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The truncated moment problem and the

moment-constrained maximum entropy principle

The truncated moment problem addresses the question whether a given sequence of real numbers
(µ0, µ1, . . . , µK) with K ≥ 0 is a truncated moment sequence, that is, whether there is a Radon
measure ν, supported on D, such that∫

D

yk dν(y) = µk, k = 0, 1, . . . , K. (1)

For D = [−1, 1], D = (−∞,∞) and D = [0,∞) this is referred to as the truncated Hausdorff
moment problem, the truncated Hamburger moment problem and the truncated Stieltjes moment
problem, respectively. A normalised measure corresponds to µ0 = 1.

The truncated moment problem has been extensively studied [1, 2, 3]. The set of all truncated
moment sequences (µ0, µ1, . . . , µK) is the moment space; it is a convex subset of RK+1. On
the boundary of the moment space the truncated moment problem is determinate; there is a
unique representing measure which is always discrete with finitely many atoms. In the interior
of the moment space the truncated moment problem is indeterminate; there are infinitely many
solutions. An exact characterisation of the boundary for the Hamburger and Stieltjes cases is
complicated. We are here ultimately only interested in continuous probability distributions and
therefore invoke generic assumptions to simplify matters.

For L ≥ 0 the (L+ 1)× (L+ 1) Hankel matrices

CL = (µi+j)
L
i,j=0, (2)

DL = (µi+j − µi+j+2)
L
i,j=0, (3)

EL = (µi+j + µi+j+1)
L
i,j=0, (4)

FL = (µi+j − µi+j+1)
L
i,j=0, (5)

GL = (µi+j+1)
L
i,j=0 (6)

are introduced for sequences (µ0, µ1, . . . , µK) of sufficient length K and they are assumed to be
non-singular. By this prior assumption we only drop solution measures which are finitely atomic.
The following statements can be extracted from the literature [1, 2, 3]:

Theorem 1 Truncated Hausdorff moment problem (Even case: K = 2M , Odd case: K = 2M−1,
M ≥ 1):
The sequence (µ0, µ1, . . . , µK) is a truncated Hausdorff moment sequence if and only if CM and
DM−1 for K even (or EM−1 and FM−1 for K odd) are positive definite.
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Truncated symmetric Hausdorff moment problem (K = 2M , M ≥ 1, µ2i−1 = 0 for i =
1, . . . ,M):
The sequence (µ0, 0, µ2, . . . , 0, µK) is a truncated Hausdorff moment sequence with a symmetric
representing measure if and only if CM and DM−1 are positive definite.

Truncated Hamburger moment problem (Even case: K = 2M , Odd case: K = 2M−1, M ≥ 1):
The sequence (µ0, µ1, . . . , µK) is a truncated Hamburger moment sequence if and only if CM for
K even (or CM−1 for K odd) is positive definite.

Truncated symmetric Hamburger moment problem (K = 2M , M ≥ 1, µ2i−1 = 0 for i =
1, . . . ,M):
The sequence (µ0, 0, µ2, . . . , 0, µK) is a truncated Hamburger moment sequence with a symmetric
representing measure if and only if CM is positive definite.

Truncated Stieltjes moment problem (Even case: K = 2M , Odd case: K = 2M − 1, M ≥ 1):
The sequence (µ0, µ1, . . . , µK) is a truncated Stieltjes moment sequence if and only if CM and
GM−1 for K even (or CM−1 and GM−1 for K odd) are positive definite.

For K = 0 there is a representing measure for all of the truncated moment problems if and
only if µ0 > 0.

For all of the truncated moment problems in the affirmative case there are infinitely many
representing measures which are not finitely atomic.

We now distinguish two cases of the truncated moment problem depending on how the se-
quence (µ0, µ1, . . . , µK) is generated: the statistical and the non-statistical case. A sequence
(µ0, µ1, . . . , µK) is called a statistical sequence if it corresponds to the sample moments of a data
sample {y1, . . . , yN}:

µk =
1

N

N∑
n=1

ykn, k = 0, 1, . . . , K. (7)

It is called a generic statistical sequence if the underlying data sample contains at least [K/2] + 1
distinct data points in intD where [K/2] is the largest integer smaller or equal K/2. To the best
knowledge of the author, the following theorem on the statistical case has not been recognised in
the literature so far.

Theorem 2 For L ≥ 0 the Hankel matrices CL, DL, EL, FL and GL are positive definite for
any statistical sequence (µ0, µ1, . . . , µK) of sufficient length K provided the underlying data sample
{y1, . . . , yN} contains at least L+ 1 distinct data points in intD.

For K ≥ 0 any generic statistical sequence is a truncated moment sequence for the truncated
Hausdorff, symmetric Hausdorff, Hamburger, symmetric Hamburger and Stieltjes moment prob-
lem, respectively, with a representing measure which is not finitely atomic.

Proof:
For all L ≥ 0 we observe that for any a = (a0, a1, . . . , aL)T ∈ RL+1 and a 6= 0

aTCLa =
1

N

N∑
n=1

P 2
L(yn) > 0, (8)

aTDLa =
1

N

N∑
n=1

(yn + 1)(1− yn)P 2
L(yn) > 0, (9)
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aTELa =
1

N

N∑
n=1

(yn + 1)P 2
L(yn) > 0, (10)

aTFLa =
1

N

N∑
n=1

(1− yn)P 2
L(yn) > 0, (11)

aTGLa =
1

N

N∑
n=1

ynP
2
L(yn) > 0 (12)

with the polynomial

PL(y) =
L∑
i=0

aiy
i (13)

which can have at most L distinct zeros in intD. Observing the relationships between K and M
in Theorem 1 gives the second statement.

In the non-statistical case, the sequence (µ0, µ1, . . . , µK) could come from a theory which
provides only the moments without reference to a data set and is subject to approximations or
errors of any kind (e.g., numerical). Then the positive definiteness of the Hankel matrices and the
existence of a solution measure are not guaranteed.

The moment-constrained maximum entropy problem [4, 5, 6] of the first kind seeks the (nor-
malised) probability density function p̂(y) which maximises the Shannon entropy

S(p) = −
∫
D

p(y) log p(y) dy (14)

subject to the constraints∫
D

φk(y)p(y) dy = µk, k = 1, . . . , K (15)

with prescribed moment functions {φ1, . . . , φK} and given moment vector (µ1, . . . , µK). Note that
S(pX) = S(p) + log s. If a solution exists it is unique and has the form of the Gibbs distribution

p̂(y) = exp

(
λ0 +

K∑
k=1

λkφk(y)

)
(16)

with a set of Lagrangian multipliers {λ0, λ1, . . . , λK}. The parameter λ0 is determined by normal-
isation; the other Lagrangian multipliers are found from the moment constraints of eq.(15).

The moment-constrained maximum entropy problem of the second kind seeks the probability
density p̂(y) which minimises the relative entropy or Kullback–Leibler divergence with respect to
a prescribed reference probability density Π(y),

I(p|Π) =

∫
D

p(y) log
p(y)

Π(y)
dy (17)

subject to the constraints of eq.(15). We have I(pX |ΠX) = I(p|Π). If a solution exists it is unique
and is given by the Gibbs distribution

p̂(y) = Π(y) exp

(
θ0 +

K∑
k=1

θkφk(y)

)
(18)
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with the Lagrangian multipliers {θ0, θ1, . . . , θK}. The parameter θ0 is determined by normalisation;
the other Lagrangian multipliers are found from the moment constraints of eq.(15).

Again, the statistical and non-statistical cases are distinguished. In the statistical case, max-
imum likelihood estimation in exponential families under the structural constraint of eq.(2) in
the main text without or with a base measure is equivalent to entropy maximisation or relative
entropy minimisation, respectively, under the moment constraints of eq.(15); the two problems are
convex duals of each other. As such the present work contributes an algorithm for the moment-
constrained maximum entropy problem. This is still a topic of discussion [7, 8]; challenges are the
lack of orthogonality of polynomial moment functions and the very different scaling of the moment
constraints. Both issues are addressed here by the introduction of statistically orthogonal basis
functions (see Section 2.5 of the main text). Moreover, the link to the likelihood function allows
for a principled selection of moment functions to be included in the moment constraints.

The solutions of the moment-constrained maximum entropy problem of the first kind with
polynomial moment functions on the bounded, infinite and semi-infinite domain are subsets of
the solutions of the corresponding truncated moment problem. The question arises if there are
additional conditions for their existence beyond those stated in Theorem 1 for the truncated
moment problems. For the odd case of the truncated Hamburger moment problem the maximum
entropy solution generally does not exist. For K = 0 the maximum entropy solution is the uniform
distribution for the truncated (symmetric) Hausdorff moment problem; it does not exist for the
other moment problems. For K ≥ 1 without prior assumptions on the Hankel matrices the results
are as follows ([9, 10, 11] and Theorem 2):

Theorem 3 Maximum entropy truncated Hausdorff moment problem (Even case: K = 2M , odd
case: K = 2M − 1, M ≥ 1):
The maximum entropy solution exists if and only if CM and DM−1 for K even (or EM−1 and FM−1

for K odd) are positive definite. It exists for any generic statistical sequence (µ0, µ1, . . . , µK).

Maximum entropy truncated symmetric Hausdorff moment problem (K = 2M , M ≥ 1, µ2i−1 =
0 for i = 1, . . . ,M):
The maximum entropy solution exists if and only if CM and DM−1 are positive definite. It exists
for any generic statistical sequence (µ0, 0, µ2, . . . , 0, µK).

Maximum entropy truncated Hamburger moment problem (Even case: K = 2M , M ≥ 1):
The maximum entropy solution exists if and only if CM is positive definite. It exists for any
generic statistical sequence (µ0, µ1, . . . , µK).

Maximum entropy truncated symmetric Hamburger moment problem (K = 2M , M ≥ 1,
µ2i−1 = 0 for i = 1, . . . ,M):
For K = 2 and K ≥ 8 the maximum entropy solution exists if and only if CM is positive definite.
It exists for any generic statistical sequence (µ0, 0, µ2, . . . , 0, µK).
For K = 4 there is additionally the upper bound µ4 ≤ 3µ2

2/µ0; for K = 6 there are additionally
the upper bounds µ4 ≤ 3µ2

2/µ0 and µ6 ≤ Ψ(µ0, µ2, µ4) where the function Ψ is given in terms of
Weber’s functions.

Maximum entropy truncated Stieltjes moment problem (Even case: K = 2M , odd case: K =
2M − 1, M ≥ 1):
For K = 1 and K ≥ 4 the maximum entropy solution exists if and only if CM and GM−1 for K
even (or CM−1 and GM−1 for K odd) are positive definite. It exists for any generic statistical
sequence (µ0, µ1, . . . , µK).
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For K = 2 there is additionally the upper bound µ2 ≤ 2µ2
1/µ0; for K = 3 there are additionally

the upper bounds µ2 ≤ 2µ2
1/µ0 and µ3 ≤ Λ(µ0, µ1, µ2) where the function Λ is given in terms of

Mill’s ratio.

The results on the Hausdorff case are in line with those obtained from the regularity of the
corresponding exponential families (see S1 Appendix). Here, the interior of the moment space is
equal to the set intX (see S1 Appendix) and is characterised by the positive definiteness of the
relevant Hankel matrices. The results on the Hamburger and Stieltjes cases cannot be immediately
obtained from the statistical theory.

The multidimensional truncated moment and moment-constrained maximum entropy problems
are less well-studied analytically [3]. But it is worth noting that the multidimensional moment-
constrained maximum entropy problem on a bounded domain [8] in the statistical case corresponds
to maximum likelihood estimation in a regular exponential family and thus a unique solution
generically exists. It is not trivial to quantify exactly how many distinct data points would
be required in the data sample for a particular model to guarantee genericity but it is clear
that this is never a restriction in practice. Thus any failure to find a solution can only be due
to numerical/algorithmic reasons. This fact appears not to be well known as comments in [8]
indicate.
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