Dynamics of flow patterns in extra-tropical regions

By E. T. Edry and J. S. Sawyer

Imperial College, London and Meteorological Office, Dorset

1. Scope

Dynamical meteorology is concerned with the study of the motion of the air, the physical processes (radiation, convection, etc.) which are the ultimate cause of this motion, being taken for granted. This study may be pursued in an empirical and descriptive manner; and to this extent it is included within the scope of synoptic meteorology. Alternatively, or preferably at the same time, it may be pursued theoretically, the aim being to show the causal connexion between observed phenomena and to predict new, possibly not yet noticed, relationships. In this article we shall be concerned primarily with the theoretical aspect, advanced in synoptic meteorology being described only sufficiently to give a suitable background.

The whole subject of dynamical meteorology as defined above is too vast to be dealt with in one article. We are aware that scale plays a very important part in determining the nature of the motion. The motions on a large scale which we infer from synoptic charts are different from the smaller-scale motions inside a cumulus cloud and approximations justifiable in the one case are not so in the other. Because dynamical meteorology is so complicated we are forced to concentrate on one scale of motion at a time. Moreover we may study these motions from two points of view. In the first place we may be interested in the detailed development of one particular situation, for example the deepening and movement of a depression or the growth and decay of a convection cell. In the second place we may be interested in average or statistical behaviour as, for example, when we study the average effect of disturbances in transferring heat and momentum between latitudes or when we study the Reynolds stresses associated with turbulent motion. In the present article we shall be concerned only with the first point of view and shall confine our attention to the detailed study of relatively large-scale motions.

Despite the great restriction in scope the subject remains a large one. Neither of the writers feels competent to give a complete review of recent work, and the choice of subjects and references to original work is as much determined by their personal interests as by the need for selection. This lack of completeness may not be entirely disadvantageous. Every meteorologist has to be, to some extent, a dynamical meteorologist but not all can afford the time to sift what is new and significant from a huge mass of papers, filled in some cases with complicated mathematical analysis. More important than the detail is the general trend of recent developments.
The aim of this article is to elucidate some of the basic concepts and lines of thought in modern research. As mentioned at the beginning of the paper, the writer has attempted to outline the main points of the modern theory of the structure of the atmosphere. The writer has also attempted to outline the main points of the modern theory of the structure of the atmosphere.

2. Recent Advances in Descriptive Aspects of Dynamical Meteorology

The most notable advances in our knowledge of the movements of the atmosphere have been made during the Second World War. This network of radiosonde and radar observations, which are now available, has enabled the writer to construct isobars charts for several different levels. The writer has also constructed a chart for the stratosphere, which is now available.

Recent observations have shown that the atmosphere is not a simple, homogeneous medium. It is now possible to construct a model of the atmosphere, which is more realistic than the old models. This model is based on a more realistic conception of the atmosphere, which is now available.

The writer has attempted to outline the main points of the modern theory of the structure of the atmosphere. The writer has also attempted to outline the main points of the modern theory of the structure of the atmosphere.
DYNAMICS OF FLOW PATTERNS IN EXTRA-TROPICAL REGIONS

and lines of thought; it needed for understanding as well as to know the kind of analysis we are using to diversify there is

\[\text{AL METEOROLOGY}\]

\[\text{nents of the atm}\]

\[\text{ospheric observation}

t work is sufficiently

\[\text{isotropic charts for}

t extending over

t more frequent to come many of

\[\text{in large numbers}

t, E. Palmen, \text{he also brought into}

\[\text{a markedly emphasized, i}

\[\text{as it rises and extends into the}

\[\text{of the atmosphere}

t was on the contour

\[\text{a large part of the
}

\[\text{ɜ to 180 degrees of}

\[\text{These disturbances
}

\[\text{it possible here to}

\[\text{but it is desirable
}

\[\text{art compared with
}

\[\text{the 500 mb charts
}

\[\text{a large depression
}

\[\text{or anticyclone in the surface-pressure field is similar to that of one of the shorter "long waves" in the 500 mb flow, and the atmosphere appears to be subject to disturbances of any wavelength from a few miles to 3,000 miles or more.}

\[\text{Although more persistent than many individual depressions the long waves rarely move regularly or maintain their form over a period of more than 2 or 3 days. They may increase or decrease in amplitude and new troughs and ridges may be added to the wave train. Unlike frontal wave depressions which usually go through a systematic process of occlusion, the long waves do not systematically increase in amplitude. However, on some occasions their amplitude does become very large and results in the breaking off from the wave train of anticyclonic eddies to the north and cyclonic eddies to the south.}

\[\text{When a cyclonic eddy is formed to the south, the main current of westerlies reforms further north, but when an anticyclonic eddy forms out of a dislocated ridge in the flow pattern only a weak branch of the westerlies passes to the south. The formation of such an anticyclonic circulation at 500 mb is usually associated with a warm anticyclone on the surface chart; the process is known as blocking, because of the interruption of the normal westerly flow.}

\[\text{Once a block of this nature is established it may last for a week or more before the westerlies are resumed (Palmen and Nagler 1949).}

\[\text{Following the suggestion of the Chicago school the mainly westerly current which extends around the hemisphere in middle latitudes has come to be known as the jet stream. Roshey has likened it to a meandering river of fast flowing air between relatively stagnant masses to north and south. Cross-sections of the atmosphere (Palmen and Newton 1948) drawn north to south through this current have drawn attention both to the high velocities attained in the upper troposphere and also to the relatively narrow range of height and latitude into which they are concentrated.}

\[\text{Sharp maxima and high velocities are probably not typical of the westerlies on all occasions or around the whole hemisphere. The strongest and most clearly defined maxima of wind seem to occur in rather straight stretches within the westerlies. There is some confusion as to whether the name jet stream should be applied to these well defined maxima or to the whole belt of meandering westerlies. The sharp wind maxima of the upper troposphere are closely associated with the polar front. They are situated in the warm air mass. Palmen (1948) has stated that the axis of the jet normally lies above the point where the front reaches the 600-500 mb level, but there is some evidence that the axis is often above a somewhat higher section of the front. Two explanations of the jet stream have been proposed. Roshey (Staff, University of Chicago 1947) suggested that it could be explained as a result of the mixing by horizontal eddies of the air near to the pole under conditions which tended to render uniform the absolute vorticity of the air. Such conditions would result in a rapid increase of the zonal wind southward culminating in the jet stream south of which Roshey suggested that mixing transported vorticity from one hemisphere to the other and resulted in a rapid decrease of wind southward. Roshey's explanation is directed primarily to explaining the concentrated westerlies as a feature of the general circulation of the atmosphere. On the other hand J. Namiss and P. F. Ciapp (1949) were concerned with the local wind maxima when they interpreted the jet stream as a result of the juxtaposition of airmasses of very different temperatures in a fronto-genetical field. Frontogenesis is an observed feature of the
entrance to most jet streams but the frontogenetic pressure field at low levels may itself be a dynamical consequence of the presence of the jet (Bouttice and Pershine 1956). Any complete explanation of the jet stream will probably have to treat the high- and low-level wind fields as one three-dimensional dynamical system.

The wealth of available upper-air soundings has also provided the material for the direct study of the fields of divergence and convergence of the horizontal motion and the estimation of the field of large-scale vertical motion. The problem has been approached by different investigators by several methods—the most direct approach, that of evaluating horizontal divergence from wind observations alone has been adopted by H. G. Houghton and J. M. Austin (1946): R. G. Grubin (1947) has evaluated vertical velocities thermodynamically, using potential temperature or wet-bulb potential temperature to identify the air parcel; and R. G. Flegal (1947) has used an essentially similar technique. J. S. Sawyer (1949) has studied the changes of vorticity of a moving air stream (values were approximated on the geostrophic assumption) and evaluated horizontal divergence therefrom. Further insight into atmospheric dynamics has been obtained from correlations between observed and geostrophic winds (Godson 1930, Bannin 1949).

In all of this work it has been necessary to extract the utmost from the observations. Observational errors and local fluctuations in wind and temperature introduce errors which are comparable with the quantities which are sought. It is therefore highly satisfactory that a consistent picture can be built up from these various modes of attack. Firstly, the average magnitude of the geostrophic departure (root mean square vector-difference) at the 200 mb level seems to be about 7 to 10 kt. (1 kt is probably greater at higher levels). Secondly with regard to vertical movements, the investigators using methods requiring averages over 2 hr and those studying subsidence (S. Petersen, et al 1947) deduce typical values of about 5 cm/sec. On the other hand investigations which involve less smoothing suggest maximum velocities of 10-20 cm/sec in active cyclonic areas and these are confirmed by estimates from rates of rainfall (Bannin 1948). It therefore seems likely that areas of vertical motion exceeding 10 cm/sec exist on a scale of 200-300 mi, much greater than individual convection cells, but nevertheless affecting rather limited areas on the synoptic scale. The pattern of convergence, divergence and vertical velocity in association with a pressure trough is given by R. G. Flegal (1947) in cross-sectional form. Ahead of a trough convergence takes place in the lower troposphere and divergence in the upper troposphere and lower stratosphere; in the rear of the trough convergence and divergence are interchanged. Adequate confirmation of the broad features of this picture can be found in other work, but much remains to be done in filing in the details in relation to other more complicated synoptic systems. The material is available for this but the work involved is lengthy and laborious: moreover it is doubtful if the detail can be improved by present techniques because of the limit imposed by the distance between observations, their errors, and by local variations of wind and temperature.

3. SOME FUNDAMENTAL PROBLEMS OF ATMOSPHERIC DYNAMICS

For many years past the equations of motion of a frictionless fluid on the surface of a rotating sphere have formed the starting point for most theoretical studies of
DYNAMICS OF FLOW PATTERNS IN EXTRA-TROPICAL REGIONS

...atmospheric motions. There are five fundamental equations which govern the motion, three equations for the components of the motion along the three axes, the equation of continuity, and a thermodynamic relation between pressure and density. Using cartesian co-ordinates these equations can be expressed in the form (see nuttcliff (1947) for Eqs. (1), (2) & (4))

\[
\begin{align*}
\frac{dv}{dt} &= -\frac{\partial}{\partial x} \left(\frac{\partial h}{\partial p} \right) + fv \quad (1) \\
\frac{du}{dt} &= -\frac{\partial}{\partial y} \left(\frac{\partial h}{\partial p} \right) - fu \quad (2) \\
\frac{dh}{dp} &= \frac{1}{\rho} \quad (3) \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{g}{\rho} \frac{dp}{dt} &= 0 \quad (4) \\
\frac{1}{\rho} \frac{dp}{dt} &= \frac{1}{\rho} \left(1 - \frac{R T}{g} \right) \frac{dp}{dt} \quad (5)
\end{align*}
\]

where \(u, v \) are components of the velocity along the horizontal axes of \(x \) and \(y \). Pressure \(p \) is taken as the vertical co-ordinate and the geopotential \(h \) is regarded as a function of \(x, y \) and \(p \). \(\rho \) is the density, \(g \) the acceleration due to gravity and \(\gamma \) the adiabatic lapse rate for dry or saturated air as appropriate. In deriving the equations in the form given above several terms are neglected which can be shown to be insignificant in large scale atmospheric motions. The motion is normally referred to rectangular axes with the \(x, y \) plane tangential to the earth's surface; however, the Eqs. (1) to (3) are then only strictly true at the origin. Nevertheless, \(k \) is usual to interpret the equations as though referring to a curvilinear set of co-ordinates which conform to the figure of the earth and of which the \(p \)-axis is vertical. The Coriolis parameter \(-2w \sin \phi \) then becomes a function of \(y \) and this may be important in motion on the scale of the long waves. Further approximations are introduced into Eqs. (1) to (4) when we interpret them with respect to a curved co-ordinate system. McVictrt (1941) has shown how the equations of motion can be placed on a fundamentally more sound basis by the strict use of curvilinear co-ordinates. However, there is little reason to believe that the apparent insatiabilities of the rectangular treatment introduce any errors which are large enough to be significant when compared with approximations inevitably introduced in later stages of the work.

More important is the omission from Eqs. (1) to (3) of terms due to friction, because fundamentally the atmospheric motion is the result of a balance between the generation of kinetic energy from potential energy and its dissipation in friction. However, most studies of atmospheric dynamics have been based on the assumption that friction has a relatively small effect on large-scale motions over a period of 24 hr, and this is justified by consideration of the rate of dissipation of kinetic energy.

The fundamental equations have solutions which represent oscillations on several different scales. Thus there are solutions corresponding to sound waves and gravity waves of a few hundred metres length, as well as those representing...
oscillations on the synoptic scale. The need to modify the equations to represent
only the oscillations on the synoptic scale has led Charney (1948) further the effect of scale on the equations of motion; i.e., the fact that the oscillations which
we wish to study have a horizontal extent of 1,000 km or more, a much smaller
vertical depth of 10 km and a period of the order of a day. He points out that large-
scale atmospheric motion is characterized by approximately geostrophic flow,

\[\mathbf{u} \approx -\frac{1}{\rho} \nabla \mathbf{h} \approx \frac{1}{\rho} \frac{\partial \mathbf{h}}{\partial y} \]

approximately . \tag{6}

Charney proposes to make use of this approximation to simplify Eqs. (1) to (4) and
then clines thereby to eliminate the small-scale short-period solutions. However,
it is first necessary to modify the equations by expressing them in terms of the
vorticity and divergence of the horizontal flow. Thus following Sutcliffe (1947) and
omitting some further terms which are believed to be small in large-scale atmospheric
motion, we obtain

\[\frac{D (z + 1)}{dt} = -q + D u \frac{\partial u}{\partial x} \] \tag{7}

where \(q = (\partial u/\partial y) - (\partial v/\partial x) \), approximately the vertical component of vorticity.
Eq. (7) is often referred to as the "vorticity equation." It appears that if we substitute from the geostrophic wind relation in the expression for the vorticity we obtain a result which is correct to a degree of approxi-
mation similar to that of the geostrophic assumption. On the other hand the value of the divergence obtained in this way would always be zero. This is because the
divergence is of a smaller order than the vorticity. Nevertheless the divergence is of
great importance in the synoptic problem because of its direct connection with the
vertical velocity and change of pressure on the moving particle through the equa-
tion of motion on the synoptic scale. After Charney (1948), which relates changes in
vorticity to the divergence, the vorticity may be approximated by the geostrophic
assumption and the equation still gives valid approximations to the divergence.
Charney proposes to eliminate the divergence between equations corresponding
to (7) and (8) and to substitute for \(z, y \) and \(f \) from the geostrophic condition in the
resulting equation. This gives a differential equation involving only the geopotential,
\(h \), and the rate of change of pressure on the moving particle,
\(dp/dt \). The elimination of \(dp/dt \) and for density, \(\rho \), between the resulting equation
and Eq. (4) and (5) is still necessary, but finally a differential equation can be
obtained containing only one variable, the geopotential, \(h \). The solution of such a
simple differential equation under appropriate boundary conditions is likely to
be difficult, but it does seem that the approach to numerical solution of the equa-
tions of motion could follow these lines which recognize the essential characteristics
of large-scale atmospheric motion. Up to the present time, however, numerical
solution has only been attempted in the essentially simpler case in which the flow
is restricted to be horizontal and density changes are ignored (the barotropic model).

The so-called "tendency equation" has formed the basis of many discussions
of dynamical problems. This equation expresses the fact that the change in pressure
at the ground is equal to the change in the weight of air above.
DYNAMICS OF FLOW PATTERNS IN EXTRA-TROPICAL REGIONS

\[
\frac{\partial \phi}{\partial t} = - \frac{\partial \mathcal{S}}{\partial \phi} \frac{\partial \phi}{\partial x}
\]

However, the equation is unsatisfactory for evaluating the important surface-pressure change because it is found that in most synoptic systems the divergence at one level approximately balances the convergence at another (Finaglen 1947). It is indeed a direct consequence of the approximate geostrophic balance and Eq. (7) that surface-pressure changes can only occur with changes of the vorticity of the flow at low levels and these require convergence and divergence much larger than is necessary to produce the change of mass needed to effect the pressure change. Consequently, changes of surface pressure usually occur with compensating convergence and divergence in the column above, and the change of mass in the column is due to a rather small residual divergence.

Attempts made to use the tendency equation as a basis for forecasting are thus unlikely to prove successful. Priestley (1947) also finds this conflict between opposing factors when he attempts to substitute the divergence at several levels into the tendency equation. His divergence has been obtained from the gradient-wind condition. The ground-wind condition and the tendency equation also form the basis of the largely descriptive account of the dynamics of cyclonic systems given by Bjerknes and Holmboe (1943).

4. LONG WAVES: AEROTROPIC THEORY

Meteorologists have for long been aware of the close relationship between dynamical meteorology and classical hydrodynamics, yet hitherto there have not been very many successful attempts to apply hydrodynamic methods and principles to dynamical meteorology. One of the difficulties has been that the interesting features often depend on the fact that the density is not uniform and there much of classical hydrodynamical theory is inapplicable. Another difficulty is that the motion is three-dimensional and very complicated. Yet it might be that some features of atmospheric motion could be studied in an approximate manner by ignoring the actual baroclinic nature of the atmosphere and also the vertical motion. It was by making sweeping approximations of this sort that Rossby was led to his theory of long waves. The approximations were made tentatively and their justification is that there is in fact some resemblance between the theory and observed behavior. The aim is not a completely satisfactory theory but rather to find a way of making a start towards a realistic theory. With this 'experimental' attitude let us replace the actual flow by a flow pattern which is similarly distributed in the horizontal but which does not vary with height, i.e. by a 'barotropic model.' We ignore the vertical motion so that our model flow is strictly horizontal. Consider the case of a weatery current with a slight sinuoidal oscillation (i.e. a uniform current plus a sinusoidal small amplitude perturbation). Now for horizontal barotropic motion it is easily proved from the equations of motion that the vertical component of absolute vorticity \(f \) is a conservative quantity, i.e. any particle takes its absolute vorticity with it (if we ignore friction). This follows from Eq. (7) by injecting the condition \(\nu^2 = 0 \). Here \(f \), the Coriolis parameter, is the vertical component of vorticity of air at rest on the earth and \(\mathcal{S} \) is the vorticity of the motion relative to the earth. (Vorticity may be thought of as twice the angular rate of
rotation of the air in the intermediate neighborhood of the particle. It follows that as a particle moves towards the pole its relative vorticity must decrease (since it increases) i.e. its motion must become less cyclonic or more anticyclonic. Similarly motion towards the equator implies more cyclonic motion. In the case we are considering the vorticity depends only on the curvature of the path (the motion is similar at all latitudes). It is clear then that our assumption of sinusoidal motion is consistent with the vorticity equation. For motion towards the equator it leads to a more and more rapid cyclonic turning and eventually the air must begin to move polewards. Later the turning becomes anticyclonic and eventually motion towards the equator again occurs. For one particular wavelength there is also quantitative agreement. If \(\lambda \) is the wavelength of the oscillation and \(U \) the speed of the westerly current we can satisfy the vorticity equation for a stationary pattern if
\[
U = \frac{c}{4\pi} \frac{d}{dy} \qquad (8)
\]
If instead of supposing the pattern stationary we allow it to move with speed \(U_0 \) (i.e. the wave velocity) then if \(U_0 \) is the mean speed of the westerly current
\[
U_0 - U = \frac{c}{4\pi} \frac{d}{dy} \qquad (9)
\]
determines the velocity of a pattern with wavelength \(\lambda \). We note that the waves move more slowly than the mean current.

If we are to apply this barotropic theory to the actual baroclinic atmosphere we must make some hypotheses regarding the appropriate value of \(U_0 \) which in practice is a function of height. Since baroclinic long waves exist throughout the troposphere and even some distance into the stratosphere it seems reasonable to interpret \(U_0 \) as the average zonal flow in this layer, which in practice corresponds roughly to the actual current at about 50 mb. If we observe the motion of apparently well-marked waves at this level we get the impression that they do in fact move with a speed less than that of the mean flow. A more precise, quantitative check is difficult for several reasons. In the first place waves are easily observed only if they have not too small an amplitude so that a theory of small perturbations cannot be quite accurate; also, atmospheric matter is the fact that simple quasi-sinusoidal waves moving without development are not too common. Moreover troughs sufficiently long (in the N. to S. direction) to justify the application of a formula for infinitely long waves are not observed. In principle the formula can be modified, and troughs which vary in amplitude in the N. to S. direction as which are inclined to the meridians have an effective wavelength different from (normally shorter than) infinite troughs with the same \(U_0 \) to W. wavelength. However in practice this effective wavelength is difficult to estimate. Apart from this the the wavelength is usually a function of latitude and it is not obvious whether we should expect the formula to apply at all latitudes or only to mean conditions (averaged over latitude, perhaps weighted in proportion to the amplitude of the wave). There is also great difficulty in estimating \(U_0 \). Not only is the sensitive to the exact height which we suppose to be appropriate but the also is a function of latitude and the answer depends greatly on the width of the zone over which we take the mean. It is not surprising that attempts to check Rossby's formula have not led to universal agreement.
DYNAMICS OF FLOW PATTERNS IN EXTRA-TROPICAL REGIONS 539

It is quite certain that we cannot explain all the features of atmospheric motion in terms of a barotropic model. (For example a barotropic atmosphere could not generate kinetic energy and would eventually, owing to the action of friction, come to rest everywhere. Moreover we know that absolute vorticity in the 800 mb surface is not accurately, sometimes not even approximately, conserved.) Nevertheless the qualitative success in regard to the behavior of long waves has encouraged further investigation of the properties of the barotropic model.

One application of barotropic theory is to the waves associated with geographical features such as mountain ranges and plateaus. The effect of an obstacle in an air stream is complex but it is easily shown that an important feature of the resulting flow pattern consists of stationary waves. These waves could exist (i.e. they satisfy the equations of motion and boundary conditions) if the obstruction were not present. Precisely for this reason when the obstacle is present these components must be enormously amplified (as compared with other components) if the boundary conditions are still to be satisfied. In general an obstacle will set off in this way all the possible stationary waves of whatever kind. For example a mountain range will set off ordinary gravitational waves (lee waves) with a wavelength of the order of 10 mi. (We shall refer to this problem later.) It is evident that the barotropic model is inappropriate for this kind of investigation but the other kind it is evident from Eq. (8) that a different kind of wave (constant-velocity wave) would also be stationary if the wavelength were suitably adjusted, i.e. if Eq. (8) applied with \(U = U_0 \) the mean flow speed. As a corollary we should expect to see evidence on the upper-air climatic charts that the principal mountain ranges obstructing the flow of the westerlies (the Rocky mountains with parallel ranges and plateaus and the mountain ranges and plateaux of E. Asia) are associated with ‘long lee waves.’

To what extent the observed patterns are to be explained from the point of view is not completely clear, quite apart from the hypothesis inherent in the use of a barotropic model.

The barotropic theory of both travelling and stationary waves may be extended by including another dimension, i.e. by abandoning the assumption that the flow pattern is the same at all latitudes. We have then led to more complicated mathematical problems but the solutions are essentially of the same kind as those discussed above.

Another idea which stems from Eq. (5) is that of the dispersion of wave energies. For simplicity, we retain the assumption that the motion is similar at all latitudes and also that the disturbances may be regarded as small in amplitude, then we may by Fourier analysis split up a complex oscillation into components of various wavelengths. In general there will be components of all wavelengths. Suppose that in the analysis we find a certain range of wavelengths dominant. Then our disturbance is to be regarded not as a single wave but as a wave packet (or series of wave packets). There is an active region (the wave-packet) where the components re-inforce one another and the oscillatory energy is large. Elsewhere the components interfere and the oscillatory energy is small. Now one very interesting feature is the motion of the wave-packet, the region of maximum oscillation, and this in general does not travel at the same speed as any of the component waves. The wave-packet moves with what is called the group velocity \(U_g \) and if \(U_o \) is the velocity of a component (i.e. phase velocity) the group velocity is given by the equation.

(8) move with speed \(U_o \),

(9) note that the waves
\[U_v = U_w - \frac{L^2 \beta \alpha}{\sigma^2} \]
(10)

Applying Eq. (2) we obtain:

\[U_v - U_p + \frac{L^2 \beta \alpha}{\sigma^2} \]
(11)

Thus the velocity of the wave-packets is greater than the mean current velocity. Some investigators have inferred that there is evidence of such behaviour in the atmosphere, but as in the case of the individual waves there are difficulties in drawing very definite conclusions. The actual wave-packets are spread over such a wide band of wavelengths that it is difficult both to locate the centre of the packet and to estimate the mean value of \(L \), which is the appropriate value to substitute in Eq. (11).

Barotropic theory has been applied in other important investigations. For example, Munk has used it to explain many important features of the principal oceanic currents. Of more direct interest is its application to weather forecasting by actual computation, but we shall for the moment postpone discussion of this subject. One further idea may however be mentioned here. We are aware through the efforts of meteorologists that whenever the nature and cause of long waves there do not always maintain their wave character. From time to time the warm tongues and cold tongues become best represented in the so-called 'cut-off', leading to quasi-independent cold upper cyclonic vortices and warm upper anticyclones. Wave ideas are no longer appropriate and it is interesting to see what barotropic theory would predict about the motion of vortices.

The former has emerged that cyclonic vortices are subject to an attractive force towards the poles while anticyclones are attracted towards the equator. Without going into details it is easy to see why barotropic conservation-vorticity theory could lead to such a result. For a cyclone moving polewards under this law would decrease its relative vorticity and therefore its kinetic energy. Since (as we are ignoring friction) total energy is conserved there must be a growth in the energy of translation of the vortex, i.e., it could be accelerated in the direction of motion. The argument is valid only as long as we can neglect the motion of the air outside the vortex, which is not always the case even initially, and is never true indefinitely; sooner or later the vortex comes to a stop. The protagonists of this view are not always clear on this point. If they had paid more attention to the boundary conditions they would probably have discovered that the final result strongly resembles the wave equation with wave crests and troughs replaced by vortices. This is entirely nothing fundamentally new in this sense. Nevertheless, it presents the barotropic theory in an interesting light. When we observe the growth of a long wave until cutting off takes place the cyclonic vortices are formed and persisted on the equatorial side while the upper anticyclones appear on the poleward side. This process is exactly opposite to what has been described above. It follows that the barotropic forces on vortices cannot be the only significant ones since in this case they are evidently overpowering. Of course this kind of result should not have been unexpected. It is important to bear it is mind however because it is a reminder to over-enthusiasts of the barotropic model that we cannot hope to explain all the principal features of large-scale motion by such means. Research has attempted to get over difficulties such as those indicated by postulating a cold anticyclone originating in high latitudes. The argument is
DYNAMICS OF FLOW PATTERNS IN EXTRA-TROPICAL REGIONS

mean current velocity, such behaviour is not remarkable because he attempts to take into account changes in potential energy—
in other words he effectively abandons the barotropic model. Logically the next step is to take full account of the baroclinic nature of the motion.

5. DEVELOPMENT THEOREMS BASED ON THE RELATIVE DIVERGENCE

Since the early studies of the free atmosphere by W. H. Dymes (1918 and 1925) and others, it has been realized that there must be divergence in the upper atmosphere above a developing depression which (slightly) more than compensates the convergence at the lower levels. The location of the convergence and divergence are reverses in the anticyclone. Succliff (1939 and 1947) has therefore directed attention to the relative divergence, which he defines as the difference between the divergence at two levels. It is convenient to consider a simple case of cycloic development in which divergence takes place in the upper troposphere and convergence near the ground. If we then consider two levels, one in the upper troposphere and one near the ground, the relative divergence is positive; in anticyclonic development the relative divergence is negative. It is also easily seen that the relative divergence is directly related to the large-scale vertical velocity. It is therefore taken as a convenient measure of cycloic development.

Cycloic and anticyclonic development defined in this way are not to be regarded as necessarily leading to the formation of a new pressure centre. Indeed, there are few changes of the surface-pressure field that take place without accompanying fields of convergence or divergence (Succliff 1936).

Succliff (1939) first studied the dynamics of relative divergence by considering the difference between the equations of motion at the two levels. His latest treatment (Succliff 1947) is based on the vorticity equation and leads to results which can readily be applied in cycloic practice. Succliff considers the difference between the divergence at two selected pressure levels as given by the vorticity equation in a form such as Eq. (7). Like Charney he makes use of the quasi-geostrophic nature of the flow, and assumes that a valid approximation to the divergence is obtained when the geostrophic wind is substituted for the true wind when inserting the vorticity on the left-hand side of (7). Proceeding in this way Succliff obtains the following expression for the relative divergence.

$$dpi \rho V \cdot dV - \nabla \cdot (\rho V u) = \frac{1}{\rho} \left(\nabla \cdot (\nabla \cdot \rho V u) - V \cdot \nabla \rho \right) = \frac{1}{\rho} \nabla \cdot (\rho \rho V V) - \frac{1}{\rho} \nabla \cdot (\rho \rho V V) \nabla \cdot (\rho \rho V V)$$

where \(h\) is the thickness of the atmospheric layer between the two levels.

Succliff also makes use of the fact that the motion at the two levels is not independent but, since it is quasi-geostrophic, it is related through the thermal wind equation with the thickness patterns, i.e., with the field of \(h\). The changes in \(h\) arise partly from horizontal advection, partly from vertical motions, and partly from non-adiabatic heating and cooling. The importance of these processes for time-intervals too large is probably in the order indicated. In the simple case in which the changes in \(h\) are due only to advection, Eq. (12) can be transformed by further use of the geostrophic wind conditions into the simple and convenient term

$$\text{Relative divergence} = \frac{u^2}{h} \frac{dV}{dt} + \frac{2\rho V}{h}$$

(13)
where V' is the thermal wind, z is its vorticity, and $1/\nu$ denotes differentiation in the direction of the thermal wind.

Leaving aside the relatively small effect due to the Coriolis parameter, $-fN_0$, the expression for the relative divergence separates into two terms which can be interpreted easily in terms of a synoptic chart which covers both contours of the 1,000 mb surface (or surface isobars) and thickness lines for a substantial layer of the troposphere. These terms $-\nabla^2 \bar{V}^{\prime} \beta/\nabla^2 \beta$ and $-\nabla^2 \bar{V}^{\prime}$ may be conveniently referred to as the thermal zonant term and the thermal development term respectively.

Consider first the thermal steering term, $-\nabla^2 \bar{V}^{\prime} \beta/\nabla^2 \beta$, associated with a maximum of cycloidal vorticity, a depression, over which a thermal wind exists. There will be positive relative divergence (from Eq. (13)), and therefore cycloidal development, on the side of the depression towards which the thermal wind is directed; similarly anticyclonic development is expected on the opposite side. It follows that the depression should move in the direction of the thermal wind and frequently observed Anticyclones too will tend to be steered in the direction of the thermal wind if it has been assumed the thermal steering term alone is operative.

The remaining term, $-\nabla^2 \bar{V}^{\prime}$, the thermal development term, depends only on the configuration of the thickness lines. It makes an important contribution to cycloidal development in certain recognizable situations within the thermal field, notably downstream from the thermal trough and to the left of a different region of the thickness pattern.

The general application of these theoretical ideas to the synoptic chart are described by Sutcliffe and Forsdyke (1960). The theoretical ideas suggest convenient rules for the location and development of individual depressions and anticyclones.

A start has been made on the statistical testing of such rules for the motion of anti-

cyclones and the development of secondary depressions on warm fronts and in the

point of cyclones (Sawyer 1948 and 1950), a

point of cyclones (Sawyer 1948 and 1950).

Eq. (13) ignores the effect of dynamical heating and cooling on the thickness pattern. Apart from other approximations the result can therefore only be strictly true if the atmosphere is in a thermal static equilibrium. Sverdrup (1947) has considered the effect of the presence of a stable lapse rate, and has shown that it tends to damp down the development that would otherwise be expected. Thus damping depends on the size of the system; it is overwhelming for small systems of diameter less than 500 km but is small for large systems of the order of 2000 km. Consequently damping by vertical stability may be an essential factor in determining the size of cyclones and anticyclones.

As has been indicated, Eqs. (12) and (13) are valuable in synoptic meteorology and forecasting because they enable the synoptic chart to be made from synoptic charts which can be drawn as routine. The application to forecasting is immediate. Up to the present the possibilities of the numerical application of Eqs. (12) and (13) have not been fully explored, but it is not unreasonable to hope that if numerical values of the relative divergence could
be computed on a field basis it would be of great value to the forecaster. Moreover it is probable that a combination with a modification of Eq. (7) applicable to the mid-stratosphere, the equivalent barotropic level, Eq. (12) may well correct the basis for future work of numerical methods of predicting the surface-pressure field.

Sutcliffe's method is the simplest for examining the properties of atmospheric motion due to its baroclinic nature. It has the advantage, in common with barotropic theory, that it is not necessary to 'linearize' the equations and we are not restricted to disturbances of small amplitude. However, we always have to pay for simplicity and Sutcliffe's method has the disadvantage that hypotheses are made about the nature of the motion which cannot be verified any more than can the hypotheses made in applying the barotropic model. This is still the case when the method is modified in an attempt to take into account the vertical motion. Sutcliffe's method has this in common with Rossby's that both attempts to reproduce three-dimensional motion with a two-dimensional model. The vertical structure of the disturbances is not properly taken into account so that, quite apart from other approximations, it is not surprising that the results are incorrect and are approximately true only in limited sets of circumstances. However useful two-dimensional models may be it would be an advantage if we could check some of the results against accurate three-dimensional solutions. This brings us to a consideration of the kind of three-dimensional problem which has as yet been most amenable to solution. The subject is conveniently approached via the stability problem.

6. The Stability of Atmospheric Motion

The question at issue is whether or not steady baroclinic flow represents a stable type of atmospheric motion, i.e., whether or not a small disturbance of the flow would result in its complete transformation. There is a general method which may be applied in attempt to solve this type of problem. We assume a small change in the flow pattern (i.e., a small perturbation) and on substitution in the equations of motion obtain a set of linear differential equations which determine (with the boundary conditions) how the perturbation will change with time. Usually we cannot solve the equations in complete generality but we can study certain particular solutions. Often it is possible to find solutions corresponding to disturbances whose structure does not vary with time. There are normally two possibilities. The disturbance may remain of constant amplitude (though moving), corresponding to stable wave solutions. (If frictional terms are included the amplitude decreases slowly with time). Alternatively the solutions may correspond to disturbances which either increase or decrease exponentially with time, corresponding to unstable waves. The solutions which decrease are of little interest physically. Those which increase will do so until the disturbance is no longer small, and the flow pattern is transformed. It follows that the original flow pattern is unstable if any unstable disturbance can be found; it is stable only if all disturbances are stable. Since the behavior of a disturbance depends on its structure we ought to examine all possible types. Moreover, apart from our interest in the stability problem for its own sake, there is the additional interest that we are led to compute three-dimensional solutions of the equations of motion. Some of these may be typical, in certain circumstances...
stresses, and they provide a useful check on the assumptions made in two-dimensional model theories.

There are two types of disturbance which lead to fairly simple equations. The first type involves oscillations in a vertical plane. It may conveniently be studied by the so-called particle method.

7. DYNAMICAL INSTABILITY - PARTICLE METHOD

In the full treatment of atmospheric oscillations the violation of pressure must be taken into account and the equation of continuity must be satisfied. However, in the last decade an extensive literature has developed regarding a less realistic type of oscillation in which the pressure field is supposed to remain constant, and in which the motion of the individual particles of the fluid is regarded as independent of all others without consideration of continuity requirements. The results are applicable to oscillations restricted to a vertical plane. The published work on these themes was recently reviewed by one of us (Sawyer 1944a) and references in the original papers will be found there. The criterion for instability of a steady study current on a rotating earth was first given in full by Solberg (1936), and may be presented in the form

\[
\frac{2\ell}{H} > 1
\]

where \(\ell \) is the velocity component along the stream and \(H \) is perpendicular to the stream. Thus, for instability the horizontal wind shear across the current when taken along an isentropic surface (\(\theta = \) constant) must be anticyclonic and exceed the Coriolis parameter \(\ell \).

If a current is unstable when the pressure is held constant it is likely also to be unstable if this restriction is removed. The criterion (14) is a sufficient condition for instability. It is a necessary condition only if we restrict consideration to instabilities of this limited type.

If we look for regions of the atmosphere where the condition (14) is satisfied, we find they are very restricted in vertical and horizontal extent. Condition Eq. (14) requires a very strong anticyclonic wind shear, and conclusive evidence for it can only be obtained from a very close network of wind soundings. However, there is evidence that such wind shears are approached on the right hand side of jet streams, and also in frontal regions if the shear is measured along surfaces of constant total potential temperature as is appropriate in regions of meridionality. The criterion may therefore impose a limit on the shear on the south side of a jet stream, and may also have some importance in the motion in frontal cloud masses, but there is no evidence that it has any direct importance in determining the development of depressions and anticyclones, for which we should expect the criterion to be satisfied over wide areas.

Recently attempts have been made to establish a criterion similar to (14) and applicable to systems of curved flow. However, unless an initial steady flow can be prescribed (and very few simple steady flows are possible) it is difficult to decide what constitutes instability. Recent work by Petersen (1959) has indicated that the presence of anticyclonic curvature and anticyclonic shear renders a wind
made in two-dimensional

integrated equations. The
conveniently be studied

EYEBRO

action of pressure must
be satisfied. However,
garding a less realistic
to remain constant, and
regarded as independent
are established about these
on the original
self-preserving and

(14)

axis is perpendicular
to the current
be anticyclonic and

it is likely also to be
a sufficient condition
consideration to in-

(14) is satisfied

Condition Eq. (14)
for evidence if it can
. However, there is
side of jet streams,
of constant wet-

The criterion
stream, and may
be, but there is no
development of
to be satisfied

ion similar to (14)
initial steady flow
de) it is difficult to
1950) has indicated
ear renders a wind

DYNAMICS OF FLOW PATTERNS IN EXTRA TROPICAL REGIONS

system more sensitive to disturbances from such causes as pressure changes. Perkins
(1950) has also given a general treatment of particle motion in an arbitrary pressure
field.

8. BAROCLINIC DISTURBANCES

As we have seen steady barotropic flow is stable from the point of view of circu-
lations in a vertical plane unless the absolute vorticity in the isotropic surfaces
is negative, so that from this point of view and for motion on a large scale stability
is the rule rather than the exception. We cannot however infer that the flow is
stable because we have not yet examined other types of disturbance. There is in
fact a second type of disturbance which involves alternating regions of northerly
and southerly motion, much more like the initial stages of the large-scale disturbances
seen on synoptic charts. These disturbances are usually referred to as baroclinic
waves. The stability criterion for such disturbances was discovered by Charney
(1947). He found that the disturbances with a wavelength smaller than a certain
critical value can be unstable, but that disturbances with wavelengths greater than
the critical value are stable. On substituting average values for the parameters
his criterion indicates stability for disturbances about the size of, or larger than,
the average long wave. Judging from subsequent papers Charney appears to have
drawn the conclusion that large-scale features are essentially stable phenomena and
therefore suitable objects for forecasting by direct computation; we shall refer
to this question again later. He appears to be less interested in the unstable dis-
turbances. Early (1949) has adopted a different point of view. According to him
the developing unstable waves may represent the initial stages of the mechanism
by which solar radiation is transformed (via potential energy) into kinetic energy
of the atmosphere. His object therefore has been to analyse their structure and
growth rate for comparison with observation. He found that in most circumstances
unstable waves could (and generally would) occur, but that in given circumstances
one particular disturbance should grow faster than any other and dominate the
final pattern. All these unstable disturbances are shorter than the critical wave-
length found by Charney. The first analysis in fact assumed that the disturbances
were so small that the latitude variation of the Coriolis factor (dl/dy) could be
neglected. A second approximation including this factor then showed that the
disturbances besides growing should be retarded in the same manner as Rossby's
barotropic waves not to a somewhat smaller extent. It is interesting to note that this
modification in the wave-retardation factor and also the existence of instability
(mathematically expressible as an 'imaginary' wave velocity) both arise from terms
analogous to Sutcliffe's development term. Since Sutcliffe (1951) has subsequently
shown that his model implies instability in the circumstances in which Early's analysis
applies it is possible to use Early's three-dimensional model as a check in a particular
case on the accuracy with which the two-dimensional models of Sutcliffe and Rossby
respectively reflect the actual three-dimensional motion. It appears that while
Rossby's model exaggerates the wave retardation (and thus shows quite incorrectly
the growth rate) Sutcliffe's model exaggerates the instability (partly as a result of
ignoring vertical motion). Thus both Sutcliffe and Rossby get one feature of the motion
very approximately correct. This strongly suggests that a two-dimensional model
combining the features studied by Rossby and Sippel might be of very considerable value, as any note pending the development of a three-dimensional theory capable of dealing with more general types of motion. One difficulty is a three-dimensional theory, even to the extent to which it has yet been employed, is that it is still necessary to make approximations in order to obtain usable equations. It is worth noting that Charney and Eady and more recent contributors (Bennet 1949, Kortem 1938) make different approximations and approach the problem from other different angles yet the results are all in broad agreement. This not only increases confidence in the broad correctness of their conclusions but suggests that the essential features are of a sufficiently simple nature to make further generalizations possible.

One may reasonably conjecture what practical use may be made of the theoretical results outlined above. So far as Rossby's and Sippel's models are concerned the manner is obvious. Both these models can be and have been applied to actual synoptic problems and, if the results are of limited value, this is due as much to computational difficulties (or, rather, difficulties in computing the answer far enough to be of practical forecasting value) and lack of sufficiently accurate or sufficiently detailed data, as to limitations inherent in the credence of the model. Before discussing how the computational difficulties may be overcome we may proceed to consider the significance of the three-dimensional solutions. From one point of view they represent refinement of the two-dimensional solutions and if they could be generalized would give more accurate solutions of similar problems. On the other hand the existence of instability is, apparently, a natural feature of atmospheric motion and led Eady to the conclusion that motions of long-term forecasting can in principle only be answered statistically, i.e. in terms of the average or most probable behavior of disturbances. His attempt (Eady 1950) to apply this principle to account for climatic features (such as the general circulation) is outside the scope of this article. Nevertheless it is relevant to point out that, if, in order to solve the equations relating to quasi-stable large-scale motion, we need to include stresses and heat-transfer terms associated with slight smaller-scale 'turbulence' motions— which cannot be forecast in detail because of the unstable nature of the motion— then we may find it necessary to investigate the laws relating the transfer properties of the smaller-scale motion to the large-scale motion itself. It is for this reason that Eady emphasizes the importance of investigating the developments and transfer properties of disturbances from a theoretical as well as an empirical point of view. It cannot be said that this line of approach has at yet got very far, but neither has the analogous problem in relation to the much smaller-scale turbulence familiar near the earth's surface (though probably existing at all levels) and in aerodynamics. The crucial subject of turbulence transfer stands wide open as a challenge to the imagination of the theorist and to the ingenuity of the experimentalist and interpreter.

9. Forecasting the Weather Forecast

Regarding to more straightforward problems let us consider how a two-dimensional model may be used most effectively. If we abandon the arbitrary simplifications which lead to simple explicit solutions such as Rossby's intrinsic waves we are faced with the solution of one or more partial differential equations.
If we are using a barotropic model, we find that the solution of one equation is sufficient to determine how the field of motion (or, rather, our model of it) will change with time. By repeating this integration of the equations of motion at suitable small intervals of time it is possible to forecast the behaviour of our model, which we hope will bear some resemblance to the actual behaviour of the atmosphere. But before discussing the details of this process it may be of interest to note some of the difficulties involved in computing the weather by any method (quite apart from those relating to turbulent transfer, as mentioned above). It will be recalled that just as Halley invented the automatic digital computing machine long before it was possible to construct one, so L. F. Richardson devised a method of computing the weather forecast before the means of carrying out the computations in a reasonable time existed. The actual construction of an ultra-rapid electronic computer stimulated new interest in Richardson's ideas but it has been found desirable to modify his methods. It is possible to write down a system of simultaneous partial differential equations whose solution (assuming that all the necessary data are available) should determine subsequent motion. We cannot hope to solve these equations explicitly but we may hope to solve them by numerical methods (e.g. successive approximation, relaxation etc.). If we suppose that the terms relating to radiation and surface friction can be estimated, we are faced with a problem which, though complicated, is formally less formidable than might have been imagined. Nevertheless there are several practical difficulties. In the first place the vertical velocity is not directly measurable nor can it be inferred from the pressure field (only by the accurate wind field) so that initial values must usually be estimated. In the second place the arithmetic involved in solving complicated three-dimensional problems is a formidable problem even for electronic machines. These difficulties do not rule out the possibility of computing the weather using quite accurate three-dimensional models but they strongly suggest that we should develop the technique gradually using quite crude models at first to obtain the necessary practical experience. Charney has suggested that we should investigate a hierarchy of models and he has connected with what is undoubtedly the simplest, the barotropic model. The goodness or otherwise of his solutions is really a matter of secondary importance.

It will suffice to consider only the latest and most ambitious of Charney's contributions (Charney et al., 1950) to the computation of the behaviour of the barotropic model. The relevant equation is the vorticity equation (7) which may be rewritten:

\[\nabla^2 \psi = \frac{1}{f} \frac{\partial \psi}{\partial t}, \]

where \(\psi \) is the stream function, the velocity components being \(-\psi_x/2f \psi_y/2f \psi_y/2f \) and \(\nabla^2 \psi \) is \(\psi_{xx}/2f^2 + \psi_{yy}/2f^2 \), the vorticity. At \(t = 0 \) the terms on the right-hand side are known so that \(\psi/2f \) may be determined by solving a Poisson equation with the appropriate boundary conditions. Strictly speaking the boundary conditions can be applied only if we know \(\psi \) over the whole of the earth's surface but a close enough approximation is possible if we consider only a limited region. Poisson's equation is not a difficult one to solve numerically and methods differ only in the speed with which solutions are obtained in given cases. The method used by Charney is suitable only for rapid automatic computation using a relatively...
fine network of observations. (In this as in most numerical methods the differentials in the differential equations are replaced by small finite differences. Having thus reduced the equation for $\frac{d^2y}{dt^2}$ as a function of x and y we can extrapolate linearly over a small interval of time Δt, i.e., we replace $\phi_0(t=0)$ on the right-hand side by $\phi_0 - \frac{d\phi}{dt}\Delta t$.)

The process of integrating the equation is repeated to give $\phi(t=\Delta t)$ at $t = \Delta t$, then $\phi(t=2\Delta t)$ is computed and so on. To order that errors due to the linear approximation in extrapolation shall not mount up disastrously it must not be taken too large. (In practice Charney found $\Delta t = 3$ h. possible.) As is only to be expected, the results of computations of behaviour 24 h ahead leave much to be desired when compared with the behaviour of the atmosphere. Nevertheless the feasibility of computing with a two-dimensional model has been established; it remains to be seen whether or not more realistic models can be made whose behaviour is sufficiently close to that of the atmosphere to justify computations on a routine basis.

In this connexion it is of interest to note that the speed of Charney's computations was sufficient almost to keep up with the weather. But it is almost certain that more rapid and efficient methods can be developed.

19. EXPERIMENTS AND DYNAMICAL METEOROLOGY

Up to now we have confined our attention to theoretical and synoptic work since most recent work (as most of the work in the past) has been along these lines. Although advances in meteorology as a whole have been due as much to experiment as to observation, the kind of dynamical meteorology which deals with motion on a large scale seems an unsuitable field for experiment. We are unable to introduce sufficient new energy into the atmosphere to cause any appreciable modification of the large-scale motion, so that the only possibility for experimental work is the study of the behaviour of models. Unfortunately it is rather difficult to construct anything like a realistic working model of the atmosphere. There is of course some difficulty in scaling down but the real stumbling block is the force of gravity. It is not difficult to reproduce fluid motion on a spherical surface, nor is it difficult to reproduce rotational barotropic motion, but it is difficult to reproduce the two together, especially with the correct boundary conditions. What we need are body forces of some sort depending on density (not necessarily true gravity) and acting towards a point, the centre of our model sphere. But true gravity acting on our model is so strong that this is practically impossible to realize. If therefore model experiments are to be of value it must be because we realize and allow for the differences between our model and the atmosphere. We may be able to infer indirectly some useful facts about barotropic motion on a sphere outside the range in which it is possible to infer facts from a synoptic observation. Many meteorologists will be familiar with such experiments as those of Easter with which barotropic fluid motion was reproduced in a rotating dish by heating at the circumference and cooling at the centre. The result was the genesis of disturbances much like atmospheric cyclones and anticyclones. Experimental work of this sort has tended to be spasmodic, possibly because theory has been insufficiently developed to draw the appropriate conclusions regarding atmospheric motion and to suggest
what experiments should be attempted next. A healthy sign is that the most recent work, that of Fultz (1949), appears to have been suggested by theoretical work on the stratocumulus model. However naive or unsatisfactory we may consider the theoretical background and however inaccurately the model may reproduce atmospheric motion, there is no doubt that the results are interesting and they may be of more relevance to dynamical meteorology than appears at first sight. Fultz rotated a fluid between two glass hemispheres (concave upwards) at the same time hosting the fluid from below (i.e. at the ‘pole’), generating a kind of convective turbulent motion. He observed that an easily zonal current (i.e. one rotating more slowly than the hemisphere) was generated at the top (above about 30°S) and a westerly zonal current at the bottom. It would be rather strange if this reproduction of atmospheric zonal motion were purely coincidental, though we cannot make direct inference because gravity acts in a different manner in Fultz’s model from what it does in the atmosphere. Nevertheless these experimental results may be a pointer in regard to the theory of the atmospheric zonal currents since several meteorologists (Rossby, Starr, Eady etc.) have given reasons for abandoning the classical theory of meridional circulations in favour of quasi-horizontal large-scale turbulent transfer of angular momentum or vorticity. Their alternative theories would give similar results whether the fluid were heated at the equator (as in the atmosphere) or at the pole (as in Fultz’s experiments).

11. Topographical effects

In this highly selective account of recent work no mention has been made of work relating to relatively small-scale phenomena. There is however one small-scale feature which may appropriately be mentioned here. This is the modification of flow caused by topography. We have already noted the close parallelism between the large-scale quasi-horizontal lee waves set off by barriers of continental size and the short vertical gravity lee waves set off by ranges of hills. Lynes (1943) and Querney (1948, 1950) have made important contributions to this subject but the most realistic account is perhaps that of Scorcer (1949). As has been indicated the lee waves are stationary solutions of the equations of motion which satisfy the boundary conditions in the absence of the obstruction and these component disturbances are greatly magnified (theoretically an infinitesimal range of wavelengths is infinitely magnified) when the obstruction exists. The frequency of the wave depends partly on the static stability (the vertical gradient of potential temperature) and partly on the rate of wind shear. The wave velocity is that of the main current at some height depending on the distribution of wind and static stability. It may be noted that the existence of this phenomenon is not dependent on the rather peculiar wind distributions assumed (for mathematical convenience) by Scorcer. Lee waves are of considerable interest to glider pilots. For dynamical meteorologists they have the additional interest of being associated with a considerable form drag which must be added to the ordinary skin friction of the earth’s surface. It may be noted that any kind of permanent stationary interference in the flow pattern may be associated with lee waves. The change of friction at a coast line, for example, is capable of generating them.
12. THE FUTURE OF DYNAMIC METEOROLOGY

The present time is a difficult one at which to look forward to the future development of dynamical meteorology because activity on the subject is now much greater than ever before. The most hopeful facts for the future of the subject are these, now for the first time, the dynamical meteorologist has adequate observations which permit him to know the three-dimensional structure of atmospheric systems and which permit him to test his computations. It is a healthy sign that research workers are endeavouring to study and predict the development of actual synoptic situations, albeit by idealising them by restrictive models. This is the work which, if successful, could bring the greatest aid to forecasting, but a very great deal of development and research will be necessary before we can hope to compute tomorrow's weather map. Meanwhile the less ambitious dynamical studies of special models of atmospheric flow will do doubt aid the empirical interpretation and extrapolation of the synoptic chart which is the basis of forecasting—perhaps, more important, they will help to advance meteorology as a science.

Acknowledgment

One of us (J. S. S.) acknowledges the permission of the Director, Meteorological Office, to contribute to this paper.

References

- Beres, A. 1949 Tellus, 1, No. 1, p. 44.
- Cressman, G. P. 1948 J. Met., 6, p. 36.
- Fennell, R. 1949 Tellus, 1, No. 2, p. 44.
- Fultz, E. 1946 J. Met., 4, p. 17.
- Graham, B. L. 1949 Quart. J. R. Met. Soc., 76, p. 3.
The future developments of much greater practical value than the attempts at which the national systems and research workers must be directed in such situations. Indeed, if successful, the development of these systems and research may result in atmospheric science and the meteorological science of the synoptic scale. They will help...

Meteorological...