in a running window of 40 days. The red horizontal lines indicate perfect calibration. (a)

Temperature. (b) Wind speed.

wind speed it seems that the right tail might not be
heavy enough. However, overall the calibration seems
better than in the case where seasonality is included
within the model. The lead-time-continuous models (left,
C-RWIN) seem to have slightly better calibration than the
lead-time-separated ones (right, S-RWIN), especially in the
higher quantiles. This is similar across lead times, as can
be seen in Figure 12, where the difference in reliability
index seems to indicate slightly improved calibration by
the lead-time-continuous models, with the trend in the dif-
ference in reliability index corresponding somewhat to the
trend in CRPS in Figure 10. Only at early lead times of 12 hr
does it seem that the calibration is actually slightly worse.
This story is similar for wind speed (not shown).

In terms of computation time (not parallelized),
the lead-time-continuous models represent a substantial
improvement. For temperature, the mean time for train-
ing and prediction per location and running window
was 0.152 s (0.012 s) for the lead-time-continuous models

(C-RWIN) and 2.463 s (0.152 s) for the lead-time-separated
ones (S-RWIN). This corresponds to an over 90% decrease
in computation time, which might be helpful for opera-
tional use. Times and improvement are similar for wind
speed.

The role of the drift terms ¢,, ¢ in the C-RWIN mod-
els (see Equations 18,19) is interesting. For temperature,
removing the drift term for the location parameter leads
to worse performance at earlier lead times but improved
performance for later lead times, which is especially pro-
nounced for some stations with considerable diurnal cycle.
This is difficult to account for using splines, the use of
which did not lead to improved performance in terms of
CRPS. It was possible to introduce a model including a
factor accounting for early lead times, which did show
improved performance at later lead times, whilst achiev-
ing the same at earlier ones, however, the gains were not
considerable enough to investigate this model further.
Removing the drift for the scale parameter did lead to
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worse performance at all lead times. This is in contrast
to the models including seasonality within the model (C-
and S-SWM). One explanation for this phenomenon might
be that drift is mostly relevant for small data situations
and might be weather-pattern dependent. Furthermore, in
small data situations the term might help to reduce the
impact of later lead times—where errors are especially big
— on the estimated EMOS parameters, whereas on larger
data sets the effect of these errors is less strong. For wind
speed, the main lead-time effect did not seem to add sub-
stantially to the model; however, removing it also did not
lead to performance increases. Interestingly, base EMOS,
without any adjustments for lead time nor diurnal cycle,
trained simply on the data set of merged lead times in
one running window, also performed fairly well for wind
speed, with some deviations for earlier lead times during
the day (1200 and 1800 UTC). There the tod adjustment
is able to remove diurnal-cycle-dependent bias and mis-
calibration. For both temperature and wind-speed models,
using different interactions between the time of day or drift
and the ensemble mean and or standard deviation was
tested, but this did not lead to improved performance in
terms of CRPS.

The superior performance of C-RWIN over S-RWIN
models (in terms of CRPS) is most likely due to bet-
ter/stabler estimation of postprocessing parameters due
to the availability of more data, without the need to esti-
mate substantially more parameters. Different authors
discuss the bias-variance trade-off that happens when
choosing an optimal training window length (Gneiting
et al., 2005; Scheuerer and Moller, 2015): when the train-
ing window becomes longer, the bias increases, as the
model cannot adapt to seasonal/large-scale changes in
external conditions; however, when the window becomes
shorter the variance of parameter estimates increases, both
leading to decreased performance. Merging data across
lead times and reducing the variance in the parameter

144 168 192
1.3
[7)
c
K]
5
e
2 EMOS type
< 12 Lead-time-continuous
o (C-RWIN)
E _o Lead-time-separated
kel (S-RWIN)
4
i 11
O
1.0

10 20 30 40 50 60 70 80
Training window size

FIGURE 13
station 20 as a function of the training-window size for

CRPS for 48-hr temperature predictions at

lead-time-continuous (C-RWIN, orange) and lead-time-separated
EMOS (S-RWIN, black) trained in a running window.

estimates might therefore allow users to reduce the size of
a running-window/training data set. This can be impor-
tant for operational use, as discussed by Hamill (2018)
and others, because data sets available in practice can be
of “less-than-ideal” quality and so developing techniques
that utilize data more efficiently and work using limited
training sample sizes can be important.

Figure 13 shows the performance for 48-hr tem-
perature predictions at an example station (station 20)
as a function of the training-window size for both
lead-time-continuous (C-RWIN) and separated (S-RWIN)
models. For the lead-time-separated model, there seems
to be a relatively flat minimum around 35 days, with the
typical behaviour of both shorter and longer windows lead-
ing to reduced performance. The lead-time-continuous
model, however, profits from a shorter window of around
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25 days, where a performance increase of around 3%
can be seen compared with the optimal performance of
the lead-time-separated model. This is most likely due
to smaller bias in the estimated parameters because the
data are more current, whilst the reduction in sample size
from using more current data (which would usually lead
to increased variance in the parameter estimates) is over-
come by pooling over lead times. The optimal training
window period of 25 days is also fairly stable across lead
times (not shown), with some earlier lead times having
even better performance at 20 days and some later ones
at 30 days; however, these differences are not substan-
tial. Training on a running window size of 25 days then
leads to constant improvements across all lead times com-
pared with the lead-time-separated model trained with a
running window of 35 days. This improvement is even
stronger than shown in Figure 10a, where both models
were trained on 40 days running window. This perfor-
mance increase is not only the effect of a longer training
data set, as Figure 13 shows that increasing the training
data set over 25 days leads to decreases in performance for
the lead-time-continuous models. Rather it is the effect of
a larger homogeneous training data set, where the shorter
window means that the training data exhibit less variation
in seasonal cycle and large-scale atmospheric conditions.

5.2.3 | Comparison

After looking at lead-time-continuous and separated mod-
els trained using both a running window and seasonality
as terms in the model, we can compare both training rou-
tines overall. Figure 14 shows the CRPS as a function of

EMOS type

Continuous (C-)
— Separated (S-)

Seasonality

* = Running window (-RWIN)
— Seasonality in Model (-SWM)

0 24 48 72 96 120144168192
Lead time (hours)

(a)

FIGURE 14

Royal Meteorological Society

lead time for lead-time-separated (S-models) and contin-
uous models (C-models) trained in both a running win-
dow (-RWIN) and including seasonality within the model
(-SWM) on the testing data set (December 1, 2021-April 1,
2022) for both temperature and wind speed. One sees that
including seasonality within the model generally leads to
improved performance compared with training in a run-
ning window. In these cases, the merging across lead times
does not improve performance substantially in terms of
CRPS, but it does cut down on computation time. This
is consistent with Lang et al. (2020), who argue that as
soon as EMOS training data from multiple years are avail-
able, approaches using the full data, rather than training
in a running window, are superior. Unfortunately, how-
ever, due to NWP model updates and the computation
cost associated with generating reforecasts, as well as
possible issues attached to observational data, such data
sets are often not available in practice (Hamill, 2018).
Interestingly, whilst both lead-time-continuous models
(C-models) and the S-SWM model for wind speed allow
to alleviate time-of-day-dependent performance differ-
ences, these remain for all models for temperature. These
diurnal-cycle-dependent differences in performance are
also found in other studies (see e.g. Dabernig et al., 2017a)
but are removed by the comparatively complex Atmo-
sphere NETwork (ANET) model in Demaeyer et al. (2023);
Mlakar et al. (2023). The reason for these variations in per-
formance and which models are suitable to remove them
is an interesting question for future research.

It is also possible to look at the relationship between
forecast distributions at different lead times within one
issued forecast, as this has been of interest in multi-
ple studies (Pinson and Girard, 2012; Hemri et al., 2013,

2.0 .-
0o
i EMOS type
R Y Continuous (C-)
%) N ’ — Separated (S-)
215 s b
o Seasonality

* = Running window (-RWIN)
— Seasonality in Model (-SWM)

0 24 48 72 96 120144168192
Lead time (hours)

(b)

CRPS as a function of lead time averaged over all stations for lead-time-continuous (C-models, orange) and

lead-time-separated EMOS (S-models, black) for both models trained in a running window (RWIN-models, dotted) and ones including
seasonality adjustments within the model (SWM-models, solid). (a) Temperature. (b) Wind speed.
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FIGURE 15 Box plot of (a) energy and (b) p-Variogram score for multivariate wind-speed predictions (at all lead times) for

lead-time-continuous (C-models, blue) and lead-time-separated EMOS (S-models, orange) for both models trained in a running window
(RWIN-models, left) and ones including seasonality adjustments within the model (SWM-models, right).

2015; Engeland and Steinsland, 2014). Figure 15 shows
the distribution across locations of the energy and
p-Variogram scores for the multivariate vector of postpro-
cessed wind-speed predictions issued at a common date.
The scores were calculated from ensembles with L = 500
members drawn from the predictive distribution issued.
Due to space issues, we omit the temperature results,
which however are comparable. Within a running win-
dow, lead-time-continuous forecasts (C-RWIN compared
with S-RWIN) help with the multivariate performance
combined across lead times as measured by the energy
and p-Variogram scores, most likely due to the reduced
variance in the estimated parameters. However, for mod-
els not trained in a running window (-SWM models) no
improvements can be seen.

We also evaluate the performance of different mod-
els in forecasting extremes. For wind-speed forecasts,
Figure 16 shows the threshold-weighted CRPS skill
score averaged over all stations and lead times, relative
to the lead-time-separated model in a running window
(S-RWIN), which we consider a baseline here. One can
see that both models with seasonality within the model
(-SWM) have strongly improved performance over the
baseline model (S-RWIN), with even stronger relative
improvement at extremes. The continuous model trained
in a running window (C-RWIN) also improves upon the
baseline S-RWIN model (albeit less), with a trend indi-
cating that the relative improvement is again stronger at
extremes than overall. No differences can be seen between
the continuous and separated (C- and S-) models with
seasonality within the model (-SWM). This behaviour,
albeit aggregated here over all stations and lead times,
can also be seen at each individual lead time and most

0.14
0.12
EMOS type
%) Continuous (C-)
o 0.10 — Separated (S-)
o
o
L;) Seasonality
~0.08 « = Running window (-RWIN)
= Seasonality in Model (-SWM)
0.06
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FIGURE 16 Threshold-weighted CRPS skill score for

wind-speed forecasts, averaged over all stations and lead times,
relative to the lead-time-separated model trained in a running
window (S-RWIN). Thresholds here correspond to the 50th-95th
percentile of wind-speed observations across all stations.

stations (not shown). Temperature extremes were also
evaluated similarly (not shown), with the SWM mod-
els again performing best, followed by the C-RWIN one,
and with some indication of an increasing (with thresh-
old) relative improvement of the C-RWIN model over
the S-RWIN model, but not so for the others. These
results should, however, be taken with care, as no large
temperature extremes are present in the data set. These
results provide another argument for increasing data
size by merging across lead times and seem to indicate
that larger data sizes are necessary for good forecasting
of extremes.
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In terms of computation time, for both the
running-window models (-RWIN) and the ones
including seasonality within the model (-SWM), the
lead-time-continuous (C-) models correspond to a sub-
stantial saving. This is more relevant for the models in
a running window, as they require constant retraining.
Especially in situations where more complex postpro-
cessing models are used, the computational savings by
merging across lead times can become relevant.

6 | CONCLUSIONS AND OUTLOOK

A lot of research on postprocessing of ensemble weather
forecasts has focused on building models for separate lead
times. However, as argued above, this can prove expen-
sive and prohibitive for applications. In this work we have
shown that for postprocessing there is a substantial degree
of regularity between lead times with two combining
effects: the diurnal cycle in interaction with seasonal-
ity and a possible lead-time-dependent drift. It proves
beneficial to account for these effects separately, and by
doing so it is possible to build models that work continu-
ously over lead time. These models save substantially on
computation time. For models trained on a fixed training
data set and accounting for seasonality within the model,
they have on-par performance and calibration compared
with standard lead-time-separated models, whilst for mod-
els trained using a running window they improve (mul-
tivariate) performance across lead times and (temporal)
calibration. This allows us to decrease training-window
size with an increase in performance, due to faster
adaptation to seasonality or changing large-scale
conditions.

As Baran and Lerch (2015) note, the computational
cost for postprocessing is generally minor compared with
the one for NWP model generation and model selec-
tion should therefore be based purely on performance.
However, with the increasingly complex postprocessing
methods and chains that are being built, this factor can
become considerable and prove prohibitive. Taillardat
and Mestre (2020) describe operational postprocessing
at Météo France using quantile regression forests (Tail-
lardat et al., 2016, 2019) and ensemble copula coupling
(Schefzik et al., 2013). They show the benefits of switch-
ing to a high-performance computing (HPC) environment
for postprocessing and note the extensive amounts of data
being generated for model development and application.
Furthermore, even though postprocessing runs on the
Météo France supercomputer to generate results in time,
operational demands come into place and can restrict
methods chosen when they are too complex. Thus there is
demand for methods that improve on computation time,

Royal Meteorological Society

whilst having equal performance. As shown in this study,
merging across lead times can present a remedy.

Furthermore, with upcoming machine learning and
artificial intelligence postprocessing methods (Rasp and
Lerch, 2018; Kirkwood et al., 2021; Haupt et al., 2021;
Chen et al., 2022) there is a need for larger data sets to
train and evaluate models. As Hamill (2018) notes, due
to the cost of generating reforecasts and practical con-
straints such as frequent model updates, data sets avail-
able in practice can often be of nonideal quality and
may not have considerable size. The work presented here
presents a remedy for small data sets when merging across
lead times can improve performance. Furthermore, it
gives a strategy to increase training data sizes for deep
learning/artificial-intelligence-based methods, which are
known often to be inefficient in their data usage (Mar-
cus, 2018). Here, for the methods trained on a fixed
training data set no increases in performance could be
seen by merging across lead times; however, that might be
due to the limits of what EMOS is able to do and the fact
that variability in the parameters is already low for these
models due to the larger data size. This might be differ-
ent for deep-learning-based methods and future research
into their data efficiency and the training data necessary
is required. However, given the ease with which it is pos-
sible to incorporate lead-time information, future studies
should aim to utilise this fully. Lead-time-continuous mod-
els could also easily be used in conjunction with other
methods to enrich data size such as semilocal EMOS
(Lerch and Baran, 2016), by using local time to account for
the diurnal cycle as above.

Finally, this article has focused on developing meth-
ods for lead-time-continuous postprocessing at a weather
timescale. However, similar methods might also be benefi-
cial at longer timescales (intraseasonal/seasonal/decadal)
and future work could aim to investigate lead-time depen-
dence for long-range forecasts and try to extend the meth-
ods presented here, possibly addressing questions of seam-
less prediction across timescales.
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APPENDIX. CLOSED-FORM EXPRESSIONS
FOR THE THRESHOLD-WEIGHTED CRPS

The threshold-weighted CRPS of a forecast given as a

normal distribution, with threshold = and observation y,
can be derived as

twCRPS[N (4, 62),y] = 64 — s[1 — ®(s)]

+20(5)[1 — B(s)] — —=[1 - B(V29)] (A1)

T

ify <rand

twCRPS[N (i, 62),y] = 64 — s®*(s) + z[2P(z) — 1]
+2[p(2) — P(s)D(s)]

1
——[1 —-—D(V2 A2
\/;[ (V2s)] (A2)

if y > 7, where ¢ and @ are the standard normal density
and cumulative distribution function, respectively, and

s = , (A3)

(A4)

In the limit 7 — —oo, the usual CRPS for the normal dis-
tribution (Gneiting et al., 2005) is recovered:

CRPSIN(.0%).y] = 0{ 2120(2) — 1] +20(2) - %
T
(A5)
The threshold-weighted CRPS of a forecast given as a
(doubly) truncated normal distribution, truncated to the
interval [a, b], with threshold r € [a, b] and observation
Y € [a, b], can be derived as
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if y > 7, where ¢ and ® are again the standard normal
density and cumulative distribution function, respectively,
and
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We remark for consistency that, in the limits a - —oo and
b — o0, we have ®(a) =0 and ®(p) = ®(v/26) =1 and
recover twCRPS[N(u, 6%),y] as given above.

In the practically important case of left-truncation
at zero, a =0 and b — oo, we have ®(f) = (ID(\/E/}) =1,
meaning that Equations A6 and A7 simplify to
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if y > 7. Setting 7 = 0, leading to s =« = —u/0, and
using the symmetry ®(x) + ®(—x) = 1 allows us to recover
the usual CRPS for a truncated normal distribution (com-
pare Thorarinsdottir & Gneiting, 2010):
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