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ABSTRACT

Small amplitude planetary waves are superimposed on a mean zonal flow with arbitrary horizontal and
vertical shears. An expression is derived for the change of the zonal wind and temperature field forced by
statistically stationary eddies satisfying a source-free planetary wave equation. This result depends on the
existence of singular lines, where the phase speed of an elementary wave is equal to the mean zonal wind
speed, or on the presence of a Newtonian cooling process. Second-order interactions vanish when both of
these phenomena are absent. The planetary wave-zonal flow interaction is discussed in terms of the eddy
transport of potential vorticity. The theory provides a partial interpretation of the maintenance of atmo-
spheric zonal flows, such as that of the wintertime stratosphere, by planetary waves propagating from some

other region of the atmosphere.

1. Introduction

Horizontal eddy transports of momentum and heat
provide the basis for much of our present interpretation
of the climatology of large-scale dynamical processes in
the earth’s atmosphere. The eddy momentum trans-
ports are generally poleward and act to augment the
existing currents (Starr, 1948, 1968; Newell, 1963),
while the heat transports are also usually poleward and
act to maintain large departures of the mean tempera-
ture field from radiative equilibrium (White, 1951,
1954).

The large number of previous theoretical investiga-
tions seeking to explain various aspects of the energetic
interaction of eddies with the zonal flow include the
nonlinear tendency studies (Platzman, 1952; Charney,
1951; Kuo, 1953; Lorenz, 1953; Lipps, 1966) as well as
the stability theory studies (Kuo, 1951; Pedlosky,
1964). Realistic numerical models are now reasonably
successful in simulating the observed mechanics of
eddy-zonal flow interaction (Smagorinsky ef al., 1965).
For a theoretical description of the time-averaged state
of the atmosphere corresponding to that obtained from
observations, it would appear that the tendency and
stability theories are of somewhat limited value. More
generally, any monotonically growing or decaying
solution for eddy motions is by itself an inadequate
description of atmospheric eddy processes, since over a
long time period atmospheric motions are essentially
statistically stationary in time. There must necessarily
be compensating processes to balance any such mono-
tonic growth or decay. Without including some descrip-
tion of such restoring forces, it can never be known
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whether these forces over a long term will more than
cancel the effects deduced from the theory.

This paper is concerned with the question of the
manner in which statistically stationary planetary
waves determine eddy transports, maintaining mean
zonal winds and temperatures. Over a long time period
the mechanisms for energy input into eddies, such as
baroclinic instability or lower boundary processes, are
assumed to act as a large scale “stirring” of the atmo-
sphere. The net energy input into the eddies must equal
the energy loss by interaction with the zonal flow; thus,
neglecting climatic fluctuations, the eddy wind and
temperature fields are random stationary time series at
a given point in space.

The present investigation is restricted to the analysis
of the interaction of eddies with a zonal wind in a
domain away from the source region, no effort being made
to describe statistically the sources. Eddy motions are
assumed governed by a source-free equation for quasi-
geostrophic motions occurring in a middle latitude,
B-plane geometry and of sufficiently small amplitude
that a linearized wave model can be employed. One way
to relate such a theoretical model to actual atmospheric
statistics is by the specification of observed statistics on
some internal boundary. Then, provided there are no
sources beyond this boundary, solutions obtained using
these statistics as boundary conditions should approxi-
mately describe the eddy motions in the region beyond
the boundary. For example, Mak (1969) has developed
within such a framework a two-layer, primitive equation
model to study the horizontal propagation of large-
scale disturbances into the tropics. Another problem of
considerable interest is the construction, from observa-
tions at 10 mb or below, of the statistics of planetary
waves at higher levels in the wintertime stratosphere
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where no hemispheric observations are presently
available.

Observational statistics on the motions in the lower
stratosphere are interpreted as showing that the zonal
wind and the zonal temperature fields in this region are
maintained against dissipation over a long time period
through work done on this region by the troposphere
below (Oort, 1964; Newell, 1964; Miller, 1967). This
maintenance of the zonal flow in the lower stratosphere
is generally considered to be a consequence of planetary
wave propagation out of the troposphere. Likewise, the
zonal flow at higher levels in the stratosphere and
mesosphere is thought to be greatly influenced by such
vertically propagating planetary waves. Thus, it would
be expected that the theoretically computed forcing of
stratospheric motions by planetary waves should de-
scribe the observed maintenance of these motions.

However, the mnonlinear perturbation analysis of
Charney and Drazin (1961) skows that forcing of zonal
motions by time-independent, small amplitude planetary
waves in a vertical shear flow vanishes. This apparent
contradiction between observations and the perturba-
tion theory is clarified by the present study. Two
important features of planetary wave theory as now
understood were neglected by Charney and Drazin.
First, singular lines occur wherever the phase speed of
a given elementary planetary wave equals the speed of
the mean zonal wind, giving absorption of planetary
waves, with jumps in the eddy momentum and heat
transports (Dickinson, 1968a). Second, damping of
planetary waves in the stratosphere by photochemical-
radiative relaxation is significant (Dickinson, 1968b).
When these two processes are neglected, the forcing by
planetary waves is also absent for transient but statisti-
cally stationary planetary waves, and for mean flows
with horizontal as well as vertical shear. A net forcing
of mean flows by eddies depends on the eddy transport
of potential vorticity, small amplitude planetary waves
giving such a transport only at singular lines or in the
presence of diabatic relaxation effects.

Our development assumes as given functions of
latitude and pressure the mean zonal winds and tem-
peratures as well as certain eddy statistics. The rate of
zonal momentum increase is determined by the differ-
ence between the eddy momentum convergence and the
Coriolis torque momentum loss by horizontal mean
meridional motion, and the rate of zonal temperature
increase by the difference between eddy heat transport
convergence and adiabatic cooling by vertical mean
meridional motions. Horizontal and vertical mean
meridional motions are coupled by the continuity
equation. The zonal momentum and temperature
equations are combined to obtain the mean northward
and vertical velocities and, hence, the net changes of
zonal momentum and temperature in terms of the eddy
momentum and heat convergences (Eliassen, 1951;
Kuo, 1956).
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The relationship between these eddy transports and
the mechanisms of singular line interaction and New-
tonian cooling is established first for eddy transports
of a single frequency, then for arbitrary eddy motions
with time stationary statistics. The latter relationship
is combined with the expressions for the forcing of the
zonal flow to describe the manner in which statistically
stationary planetary waves act to maintain departures
of the mean zonal flows from the configuration that
would be observed in the absence of the waves.

2. Formulation

A middle latitude 8-plane model is used, the Coriolis
parameter f being given by f=fo-+B8y with y=ae,
where @ is the radius of the earth and ¢ latitude. A zero
subscript will indicate a constant value of a quantity,
Further notation is x=a\ cos¢q, with M as longitude, as
eastward coordinate; z=log(po/p) as a vertical coordi-
nate; =g, v=y are horizontal velocities ; w=2; p,=¢~;
T is temperature, R the gas constant, ¢, specific heat,
and k=R/c,. The zonal average of a quantity is indi-
cated by a bar and deviations from the zonal average
(eddies) by primes. Diabatic heating is assumed to
restore the temperature to a zonal radiative equilibrium
temperature 7', the rate of heating being given by

Q=—ac,(T—T,). ¢))

The Newtonian cooling coefficient o is assumed inde-
pendent of longitude and time.

The zonal momentum, temperature, continuity and
thermal wind equations are written as follows:

0 0 .
~—-+dia— fio+—(w'v)=0, (2a)
ot oy

oS
+—=0, (2b)
dy K
]
psi—+—(ps)=0, (2c)
dy 9z

cpl:%tii-i-a(f‘ Te>+3(ﬁ>]

oT oa
R—+f—=0.
oy 9z

2d)

The function T,(z) is a mean reference temperature
and the static stability S is given by

oT,
S= Rl: +KT,:|.
03

The Rayleigh friction d# and Newtonian cooling
¢p(T—T,) insure the absence of a long-term increase of
the mean wind and temperature fields. The following
discussion is simplified by assuming that « and d are
constant and equal in (2), and that 7. depends only on z.
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Reducing (2) to an equation in @ or 7 alone by
elimination of the other dependent variables then gives

[(fu (1/ps>—pa)+s—y]

i L _
- 26T >+foa —) |, G

[(f02/P )0—56__*__5-] [ [ 3(5'7."_’)}

+<fo/ps>£é—z{”—;§<w>}]. (3b)

33

The dissipation coefficients & and d, being taken equal,
do not enter these equations for the meridional
circulation.

For small quasi-geostrophic perturbations and in the
absence of sources, the eddy stream function ¢’ is
governed by the linearized potential vorticity equation

5 ogoy 3 /psa\OY
e (e
8 Qdy Ox 9z\ S / 9z

using the definitions §/8¢=9/0¢+48/0x for the line-
arized substantial derivative,

g'=p. 1?8/ 32 (0s/ S)OY'/ 921+ (8%/ 9x°+ 8%/ 0" )W/
for the eddy potential vorticity, and
g= (f—0@/3y)+ps8/82(0s fuRT/S)

for the zonal averaged potential vorticity. The eddy
horizontal velocities #” and ', eddy geopotential ¢’, and
temperature T” are determined from ¢ using

oy’ '
u' = _— P = —
9y ox
. ©)
oy’

=fw, RT'=fr—
02

Eddy motions are to be cyclic continuous in «. The
z-dependence of solutions is separated out by the
assumption that ¢/ (x,y,2,) is a sum of terms of the form

=9zt R)e* Y (y, 2 ,t,— ke =, (©6)

Since the reduced stream function ¢ is to be identified
with a complex Fourier transform in the x variable, it
is complex and its reflection about the origin in & space
must equal its complex conjugate,

Y (—k)=y*(k), M

where a star indicates the complex conjugate of a
quantity.
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The relations (5), (6) and (7) allow us to evaluate
the meridional eddy momentum and heat transports,
the meridional velocity and temperature variances, and
the temperature-geopotential covariance, respectively,
as

ik (P oy/9y—yoy*/9y)
T=— 4kl B o0/ 35 vov' /9|
=Ry ®
T"=(fo/R)| ¢/ 93|
=3 (f/R)a/3s v

3. A Lagrange identity for elementary planetary
waves in a shear flow

The analysis of this section assumes planetary waves
have been excited by an unspecified source starting at
some large but finite time in the past, = — 7. This source
excites motions which, after the initial transients have
died out, have no systematic increase or decrease of
amplitude for time less than 7. For times greater than
7 the sources are turned off and the motions rapidly go
to zero. The time dependence is separated out by use
of a complex Fourier integral representation, evaluated
in the same fashion as an inverse Laplace transform.
That is, the eddy stream function ¢ is given by

1 0
- / 0 (v,9,2)d, ©
27 J o

where y=v,-+iv; is a complex variable. The path of
integration in (9) appropriate to inverting the Laplace
transform is in the »;>0 plane. For »;> 0, the integrand
is analytic in ».

A relation is now determined between various Fourier
component covariance and variance variables for »;>0,
then the limit »;— O is taken. Variables entering this
relation are the single frequency eddy momentum and
heat transports, meridional velocity and temperature
variance, and the temperature-geopotential covariance,
denoted, respectively, by M (»), H(»), V(»), 6(») and
&(»). Following the notation of (8), they are written
as follows:

or  9w* ~
M@)= %ik(\y*g—\xf—a—y—)
=)o)
V(v)=k2|¥|? 3 (10)

\If2

. 3
6(v)=(fo/R)? ~

]
(»)=3(/¢/R)—|¥|* J
dz
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These variables are functions of ¥ and 2. Attention is
now confined to free motions away from the source
region so that the homogeneous equation (4) applies.
The potential vorticity equation has time-independent
coefficients provided the zonal wind and temperature
do not change with time. This being assumed, the Fourier
decompositions (6) and (9) allow (4) to be written in
terms of the spectral amplitude function ¥ as

()

ps\ 0¥

e (TN

= . (11)
(kit—v)

Multiplying (11) by £¥*, equating the imaginary parts,
and writing the resulting expression in terms of the
definitions (10), we have

3 M
Riwa—L(os/SYA]T——=1+%s,  (12)
9z 6y

where =, and Z,, evaluated in the limit as »;— 0, are

~

—u,—V s
dy qJ ..
Yi=lim —————=—7—Vs(v—ka)
70 (Ril— ) v dy .

Ta= (a—v/B)R | —[(psa/S)q’] (Ra/s>e}

J

(13)

Eq. (12) generalizes for quasi-geostrophic motions a
result of Eliassen and Palm [1961, cf. their (10.8) Jwhich
assumes adiabatic motions and the absence of singular
lines. The expression (12) relates the horizontal eddy
momentum and heat transports for a single spectral
component to sources of potential vorticity occurring at
singular lines or in the presence of dissipation.

4. Statistics of transient eddies in a shear flow

The analysis of the previous section gives the relation-
ship (12) between the various eddy variance and
covariance variables associated with a single frequency
of motion. Observed disturbances have a continuous
frequency spectrum. The spectral synthesis necessary
to obtain the relationship corresponding to (12) for
arbitrary eddy motions is derived in this section.
Consider the term ydy*/dy (where 5 is ¥ or z), which
is written as

61,0* ® dy’ ov*
/ / —[ew—v')t\p(v)—(u')]. (14)
0 2T S 2w Jn
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It is now assumed that ¢, 8¢/dy and dy/dz are
random with spectra and cross spectra that are station-
ary in lime, wedge brackets being used to denote an
average over all time, i.e.,

1
{(N= hm = ( 2

—T

(15)

Since the spectral representation for the delta function
8(v—r) is

-]

ei(v—v’)tdt
)

(16)

S(r—v)=—
27 J oo

the averaging of (14) over time and integration in »
establishes the identity
[ [ro™

a

the dependence of ¥(v) and its derivatives on r entering
through the assumption that these functions are Fourier
transforms of time-dependent functions which are
nonzero only between —r and 7. Usual definitions of
power spectra and cospectra of the random time series
are now obtained according to (17) by dividing the
relations (10) by 27 and taking the limit as 7— .
The same symbols as in (10) but without the carets are
used to denote these quantities. In particular, the eddy
momentum transport and heat transport cospectra and
northwind spectra are respectively denoted M (v), H(v)
and V(»), so that the time-averaged statistics for the
random eddy motions are Fourier analyzed as

v (v)

on

hm _——
% 2r 2w

]du, @an

1 = 7
(u"v'>=—2-— M (v)dv

T J—

1 g
'T >=2—/;w H(v)dv ;. (18)

™

A= [ v
<v>—2—/_w e |

T

There is no further need to refer to the individual
spectral amplitude functions ¥, d¥/9y and 9¥/9z,
which do not exist for the now-infinite interval of time.
The integration of (12) over frequency, using (18) and
(10), now gives

ps(v’T’>) 9 (19)

Rfops™t ( ——(u')=01+ 00,
a\ S 6y< e

The left-hand side of (19), interpreted as the transport
of quasi-geostrophic potential vorticity (Bretherton,
1966a), depends on the terms o1 and o, referred to as
the singular line and Newtonian cooling interaction
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terms, respectively, and defined by

87
o1=——3V (ka),

(20)
ay
Ro ___
go= —_—— 12 , 1
fEm) e
where
1 = 8l (es/S)®(»)1/02
=——G’/ dv
—_ a4 0w
{T?}=—0C

P T

@® denoting the principal value.

If the eddy motions have a time-independent com-
ponent, the spectra and cospectra have delta function
peaks at zero frequency. The eddies associated with the
time-independent component of the motion satisfy (12)

directly with »=0, and using (8) rather than (10) for -

the definition of the eddy statistics.

5. Nonlinear forcing of the zonal flow by planetary
waves

The equations for forced meridional motion (3) are
now considered, taking into account the kinematic
constraint (19). Using (19) to eliminate the momentum
transport in (3a) and the eddy heat transport in (3b),
the resulting equations for % and 7 are

62
8y03

J
£u'>=—£[(R/S)£<W’T’>]+(fo/5) (rrto), (230)

A 9 3
L£i= S[fo—l “(ﬂ'ﬂ'}]'!“fo_l—— (0’1+0’2), (23b)
dy Y
where & and £ are the elliptic operators
] 9 9*
2= fo2/S)(—p:1 —pa>+—
9z 0z / 9y
, (24)

. 3 fp\D 0
£= folps! —(_)“’*‘
dz\ §/9z  94*

with o1 and ¢, defined by (20) and (21), respectively.
The formal solutions to (23) are

62

J
w=-—(R/S)—(v’T’>+£“l:(fo/S) <ol+oz>} (250)
9y

dy9z

% —16 o, gl & 25b
b= fg a—y(u'vH‘fo £ Iigy‘;(ffri-dz)], (25b)
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where £ and £ are inverses of the operators £ and
£. We assume a region far enough from all boundaries
that the zonal wind and temperature are essentially
independent of their values at any boundary. The
geometry then can be considered unbounded for the
purpose of inverting the operators defined by (24). If
we assume for simplicity that S(z) is constant, then
the inverse operation £7X is given by

£ X(y,5)=psH(2) / ”/ G(y—y',2—%)

XLos(2)S/ f* X (v ,2")dy'dz".
The Green’s function G(¥,2) is
G(y,2) = (2m) K[ 3 (y*+S52%/ f)],

where Ky(¢) is the usual Bessel function with imaginary
argument that decays exponentially away from {=0,
and asymptotes to —log{ for small ¢.

In order to determine the zonal flow forcing given by
the solutions for @ and 7, we substitute (25b) and (25a)
into (2a) and (2b), respectively, giving

(26)

f’£+da=£—l[a"’—;<ﬂ+m>], (27)
= Z—fﬂ@— Te)]=S£“[(fo/5)aj;z(61+vz)]-(28)

Eqgs. (27) and (28) describe the forcing of zonal winds
and temperatures in terms of the singular line interaction
lerm oy and the Newtonian cooling interaction term o.
When these interactions are absent (o;=0¢2=0), the
nonlinear forcing of the zonal flow vanishes to second order.
This statement generalizes the theorem on perturbation
forcing of a zonal flow given by Charney and Drazin
(1961).

6. Interpretation as potential vorticity mixing by
planetary waves

The forcing of zonal flow by singular line interaction
obtained in the previous section is simply interpreted
in terms of potential vorticity transport. For this
purpose adiabatic motions are assumed. Letting ¢ be
any conservative quantity,

dgq

—=0. (29)

For small amplitude eddy motions,

8¢ o7 9
—tv'—+w'—=0,

30
ot Jdy az (30)
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¢’ being eddy ¢ and ¢ a zonal average ¢. Assuming
geostrophic scaling, the term w’dg/3z may be neglected
to a first approximation. Also, if 7’ is the small ampli-
tude displacement of a particle from its initial position,
oy’
v, (31)
ot
Consequently, neglecting the vertical transport term,
(30) can be integrated to the relation

oG
q,’: '—77’-2,
9y
expressing the fact that at any time a parcel retains its
initial value of ¢’+4. .
Combining (31) and (32) to evaluate v'¢’, the trans-
port of g is (Taylor, 1915; Bretherton, 1966a)

(32)

VG =————y". (33)

The argument up to this point is but a variation of
Taylor’s well-known derivation, the transport of ¢
being given by the product of the mean gradient of ¢
and the rate of particle dispersion. Bretherton (1966b)
gives an interesting interpretation of baroclinic insta-
bility in terms of the relation (33) as applied to potential
vorticity transport.

Now we relate the dispersion of particles by random
stationary motions to the energy of meridional motion
along singular lines. [Bretherton (1966a) derives a
similar expression for a single frequency component. ]
Note that

156
——2=9"7,

28

(34)

Again as in (6), disturbances are proportional to e®=
and, as in (9), are Fourier analyzed in time. For ele-
mentary Fourier components proportional to e~ it
follows from (31) that 9'=14v'/(»-—4k). Consequently,
further derivation along the lines used to obtain (18)
gives

— 1 r~
('vy=— [ N(v)dv, (35)
27 ) _w
where
NG)=nV()s(»v—Eka). (36)
Consequently,
1 /oy
(=) =1V (), (37
2\ 6t

the rate of particle dispersion being proportional to the
variance of meridional eddy motion with frequency
equal to k4, i.e., the critical frequency for a singular
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line. The deduced relation (37) together with (33) gives
the meridional transport by eddies of any conservative
quantity ¢ as determined by random, source-free
planetary waves.

For the remainder of our discussion, ¢ represents the
quasi-geostrophic potential vorticity. The equation for
zonal potential vorticity g in the absence of dissipation
is written as

o &
——=—@p), (38)
dtdy 0y?
where — dg/dv is related to @ by
—og/dy=_E&a, 39

with £ given by (24). In the absence of the singular line
interaction term given by the right-hand side of (37),
it follows from (33) and (34) that the potential vorticity

transport vanishes, i.e., '¢’=0, and hence from (38)
and (39), £# does not change in time; inversion of £
shows that 7 does not change either. A similar argument
shows that for adiabatic motions 7' cannot change with
time when the singular line interaction term vanishes.
More elaborate linear equations in 4, which include
various momentum and heat dissipation processes, may
easily be obtained to generalize the left-hand side of
(38); likewise, the vorticity transport on the right-hand
side of (38) can result from forms of dissipation other
than those considered in this study.

To summarize, i is necessary lo iransport potential
vorticity by the eddies in order lo force a zonal flow.
Except at singular lines, an adiabatic wave motion
superimposed on ‘a zonal flow will merely slosh back
and forth the conservative quantity with no mean
transport occurring. However, where the phase speed of
the wave equals the zonal flow velocity, the distance of
a particle from its origin will monotonically increase
according to the linear theory (37), and dispersion
occurs. A brief discussion of this effect was given by
Rossby (1942). Lighthill’s (1962) presentation of Miles’
water wave theory indicates the extension of singular
line dispersion to finite amplitude waves.

Without going into any details it should be noted that
a relation for the rate of particle dispersion can be
obtained in spherical coordinates and generalized to
include vertical transports and summation over wave-
number, giving a theoretical basis for the calculation of
turbulent diffusion by continuous movement (Taylor,
1921) of small amplitude eddy motions in a zonal flow.
The theory would apply, for example, to the calculation
of exchange coefficients in terms of atmospheric wind
statistics in the stratosphere for the purpose of deter-
mining the transport of ozone or radioactive debris.
Such transport is, evidently, related to the presence of
singular line interactions between planetary waves and
the stratospheric zonal flow.

The interaction between eddies and the zonal flow
depending on the Newtonian cooling term indicates
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more generally that diabatic or dissipative effects,
relaxing the constraint of potential vorticity conserva-
tion in the eddy equations, allows the zonal flow to be
driven by eddies even in the absence of singular line
interaction.

7. Maintenance of zonal flows

The question is often raised as to how observed zonal
flow configurations are maintained against the various
processes that would tend to dissipate them. Consider-
ing the atmosphere as a whole, one can argue that since
dissipative processes usually destroy energy of the zonal
flow, the generation of energy of the zonal flow, for
example by upgradient momentum transports, acts to
maintain the flow. This sort of reasoning, while giving
some understanding of the overall motions of the tropo-
sphere, which contains most of the mass of the atmo-
sphere, may not provide a very satisfactory basis for
consideration of an open subsystem such as the strato-
sphere. The discussion of this section indicates how
difficulties may arise in interpreting the energetics of
vertically propagating planetary waves interacting with
a zonal flow.

Since mean meridional motions are usually much
weaker and more difficult to observe than the eddies,
open subsystems are often characterized by the direc-
tion of eddy transfers from one kind of energy to
another. Consider the following conceptual model for
the dynamics of such an open region between two con-
stant pressure surfaces. Assuming a f-plane geometry,
we take the wind in the region under consideration to
be westerly, depending only on the pressure coordinate
and having a single maximum value somewhere between
the two pressure levels. Examine now adiabatic, source-
free, stationary planetary waves, incident from below,
propagating through the region. Assuming the linear
theory to apply, we can use expressions derived by
Eliassen and Palm (1961) to describe the energetic
interaction between the various kinds of eddy and zonal
flow energies.

The wind maximum divides the region into two
subregions (Fig. 1) : the lower region, denoted I, where
the wind increases with height, and the upper region,
denoted II, where the wind decreases with height.
Assuming for simplicity a constant value of s and p,,
we have from Eliassen and Palm that a) the northward
heat transport by the planetary wave is indepeadent of
height [a specialization of (12) for the stated con-
ditions], and b) the upward eddy energy flux by the
wave is proportional to the product of #(z) and the
northward heat flux. Consequently, thereis a divergence
of eddy energy flux 7z in I, a convergence in II.

In order to maintain the eddy kinetic energy K in
I, there must be a gain from eddy available potential
energy Az equal to the loss of K g necessary to give the
divergence of eddy energy flux. In turn the 4 5 must be
maintained by an equal conversion from zonal available
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Fi16. 1. Depiction of the energetics of a vertically propagating
adiabatic Rossby wave in a vertical shear flow and in the absence
of singular line interaction. The energy cycles between the eddies
and mean flow without any net transfer to or from the mean flow.

potential energy A4z. The equality of all these con-
versions is evident from the assumption that the
eddy amplitudes are independent of time, and is
easily formally demonstrated from the relevant
equations.

Now referring to the Charney-Drazin theorem that
no change of the zonal flow occurs, we also see that the
A z must be maintained by an equal conversion from
zonal kinetic energy Kz, which in turn must gain the
same amount of energy by convergence of the mean
flow energy flux 7,. Thus, for the hypothetical example
considered, energy flows in a loop around the baroclinic
part of the usual atmospheric general circulation energy
cycle, as indicated in Fig. 1, and there is no net loss or
gain of any kind of energy. The divergence of eddy
energy flux is compensated by an equal convergence of
mean motion energy flux so that the planetary waves,
while forcing meridional circulations, do not actually
transfer energy from or to the mean zonal flow. Such
transfer of energy can only occur in the presence of eddy
singular line interaction or dissipation. In region II,
the reverse cycle occurs with the same ultimate con-
clusion retained.

On the basis of eddy heat transports or conversions
between Ky and Agp, the lower region I would be
clagsified as a thermodynamically direct heat engine
region, and IT a thermodynamically indirect refrigerator
region. Such classification is clearly misleading if
interpreted as signifying the the planetary waves are
generated from the zonal flow in the heat engine region
and act to maintain the zonal flow in the refrigerator
region.

A more satisfactory approach to the concept of
maintenance of zonal wind systems in an open region
is based on the idea that in the absence of large-scale
eddies the zonal flow would relax back to some sym-
metric equilibrium state depending only on the processes
of radiative-photochemical heating and on possible eddy
viscosity and heat conduction by small-scale motions.
Departures from such a state and its concomitant



80 JOURNAL OF THE ATMOSPHERIC SCIENCES

distribution of potential vorticity will be maintained by
large-scale eddy transports.

The present study shows that small amplitude,
transient planetary waves propagating through an
otherwise equilibrium region and with accompanying
singular line interactions will redistribute the potential
vorticity distribution by down-gradient transport. For
example, one would expect that in the absence of
planetary waves the mean westerly zonal winds of the
winter stratosphere would resemble closely, except for
sign, the easterly summer stratospheric zonal winds.
Such antisymmetry of stratospheric winds in indicated
by the models of Leovy (1964). In the upper strato-
sphere, except possibly in high latitudes, the mean
potential vorticity gradient, dominated by the plane-
tary vorticity gradient, is positive. Planetary wave
mixing should thus give equatorward eddy transport
of potential vorticity. Assuming the eddy transport of
vorticity is of the same sign as the potential vorticity
transport, there should occur a divergence of eddy
momentum transport in middle and subtropical lati-
tudes, tending to shift the westerly jet poleward of its
equilibrium value. This mixing of potential vorticity by
wintertime planetary waves, forcing large departures
from the dynamic and thermodynamic equilibrium
state, could be the ultimate explanation for the well-
known large incursions of the summer easterly strato-
spheric jet into the subtropics in the winter hemisphere.

The possible importance for zonal flow structure of
eddy and zonal-mean dissipation of temperature and
horizontal winds should not be overlooked. The out-
standing difficulty is the general ignorance of the
appropriate forms of dissipation, other than Newtonian
cooling, acting in the stratosphere and above. The
interaction term depending on Newtonian cooling as
given by (22) depends on the power spectra of eddy
temperature and the cospectra of eddy geopotential and
temperature, but no simple interpretation of this term
is available.

While, as indicated by the model discussed above, it
is not possible to ascertain from the sign of eddy energy
transformations alone whether the eddies are sources
or sinks for Kz or Az, it is clear that if energy is being
lost by non-eddy processes, the eddy conversions must
make up the difference. Thus, assuming only radiative
losses are significant, a region can be classified as
thermodynamically “direct” or “indirect” according
to whether Az is created or destroyed by diabatic
processes. It is still not possible to say, however, that
eddies maintain an indirect region so defined but are
themselves generated in a direct region. The zonal flow
in either region, if representing a large departure from
the flow that would exist in the absence of the eddies,
can be considered maintained by the eddies. This
interpretation, of course, presupposes the eddies to be
generated outside of the region in question. Energetic
considerations probably will not resolve the question as
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to whether the eddies are internally or externally
generated. Externally generated eddies can be identified
by their dependence on conditions outside the region
considered, and by the fact that they would be absent if
the region could be isolated from the rest of the atmo-
sphere by containing walls.

8. Concluding remarks

We have shown that the presence of singular lines or
eddy diabatic damping is necessary for the forcing of
zonal atmospheric motions by small amplitude, quasi-
geostrophic eddy motions. No reference is necessary in
the analysis to the detailed theory of planetary waves
in the neighborhood of singular lines (Dickinson, 1968a)
or to Newtonian cooling (Dickinson, 1968b). Such
theories can be used for the theoretical calculation of
the eddy wave statistics, assumed here known.

Several restrictions in our analysis, introduced
primarily for increased lucidity in the derivations, can
be removed, if necessary, for further applications of
the theory. In particular, the derivation can be gener-
alized to spherical coordinates with variable Coriolis
parameter using the approximate model of Dickinson
(1968c). The assumptions that the zonal flow % and
temperature I' are independent of time and that the
eddy statistics are stationary in time were introduced
to facilitate the Fourier analysis in the time variables.
Unless friction and diabatic damping exactly cancel the
forcing of the zonal flow, these assurnptions cannot be
strictly valid and so need further clarification. The
analysis can be made rigorous by the introduction of
lwo time scales, a short time scale characterizing rapid
eddy fluctuations and a long time scale characterizing
slow secular changes of the zonal flow and of the eddy
statistics. Equivalently, there should be a spectral gap
between rapid eddy fluctuations and slow fluctuations
of the eddy statistics and the zonal flow. Inasmuch as
the zonal flow forcing is quadratic in the eddy ampli-
tudes, this spectral gap is insured in the present theory
by the assumption of small amplitude eddy motions.

When eddy amplitudes are as large as the zonal flow
amplitude, the linearization breaks down. Furthermore,
there is no justification for the assumption that the
zonal flow evolves on a time scale long compared to that
of eddy fluctuations. Since this situation often occurs in
the atmosphere, numerical studies of finite amplitude
disturbances should be pursued to determine the
limitations of the present linear theory.
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