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ABSTRACT

Geostrophic balance is shown to be the minimum energy state, for a given linear potential vorticity field, for
small deviations of the height field around a resting state, in the shallow-water equations. This includes (but is
not limited to) the linearized shallow-water equations. Quasigeostrophic motion is evolution on the slow manifold
defined by advection of linear potential vorticity by the velocity field that minimizes that energy. Other linear
and nonlinear arguments suggest that geostrophic adjustment is a process whereby the energy of a flow is
minimized consistent with the maintenance of the potential vorticity field. A variational calculation that minimizes
energy for a given potential vorticity field leads to a balance relationship that for the unapproximated shallow-
water equations is similar but not identical to geostrophic balance, Preliminary numerical evidence, involving
the inversion of potential vorticity for a simple model, indicates that this balance is a somewhat better approx-
imation to the primitive equations than geostrophy.

It is also shown how the process of geostrophic adjustment may be significantly accelerated, or parameterized,
in the primitive equations by the addition of certain terms to the equations of motion. Application of the
parameterization to an unbalanced state in a primitive equation model is very effective in achieving a balanced
state and in continuously filtering gravity waves. It is more accurate and less sensitive to tunable parameters
than pure divergence damping, and may also be a useful and much simpler alternative to nonlinear normal-

VoL. 49, No. 13

mode schemes whenever those may be inappropriate.

1. Introduction

Related questions of some importance in dynamical
meteorology and oceanography are: Why are the ocean
and atmosphere largely geostrophic? or Why are they
“slow™? These questions motivate much of the work
presented here, although no truly satisfactory answers
are provided. The issues are intimately tied to the geo-
strophic adjustment process and the notion of bal-
ance—*“slow” motion is evolution that is at least su-
perficially devoid of gravity waves and approximately
satisfies some balance relationship between velocity and
pressure. Previous approaches to these issues have often
relied on asymptotic theory and/or on a time-scale
separation between gravity waves and geostrophic mo-
tion. In this paper we shall try to view the issue from
a somewhat different perspective by arguing that geo-
strophic adjustment is a process of selective energy dis-
sipation, and therefore that the subsequent slow motion
should occur on or close to a minimum energy man-
ifold. Indeed, we shall show that geostrophic balance
is a minimum energy state for a certain set of primitive
equations and then offer a new balance condition for
the shallow-water equations based on a minimum en-
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ergy principle rather than an asymptotic analysis. This
picture of balanced flow leads naturally to a new
method for rapidly achieving a balanced state, or pa-
rameterizing the geostrophic adjustment process, in the
primitive equations. _
Geostrophic balance (known at least since Buys
Ballot 1857) is usually derived on the basis of a scale
analysis. Taking the shallow-water equations as our
primitive system, the ¥-momentum equation is

ou oh
3 +(u-Viu—fo ol (L.1)
with a similar equation for v. Notation is standard.
Defining the Rossby number R = U/fL where L and
U are typical length and velocity scales, geostrophic
balance appears to leading order in a Rossby number
expansion. That is,

oh
uzfa, (12)

and similarly for . The quasigeostrophic system arises
by advecting a linearized potential vorticity ¢ — fh/H,
where { = k- V X u is the vorticity, by the geostroph-
ically balanced velocity field. Pedlosky (1979) and Ve-
ronis (1981) provide rigorous asymptotic derivations.



1 JuLy 1992

Use of such scaling arguments does not of course ex-
plain why the atmosphere should be geostrophic.

Even if the large scales are taken to be geostrophically
balanced on average, it is not immediately apparent
why there should not be continuous oscillatory gravity-
wave motion around that state. A particular evolution
of a primitive system will, for small Rossby number,
settle down to a state apparently absent of gravity wave
activity. The manifold on which subsequent motion
occurs is often called the slow manifold (Leith 1980).
It is now generally thought that for any nonzero Rossby
number motion will not be completely devoid of grav-
ity waves, although such activity may be of very small
magnitude (e.g., Warn and Menard 1986). There ap-
pears to be no a priori reason why gravity wave activity
should be very weak at large scales or, for that matter,
why geostrophic balance should break down at small
scales (Warn 1986). The theoretical calculations of
Warn (1986) and the numerical results of Errico (1984 )
show that the slow manifold is actually unstable in the
inviscid, spectrally truncated, limit. That is, motion
that is geostrophically balanced at an initial time will,
presuming ergodicity, subsequently develop strong
gravity wave activity. The implication is that dissipation
is necessary to keep the flow on the slow manifold.

Notwithstanding the nonexistence of a true slow
manifold for the primitive equations, there has been
much interest in deriving sets of equations that are
devoid of gravity waves yet accurately represent the
fluid motion of the atmosphere and ocean. Such sets
are normally derived by asymptotic methods (assuming
certain scales of motion) or by an adiabatic elimination
based on the presence of “fast™ variables (e.g., Lynch
1989; see van Kampen 1985 for a review of such meth-
ods). Approximations within a Hamiltonian frame-
work have also been used (Salmon 1983), although
this is also essentially a scaling approach within that
framework. At low Rossby number it appears that the
balance model provides a very good overall approxi-
mation, in terms of accuracy, to the primitive equations
(Gent and McWilliams 1982; Allen et al. 1990; Barth
et al. 1990).

Any process whereby some kind of balanced state is
ultimately achieved [but not necessarily (1.2)] is usu-
ally called geostrophic adjustment. Rather than try to
derive intermediate models based on an asymptotic
analysis, a viable and physically based alternative pro-
cedure for deriving slow equations is to ask, What is
the end state of the adjustment process?, without a
priori assuming geostrophic balance. In section 2 we
show that geostrophic balance is in fact the minimum
energy state for a given field of potential vorticity for
a set of primitive equations that approximate the shal-
low-water equations. We argue in section 3 that geo-
strophic adjustment is in fact the process whereby the
energy of an unbalanced state is reduced, either by
gravity wave radiation to infinity or via an energy cas-
cade to small scales where it is dissipated by viscosity,
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to the minimum consistent with the conservation of
potential vorticity. In section 4, we use a minimization
principle to derive a balance criterion similar to, but
not exactly the same as, geostrophic balance. Section
5 presents some preliminary numerical evidence to
support this conjecture. This picture of balanced flow
then leads us, in section 6, to derive a rather simple
parameterization for geostrophic adjustment that is
able to damp gravity wave activity very effectively while
barely affecting the slow motion and yet is much sim-
pler than the machinery of nonlinear normal mode
initialization. Section 7 concludes.

2. Geostrophic balance as a minimum energy state

In this section we show that geostrophic balance is
a minimum energy state for approximations to the
shallow-water equations with quadratic inviscid in-
variants. This includes the linearized shallow-water
equations. Related (but different) results were obtained
by Dikiy (1969) and Cullen et al. (1987) by quite dif-
ferent methods.

a. The shallow-water equations and their invariants

The shallow-water equations (e.g., Gill 1982) for a
single layer of incompressible fluid with a free surface
are

du

5;+(u-V)u+fk><u=—th (2.1)
and
oh
™ + V- (uk)=0. (2.2)

In these equations u is the horizontal velocity u = iu
+ jv, g is the acceleration due to gravity, and 4 is the
height of the free surface. The first equation is a mo-
mentum equation, and the second arises from mass
conservation.

It is convenient to write the velocity in terms of its
divergent and rotational components; thus,

u=Vep+kXVy, (2.3)
where v is a streamfunction and ¢ a velocity potential.
We also write # = H + h’, where A’ has zero mean.
Making these substitutions the mass conservation
equation becomes

ah ' ’ 2 '

737+ J, k'Y + HV?¢ + V- (Voh') = 0.

The momentum equations decompose into equa-
tions for the streamfunction and potential, namely:

(2.4)

&V + I, V) + V- (VYT ) + [V = 0
(2.5)
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and
526+ J(6, V4) + 5 V(9]

— V2J(8,¥) = V-(VYVY) + 3 VI(V)?]

— VA +gVh' =0. (2.6)

In the absence of forcing and dissipation the energy
is conserved. That is,

E-= f h(u? + v?) + gh’dx, (2.7a)
dE
— =0. 2.7
7 0 (2.7b)

Further, it is easy to verify from (2.1) and (2.2) that
potential vorticity is a material invariant in the sense
that it is conserved on parcels. That is,
Dq
Dt ’
where Dg/Dt = dg/dt + (n-V)gand g = (§ +f)/'h.
Note that energy is a cubic invariant and that potential
vorticity is a nonlinear Lagrangian invariant in the
variables u (or {) and A.
The associated linear equations for the shallow-water
system, obtained by a linearization about a state of rest
and uniform height H, are

ou

(2.8)

— Xu=—gVh' 29

6t+fk u aVh (2.9)
and

%]:—+HV-u=0. (2.10)

Written in rotational and divergent form, the momen-
tum equations become

-QVZIP + V2 =0

> (2.11)

and

i)
Py V¢ — [V + gV?h = 0.

It is easily verified that the energy invariant of these
equations is quadratic; that is,

(2.12)

E=fHu2+gh’2dx, (2.13)
dE
— =0 2.14
7 (2.14)
Potential vorticity conservation is now
D h
E(f—fﬁ)—o. (2.15)
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b. Geostrophic balance as a minimum energy
manifold

We now show that geostrophic balance is obtained
as the minimum energy for a given field of potential
vorticity. This is a constrained problem in the calculus
of variations, sometimes called an isoperimetric prob-
lem (Weinstock 1952), because of the origin of this
class of problems in extremizing an area for a given
perimeter. The energy to be minimized is given by
(2.13) and the potential vorticity field by

={—f " 2.16
q IR (2.16)

The constraint is incorporated by extremizing the in-
tegral

1= fH(uz +v2) + gh'?

+ Mx, Y {(vx —wy) —fR'/H}dx. (2.17)

The Lagrange multiplier is a function of space; if it
were a constant, the integral would merely extremize
energy subject to a given integral of potential vorticity,
and rearrangements of potential vorticity would leave
the integral unaltered.

There are three Euler-Lagrange equations obtained
by minimizing I. These are

a9 _,

oh  0xdh, oy oh,

9 _99m 9 9

ou dxadu, 0dy du,

dn @ a9y 4 dn
——————— = 2.1
dv  0dxdv, Jydv, 0, (2.18)

where 7 is the integrand appearing in (2.17). Using
(2.17) and (2.18) we obtain for the 4 equation

2gh’ — M= 0. (2.19)
The # and v equations yield
g
u+ — =
u X 0
N
——=0. 2.20
2v p 0 (2.20)

Eliminating N\ between (2.19) and (2.20) yields the
simple relationships

Y £
S oy
oh’
v:f—a;, (2.21)
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which are otherwise known as the geostrophic balance
relationships. Since (2.21) imply V+u = 0, we have

h'=fy/g. (2.22)

Therefore, we have proven that geostrophic balance
is an extremum global energy state for a given field of
linear potential vorticity. The energy extremum is
clearly 2 minimum, since the rotational and divergent
modes are orthogonal in the sense that

f(k X VY + V)2 = f (V¥)? + (V¢)2dx, (2.23)

provided there are no boundary contributions (see also
section 3b). Since g = VX — fh’/ H, it is apparent that
energy is always reduced by setting to zero the divergent
modes associated with ¢ for a given g.

Quasigeostrophic evolution proceeds by allowing the
potential vorticity to be advected by the geostrophic
velocity. This is exactly the same as evolving the po-
tential vorticity field (2.16) by the minimum energy
velocity (2.21).

The global minimum of energy for a given integral
of any function of potential vorticity for these equations
is also a geostrophically balanced state. The problem
is posed by extremizing the integral

I’=J‘H{uz+v2}+gh’2
+ G(vxe—u, — fh'/H)dx (2.24)

where G is an arbitrary function of its argument. The
resulting Euler-Lagrange equations are

, _ JG' _
2gh 572 0 (2.25)
and
7]
2Hu+ — G’ =90 (2.26)
dy

with a similar equation for v. From these we also obtain
(2.21) as necessary conditions for energy extremization.

3. Mechanisms of geostrophic adjustment

In this section we argue physically and heuristically
that the mechanism of geostrophic adjustment is one
of energy dissipation and potential vorticity conser-
vation. The arguments have their origins in the work
of Rossby (1938), Sadourny (1975), and Warn (1986).
Adjustment is the physical mechanism whereby a bal-
anced state is achieved. If adjustment is a selective de-
cay of energy, then since a minimum energy state is
geostrophic, a dissipative system that nevertheless con-
serves potential vorticity will naturally evolve to a bal-
anced state.
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a. The linear adjustment problem

The canonical adjustment problem of Rossby, lu-
cidly described by Gill (1982), makes simplifications
of linearity, an infinite domain, and no viscosity. The
initial state i1s one of rest with a step function in the
height field, a manifestly unbalanced state. Because the
problem is linear it may be solved analytically, although
the physical aspect is clear. Gravity waves are excited,

. and a front propagates away from the discontinuity at

a speed 1@71, where H is the fluid depth. Beyond the
front the interface is undisturbed. Behind the front
gravity wave activity takes place, and sufficiently far
behind the front the fluid achieves a steady state. Now,
the front serves to remove energy to infinity. However,
the fluid cannot relax to a zero energy state because of
the potential vorticity constraint, which here, because
the problem is linear, is that potential vorticity con-
served at each point. That is,

2(e-)-o

Physically, then, the adjustment process proceeds
by minimizing the energy constrained by /ocal conser-
vation of potential vorticity. The end state is a mini-
mum-energy, geostrophically balanced state. The final
configuration may thus be obtained by solving the si-
multaneous equations:

(3.1)

fh

V- T
gh
-5 = 3.2
¥ I (3.2)

where ¢ is the initial (and final) potential vorticity
field.

b. Statistical equilibrium and nonlinear adjustment

Rossby’s problem, being inviscid, requires an infinite
domain to allow the divergent energy associated with
gravity wave activity to escape. In a finite domain, un-
less viscosity is introduced, gravity waves will forever
“slosh” without dissipating. In order to understand how
viscosity might ultimately affect the adjustment prob-
lem, we briefly consider the inviscid statistical me-
chanical equilibrium. _ '

In the limit of weak motion, the energy (E) and
enstrophy (Z) invariants are quadratic. We nondi-
mensionalize by measuring time in units of /! and
length in units of (gH)'/?/f. Then, decomposing the
fields into linear normal modes, the energy may be
written:

E= 2 (Eg+ Ey), (3.3)
K
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where
1| + e
E = —— "'
T2 1+ k2 (3.4)
is the potentio-vortical energy and
K? [ — hil?
Eg=— L .
=7 [I¢kl Ty } (3.4b)

is the divergent or gravity wave energy. The enstrophy
has only a vortical-mode contribution and is
1
Z=ZV=EE |k2¢k+h1’(|2. (35)
k
( I.n geostrophic balance A, = ¢, and ¢, = 0 and the
divergent energy vanishes.)

The thermal equilibrium distributions are given by
(Warn 1986)

= _—L—
T a+ bw?)
2k
Eg = Z (3.6)

where wi = (1 + k?) and we have again included the
metric factor k in the numerator, as if the spectrum
were continuous. These are sketched in Fig. 1. Energy
in the gravity wave spectrum is equipartitioned among
available modes, whereas the rotational or vortical
~ modes feel the enstrophy constraint and have a distri-
bution similar to that of incompressible two-dimen-
sional flow (Kraichnan 1975). We can use these dis-
tributions to infer the sense of cascades in forced—dis-
sipative problems. In the limit k,, > 0, a = k2,, and
b — k2,, most of the energy is contained in the diver-
gent part of the spectrum and close to the truncation
wavenumber, although the vortical energy is still
trapped at large scales. If the sense of nonlinear energy
transfers is the same in forced—dissipative problems as
it is in the approach to an inviscid equilibrium, then
energy is transferred to gravity wave modes at high
wavenumber, where it may be dissipated. The vortical
modes, which feel the enstrophy constraint, remain
trapped at larger scales and are presumably less affected
by dissipation.

The numerical experiments of Farge and Sadourny
(1989) by and large support the notion of energy dis-
sipation during adjustment. Many of their integrations
of the full shallow-water equations evidently have a
direct cascade of divergent energy to small scales
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FI1G. 1. Schema of energy spectra for statistical mechanical equi-
librium for shallow-water equations for two values of the truncation
wavenumber (indicated by the dashed vertical line). (a) Rotational
spectrum, (b) divergent spectrum. The scale of the ordinate is the
same for both graphs, but is otherwise arbitrary.

and a consequent selective dissipation of energy by
viscosity.

¢. Numerical evidence from a low-order model

We shall use a low-order model to see that during
geostrophic adjustment gravity wave energy is indeed
dissipated. The equations of motion are given by (2.4),
(2.5), and (2.6). One of the simplest nontrivial im-
plementations of these equations involves spectrally
expanding the variables 4, ¢, and ¥ and truncating the
resulting infinite- set of ODEs to a single interacting
triad. Since there are three variables and three com-
ponents of the triad we obtain nine ODEs, which, fol-
lowing Lorenz (1980), are

dx; 2 2

@G~ = aibixjxi — c(a; — a) Xy + c(a;i — @) yixe — 2¢* Yy + ai(yi = z;) — woaix;, (3.7)
dy; _ 2

a; —- = —ah Xy — aibiyixie + e(ar — @)y — aixi — voaiyi, (3.8)

d
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The variables x;, y;, and z; are the Fourier coefficients
in the expansions of velocity potential (¢), stream-
function (¥), and free surface height (#°), respectively,
and the indices (i, j, k) take values (1, 2, 3) cyclically,
representing the three Fourier modes. The parameter
a; is the square of the ith wavenumber. The parameters
b; and c are functions of @;, and g is the square of the
ratio of the deformation radius to the horizontal length
scale. The parameters o and v, determine the level of
dissipation. For a useful measure of the geostrophy of
the problem, the Rossby number may be taken as the
square root of F; (McWilliams and Gent 1982). The
parameter values we use are ko = vg = Yus, &0 = 8, a;
=y = 1,a3=3,h. ='—1,h2=h3=Fz=F3=0,aIld
F| determines the level of forcing, with typical values
~ 0.1. (See Lorenz 1980; Gent and McWilliams 1982;
and Warn and Menard 1985.)

A typical time evolution from unbalanced initial
conditions is illustrated in Fig. 2. (Time stepping uses
fourth-order Runge-Kutta, with a time step much less
than that required for numerical stability.) Gravity
waves are initially excited and slowly fade away, and
the ultimate variability of the system is on a much
longer time scale. Figure 3 shows that both energy and
enstrophy fluctuate considerably during the adjustment
process and in the subsequent slow evolution. To dem-
onstrate the energy dissipation process we evaluate the
linearized potential vorticity from the height and vor-
ticity fields g = ¢ — fA’/ H and then evaluate the geo-
strophic energy from this. The geostrophic energy is
calculated by supposing that ¢ consists only of a geo-
strophic contribution, so that g = V%) — Fy where F
= f2/(gH) is related to the deformation radius. This
equation is inverted to obtain ¢, and the geostrophic
energy is then calculated by

E, = % f (V¥)? + Fyldx.

The energy difference is the difference between this
and (2.7a).

For our low-order model, the energy is given by
(Gent and McWilliams 1982)

E=05 2 (aix? +y1)+ 22 /)

(3.10)

— zi(cyxi — VX)) 8o + bi(xixi + yivi)  (3.11)

where the sum is taken over (i, j, k) = (1, 2, 3) and
cyclically. The terms on the last two lines form the
nonquadratic contribution and are generally small (but
not negligible ) for most calculations reported here. The
linear potential vorticity for each mode is proportional
t0o g; = a;y; + z;/80. We invert this to obtain the geo-
strophic streamfunction y§ = g;/(a; + 1/8,) and then
obtain the geostrophic energy using

Eg = 0.5[ai(y))? + (b)) gl (3.12)
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(3.9)

The difference between the geostrophic energy and
true energy is plotted in Fig. 4 for two Rossby numbers,
each beginning with unbalanced initial conditions of
magnitude similar to those on the attractor. Initially,
the energy difference is large, but it decays almost (but
not exactly ) monotonically. For small Rossby number
the energy difference remains close to zero once the
system has found the slow manifold, although for larger
Rossby number the difference is somewhat larger. Note
that the energy difference is not a positive definite
quantity, although the difference between the energy
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FiG. 2. Time evolution of low-order primitive equation model
from unbalanced initial conditions. The three curves are the x; (ve-
locity potential, long dashes), y, (streamfunction, solid), and z,
(height, short dashes). In (a) (upper panel) F; = 0.1. In (b) (lower
panel) F, = 0.2, In both cases gravity wave activity eventually fades
away.



1150

0.09
0.08
0.07
0.06

= 0.04
0.03
0.02
0.01

0 5 10 15
Time

0.14

0.12

0.10¢%

0.08}

Enstrophy

0.06}+

0.04

0.02f

1 1

5 10 15 20
Time

of

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 13

0.20

0.05

0.35} d

o o o

NN W

o v O
. T T

Enstrophy

o
w
-

0.10}

0.05}

0 5 10 15 20

Time

FiG. 3. Time series of (a), (b) energy and (¢), (d) enstrophy for same evolutions as in Fig. 2.
The dashed line in the energy evolution is the geostrophic energy.

calculated using only the terms on the first line of (3.11)
and (3.12) is.

4. A generalized balance model

In the previous section it was argued that, from a
physical standpoint, the adjustment process proceeds
by reducing the energy constrained by the frozen field
of potential vorticity. In section 2 it was shown that
geostrophic balance is indeed. the minimum energy
state for a slightly reduced set of primitive equations.
If geostrophic adjustment is an energy-minimizing
process, then an appropriate balance will be the min-
imum energy state for the unapproximated shallow-
water equations, constrained by the Ertel potential
vorticity field. Since most of the evidence presented in

the previous section actually pertains directly only to
weak flow this must for the moment remain a hypoth-
esis. The variational problem is therefore to extremize
the integral

I= fh(uz + 03+ gh'? + M(x, ) g-—;i dx. (4.1)

The resting potential energy [ gH?/2 is unavailable

“for conversion to Kinetic energy and thence dissipation.

Hence, we should extremize only the available energy
(i.e., kinetic plus available potential), and this is the
reason for the prime on # in the second term of the
integrand. There is no assumption that 4’ < H.

Following the procedure of section 2b, the Euler-
Lagrange equations (2.21) give rise to the simple bal-
ance relationships
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(4.2)

where B is the Bernoulli function B = gh’ + u?/2 and
Q is the potential vorticity Q = ({ + f)/h. Since these
conditions represent an extremal state, an appropriate
name for them might be extreme balance. For small
Rossby number the balance reduces to classical geo-
strophy. Details are given in appendix A. Note the
shallow-water equations giving rise to (4.2) differ in
two respects from the linearized equations: the potential
vorticity is not linearized and the energy is not qua-
dratic.

The extreme balance relationships (4.2 ) define only
a balance; to obtain a model it must be decided how
evolution along the slow manifold is to be achieved.
One consistent choice is to advect Ertel potential vor-
ticity by the balanced velocity. That is, a possible closed
set of model equations is

9Q
3 +u-vV)Q=0,

where the velocities are obtained from (4.2). Numerical
integration of this model is made difficult by the im-
plicit and nonlinear nature of the balance condition.
From (4.2) we obtain

(4.3)

1
=V p vy
where ¢ = Qh — fand ¥ = B/(Q. These nonlinear
equations, with (4.2), must be solved iteratively and
this may be difficuit.

Note that extreme balance gives only the balanced
velocity. In general we may suppose that the true ve-
locity field may be decomposed into a balanced state
and a secondary unbalanced flow; thus,

(4.3)

V= v+ v, (4.4)

The secondary flow may be obtained through the use
of the balance condition and the equations of motion
for the transport v4 and Bernoulli function, analogous
to the derivation of an omega equation in quasigeo-
strophic theory. This is done in appendix B.

5. Potential vorticity inversion by minimum energy

Given only the potential vorticity of the model de-
scribed in section 3 it is possible to use the new balance
conditions to obtain velocity and height fields that are
at least better than a geostrophic inversion. Because of
the nature of our numerical model, we actually invert
linear potential vorticity; however, the results are en-
couraging. Our procedure is as follows. We integrate
the model (3.7), (3.8), and (3.9). We form the poten-
tial vorticity from the height and vorticity values using
g; = a;y; + z;/ 8. Given these values, we find the values
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of {x;}, {yi}, and {z;} that minimize energy given
by (3.11) and preserve {g; }. Rather than explicitly
use the nonlinear balance equations (4.4), it is con-
venient to employ a numerical minimization algo-
rithm; we employ a quasi-Newton method using a fi-
nite-difference gradient. For comparison purposes, and
as a check on our algorithm, we also find the values of
{xi, i} and {z;} that minimize the quadratic form
of the energy given by the first line of (3.11). This
should simply give geostrophic balance, as indeed it
turns out to do.

For small Rossby number, the minimum energy in-
version performs quite well. In fact a time series of
streamfunction values obtained for values of F less
than about 0.25 is almost indistinguishable (by eye on
a graph) from the true streamfunction. However, this
is also true here for a geostrophic inversion. A more
severe test is to look at the ageostrophy of the flow or
the difference between the height and streamfunction
fields. In Figs. 5 and 6 streamfunction is plotted in
phase diagram against height. A geostrophic inversion
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FIG. 4. As in Fig. 2 except that energy differences
(from geostrophic values) are plotied.
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FIG. 5. Phase portraits of the three components of the height field vs streamfunction for primitive equations [left column, (a)-(c)] and
inversion [right column, (d)-(f)]. Note that geostrophic inversion would yield a straight line through the origin. F; = 0.1.

would yield a straight line through the origin, whereas
the true phase diagram shows significant departures
from this. These are quite well reproduced by the ex-

treme balance, or energy minimization, scheme. This
is encouraging evidence that the energy minimization
principle is more than the merely linear argument that
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FIG. 6. As in Fig. 5 but for F, = 0.2,

the energy is comprised of orthogonal vortical and di- Rossby number the primitive equations have quite
vergent modes and that only the vortical modes con-  strong gravity wave activity, and the inversion performs
tribute to the potential vorticity. For higher values of  less well.
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Two other aspects of the inversion should be men-
tioned. The first is that the value of the divergence is
generally too small, by a factor of 2 or more. However,
this is to be expected since only the balanced flow is
determined by this inversion. A major contribution to
the divergent flow will come from the secondary, un-
balanced flow (appendix B). [If one were to perform
an energy minimization on the linearized equations,
or the quasi-primitive set of Farge and Sadourny
(1989), then quasigeostrophy would result, known to
be a good approximation for these equations. Yet di-
vergence would be identically zero. Furthermore, di-
vergence is not needed to integrate the quasigeostrophic
potential vorticity equation.] The second aspect is an
artifact of our model. If the velocity and height fields
obtained from the inversion are to advect the model
forward one time step, and then the potential vorticity
is formed and inverted to obtain new velocity and
height values and so on, the results are found to be
little better than quasigeostrophy. This occurs because
in the low-order model we invert a linearized potential
vorticity: if the inverted fields were actually used to
step the model forward in this way, we would thus be
advecting the linear and not the true potential vorticity.

6. Practical use for gravity wave filtering

It is well known that if a numerical integration of
the primitive equations is begun from more or less ar-
bitrary initial conditions, gravity wave activity will ini-
tially be very high, damping over time to a much lower
level as the system finds its slow(ish ) manifold. Because
the initial state may be unbalanced only because of
observational or model inaccuracies, the fast motion
is unacceptable from the point of view of numerical
weather prediction. Cullen et al. (1987) also comment
on the inadequacy of explicit geostrophic adjustment
in primitive equation models during normal integra-
tions and not only at the initial time, the implication
being that some form of parameterization would be
advantageous. A number of schemes have been devised
to overcome these problems, among them nonlinear
normal-mode initialization (Baer and Tribbia 1977,
Machenauer 1977). Although very successful, if it had
to be applied continuously, the procedure would be
rather cumbersome. At the other extreme, divergence
damping is an easily applied procedure to continuously
damp gravity waves. However, it is not necessarily an
accurate scheme if the damping is heavy.

The picture of slow motion drawn in the previous
sections leads one naturally to suppose that a param-
eterization that would reduce the energy of a flow
without directly affecting the potential vorticity should
serve as a very simple but quite effective means of fil-
tering unwanted gravity wave activity, or parameter-
izing geostrophic adjustment, in the primitive equa-
tions. In this section we relate this to divergence damp-
ing and show how to improve this by relaxing the
divergence toward nonzero values determined by a
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balance criterion. But first we look at a conventional
initialization using the balance model.

a. A balanced initialization

The first panel of Fig. 7 shows the evolution of (3.7)~
(3.9) after the initial state has been balanced, that is,
forced to satisfy the constraints of the balanced model.
The balanced model consists of approximating the di-
vergence equation (2.6) by

VA(VY)?1/2 = V- (VYV) + gVPh' — fV% = 0.

For (3.7)-(3.9) the modified divergence equation (3.7)
is

2y — @iy + @iz = 0, (6.1)
J

thereby enforcing a balance relationship between
streamfunction and height (Gent and McWilliams
1982). To achieve a balanced initial state we first en-
force (6.1), choosing to do so in such a fashion that
linear potential vorticity g; = a; y; + z; /g0 is preserved.
This is most easily done by an iterative process. For
the initialization this procedure is implemented only
at the first time step. By the presence of rather small
oscillations visible to the eye in the divergence field, it
can be seen that a balanced initialization is a good, but
not perfect, method of eliminating gravity wave activity
from a primitive equation integration.

b. Modifying the equations of motion

Vallis et al. (1989) showed how it is possible to "
modify the equations of motion to either generate or
dissipate energy while still maintaining the topological
invariants: in particular, potential vorticity and Kel-
vin’s (or Bjerknes’) circulation. Since geostrophic ad-
justment resembles such a process, we may expect that
the adjustment process may be enhanced by such a
parameterization.

An appropriate modification to the shallow-water
momentum equation is

D
224 fkXu=—gVh+aVh,.
Dt
The last term on the right-hand side has the effect of
dissipating or generating energy. That is,

E= fghz + hu?dx, aE _ ~f ah?dx.

dt
However, there is no direct effect on the vorticity equa-
tion, and potential vorticity remains a material in-
variant. Note the consistency of this parameterization
with the minimum energy criteria (4.2 ). From the mass
conservation equation (2.2), 84/t = 0 when V< (u#)
= 0, which is implied by (4.2). Thus, with the sign of
« appropriately chosen, Egs. (6.1) and (2.2) form a
system that will continuously dissipate energy until the
minimum energy state V- (uk) = 0 is achieved.

(6.2)
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Application of the modification to an initially un-
balanced state reveals that it is quite effective in rapidly
damping extraneous gravity wave activity, as illustrated
in Fig. 7. The separation of time scales between gravity
wave and geostrophic activity means that once the slow
manifold has been reached the effects of the modifi-
cation are slight. However, they are not completely
negligible, as can be seen by increasing the value of a.
For higher and higher values, the evolution of the height
field is constrained more and more until it becomes
unrealistically small,

b. Relaxing to slow equations: Divergence damping
and other schemes

Related parameterizations can be derived by relaxing
the motion determined by the primitive equations to-
ward some balanced manifold; that is, we accelerate
convergence to the slow manifold by artificially relaxing
the divergence to a (in general nonzero) value on that
manifold. The simplest such parameterization is di-
vergence damping in which the slow manifold is de-
fined by the absence of divergence, or divergence ten-
dency; that is, V - u = 0. Thus, the divergence equation
becomes

a6
— + usual terms = — a9,
at

where « is a parameter and 6 the divergence. This is a
perhaps ad hoc but often used method to operationally
damp extraneous gravity waves in forecast models.

If we define the slow manifold by V - su = 0, then
the slow manifold divergence, §,, takes the value

1
85 = —Z(u-Vh) (6.3)

and the parameterization for the relaxation takes the
form '

?9_(: + usual terms = —a.L(6 — &)

]

~al V-u+;11-(u~Vh)

1
h

where L is some linear operator (e.g., a Laplacian)
and a a constant whose sign is chosen appropriately.
This is very similar to (6.2) and has similar properties
of positive definiteness of energy decay.

A rather more accurate scheme than either of the
above is to relax the divergence toward a slow manifold
defined not by the absence of divergence tendency but
by a balance criterion such as

—al

I

V- (uh) (6.4)

a
5 (&87°h — 1V} =0 (6.5)
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or d¢/ 3t = 0, where ¢is the “imbalance” gV2h’ — f V3.
On the inertial manifold of the primitive equations the
imbalance is expected to be very small, and the slow
equations of Lynch (1989) are based around this hy-
pothesis. The balance (6.5) is also imposed in the linear
balance model, among other approximations.

From the shallow-water equations of motion we may
derive an equation for the evolution of imbalance. This
is

i) ,
Ets + nonlinear terms = f2§ — gHV% (6.6)

or symbolically:

Jde
—+nl=.L
o n 9

(6.7)
where .L is a linear operator and “n.l.” represents the
nonlinear terms. Defining a slow manifold by the ab-
sence of imbalance tendency, the appropriate diver-
gence is given by

L5, =nl (6.8)

We relax to the slow manifold by adding a term pro-
portional to the difference between the true and slow
divergences; thus,

0
%t— +nl = al(d — &)

(6.9)
where .L is the same as in (6.7). (If 6; = 0, the scheme

is essentially equivalent to divergence damping.) Using
(6.7) and (6.8) we find

—+nl=a—. (6.10)

at ot

In a numerical model, the right-hand side of this would
normally be evaluated diagnostically from the imbal-
ance equation, with diabatic and viscous terms as
needed. A number of variations on this theme are pos-
sible. Equation (6.10) has a couple of attractive features
as a parameterization. First, it will reduce the energy
of the flow when gravity waves are present. As Fig. 1
illustrates, the fast components of ¥ and 4 are out of
phase during the adjustment process, but their slow
components track each other closely. Second, the pa-
rameterization is very insensitive to the value of a. For
o = 0 the equations are just the usual, unmodified set.
For a = oo the equations are equivalent to the balance
condition (6.5), which along with the unaltered vor-
ticity and mass conservation equation forms an inter-
mediate model with some of the features of both the
linear balance system and the slow equations of Lynch.
However, our purpose in this section is not to propose
another ad hoc model but to accelerate convergence
to a slow manifold. Figure 8 shows the evolution of
(2.4), (2.5), and (6.10) from an unbalanced initial
state for various values of a. It can be seen to be re-
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FIG. 8. As in Fig. 7 but using the scheme of (6.10). (a) and (d): a = 0.1 and balance initialization.
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manifold of the primitive equations; that is, the initial
conditions are taken from values of the variables after
a long integration of (3.7)~(3.9). For a very large range
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FIG. 9. Comparison of integrations of unmodified primitive equa-

tions (dotted line) with those modified by inclusion of parameter-

ization (6.10), starting on the slow manifold of the primitive equa-

tions. « = 10. For smaller values of «, simulations are indistinguish-
able. .

of values of a the evolution of the parameterized model
is indistinguishable from the original equations (Fig.
9). Indeed, the value of « in Fig. 9 is 100 times greater
than that which is effective in eliminating gravity waves
after a balanced initialization.

7. Discussion

In this paper we have argued that geostrophic ad-
Jjustment is the process whereby the selective decay of
energy occurs. The ultimate end state is one of mini-
mum energy, constrained by the frozen potential vor-
ticity field. Geostrophic balance was shown to be the
minimum energy state for a system of primitive equa-
tions that has a quadratic energy invariant and a linear
potential vorticity. We further showed that the mini-
mum energy state for the true shallow-water equations,
for a given potential vorticity field, is a generalized bal-
ance state that is normally close to, but not identical
with, geostrophic balance. Some numerical evidence
indicates that this may be a more accurate represen-
tation of the primitive equations than geostrophic bal-
ance. Finally, we presented a “‘parameterization” of
geostrophic adjustment, and showed how effective it is
in eliminating gravity waves and keeping a system close
to a slow manifold. The practical advantage of such a
scheme may lie in its simplicity of use, for example,
making its implementation possible both as an ini-
tialization scheme or at every time step in situations
where more complex schemes, such as nonlinear nor-
mal-mode initialization, might be inappropriate. For
example, in nested primitive equation models it is easy
to excite spurious gravity waves,
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The schemes presented in this paper do not depend
on the minimization of energy constrained only by the
Lagrangian invariance of potential vorticity (i.e., the
conservation of potential vorticity on parcels, allowing
for the rearrangement of parcels). For if only that con-
straint were imposed, the extremal state of the system
would be a steady, nonlinearly stable state. (Indeed, it
is the essence of the energy~Casimir method of Arnot’d
to find such states.) Rather, we propose that geostrophic
adjustment occurs on a time scale shorter than that on
which potential vorticity is advected, and therefore en-
ergy is minimized for a given (“frozen”) field of po-
tential vorticity.

On the theoretical side, the arguments for selective
decay are rather heuristic; its occurrence may depend
on the presence of two time scales, and therefore be
essentially equivalent to more conventional approaches
that exploit that fact in a more direct way. Of the in-
termediate models, extreme balance seems most closely
related to the balance model. Both models conserve a
true potential vorticity, and may be thought of as an
advection of potential vorticity by a velocity field de-
termined by certain balance criteria. Semigeostrophy
(Hoskins 1975), on the other hand, advects a geo-
strophic field by a full velocity. Notwithstanding these
differences and similarities, it should be noted that the
goal of this paper is not so much to propose another
intermediate model, but to try to approach the problem
of balance from a physical rather than asymptotic per-
spective, seeking to understand why near geostrophy
actually pertains in the atmosphere and ocean. If it is
known a priori that the flow is at small Rossby number,
say, then asymptotic approaches, constrained where
possible by inviscid invariants, are naturally appropri-
ate methods for model building (e.g., Allen 1991).
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APPENDIX A
Asymptotic Analysis of Extreme Balance

Here we briefly analyze the extreme balance con-
dition to ascertain its relationship with geostrophic
balance at small Rossby number. This analysis was
originally done by J. C. McWilliams.

Assuming a small Rossby number we asymptotically
expand the height and velocity fields as

h=H+eh' (A.1)
p=kXVy+eVe, (A.2)

where ¢ is the streamfunction, ¢ a velocity potential,
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and e is the order Rossby number ordering parameter
(and not the imbalance of §6).

The corresponding potential vorticity and Bernoulli
fields are

(H + eh) "H \H H?
and
B=gh' + % e’ (A.4)
From (4.2) we find to order e
VY + V. (” w) £
h'*> gh't
o — (vy)? + £ - . (A5
+6V(f(\P) TH fz) (A.5)
To lowest order it is clear that 2" = f{//g, and sub-

stituting this into the order e terms in (A.5) we find
SV + d20(Yx, ) + V- (YV[§ = ¢/L?))]

=gVh’, (A.6)
where L2 = gH/{.

Therefore, to first order extreme balance is equiva-
lent to geostrophy, and at the next order differs from
gradient wind balance by the presence of the second
term in square brackets in (A.6).

APPENDIX B
A Diagnostic for the Unbalanced Secondary Flow

Here we derive a diagnostic equation for the unbal-
anced component of the velocity field using extreme
balance in the unforced, inviscid case. The equation is
therefore analogous to the omega equation of quasi-
geostrophic dynamics or an equation for the divergence
in balanced systems. The procedure conventionally
followed is to first write the equations of motion for
vorticity, divergence, and height; one then uses a bal-
ance criterion in place of the full divergence equation;
and, using this, time derivatives are eliminated between
the vorticity and height equations. The procedure here
differs only in detail.

Write the full transport (velocity times height) field
as

V=vh=V,+V, (B.1)

where V, is the balanced and rotational component of
the transport field, given by

V, =k X V(¥) (B.2)

where ¥ = B/Q, and V,, is the residual, unbalanced
flow.

Now, the evolution equations for the Bernoulli
function (with g = 1) and the potential vorticity are
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dB

—+ V.V + —-VB=0 B.3
ot h (B.3)
and
6Q V
Y 0. B4
o Q= (B.4)
Therefore,
o _ -1
v. -VB — V-VQ. (BS
o 0 ( Vot h ) hQ? Q. (B:5)
The evolution of V X V, is given by
d

v Voo
Zyxv,= —V.V+(V-V)—+ fk X V}.
VXV, Vx{h +(V-V) o+ f }

(B.6)

Equations (B.6), (B.5), and (B.2) are analogous to
the more conventional vorticity, height, and balance
equations, respectively. Eliminating time derivatives
between (B.5) and (B.6) using (B.2) yields the omega
equation:

X {}11 (Vo + V) V(V, + V)

+ (Vo + V) -V(V, + V) /h+ fk X V¢}

1
= —v2{év-v¢ +5 (Vo +Vy)-VB

- h_lQii (Vg + V¢)-VQ} . B

Since V, is known in terms of B and Q this is an
equation for the unknown V. It is highly implicit and
nonlinear, and is likely to be difficult to solve. However,
it is instructive to see that such an equation can in
principle be derived. It will be simplified somewhat if
the balanced flow alone is used in the advective terms
in the evolution equations.
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