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The stability of quasi-geostrophic f-plane flow over topography is examined. The
approach is to first calculate the stationary, asymmetric response to a uniform zonal
current flowing over topography, and then calculate the stability properties of the total,
zonally asymmetric, field. Under many circumstances this flow is unstable, barotropi-
cally and/or baroclinically particularly if the asymmetric flow is of large amplitude.
This is demonstrated first using a long-wave approximation, which examines the
stability with respect to perturbations of large meridional scale. So-called form-drag
instability then ensues. This may be thought of as a special, nonlocal, form of isosceles
triad interaction involving the zonal flow interacting with the topography and another
“free” mode of topographic scale. For topography consisting of a single Fourier mode,
instability then arises only if the zonal current is eastward and exceeds that required
for resonance. However, in general other triads exist in which the asymmetric flow, if
its amplitude is large enough, is always unstable, for any value of the zonal current. In
particular, flow with the zonal current slightly below the resonant value can be
unstable. This implies that resonantly amplified stationary waves, sometimes cited as
passible mechanisms for blocks, will decay rapidly through their interaction with
other modes, unless further nonlinear equilibration occurs. Certain integral constraints
prove useful in ascertaining necessary conditions for instability, both for topographic
instability and the zonally symmetric (but continuously stratified) baroclinic instability
problem.

1. INTRODUCTION

Two problems in atmospheric dynamics are to understand the ampli-
tude and structure of zonally averaged flow and the time-averaged
asymmetric flow. The separation is arbitrary but convenient.
There is no entirely satisfactory theory which explains well the
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2 G. K. VALLIS

essential features of either of these phenomena. Even given the zonal
flow, there are few clear ideas regarding the amplitude of the time-
mean asymmetric flow. If the amplitudes of the asymmetric features
are sufficiently small, linear theory expanded about the zonal mean
state will be a good approximation. If not, stationary nonlinearities
will affect the amplitude predicted by linear theory. Further, the
stationary asymmetric flow may be unstable, spawning transient
eddies which will extract energy from it.

The occasional occurrence of large asymmetric anomalies in the
flow (e.g. ‘blocks’) also lacks a theory, (or perhaps suffers from too
many). The idea common to many, for example Charney and deVore
(1979) and Tung and Lindzen (1979), is that a particular component
of the flow may be preferentially excited by the resonant amplifi-
cation of a topographic wave, through the interaction of the zonal
mean flow and the topography. Resonant amplification occurs at the
scale for which the phase speed of a Rossby wave is zero. In the
theory of Tung and Lindzen (1979) as the zonal flow, for some
reason, passes through a resonant value selective preferential amplifi-
cation occurs, which may have the shape or structure of blocks. In
the theory of Charney and deVore (1979) and Hart (1979) the
resonantly excited wave is able to transfer sufficient heat or momen-
tum to balance the forcing on the mean flow, and a stationary
equilibrium results. Aside from the theory of Hart, which is valid
only for highly anisotropic flow of large meridional scale, such
theories are valid only if a severely truncated set of Fourier modes
describes the flow well and the asymmetric flow is the linear response
to the zonal current. Davey (1980) discusses some possible effects of
nonlinearity and shows that they appear not to be small near
resonance. Although in the above cited papers one or more of the
stationary equilibria was found to be stable given the model
truncation, the stability of the flow in the presence of other modes
was not examined. If the flow is then found to be unstable, and the
growth rate is sufficiently large, such a stationary equilibrium will
not necessarily persist and the “block™ will decay.

The stability of stationary, linear solutions (and the exact inviscid
nonlinear solutions which have precisely the same form as the
inviscid linear solutions) clearly has implications for the time mean
asymmetric flow also. For if the asymmetric flow predicted by simple
stationary theory is unstable then the actual time averaged asym-
metric flow will presumably have an amplitude smaller than that
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given by the stationary theory, since we would expect energy to be
transferred from the stationary flow to the transient flow. If the flow
is stable, on the other hand, the transient waves which exist in the
atmosphere would interact with the stationary flow with little or no
phase coherence. They would essentially be a stochastc forcing, and
have little effect on the amplitude or phase of the stationary flow,
except perhaps in moving it from one stationary equilibrium point to
another. \

The stability of large scale flow over topography is therefore of
paramount importance for both the time-mean flow and blocking
flow. This paper is concerned with that problem. I shall not be
concerned especially with the value of the initial zonal mean flow,
generally taking it to be given. For tractability, and in order to
isolate essential physical mechanisms, most of the analysis concerns
one and two-layer flow on a f-plane. The idea of “topographic
instability” is not new, if by topographic instability one means the
_destabilisation of a zonal current stable in the absence of topography.
A clear example of the destabilizing effects is presented by deSzoeke
(1983) in his analysis of the effects of a wavy bottom boundary
on the Eady problem. He demonstrated baroclinic instability of a
zonal current stable in the presence of a smooth lower boundary.
Charney and Flierl (1981) give an example of two-layer zonal flow
destabilized by topography. In general a purely zonal flow over
topography is not, however, a solution to the equations of motion,
unless the zonal flow vanishes at the surface. Hence the approach
presented below is somewhat different, in that we first calculate
the stationary response set up by the interaction of a given uniform
zonal current and the topography. The instability of the complete
field (uniform zonal current plus zonally asymmetric response) is
then examined. The instability then results from a triad-interaction
involving the stationary asymmetric flow and two free modes. In
deSzoeke’s case the topography itself acts as intermediary between
the two free modes. Such instabilities, if important, would affect and
perhaps destroy the equilibrium solutions of truncated-spectral-
expansion models of flow over topography (e.g. Charney and
deVore, 1979) and their baroclinic descendents (e.g. Roads, 1981).
These models typically contain only three modes, representing the
zonal flow and two modes of the same scale as the topography.
Such a truncation allows form-drag instability (Section 4) but other
triad-instabilities are not allowed. In such models stationary equi-
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libria exist close to resonance, and flow with the zonal wind just below
the resonance value (essentially &< f/k?) is stable. In Hart’s model,
which is not based on a truncated spectral expansion, only forced
flow components with little meridional variation are allowed, and
again only super-resonant instability exists. In both cases the pre-
sence of other modes, allowing subresonant topographic instability,
may therefore qualitatively alter the picture.

It is the aim of this paper to illustrate the physical basis of
topographic instability in a simple and explicit form. Both
barotropic and baroclinic instability will be found. The instability
mechanisms occurring near resonance have been examined by
Pedlosky (1981). Sasamori and Youngblut (1981) and Neelin and
Lin (1984) have considered, numerically, the stability problem of
forced stationary waves and Gill (1974) and others have addressed
the problem of the stability of free waves. The analysis presented
below extends these and, it 1s hoped, clarifies and unifies the basic
mechanisms involved. In particular the analysis of Section 4 requires
no ad hoc spectral truncation and the analysis of Section 5 does not
assume perturbations of similar scale to the topography. Further, the
similarities between barotropic and baroclinic instabilities for both
the topographic and Rossby wave stability problem are brought out,
and there is some use of integral constraints in demonstrating
sufficient conditions for nonlinear stability.

In Section 2 a scale analysis of the equations is performed. Section
3 is concerned with the exact nonlinear, inviscid solutions for flow
over large-scale topography. In Section 4 we consider a “long wave
approximation”, which leads to an asymptotic description of form-
drag instability. Section 5 contains a slightly more general, but less
well-founded, stability analysis in part resembling Gill's (1974)
analysis of the stability of a Rossby wave. In addition necessary
conditions for baroclinic instability are derived. Section 6 contains a
summary and conclusions.

2. SCALE ANALYSIS OF BAROTROPIC FLOW OVER
TOPOGRAPHY

2a. Relationship to multiple equilibrium theories

The barotropic vorticity equation expresses the conservation of the
potential vorticity of the flow, except for effects of friction and
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forcing. It may be written

80/t +(¥, Q)= — vV, (2.1)
where

Q=q+By, q=V¥¥+h.
1t is useful to separate out a constant zonal flow'by writing

whence (2.1) becomes

6—V2¢+ﬁw+U VA +J(, Vi +h)= ——U%—szw. (2.2)

The parameter v is a coefficient of friction, the process represented
by vW?y being surface drag, or Ekman pumping. k is proportional to
the surface topographic height and is related to the dimensional
height h* by h= fh*/H where H is the depth of the fluid. Thus s has
units of (time) . All other notation in (2.2) is standard.

We shall first consider the circumstances under which a linear
approximation to (2.2), namely

AV2y)jor+ Boy)ox+ Ue(V)/dx = —Ueh/ox—vViy,  (2.3)

is valid. Before proceeding with the scale analysis, note that the
system may be made precisely equivalent to that used in the quasi-
linear barotropic multiple-equilibrium theories by writing down an
equation governing the evolution of the mean field U. If the energy
of the system is defined by

=3[ [U*+(Vy)*]dx,

where the integral is over the entire domain, then conservation of
energy [for the unforced, inviscid case (r—0,v—0)] is achieved by
writing

U /3t + A [ y(ehfex)dx = —r(U —Uy). 2.4)
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A is the domain area, and the right-hand side represents a Newtonian
type momentum forcing. Such an equation may also be derived
from a more or less ad hoc fashion from the geostrophic momentum
equation. Equations (2.2) and (2.4) form a closed coupled set of equa-
tions for the evolution of ¥ and U. The simplest system to consider
is then obtained by allowing only one wave to exist and interact with
the mean flow. Thus =y, exp(ik - x)+c.c, h=h,exp(ik - x)+c.c,
where c.c. denotes complex conjugate. The Jacobian term in (2.2)
vanishes, and (2.3) and (2.4) become

— k2o /ot +ik P — Uik k2, = — Uik hy + vk* i, (2.5)
and |
dU/dt—Re (Y h¥ik)= —r(U—Uy) (2.6)
Writing ¥, =a+ib, and h,=h, +ih,,
dajdt+Cb=B,U—va, db/dt—Ca=B,U—vb, (2.7a,b)
au/dt—(ha—hbk,=—r(U-U*), . (2.7¢)

where C=k(B—Uk?/k* B,=—Ukh/k* and B,=Uk_h,/k* These
are identical in structure to the equation of Charney and deVore,
and Hart. Such equations are clearly only valid when the Jacobian
term J(y, V2 +h) (representing wave-wave interactions) is small.
Although the system is nonlinear (because of wave-meanflow inter-
actions), if the zonally averaged field (U) is known the zonally
asymmetric field is simply the linear response to this.

2b. Scale analysis

Let L be a characteristic length scale and k be a characteristic
wavenumber such that k=1/L. The familiar non-dimensional wave-
number k' is then obtained by the relationship k'=k(L;/2r), where
Ly is the domain length. Thus d/0x~ L' ~2nk'/L;. It is convenient
to consider three wavenumber regimes

i) Uk*>B, i) Uk®<f, ii) Ukxp.
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In case (i), linear theory is applicable if there is a balance between
vorticity advection and topographic forcing, i.e. when

Ud(V2y)/0x ~ Udh/éx,

implying
W ~h/k?.

The topographically induced nonlinear terms [J(y,V*y+h)] are
then O(h?). Thus, nonlinearity is small when the parameter ¢, is
small, i.e.

g,«1,

where
e,=h/Uk=hL/U. (2.8)

As the length scale gets smaller, nonlinearity becomes less important.
Let U~10m/s, f=15m 's~! Then the largest scale we need
consider in case (i) occurs when Uk®*~B, giving a length scale of
816km (for a wavelength, multiply by 2xn). For a channel length of
20,000 km, this corresponds to a nondimensional wavenumber 3.9.
To obtain a value of g, of unity then requires a mountain height of
hx12310"%s7!, or a dimensional height of about 1.23km. Since
spectral components of topography in the atmosphere typically have
components of order a few hundred meters, condition (2.8) is not
especially well satisfied but nor is it strongly violated.
At planetary scales [case (ii)] linear theory requires the balance:

oy /0x ~Udh/ox,
implying
y~Uh/B.

The nonlinear term J(y,V*y +h) is dominated by J(y,h), since
JW,h)/J(Y,V*y)~B/Uk?, and B»Uk? by assumption. “Nonlinear”
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terms [ie. J(¥, h), which although linear in i, is generally ignored in
linear analyses] are indeed unimportant when

eg=kh/B«1. 2.9

At the transition wavenumber k,=(f/U)"? we of course again have
gg=1 when hx1.23km. At larger scales condition (2.9) is better satis-
fied because k gets smaller. However the spectral components of the
topography become correspondingly larger, and may be as large as
several hundred meters. Again then for moderately sized topography
(say a few hundred metres) nonlinearity may be small but is not
negligible.

In case (i) there is cancellation between mean advection of
vorticity and the advection of planetary vorticity. If U is allowed to
evolve (2.4) [or (2.7)], frictional effects become important in deter-
mining how close the system is to resonance. Close to resonance let

A=(f—UK?),

where (A/f) « 1. Equation (2.3} becomes

AV2Y)/ot + Ady /ox = — Udh/dx —vV3y. (2.10)
Still neglecting friction, we see that ¢ =~ Uh/A. For weak nonlinearity
we require the parameter g =ha/A to be small, where a is the
resonant wavenumber (B/U)!?, and we have assumed that the
nonlinear interactions around resonance are fairly local in k-space.
The smallness of ¢, is clearly quite a stringent condition for small A,
not generally satisfied. The magnitude of A may be calculated easily

enough using (2.7), [or (2.5) and (2.6)] supposing them for the
moment to be valid. From (2.5) the solution for y is

Y= Uik, h/(vk? —ik A). (2.11)
The form-drag D(U) on U is then

D(U)= Uk2|h|*vk?[(v2k* + k2A2). (2.12)
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In a steady state this is balanced by the momentum forcing, so that
HUq,—U)= kalhklzvkz/(vzk“ +k2A2). (2.13)

Note that the form-drag is zero if the flow is inviscid, unless the
denominator of (2.12) also vanishes. Considering only the case of
small friction we have

A? VU [ 22 /r(U = U). (2.14)

Note that (2.14) is consistent with (2.13) since v?k* always tends to
zero faster than k2A? as v—0. Thus, as v—0 (2.13) has three
solutions, one at U=U, when both left and right-hand sides of
(2.13) are zero, and two close to (and on either side of) U= Bla*
where the form-drag is —r(B/a®>—U,). These latter two are the
resonant solutions. The distance from resonance is then governed by
(2.14) with U and k taking the resonant values B/a* and a on the
right-hand side. As friction gets smaller the wave amplitude (in the
resonant solution) gets larger. The nonlinearity parameter &, =ha/A
tends toward r(U,—U)/vU, ie. it becomes larger, and any a priori
elimination of nonlinearity is inconsistent, whatever the value of the
surface topography. Note that the solution at resonance must be
unstable. For if we increase the zonal wind slightly the form-drag
becomes zero, there is nothing to balance the momentum forcing so
the solution tends toward the forcing equilibrium.

To summarize, then, we have demonstrated that, while for suffi-
ciently small mountains we perhaps could ignore nonlinearity away
from resonance, it is not permissible to do so near a resonance if the
zonal flow is determined by form-drag and friction is small. This is
essentially consistent with Davey’s (1980) findings. (We have con-
sidered only nonlinearity induced by the topography, ignoring tran-
sient eddies due to those flow instabilities which are essentially
independent of topography.) Of course, nonlinearity under some
circumstances may be unimportant because J(i,q)=0, even though
the terms in the Jacobian (dy/0x dq/8y) are individually large. This is
the case in some exact (normally inviscid) solutions of flow over
topography, as described below. However, the above analysis sug-
gests that unless these solutions are stable, the instability will be
large enough to destroy the form of the solution. Also, such
nonlinearities should clearly not be eliminated a priori.
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3. EXACT NONLINEAR SOLUTIONS FOR ONE AND
TWO LAYER FLOWS

In this section nonlinear, steady exact solutions for one and two
layer quasi-geostrophic flow over topography are derived. The
solutions are unique provided there is no friction, no recirculation
regions and given a constant upstream flow. The resonant conditions
for a few special cases are examined. This section is a preliminary to
the stability studies of Sections 4 and 5.

3a. Barotropic flow

Steady inviscid solutions to (2.1) may be written

0=0(¥)

since then J(¥, Q) =0. Given the upstream (or downstream) boundary
condition, far from any topographic influence

Q=8y, ¥Y=-Uy, (-1
where U is a constant the general solution is
0=-p¥/U, (3.2

provided no closed contours exist in the flow. Note that writing
Q=q+fy and ¥=—-Uy+y, we have still g=—fy/U. Thus both
the mean fields and the eddy (zonally asymmetric) fields satisfy the
condition (3.2), and so a stream function ¥ given by (V3§ +h)=
—pByY/U is a solution of

AT ey U
azv'/j+ﬂax+UaxV'/j+J('/j’V'/j+h)——UE' (3.3)

In a zonally re-entrant channel, where no upstream boundary
condition like (3.1) exists, (3.2) is still a solution of (3.3), but not
necessarily the only one.
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3b. Two layer flow

Exact solutions may also be written down for two layer flow over
topography. The potential vorticity equations may be written, at the
upper and lower levels, as

d 0 3
@ g0, Loy (v -0 >+J(w1,qo 0
ot
oy oy
642 ﬁ% _V2¢2+ (02 = ! Ul?f) (3.4)
oh
+ W)= —Usr,
where

q =V2¢1 +%}-2(¢2 —¥1), @=V,+3%(, —y,)+h

and U, and U, are the translating velocities of the upper and lower
levels (1 and 2) respectively. A is an inverse deformation radius,
given by A=2f3/cAp, where ¢ is the static stability parameter
p 'd(In®,)/dp. Alternatively, in height co-ordinates A=f/Nh,
where N is the Brunt-Vaisala frequency.

Exact fully nonlinear solutions for (3.4) may be written down.
They are

_ 34U, U,
V=T B 200 + TR U3 T KU, U, T
Y= _2¢1k(ﬂ—%12U2_k2U1)/'12U1 (3.5)

where U=%U,+U,). These are exact solutions because in both
layers a functional relationship exists between g; and y; everywhere,
namely g,=Fy; where

Fi=—[B—34%U,~Ul/U,, Fp=—[B—3A%U,=U)I/U,. (3.6)

The solutions are again the only solutions if, upstream or down-
stream far from the topography, the flow is purely zonal with
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velocities U, and U, in the upper and lower layers. Some interesting
limits to (3.5) exist.

i) k2—0. This gives
¥ =34%hU,U (B — pA2T),

with a similar expression for ,. The condition for resonance
depends now only on the mean barotropic flow structure. It occurs
when YU, + U,)=f/22. This problem may have considerable oceanic
relevance since the oceanic deformation radius is so small.

ii) Barotropic Mean Field (U, =U,=U). The potential vorticity
functionals simplify to F,=F,=—f/U, and the solutions for the
stream function simplify to

Y= A2U(B—UkH[B—U(k*+12)]. (3.7

Two resonances now exist, at f=Uk? (a barotropic resonance) and
B=U(k?+4?) (a baroclinic resonance). Again both are the conditions
for stationarity of the Rossby waves allowed in the system. At the
barotropic resonance \, =\,, whereas , = —1, at the baroclinic
resonance.

iii) Highly baroclinic mean field, i.e. U,>»U,=0. Since only the
lower fluid level is directly affected by the topography, there is no
topographic response (i.e. ¥, =v,=0) unless the denominators in
(3.5) are zero. This occurs when f=Uk? and taking this limit first
(and then setting U, =0) yields

ll/u:hkUl/ﬂ: —'hk/kza ¢2k= Uzwu/Ul-

Thus, for very small lower level flow, only the upper level is excited
and only at the resonant wavenumber. The upper level response is
finite and depends only on the topographic height and the
wavenumber.

4. FLOW INSTABILITY—A LONG-WAVE
APPROXIMATION

This section is the first of two which deal with the instability of flow
over topography. We shall consider the stability of exact solutions of
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the equations describing barotropic and baroclinic (two-layer) flow
over topography. The procedure is to specify a mean field U, then
calculate the topographic response to this field (i, say) and then
calculate the instability of this solution (J —Uy). This procedure is
similar to, but not quite the same as, calculating the stability
properties of a stationary state of a coupled viscous system such as
Hart's or the Egs. (2.3) and (2.4). In those systems viscosity and
forcing are important in determining the stationary values of the
zonal wind. Given this zonal wind and the resulting amplitude of the
asymmetric components, one does not expect these forcings to play a
major role in the development of any subsequent instabilities. In my
analysis the zonal mean field is specified (although a zonal flow
rectification is allowed, and in some cases is essential), and only the
inviscid problem is considered. Nevertheless, unless viscosity is
playing a very subtle role the essential instability mechanisms are the
same in this case and in the forced, viscous case.

The stability equation is easily derived as follows. Suppose that an
exact solution to the equations exists and is of the form §=y¥,
where y is some constant. Then the perturbation equation becomes,
writing ¥ =¥ + 4 and ignoring squares of primed quantities

oq /0t + J(P,q)+ I, yP) =0,
or
oq' /ot +(J¥, g — ') =0. (4.1

For a single Rossby wave of wavenumber k,y= —k?; for barotropic
topographic flow y= —g/U.

The remainder of this section will invoke a long-wave approxima-
tion to enable explicit stability calculations of (4.1) to be performed.
Unlike the conventional long-wave approximation, we shall consider
motion only of large meridional scale. It is therefore appropriate for
flow over topography with large meridional scale, such as long
North-South ridge. [These are also the conditions which Hart (1979)
considered.] However, the analysis below is presented as an explicit
stability calculation, in which I perburb the exact solution to flow
over topography, and examine only perturbations of large
meridional scale.
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4a. Barotropic flow

Let the basic flow be ¥= — Uy+(x), where U is a constant zonal
flow. For a Rossby wave then ¥=—Uy+ Ae™ (plus complex
conjugate) where U is a constant zonal flow and A is the arbitrary
wave amplitude and k is the wavenumber. Note that the system is
Galilean invariant, so we can choose U =f8/k* so the Rossby wave is
stationary. For flow over topography, ¥ = —Uy+J(x) where J(x)
satisfies V2 +{/B/U = —h(x). In both cases (4.1) becomes, dropping
the primes,

A(V2Y)/ot + U(0/ox) (V2 + k) + J(, V3¢ + kjy) =0, 4.2)

where kj=pB/U. Now expand the perturbation stream function in
powers of I, the meridional wavenumber nondimensionalized by
some typical zonal horizontal scale k,. Thus we seek instabilities of
the form

¥ =[¥o(t) + (ko) 1(x, 8) + (ko) W o(x, 1)+~ Je™. (4.3)

The coefficients are complex. Implicit always is the addition of
complex conjugates. The reason for the scaling, and in particular for
the zonal flow correction i, will become apparent below. l/k, is
assumed much less than unity. Substituting (4.3) into (4.2) and
equating powers of ! yields, at order ! and I? respectively:

8 (3% &2
é?(ax21>+Ua (a 2+kﬂ>¢1+zkﬂl/7 Yoko=0,  (d.4a)

Ao @ (0% o[ P
N R
(4.4b)

If an explicit zonal flow correction is not allowed for in (4.3), (4.4a)
would yield a stable Rossby wave. However, the last two terms on
the left-hand side of (4.4b) in general do have a zonally averaged
component. Without the term in y,, there is nothing to balance
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them and there is an absurdity. Zonally averaging (4.4b) yields

ko OWo/0t — k2T ,) — i, 02, /Ox% =0. (4.5)

This, and (4.4a) are a pair of coupled integro-differential equations
whose eigenvalues determine the stability of (4.2). Combining the
two equations yields

* () 82 (8, w7 (2 O\, |
57{—637 +Uaa &—ﬁkﬂ Yy — k3 . k,,+5? Y, |.(4.6)

Normal mode solutions are not generally valid. However, we may
express § and , as Fourier series thus:

(‘/7, Y= }; (\Zk’ 9] e,

Equation (4.6) becomes

K262, J01% + U(8/0t) — ik + kK2 + ikk S ipl - (k2 — p?) =0.

p
4.7)
There are two situations in which this may be solved analytically.
i) High wave amplitude limit Neglect the second term on the left-

hand side of (4.7). Then seeking solutions of the form y,(t)=y, e
for all k gives

koY — kg Y, U - (ks —p* W, =0. . (48

By inspection, we can write down one set of eigenfunctions and
eigenvalues of this. They are

Yok, o?= —kﬁ;]ﬁkf(kz—kf). (4.9)

From (4.9) and (4.7) the strong interaction or high wave amplitude
limit can be secen to be consistent when |pf,|»|U|. From (4.9),
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instability arises only when kj >0. This is consistent with the Arnol'd
criterion: when 8G/6f >0, a sufficient condition for stability is
satisfied (See Section 5). If only one component of flow is present say
of wavenumber m, instability arises when (m?— g/U)>0, ie. the flow
on the “high side” of resonance is unstable. Equation (4.9) is a
generalization of this result to more general topographic shapes.

ii) Single Fourier mode topography Equation (4.7) then becomes
— k2%, /ot +ikU(0/or)(k — k)W, — k3 |k, | (k3 —k*)y, =0.  (4.10)
The dispersion relationship of (4.10) is

k*a? —kUaq® —k3g*| ki[> =0,

where g?=k}—k? This gives instability when all of the following
conditions pertain:

k;>0, ki<k? |kj|*> —U?q?/4k3.

For a Rossby wave, k;=k and no instability exists. Instability does
exist for eastward superresonant flow over topography, provided the
topographic wave is of large enough amplitude. This will be referred
to as “form-drag instability”. It may be considered a triad-instability,
in which the three interacting components are the zonal flow, the
topography and a component close to the topographic scale. Other
triads are considered in Section 5.

4b. Two-layer flow

The equations governing the growth of perturbations. about the
steady solution (3.5) are readily written down. The two-layer version
of (4.1) is (dropping the primes)

0 . G,
ql ﬁ—‘p_l+U1_V2‘lll (]1 ‘pz Uzawl
Ox ox

+J(f1,9, —F 1) =0,
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a‘12 % AR v2) oy, oy
N EATRR RS (R TN

W2 a2=Fa3) =0, (4.11)
with F, and F, given by (3.6) and ¢, and q, given by (3.4b). Writing
Y=3Y+Y¥,) 1 =, — ) we find

£y 4U,+ U S 23 +VIY +HU, ~Us) Ve

J(‘/;,‘h“Flwl +q,—FY)+J(5,q, —F ¥, —q,+ Fy,) =0,
(4.12a)

5, é 5,
E(VZ — At +H{U, ~ Uz)a(vzl// +22y)+HU, + Uz)a—x(Vzt+ k21)

+J(‘/7a511—F1‘l/1“Q2 +Fao) + (1,9, —F ¥, +q,— F,) =0,
(4.12b)

where k2 =k2, k2 =kj— A%

Seeking the form-drag instability, we may attempt a perturbation
expansion along the lines of (4.3). This turns out to be valid for y.
For 7 we would have then

t=[ro(0) + (Uko)z (x, 8) + (ko) 2120, 1) + - - Je®.
At zero order we obtain the trivial result
d(—2A%1,)/dt =0.

Therefore, directly from the scaling, it is clear that form-drag
instability acts only to produce a barotropic correction to the
zonally averaged field. [A related, but less general, result was
obtained by Charney and Flierl (1981) by a somewhat different
method and with a purely zonal basic state.] It would be possible to
obtain from (4.11) a dispersion relationship for arbitrary shear, and
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solve this numerically. However, it is more instructive to specialize
to the case U, =U, = U (which is manifestly stable in the absence of
topography), for then the instability arises in its purest form, and
show that topography may destabilize the flow both baroclinically
and barotropically. Equations (4.12) become

AV2)/ot+ U(0/ox)(ky + VAW + J(§, VI + k2y) + J(£, V21 + k21) =0,
(6/36)(V* — 22+ U(8/cx)(k + V)t
+IL, (V2 + k2T + J(3, V3 + k3)=0.
Effecting the following expansion in powers of I'( =1/k,)

Y=o+ (x,0)+... 7", 1=t (x,0)+...]e",

yields
é[ 0° o/ a2
E(W_H)“+U5;<a_xi+k‘2)h+if’k'i¢°k°=0’ (4.13a)
é (%, o(é* o 1
i\ [T U\ Gtk o+ idkgioko =0, (4.13b)

2 2

e, @ T )
‘koaﬁbo-i-lﬂbx(W-i‘ké)wx ‘HTx(W‘*‘er)Tx =0. (4.13¢)

Considering the problem as one of interacting “triads”, only two
possible types of interactions are possible, namely (¥,y,,¥,) and
(T,71,¥0). The first is a purely barotropic triad, the second a mixed-
mode instability involving two baroclinic modes and the barotropic
zonal flow. The baroclinic modes evidently interact in the same way
as the barotropic modes, with the familiar replacement in wave-
number k’—k*+2% (e.g. Vallis, 1983). For the case [J|»]i, (4.13b
and c) reduce to the barotropic system (4.4). This condition holds
near the barotropic resonance U=f/k®. The instability is purely
barotropic. On the other hand, near the baroclinic resonance U =
B/(k*+23), |E|>»||. Equations (4.13) then reduce to
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(5/5[)(62/6x2 — A%t + U(8/0x)(8%/0x? + k2t +iT kW oko =0,

kodtho/0t— 2,882+ Kz, =0. (4.14)

This is identical with (4.4), except that the wavenumber k? is
replaced by the pseudo-wavenumber k'*=k%+ A? wherever it appears
via the V2 operator on 7. The analysis now proceeds precisely as in
Section 4a, now with potential baroclinic instabilities arising.

Eliminating Y, from (4.14) gives

x

2 (e a . a(ao* EE
Eat_z’(;)c_z—ﬂ)q +6—t Ug(w_*’ krz)‘fl - kjfxfx(é? — A2+ kﬁ)‘cl =0.
(4.15)

In the high wave amplitude limit (4.15) gives, after Fourier
transforming:

oK+ A2)e, — k3T Y pE [kE —(p + 4]z, =0,
P

with eigenfunctions
T ock?, /(k* + A?)

and eigenvalues
a® =k 3. p*i ks —(p* + A1)1/(p* + 47). (4.16)
P

For a single Fourier mode topography we obtain
(k*+11)6* —aUkLk; — (k*+ 4%)] — k}]kr}]z[kj —(k*+13)1=0. (4.17)

As in the barotropic case instability exists only for eastward super-
resonant flow (now defined by k?+i?>p/U), or its appropriate
generalisation (4.16) if the topography has many Fourier modes. The
energy cycle for such an instability is zonal barotropic instability
+stationary eddy baroclinic energy—transient (growing) eddy
baroclinic and zonal barotropic energy. In the case with vertical
shear the topographic instability is combined with a conventional
instability drawing energy from the zonal shear.
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5. GENERAL STABILITY CONSIDERATIONS

ba. Integral constraints and nonlinear stability

This subsection examines some of the effects which Arnold-type
constraints—imposed essentially by the conservation of energy and
enstrophy—have on the stability problem. The Arnold stability
criterion (Arnold, 1965; Blumen, 1968; Pierini and Vulpiani, 1981;
Holm et al.,, 1985) is a sufficient criterion for nonlinear stability. The
general method involves taking variations of some conserved func-
tional of the streamfunction, and under certain conditions nonlinear
stability can be demonstrated. Because of the simple, linear relation-
ships here between g and y it is easier, and instructive, to present an
equivalent argument directly from the equations of motion.

The stationary solutions to the quasi-geostrophic equations dis-
cussed earlier are all of the form Q=y(z)¥ where z is a vertical
co-ordinate. The nonlinear perturbation equation is then (with

0=0+q¥=T+y)
og/ot+ J[¥,q—y(2W]1+J(¥,q) =0. (5.1)

Thus, ¢ and y are the perturbation potential vorticity and stream-
function respectively.) Perturbation energy and enstrophy equations
are formed by multiplying (5.1) by — and q. If g=V*§ + A%8%y/02*
(where A is an appropriate inverse deformation radius) then we find

Hd/d){(V)* + A3(09/02)*> — (Y J (P, 9)) =0, (5.2)

and

Hd/d<a?fy> —<qJ(P,9)> =0, (5.3)

where { ) denotes a volume integration. Equation (5.2) and (5.3) are
valid in doubly periodic or channel domains, or in an infinite
domain with the perturbation streamfunction vanishing at infinity. I
have also assumed Jy//dz vanishes at the upper and lower bound-
aries. [See Blumen (1968) for the effects of nonzero dy//dz.] Adding
(5.2) and (5.3) gives

(d/dD)<(V)* + 2A%(0y/02)* +y™ 1 q*> =0. (54)
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If the integrand in (5.4) is positive or negative definite, the perturba-
tion cannot grow and the flow is stable, in the sense of Liapunov.
One sufficient condition for positive definiteness (Arnold’s condition)
is that y be everywhere positive.

In layered-models, and finite difference versions of the continuous
equations, the definition of g; (the potential vorticity in the ith layer)

[13:1)

includes the boundary conditions. Thus at an interior layer “i” we
should have

G=V 3 Wi+ =20, (5.5)
whereas at the lowest level “N™:
an=VUn+347 (N — N +h. (5.6)

Given (5.5) and (5.6), the layered version of (5.4) is simply
N
(d/de) 3, (V0 +322(i=Yoan)+37 02> =0, (5.7)

provided I define Yy,; =¥y, and ) is now only a horizontal
integration.
For a two-level model (5.7) becomes

(d/d)) (Vi) + (V)2 +32% 0 — ) 1 Tl +93 143> =0, (5.8)
Before returning to topographic effects, 1 shall show that (5.4) and

(5.7) give useful insights into ordinary baroclinic instability. For two
layer flow with basic state

Pi=Uy,  Oi=Py—3%U,~Uyy,
¥,=—Uw, 0,=By—34%(U,—Uyy.
We evidently have
71=—B+2U)/(Us+U), y,=—~(B—A*U)(Uy~U),

where
U1=U0+U, U2=U0_U.
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We can choose Uy< — U (since a Galilean translation does not alter
stability properties). Then both y, and y, are positive if §>A?U and
the flow is stable. The condition is just that which can be obtained,
less generally, by a normal mode analysis. Therefore even if the flow
is turbulent, energy and enstrophy cannot be extracted from the
mean flow if the shear is sub-critical (U < f8/42). The condition that
necessarily stable zonal flows be pseudo-westward everywhere (cf.
Andrews, 1984) is not violated, because of our freedom to choose U,

If we let Uy=p/A? then y,=7,=—A% The constraint (5.8) then
takes the nicely symmetric form:

(d/dn) Y {k*Yi(k* =A%) + k' 1i(k'2 — A7)} =0, (5.9)
k

where Y=Yy, +V,), t=H¥Y,—¥,), k?*=k*+1? and the stream
function has been spectrally expanded over all k:

[ (x, ), (x, )1 =Y. (Y1, 7 exp (ik - x).
k

In the linear problem (which, because the basic flow is purely zonal,
does not cause perturbation modes to interact), modes for which
k>4 are stable, whatever the shear, since if the sum in (5.9) is
restricted to k>4 it is positive definite. If the smallest allowable
wavenumber is greater than A (say for geometrical reasons), the flow
1s always (nonlinearly) stable, whatever the shear. Physically, the
mean flow cannot transfer both energy and enstrophy to a mode of
wavenumber greater than 4 and still satisfy the attendant constraints.

Similar constraints are useful in multi-layered systems also, especi-
ally if the mean flow has a simple vertical structure. For consider the
problem with a mean vertical shear given by ¥ = Uy cospz where the
vertical coordinate is scaled so that the top of atmosphere is at z=m,
and rigid lids with 0y/0z=0 exist here and at z=0. It is readily
shown that the flow is stable for U< f/A?p®. Hence the greater the
vertical structure of the basic flow, the smaller the critical shear for
instability. Appending to the shear flow a dynamically inactive
barotropic flow of the form By/i%p* gives a constant y=§/ij = — A%p?
everywhere. Expand the perturbation streamfunction as

¥=) Y exp(ik - x)cosaz. (5.10)
k,a
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The constraint (5.4) becomes

(d/dt) Y YL {(k* + A2a?)[A2p* — (k* + 2*aP)]} =0.
k,x

If the basic flow is simple (say p=1) then stability is assured if
(k*+ A%a?)>A% for all k,o. This is guaranteed if k*> 4%, so again, for
this simple problem, there is a high wavenumber cut-off to insta-
bility. Furthermore, note that the growing structure must have a
barotropic component («=0) which feels the presence of both upper
and lower boundaries. If p>1, a greater range of wavenumbers is
unstable. Physically, there is more enstrophy in the basic state and
higher wavenumbers can be unstable. These conclusions are of
course valid only for disturbances which satisfy the isothermal
boundary conditions. A uniform shear (¥ = —Uyz) is always non-
linearly stable with such boundary conditions.

5b. Integral constraints on topographic instability

The minimum shear required for instability (8/4%) in the two layer
case does not apply if topography is present, because the flow is no
longer Galilean invariant and U, is no longer arbitrary. However,
the constraints do impose some necessary conditions for instability.
Consider first barotropic flow over topography, with §= —fJ/U.
The integral constraint (5.4) reduces to

(d/de)d(V§)? —ky (V)™ =0. (5.11)

Easterly flow (U <0) is therefore necessarily stable. Expanding the
streamfunction spectrally enables (5.11) to be written

(d/de) Y ik (kg —k*) =0. (5.12)

Form-drag instability may be considered a triad-interaction involving
the zonal flow (k<kg), the stationary topographic wave and another
mode of similar scale to it, say wavenumber k. Thus (5.12) is
positive definite (and the flow stable) if k3 >k, or U<pf/k’%. Flow
on the “low-side” of resonance is thus stable. The stability arises
entirely because the meridional scale of the topography is assumed large
(ie. l«k). If I is not negligible flow on the low-side is not necessarily
stable (as found by explicit calculation below). The general condition
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which emerges from (5.12) is this: A stationary flow over topography,
or a stationary Rossby wave, may be unstable to a triad interaction
provided one triad member (m) is such that k;>m and the other (n)
is such that k;<n. In two layer flow with no shear (so y,=7,=
— B/U) the analogous condition to (5.12) is

(d/de) Yy {Yek*(k* —kj) + 12k’ *(K'? — k})} =0.

Consider triad-interactions involving a barotropic basic state, i, or
a baroclinic basic state f,. The allowable triads are, in the former
case, (f,, Ypty), (Y 7,, Ty and in the latter case (1, 7,,%,) Where in all
cases p+q=Lk. Stability is guaranteed unless p?>kj and q* <kj or
p? <k} and g*>> k3, with the replacement p?,q*>—p?+ 4%, q> + A% if the
mode involved is baroclinic. The point is that triads involving a
baroclinic member behave very similarly to purely barotropic triads,
provided the rescaling k*—k*+ 1% on baroclinic components is
performed, and that an instability must involve modes with wave-
numbers, or “pseudo-wavenumbers”, on either side of k.

5c. Explicit stability calculations

This section considers the stability properties of one and two layer
flow over topography when the meridional wavenumber is not small.
To abstract the physical mechanisms a number of simplifications are
made. First, the topography will be allowed to have only one
wavenumber (although this is not a condition for a stationary
solution of the equations). Second, only triad interactions involving
the basic state and two interacting modes are initially considered.
Third, in the two layer case no vertical shear in the zonally averaged
state is allowed which, as in Section 4, allows the instability to be
displayed in its purest form.

i) Barotropic flow This is considered as a preliminary to the two-
layer case. Perturbations to a zonally asymmetric basic state i, set
up by a uniform zonal current U flowing over topography h(x,y),
satisfy (4.2), namely

A(VA)/ot+ U(3/0x) (V2 + kW + J[, (V2 + ky]=0, (5.13)
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where ¥ satisfies
V3§ + ki) = ~h(x, y).

Equation (5.13) is precisely that studied by Gill (1974) in his study of
the stability of Rossby waves, provided one allows the basic state ¢
1o comprise only wavenumber k where |k|=k,. Gill's approach was
to expand the perturbation streamfunction as:

l’b:wpeip-x+wqeiq-x+lpreir-x+_,,,

where k+p=r and k—p=q. The truncation is applied after the three
terms shown, so two triads are involved, namely (k,p,q) and (k,p,r).
The two parameters of the problem are the primary wave ()
amplitude and its direction. The truncation is to some extent
arbitrary: in the weak interaction or low wave amplitude limit
(kf;d}« p) the truncation is valid. In the high wave amplitude limit it
is not, although the growth rates (of mode p) are the right order of
magnitude. To display the triadic nature of the instability it is
sufficient to consider the simplest problem which is that of just one
interacting triad, say . Y, ¥, (In the Rossby-wave case, only one
wave is allowed in the basic state for it still to be a solution of the
equations of motion. Although this is not the case in the topo-
graphic problem it is a useful simplification.) Assuming then that
g=y.e** and Yy =y,e* *+ ¢, * where —k+p=q the equations
governing the evolution of ¥, and ¢,, obtained from (5.13) are:

d( —pzwp)/dt"l— iwppzwp + apkq‘;k(kﬁ -qz)quoa
(5.14)

d(— g/t +ivg Yo+ a, il ki — "W, =0,
where w,=p(B—Up?) and similarly for w, and a,,=—(kxgq).

Equation (5.14) yields the dispersion relationship (letting ¢, =y,
etc.):

0-2 - O'(CL)p-I- w'l) +wpwq+ apkqaq —kplpf(k; - qz)(kﬁ _pZ)/pqu =0-
(5.15)
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Now, ay,=(kxq) and au,=—(kxp)=—(kxgq). Instability
(negative a?) therefore only arises if one (and only one) of p? or ¢ is
larger than kj, and the other is smaller. Furthermore, k; must be
positive. Before discussing the case further, we turn to the two-layer
situation.

il Two layer baroclinic instability over topography. The related
problem of the stability of baroclinic Rossby waves was considered
by Jones (1978). In general the mean flow now consists of, as well as
the zonally averaged flow — Uy in each layer, a baroclinic, 7, and
barotropic, ¥, zonally asymmetric state. The perturbation equations
are derived from (4.12) and are:

A(V2) 6t + U(8/6x)(K3 + V2 +J(F, V2P + k)
+J[E (V2 — A%+ k31] =0,
(8/30)(V2— A%yt + U(8/0x)[k3 + (V2 — A2t + J[PAV2 — A1+ k1]
+J (5, V2 + k2y) = 0. (5.16)

There is a great deal of similarity between (5.16) and (5.14). Allowing
the stationary flow to exist at only one wavenumber, k, and
perturbations at wavenumber p and q the interacting triads are:
(¥ ¥ ¥,), the barotropic triad; and (f,,1,,1,) and (%, ¥, 1,) which
are mixed triads. (Form-drag instability, like conventional baroclinic
instability, may be considered a non-local triad interaction around
an isosceles triangle with |k|~|q|>|p|. However, in that case the
interaction (;/7,‘,1,,, 1,) does not exist because the zonal flow correction
is barotropic).

The relative magnitudes of i, and 7, are determined by the value
of U. From (3.5):

Uo=hJ(k;—k?), T,=h/lki—(k*+4i%]. (5.17)

At the baroclinic resonance, U= B/(A%+k?), the barotropic response
remains finite, and conversely at the barotropic resonance. For a
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topography consisting of a given wavenumber component, then, the
relative magnitudes of the baroclinic and barotropic stationary flow
components are determined by the relative magnitudes of kj—(4?
+k?) and k3—k® respectively. The stability properties of 7, and ¥,
are distinct, and may be considered separately. The stability of ¥, to
purely barotropic perturbations is governed by (5.16a), with 7, =0,
which is then identical to (5.13). The stability of barotropic and
mixed interactions [i.e. D T, Tg) and (1, ¥, 7,)] is governed by, in all
cases:

(d/de)(— P2 ¢p) +iw,p ¢+ a e Pu(kf — 4 )y =0, (5-18a)
(@/dD(—q¢g) +iwg g+ a, - 1,® (ki —q*)$,=0.  (5.18b)

Here, (zk:fk or 'Zh q’2=q2 or q2+’7'2’ d)p:'\bp or 1, (l)p=pr
(k3 —p?)/p* or Up.[k; —(p*+ 23))/(p* + 4%) and v, = Uq,(k; —¢%)/q* or
Uq,[k3—(q* +A*)1/(g* + 2*). The allowable combinations are listed in
Table1l. Equations (5.18) and (5.14) are identical, and so the disper-
sion relationship resulting from (5.18) is the same as (5.15). The next
subsection discusses the barotropic and baroclinic stability properties
together.

5d. Barotropic and baroclinic instability—discussion

The generalized dispersion relationship from (5.18) or (5.14) is:
o ~o(w, +w,)+ w,w,+ apkqaqk;,(.ﬁf(kg - q’z)(kg —p/p?g?=0. (519

The following seem to be salient points:

i) The problem of the stability of a Rossby wave is the same as
the problem of the stability of the stationary flow resulting from a
uniform zonal current flowing over topography of a single wave-
number (B/U)2.

ii) The one and two layer problems may be put into formally
identical forms.

iii) The instability needs only two other modes, aside from the
topographic mode, in order to exist. That is to say, the nature of the
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instability is a triad interaction between the stationary flow set up by
the topography (and of the same wavenumber) and two “free” modes
with wavenumbers (or pseudo-wavenumbers) on either side of k.

iv) No mean (zonally-averaged) vertical shear is needed for
baroclinic instability. The instabilify is, or can be “baroclinic”
pecause of the existence of growing modes with baroclinic vertical
structures. Even if the basic state in purely barotropic (7=0), both
eddy baroclinic and barotropic energies may grow. The former is
unlikely, however, since this requires the existence of modes p and ¢
such that p?+4*<k;<q*+ 2% Typically in the earth’s atmosphere
kg3 or 4 (in nondimensional wavenumber units) whereas Ax8 or

10.

All of the perturbation modes—the set {i,}—are coupled through
the Jacobian. The general form of the instability is therefore a matrix
eigenvalue problem with as many eigenvalues as there are modes in
the system. Ultimately all of the modes grow at the same rate—that
of the largest eigenvalue. Initially though, the growth rate of a
particular mode y, is determined through its interaction with ¢, and
those modes which directly interact with , and i, namely those
with wavevectors q=p—k and r=p+k The instability is then
governed by [cf. (5.18)]:

(d/dt)( - p,2¢p) + iwpp,2¢p + apkqak(kg - qVZ)lﬁq + apkr$ —k(klzi - T’2)¢, = 05
(d/dt)( - ql2¢q) + iwqqlz¢q + aq —kp(.ﬁ —k(ké - p, z)d)p = 0’
(d/dt)(—rd) +ior .+, filks — pP),=0. (5.20)

For high wave amplitudes this truncation cannot be rigorously
justified. Other modes must be included and the calculation per-
formed numerically. However, it appears that such truncations do
give qualitatively correct solutions, at least for the Rossby wave
case (Coaker, 1977). My aim is not to calculate accurate marginal
stability curves (which would in the high amplitude case have little
physical relevance because of the rapid onset of nonlinearity) but to
illustrate the basic mechanisms of topographic instability. Hence I
shall not pursue Coaker’s more accurate approach involving Floquet
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theory. The dispersion relationship of (5.20) is:
(J - (DP)(O' - (Dq)(O' - CUr) - apkqaq~kp‘$k| z(klzi - qlz)(k[% _p!Z)(O. _(‘Or)/plzq’2
— gl B2 — PR~ p o~ )PP =0.  (521)

The “high-wave amplitude” limit is obtained by neglecting all the
w’s. This gives

02 = apkqaq—kplaklz(kﬁ - qlz)(kl% _p/2)/p12q/2
+ gy | Buf (kG — 1) keg —p?) /PP (5.22)

This limit is valid near a resonance or when topography is high. The
instability now is stationary, which interestingly, indicates the possi-
bility of a modified, inherently nonlinear, stationary solution. In
general, though, the instability is travelling.

Figure 1 plots contours of the instability for the purely barotropic
problem (equivalent to A2=0). The axes of the figures are p, and p,
and the lines are contours of (—o?). Topography exists only at x-
wavenumber unity (zero y-wavenumber) and o2 is then calculated for
various values of k, using (5.22). For k<kg, form-drag instability is
indeed reproduced: for small meridional wavenumber instability
arises at the topographic scale and at the zonal average. Note that
this does not justify the expansion procedure of Section 4. Rather,
the consistency of the results justifies qualitatively the truncated
spectral expansion. As soon as k;2k, form-drag instability dis-
appears (Figure 1b, ¢, d). The zonal instability is confined to smaller
meridional scales and the non-zonal instability to values of | p| larger
than k;. To illustrate the baroclinic problem let us consider only
the geophysically interesting case A>|k|, and in particular let
A/lk|=3. In Figure 2 are shown growth contours for a barotropic
perturbation to a baroclinic basic state [ie. the problem
(T ¥p T 7). Again note the consistency with the previous form-drag
instability: for all values of k, for which kj <k®+2? (ie. ky<10'?)
the instability at low meridional wavenumbers is purely of the
zonally-averaged barotropic flow. As soon as resonance is reached
(Figure 2d) the form-drag instability at low p, disappears. The
subresonant instability does exist, but only at higher meridional
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FIGURE | Contours of growth rate for the barotropic perturbation ¥, on a
barotropic basic state ¥, in the high amplitude limit for various values of ks. Plotted
are contours of —o® where —g? is given by (5.22) with 2>=0 and ¥, of unit
amplitude. Topography exists only at wavenumber k=(1,0), as marked by an asterisk.
Only positive growth rates are drawn. Note that only for instability of small
meridional wavenumber must the flow be superresonant (k> k), and that subresonant
instability (k< k) exists at higher meridional wavenumbers.
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FIGURE 2 As for Figure 1 but now for barotropic perturbations ¢, about a
baroclinic basic state 7. Contour interval is ten times that of Figure 1. The values of
k; and A (=3) are marked with dashed lines. For resonant and subresonant zonal
flow (kj = k*+4%) ie. (k2 10) the instability leaves the abscissa, as demanded by the
asymptotic analysis of Section 4.
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wavenumbers. The maximum growth rate occurs always at the zonal
average (i.e. p,.=0), the wavenumber increasing with (but always less
than) k- . .
Figure 3 shows growth contours for a baroclinic perturbation
growing from a baroclinic basic state [the problem (1,1, ¥, )]
For superresonant flow (k7 <k?+ 4?) the zonal scale of the instability
is at the topographic scale, occurring when either y, or i, is a mode
of the zonally averaged flow. For resonant and subresonant flow the
form-drag instability disappears, the instability appearing in a band

close to k.

6. SUMMARY AND CONCLUSIONS

This paper has primarily been concerned with the stationary flow set
up by a uniform zonal current flowing over topography and the
ensuing flow instabilities.

It was first demonstrated that for both one and two-layer flow,
with arbitrary shear, exact fully nonlinear solutions exist. They are
the same as the linear solution, i.e. that solution obtained by writing
¥=—Uy+y and ignoring terms in 2 However, a simple func-
tional relationship exists between the potential vorticity and the
streamfunction which means that the nonlinear Jacobian terms
J(y,q) do vanish. Such solutions are the only nonlinear solutions if,
far upstream or downstream away from the topographic influence,
the flow is a uniform zonal current W;= — U,y and there are no closed
streamfunction contours. For barotropic flow the relationship be-
tween potential vorticity and streamfunction is then Q= —f¥/U.
More complicated, but similar, relationships exist in two-layer flow.

The remainder of the paper discussed the stability properties of
this flow. If the topography is high enough, or if resonances exist in
the system, such a flow will be unstable. Both subresonant and
superresonant flow can be unstable. If the topography has little
meridional variation, an asymptotic analysis can be used to display a
form-drag instability. This is an instability involving the zonal flow,
the forced stationary flow of topographic scale and a free mode also
of topographic scale. The analysis is valid only for perturbations of
large meridional scale, and only superresonant flow is unstable. Free
Rossby waves and subresonant flow over topography do not exhibit

GAFD -B
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FIGURE 3 As for Figure 1 but now for baroclinic perturbations 1, about a
baroclinic basic state 7. Contour interval is five times that of Figure 1. For resonant
and subresonant flow the instability leaves the abscissa at the scale of the topography.
There is never any instability of the zonally-averaged flow at small meridional
wavenumber, consistent with the asymptotic analysis.
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form-drag instability, but can nevertheless be unstable. For such
flows an analysis based upon truncated Fourier expansion shows
that the instability is a triad-interaction involving modes of higher
meridional wavenumber, which are precluded from the asymptotic
analysis. F orm-drag instability may be considered a special kind of
triad interaction involving interactions around an isosceles triangle
in which the modes all have little meridional variation.

Instabilities were found which were both barotropic and baroclinic
in nature. The two-layer problem may be put into a form formally
equivalent to the one-layer problem, given suitable redefinitions of
the scale of a wave. Form drag and other triad-instabilities exist in a
precisely similar fashion. Baroclinic instability is shown to exist when
the zonal flow, in the absence of topography, is manifestly stable. In
particular, flow with zero mean shear can be baroclinically unstable.
Integral constraints were found useful in giving necessary conditions
for instability, for both the topographic problem and the conven-
tional zonally symmetric instability problem. For the latter problem
both the minimum shear and the high-wavenumber cut-off to
instability, in two-level and continously stratified models, arise easily
from the constraints. These are stronger results than can arise from a
normal mode analysis, which in any case does not lead directly to
simple stability criteria in the multi-level or continuously stratified
case.

What is the relevance of topographic instability to stationary
waves in the atmosphere and its modelling? Stationary, linear theory
is often used to model the stationary response of the atmosphere to
a given zonally-averaged zonal wind. To the extent that results from
a p-plane theory can be applied to a spherical atmosphere, the
theory suggest that the linear response may well be unstable. This
would presumably cause the linear amplitude to be higher than that
observed, because of the consequent transfer of energy from the
unstable stationary asymmetric flow into transient flow, as is in fact
observed (Holopainen, 1983) and modelled (Vallis and Roads, 1984).
Storm-tracks are a manifestation of this, in which the transients
grow, at least partially, under the influence of the stationary
asymmetric flow.

Some blocking theories imagine blocks to involve the resonant
response of flow over topography. In the original multiple-
equilibrium theories the zonal flow plus two other modes are
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allowed. What are the limitations of this? Although the scale analysis
of Section 2 indicates that near resonance a truncated spectral
expansion is not justified, the neglect of other modes in the multi-
equilibrium theories does not mean that the basic stationary states
found in such models do not exist in higher resolution models. This
is because the essential ingredient for multiple-equilibria is resonance,
or more particularly that the form-drag on the zonal flow varies
considerably and not monotonically with the zonal wind. However,
such a neglect does mean that certain instabilities are not present in
such models. Form-drag instability of the superresonant flow does
exist. However the subresonant instability is lost. In reality there
exist modes to which the subresonant flow is unstable with approxi-
mate growth rate hf/A, where A is the distance from resonance
(B—Uk?), and h is proportional to the mountain height. These
modes are not of small meridional wave-number and so are also not
included in Hart’s analysis. The growth rate near resonance is order
a few days, so very long-lived blocks cannot be explained by such a
theory, or at least have not yet been so explained.

In the ocean topographic instability is possibly even more import-
ant than in the atmosphere since bottom features are so much
higher. The exposition presented here is implicitly directed more at
the atmosphere, since it was assumed that the relative depths of the
two layers was the same. Another difference lies in the stratification,
which gives the ocean a much smaller deformation radius and
stronger baroclinic (rather than barotropic) effects. Nevertheless, the
principles are much the same with the additional potential for a
purely baroclinic triad (%, 7,,7,) due to unequal relative depths. The
Antarctic Circumpolar Current is a potential location where such
instabilities may be important, as indeed they evidently were in the
simulations of McWilliams, Holland and Chow (1978). In their
model the wind stress produces a mean shear which grows until
unstable. The energy put in by the mechanical forcing can only be
dissipated by eddies, hence the mean flow must be supercritical to
some degree. With no topography the simulations produce a strong
shear (=~ 0.2 m/s between upper and lowest layers). When topography
is added, the shear is greatly reduced and indeed would be stable by
conventional measures. However, eddies are still produced. Topo-
graphic instability is the likely candidate. If so, an energy spectra

~would reveal significant transient energy at topographic scales, larger
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than the deformation scale. Some zonal-averaged transients should
be evident, also.

To end on a cautionary note, I shall mention some of the
limitations of the analysis. A two-layer model with rigid-lid upper
boundary condition cannot describe the possible important vertical
radiation of energy in the atmosphere—it probably does a better job
in the ocean, although then we would need to do the analysis with
different equivalent depths. Also, much of the analysis above used
highly idealized topographic forms, and was linear. The existence of
resonance itself, on a sphere and with a realistic zonal wind, may be
questionable. Finally, just because a given mode in a steady solution
is unstable (say because it is resonantly forced and so of large
amplitude) does not necessarily mean that the general form and
structure of that solution is not maintained, if the whole system is
forced. The instability, if weak, may simply modify the solution and
the resonant mode still stand out.
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