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From Laminar Flow to Turbulence

Geoﬁ”fey K Vallis

14.1 Preamble and Basic Ideas

Fluid dynamics in general, and turbulence in particular, is a most nonlinear
field. The subjects are enormous; one need only browse through Monin and
Yaglom [1] to see this. This chapter is not a review of turbulence, for in a few
pages any attempt at an overview would certainly be ambitious and perhaps
even foolish; rather, it is didactic introduction into just a couple of aspects,
one of fairly recent origin and one with more traditional roots. We will first
describe various routes involved in the fransition to turbulence. This is a sub-
ject that has undergone a revolution in the past 20 or 30 years. It has greatly
affected how we think about, although not how we calculate the properties of,
our second topic of discussion, namely fully developed, or (especially in the
Russian literature) strong turbulence. In fact, statistical theories of strong
turbulence seem to be oblivious (perhaps with good reason) to theories and
routes regarding transition. In both areas our discussion is rather selective,
concentrating on the utility of scaling arguments and self-similarity. These
properties allow the application of renormalization arguments in simple
maps (e.g., the logistic map), enabling quantitative predictions to be made
regarding the onset of chaos; remarkably, some of these have been verified in
some real fluid dynamical experiments. Scaling arguments also lie at the heart
of phenomenological theories of strong turbulence of the “Kolmogorov
type,” for which there is also observational support. We give rather short
shrift to descriptions of experimental evidence and observations, simply refer-
ring the reader to the original literature, not because the area is not important
but because it deserves much more space than we can give it here. In other
ways, too, our discussion is incomplete, for nowhere do we discuss certain well-
known prototypical problems such as the Lorenz equations, partly because
such discussions abound elsewhere.

In turbulence, nonlinear interactions connect motions on different scales,
leading to unpredictability on all scales of flow even when the error in the
initial conditions is confined to small scales. This provides motivation (if any
were needed) for our travails by way of a very practical question, for how
long can we forecast the weather? The rapid loss of information in the smaller
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scales of motion suggests that one should attempt to treat the smaller scales
parametrically in terms of the better-resolved and better-predicted large
scales, and we will briefly discuss current approaches to this problem (the
eddy diffusivity problem). Again, self-similarity and scaling allows the use of
renormalization-type methods, in particular successive averaging methods, to
rescale the diffusivity and obtain a parameterization of small scale motions.
Space will forbid us exploring many of the side issues of these problems.
Although the presentation is a little less abstract, and more overtly fluid
dynamical than that often found in expositions to do with the onset of chaos,
we do not approach the range of fluid dynamical problems discussed in vari-
ous fluid dynamical texts (e.g. [2]). We have drawn on discussions by Hu and
by Landau and Lifshitz [3] as well as original sources cited in the text. The
reviews of Miles and of Eckmann, which cover similar ground in rather dif-
ferent styles, and of Rose and Sulem, are also recommended reading [4].

The equations describing fluid motion (14.1) are manifestly and nontrivially
nonlinear, and historically much of the “early” (i.e., circa 1960-1975) devel-
opment of nonlinear dynamics was in fact motivatcd by problems in fluid
dynamics. Many of the applications of the modern theory of nonlinear dynamics
(often loosely called ‘“chaos theory’’) have been applied, with some success, to
the theory of the it transition to turbulence (or more accurately the transition
to chaos) where a few degrees of freedom might be expected to dominate the
flow. A successful theory of strong turbulence has, on the other hand, proved
very elusive, although the statistical approaches based on renormalized per-
turbation theories (beginning with the Direct Interaction Approximation [5))
have contributed a great deal. There is still much controversy about whether
deterministic, “dynamical systems” approaches to turbulence are even ap-
propriate, because of the relatively high dimensionality of fully turbulent
flow. Furthermore, the parameter space over which low-dimensional, transi-
tional behavior occurs is rather small compared to that over which fully tur-
bulent behavior occurs. Thus, weak turbulence is the exception, rather than
the rule, and-the natural philosopher is léd to ponder why she should study it
at all. One answer, superficially trite, is that it is a field where true progress
can and has been made; the investigator’s hope, springing eternal, is that
further investigation along the same lines may lead to substantial attacks
on the theory of strong turbulence. In this chapter we first discuss the theory
of transition, and then direct attention toward statistical attacks (based on
Kolmogorovian phenomenology) into just a couple of aspects of strong
turbulence: namely, the predictability problem and the eddy diffusivity
problem.

14.1.1 What Is Turbulence?

The equations describing constant density flow phenomena are the Navier—
Stokes equations; namely:
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du 1 2
E-&-(u-V)u-—;Vp-&-vV u (14.1)

along with the mass continuity constraint
V-u=0. (14.2)

Here, u(x, y, z, ) is the velocity field, p is the pressure, p the density (hence-
forth taken as unity), and v the kinematic viscosity. These equations, with
appropriate boundary conditions, determine the evolution of most incom-
pressible filuid phenomena.

If U is a typical velocity magnitude, and L a typical length scale, then the
Reynolds number, Re = UL/v is a usefu!l nondimensional measure of the
ratio of the inertial terms to the viscous terms. Laminar flow may be defined
as that flow for which the field variables (u, p) are time independent, or vary
in a periodic way. In some particular flow geometry or experimental config-
uration, we may imagine being able to control the Reynolds number exter-
nally, perhaps by increasing the pressure difference along a pipe, or increasing
the shear in a parallel flow as we discuss in section 14.2. As this is done, one
typically finds that at some critical value the time-independent flow becomes
unstable, and the flow bifurcates into some other configuration, perhaps a
periodically varying flow. As Reynolds number increases further bifurcations
occur, their precise nature and sequence depending on the flow at hand. After
a small number of bifurcations the flow is frequently completely chaotic.
Now, chaos is often taken as meaning the superficially random temporal be-
havior of a possibly small number of variables, as seen for example in the
Lorenz equations or any number of well-known systems. A positive Lyapunov
exponent is a common indicator of chaos. Fluid turbulence, in its usual sense,
is also taken to imply spatiotemporal chaos, implicitly involving a larger
number of degrees of freedom. That is, although strong turbulence almost
certainly implies chaos, it is much more than that. Still, the distinction is
sometimes overemphasized, because even fully developed turbulence has to all
intents and purposes, a finite number of excited degrees of freedom and can
be described as accurately as we wish by a system (albeit large) of ordinary
differential equations. In any case, although the transition from “chaos” to
“turbulence” in a fluid is not quantitatively understood, once chaos has
arisen turbulence is thought to follow very shortly, or even immediately,
thereafter. Because of the large number of degrees of freedom it then becomes
sensible to seek a statistical approach in which a completely deterministic
description of the fluid is foregone in favor of a description of averages. The
reasons are twofold. First, a large number of degrees of freedom makes
determinism extremely clumsy. Second, even if we could follow every eddy,
the unpredictability of the fluid motion would make such knowledge useless,
because the initial conditions of small scales of motion are not given. Thus,
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unless we were to perform Monte Carlo simulations with a range of initial
conditions for the unobserved small scales, a statistical picture (or a descrip-
tion of mean quantities using some parameterization, or closure) is actually
demanded. However, because of the nonlinearity of the equations this is very
difficult; starting with any nonlinear equations of the from

da

Z =d4aa, (14‘3)

the equation for a mean quantity a is of the from

% = aa+ @, (14.4)

where a prime denotes a deviation from the mean. The equation for a’a’
involves triple correlations, those for triple correlations fourth order terms,
and so on in an unclosed heirarchy. Earlier approaches to turbulence, such as
the Direct Interactioh Approximation [5], concentrated on “closing” this
heirarchy, by the introduction of assumptions not directly deducible from the
equations of motion, but without using the scaling properties of the Navier—
Stokes equations described in Section 14.4. This turned out to be a very dif-
ficult road to follow, and in fact may be demanding too much. More recent
approaches have started with the scaling properties, and built from there.
Whichever, if either, approach turns out to reveal more, it is fair to say thata
completely satisfactory statlstlcal description of turbulence at this time does
not exist.

14.2 From Laminar Flow to Nonlinear Equilibration

The Navier—Stokes equations are tremendously verdent, and depending on
the boundary conditions or the nature of the fluid a myriad of flows are pos-
sible, each being controlled by various nondimensional parameters. For
adiabatic, incompressible flow (as, for example, in water flow in a pipe) the
Reynolds number is the controlling parameter in a given geometry. In prob-
lems in convection (usually fluid in a constant gravitational field heated from
7
below, or cooled from above) a relevant control parameter is the Raylelgh
number, geATd3/(vx), where g is gravity, @ measures the thermal expansion,
d is a length scale, AT a typical temperature difference, and v and x are iner-
tial and thermal diffusivities, respectively. In rotating fluids the Ekman num-
ber, v/(2QL?), where Q is the rate of rotation, and the Rossby number,
U/(2QL), determine the relative importance of friction and rotation. In dif-
ferent geometries other parameters may play a role. Given this rich structure,
it would be very surprising if there were only one *“‘route to chaos” in fluids,



312 G.K. Vallis

and indeed there is not. However, it does seem that there may be a small num-
ber (perhaps in single digits) of recognizably different transition scenarios,
By scenario we mean a qualitatively distinct path (sequence)} with certain
characteristic behavior; we do not mean necessarily identical behavior in each
case. Now, each sequence often begins with a linear instabiliry, in which a
steady (i.e., time independent) flow satisfying the Navier—Stokes equationg
becomes unstable Before plunging into nonlinear analysis, let us analyze a
simple linear instability.

14.2.1 A Linear Analysis: The Kelvin—Helmholtz Instability

The simplest instance of a linear instability, which is alsc, of some physical
interest, is perhaps the Kelvin—-Helmholtz instability. This is a shear insta-
bility, in which two fluids sliding against one another, or one fluid with a
strong shear perpendicular to its mean velocity, become unstable. We will
consider the simplest case, that of two fluids of equal density, with a common
surface at z = 0, moving with velocities —U and +U in the x-direction, re-
spectively (Fig. 14.1). There is no variation in the basic flow in the y-direction,
and we will assume this is also true for the instability. This flow is clearly a
solution of the inviscid Navier—Stokes equations (the Euler equations). The
question to be asked is, what happens if the flow is perturbed slightly? We will
neglect variations in the y-direction (these are unnessential to the instability)
and, for the moment, also-neglect friction. If the perturbation is initially
small, then even if it grows we can, for small times after the onsct of insta-
bility, neglect the nonlinear interactions in the governing equations because
these are the squares of small quantitics. The equations determining the evo-
lution of the initial perturbation are then the Na\ner—Stoke equations (14.1),
linearized about the steady solution. Thus, for z > 0

on’

— ’ '
YT U = -Vpo', (14.52)

V-u' =0, : (14.5b)

+U

-U

FIGURE 14.1. Basic flow giving rise to Kelvin-Helmholtz instability. For the prob-
lem as solved in the text, the boundaries are removed to infinity.
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with a similar equation but with U replaced by — U for z < 0. (The density is
unity, so does not appear.)
We can represent the perturbations by a Fourier expansion of the from

b(x,2,0) = 3 dulz, 1) explikx], (14.6)
k

where ¢ is any field variable (pressure or velocity). Because {14.5) is linear,
the Fourier modes do not interact and we confine attention to just one. Taking
the divergence of Eq. (14.5a), the left-hand side vanishes and the pressure
satisfies Laplaces equation

For z > 0, this has solutions in the form
pr =ﬁleikx+0:e—kz, (14.8)

where we have also introduced the explicit time dependence ¢%. In general 8
is complex; if the soon-to-be-found dispersion relationship gives # with a
positive real component, we have an instability. Any imaginary component
gives oscillatory motion. To obtain the dispersion relationship, we consider
the z-component of (14.5), namely (for z > 0)

dwi _ dpy

ow}
a V% T

Substituting a solution of the form wi = W exp(ikx + 0f) yields, with Eq.
(14.8),

(14.9)

(0 + kU)W = kp,. - (14.10)

But the velocity normal to the discontinuity is, at the discontinuity, nothing but
the rate of change of the discontinuity itself. That is, at the interface z = +0

wy =%+ U%, (14.11)
or :
0+ ikU) = wy. (14.12)
Using this in Eq. (14.10) gives 4
(6 + ikU)2E = kp,. (14.13)
The above few equations pertain to motion on the z > 0 side of the interface.
Similar reasoning on the other side gives (at z = —0)
(0 — ikU)*f = —kp,. (14.14)

But, at the interface p; = ps (because pressure must be continuous). The dis-
persion relationship then emerges from Eq. (14.13) and (14.14), giving
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02 = K2U2. (14.15)

Thus the flow is unstable and the amplitude of any small perturbation will
initially grow exponentially. The instability itself can be seen in the natural
world when billow clouds appear wrapped up into spirals: the clouds are
acting as tracers of fluid flow, indicating a shear in the atmosphere. The
interested reader should peruse Ludlum’s wonderful book Clouds and
Storms [6]. ,

In our ideal example the instability appears immediately; that is, no matter
how small the shear. The reason for this is the neglect of viscosity, so that the
Reynolds number is always infinite. If viscosity is retained, the analysis
becomes a little more involved, in part because the basic state cannot have a
velocity discontinuity. Most approaches involve allowing the velocity shear
to vary smoothly. The instability now sets in only when the shear is suffi-
ciently large; that is, when an appropriate Reynolds number reaches some
critical value. Suppose that the initial value of the shear is slightly super-
critical. Then the linear analysis tells us a perturbation will grow exponen-
tially. But of course a real instability (if only on energetic grounds) cannot
keep growing. In fact the perturbation will eventually reach finite amplitude,
at which point a nonlinear analysis is necessary.

14.2.2 A Weakly Nonlinear Analysis: Li_indau’s Equation

In this section our approach starts to get more abstract, and we deviate from
a strict analysis of the governing equations. To discuss this it is helpful to
know what a Hopf bifurcation is (Figs. 14.2 and 14.3). (For more detailed
descriptions of bifurcations in hydrodynamics, see for example the article by
Joseph in Swinney and Gollub [2].) Suppose that the linearization of a system
(about a solution) has complex eigenvalucs {a}, such that the evolution of
the system is proportional to exp[o;f], whose values depend on some parame-
ter of the system, say R (e.g., the Rayleigh or Reynolds numbers in fiuid
dynamics). For R < R., where R, is some critical value, suppose the eigen-
values lie in the left half of the complex plane. Then if the system is perturbed,
it will damp back to equilibrium in an oscillatory fashion. If at R = R, one
complex conjugate pair crosses the imaginary axis, then the system becomes
unstable, and an oscillatory growth takes place on perturbation. A Hopf
bifurcation has occurred. (Engineers sometimes call the ensuing kind of insta-
bility an overstability). Landau was among the first people to consider how a
fluid might equilibrate after such a bifurcation; his argument may be para-
phrased as follows. For values of R close to R, and for small times after the
onset of instability, the amplitude of the flow may be expected to behave
something like

A(D) = C(t)e.e’, (14.16)
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R<R, R>R,

Fixed
Point

'I:ime-periodic

Steady , : ,

FIGURE 14.2. The supercritical Hopf bifurcation. (A positive Landau constant.)
After the bifurcation at R, the flow convergesto a stable limit cycle.

where A is a measure of the amplitude of some field variable (it might, for
example, be a Galerkin component). 4 is in general complex; implicit as usual
is the addition of a complex conjugate to ultimately obtain a real field. € is
also complex and may be written 6 = ¢ + iw. We expect that 6 = f(R — R,)
and that for R < R, o < 0. That is, the flow is stable and a small perturba-
tion would be damped to zero. The parameter C(¢) will, for small times, be a
constant, and the amplitude will exponentially grow. The differential equa-
tion satisfied by (14.16) is then :

d|A)?
dt

For longer times this equation cannot be valid, and higher-order terms must
enter. Now, if the flow is just supercritical, the growth rate, o, can be expected
to be small and in particular o « |w|. Thus, the flow undergoes an oscillatory
instability (see Fig. 14.4). We are interested in its behavior on the timescale
1/0, averaged over many oscillations. Adding in higher-order terms to Eq.
(14.17)

= 204|%. (14.17)

d)d|?

= 20|4)* + a1]4]?4 + a]4)* ...
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Limit Cycle

R<R R>R
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/Il/'l'ime-periodic ‘
\_  Steadyl

—— — et —

. .
FIGURE 14.3. The subcritical Hopf bifurcation. The outer (stable) limit cycle exists
only in the presence of higher-order nonlinearities, absent in our treatment of the
Landau equation.

Averaging over the oscillatory time period, the third-order terms will vanish
(or actually give a fourth-order contribution) because they contain an oscil-
latory term. We are left with the fourth-order term, and the Landau equation:

d|A|?
dt

= 20|4)* — «|4|*, (14.18)

where o is an undetermined parameter (the Landau constant), which may be
positive or negative.

The method of derivation of Eq. (14.18) is really just an application of the
method of averaging. The observation that multiple time scales are present
(i.e., the slow growth rate and the fast oscillation) suggests one might explic-
itly employ a multiple time-scale analysis to actually derive the Landau
equation, directly from a prototype equation for hydrodynamical and other
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instabilities. This we shall now do, although our prototype is rather simple
and not explicitly hydrodynamical.
Consider, then, the simple system:

d

—;:: ox — oy + fi(x,y) (14.19)
dy

— = tox+ oy +fa(x,y). (14.20)

The function f} and f, contain nonlinear terms, and are small and analytic
but otherwise arbitrary. These prototype equations therefore contain growth,
an oscillation, and nonlinearity, many of the features of a real fluid insta-
bility. We shall recognize that growth is slow by writing ¢ = ¢/ « 1. Divid-
ing through by w, defining a new (nondimensional) time by wt, and writing
z = x -+ iy we obtain:

%=8z+iz+sg(z), (14.21)

where we now explicitly recognize the smallness of the nonlinear term gg(z).
There is a similar equation for z*. The analysis now proceeds by introducing
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FIGURE 14.4. (@) Amplitude growth obtained by numerically integrating Egs.
(14.19) and (14.20).
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FIGURE 14.4 (continued). (b) Time-averaged equilibrated amplitudes obtained
numerically (dots and open squares) compared to prediction from Landau equation

(dashed line). . ¢

the slow time T = ¢t and assuming that zis a function of both £ and 7. (If the
reader is not familiar with this device, it is explained further in a number of
books on asymptotic methods; e.g., Bender and Orszag [7].) Thus,

dz _dz dzdr_dz dz
& @ didrdi " tar

Then we expand z in the series: s
z(t,1) = zo(t,7) + 21 (1, 7) - . .

Using Eq. (14.22) we obtain, to lowest order

which has solutions

(14.22)

(14.23)

(14.24)
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20 = C(1)e". (14.25)

This of course is just the fast oscillation. To obtain the expression for the slow
change in amplitude of z, we go to next order and obtain:
dzy dz;

Tr -+ I 2o + iz + g(2o0)- (14.26)

Because z is small, we assume that we may expand the function g(zo) in
powers of 2o, noting that linear terms are already taken care of, whence
Eq. (14.26) becomes

dzy dzg

— i = — o+ 0(z3) + 0(z3) - - (14.27)
or, explicitly in terms of x and y A
d d. '
oy =x0— oo O(x2,y2) + O(x3,¥3) - -- (14.28a)
dt dt
d . d
Dy = 30— D0 0t a8 + OG5 33) -+ (14280)

Now, by assumption &z; is smaller than zo. Thus, for our analysis to be
consistent (and consistency, not uniqueness, is all that can reasonably be
demanded of an asymptotic analysis) there can be no secular terms (i.e., terms
that grow linearly with time) in the form of z;. Because a solution of the
homogeneous equation dz;/dt —iz; =0 is zoce, secular terms are elimi-
nated if terms proportional to it vanish on the right-hand side, because secular
terms arise when an oscillator is forced at its natural, unperturbed, frequency.
The quadratic terms do not contribute to this, but the cubic terms do [this is
evidently also seen to be true for Egs. (14.28a) and (14.28b)], and so secular
terms are avoided if

dZo
dr

where a3 is determined by the projeqtioh of the cubic terms proportional to
(explit])* onto explif]. Eq. (14.29) leads directly to the Landau equation, and
is itself sometimes called a Landau equation. A

To be more explicit, consider a particular choice of nonlinear function
fi(x,3) =f2(x,y)=exp(x +y) — (1 + (x+)). (These arbitrarily chosen func-
tions have nonlinearity at all orders. Any number of other functions would
give similar behavior, and there is no necessity to choose f1 = f3, although it
makes the algebra a little easier.) Letting x(r) = xo(, 1) + exi1(t,7)..., and
similarly for y, the zeroth order balance is:

X
T

dyo _
dt

= zq + az|z0|* 20, (14.29)

(14.30)
X0
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with solution xp = Xp(7) cos ¢, y9 = Yo(t) sin ¢ [cf. Eq. (14.25)]. At next order
Eq. (14.28) is

dx 1
dr

X
+y1 = (Xo ——0) cos t — —(Xo cos ¢ + Yysin 1)?

—ﬁ(X0 cosz+ Yosin ) ... (14.31)

with a similar equation for Yy(z). To avoid secular terms in the solution for
x1(#) we demand that all terms proportional to cos ¢ or sin ¢ on the right-hand
side of Eq. (14.31) (or its y equivalent) vanish, again to avoid a resonance
with the terms on the left-hand side. The quadratic terms do not project
onto cos ¢ or sin ¢ but the cublc terms do. Evaluatmg the projection integrals
(which are of the form (2x)~ fo cos? t sin® ¢ dt) and restoring the dimen-
sions (noting that 7 = ¢r) we obtain, after a little algebra, the equation for the
slowly varying amplitude

2 :

% = 2¢er? — %r“, ' (14.32)
where r?(t) = (X§(z) + X#(z))/2. Equation (14.32) is the Landau equation
for thls problem The Landau constant is positive. The growth of the ampli-
tude x2 + y? is initially exponential, before equilibrating, and is at all times
modified by a fast oscillation. Figure 14.4 shows the equilibrated amplitude
from a direct numerical integration of Egs. (14. 19) and (14.20), along with the
predicted time-averaged equilibrated amplitude r2 = 4e. Quantitative agree-
ment is obtained for small £ values. _

We still have not derived 'a Landau equation from the Navier—Stokes
equations. For a real-world problem this is generally an arduous task. Indeed,
it was 15 years after Landau first proposed the equation that Stuart and
Watson [8] were first able to properly derive a Landau equation for a fluid
stability problem in plane parallel flow.

If @ is positive then it is clear from Eq. (14.18) that supercrmcal equilibra-
tion can readily be achieved. The solution of Eq. (14.18) is obtalned by writ-
ing it as a linear equation in jAl namely

dldl + 20]4| 7 = «, (14.33)
which leads to
2_ 2 f) & .2 _ % 42) -2ar
Y N (R D R T
where Ay is its initial value. For large times | 4)? tends to the limit
[4]* = 2¢/e. (14.35)

The growth rate ¢ will be some function of the Reynolds number (or other
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controlling parameter), and because we have no reason to expect the ﬁrst-
order terms to vanish, we have that o = constant x (R — R.) + O(R — R.)%.
Hence, the amplitude of the equilibrated value of |A4| is proportional to
VR —R,. For R < R, the flow is stable. The bifurcation at R= R, is a
supercritical Hopf bifurcation; it is a bifurcation from a stable fixed point to
a limit cycle. For our model problem, Eq. (14.19), direct numerical solution
of the original equations confirms the predictions of the weakly nonlinear
theory. The averaged value of the equilibrated amplitude squared is, as pre-
dicted, a linear function of the growth rate €. Furthermore, the dependence
on the cubic term in the nonlinear function fj is much stronger than the
dependence on the quadratic terms: if the quadratic terms are eliminated the
equilibrated amplitude is very similar (Fig. 14.4), whereas if the cubic terms
are eliminated, now retaining the second-order terins, the equilibrated values
(not shown) are in face quite different.

If « is negative, then for R < R, there is a stable fixed point surrounded
by an unstable limit cycle. The flow is thus metastable, because infinitesimal
perturbations are damped back to.the focus, but finite size perturbations
(which exceed the radius of the limit cycle) are unstable. For R > R, there is
no steady flow (at least to fourth order) because both terms on the right-hand
side of Eq. (14.18) are positive and || increases very rapidly; higher-order
terms must be included for equilibration. In fact, we may hypothesize that
after such a “‘subcritical”” Hopf bifurcation the transition to turbulence is very
rapid. (Indeed in the Lorenz equations the transition to chaos occurs after a
single subcritical Hopf bifurcation [4].)

14.3 From Nonlinear Equilibration to Weak
Turbulence

Suppose that the control parameter has been turned up past a first instability
and equilibration has occurred, roughly obeying the Landau equation.
(Actually, even at this stage, detailed equilibration mechanisms differ. See,
for example, Pedlosky [8]). We now have a limit cycle. The question arises:
what happens if the control parameter R is increased further. Common expe-
rience tells us that, even after a supercritical bifurcation, the limit cycle does
not persist (if only turbulence were so simple). One possible scenario, now
generally thought false, is the Landau—Hopf picture. After the first bifurca-
tion, the flow is periodic with a frequency f; say, and hence is a single point
on a Poincaré map. In principle it is possible to perform a stability analysis
about this (time-dependent) flow, in much the same way as one performs a
stability analysis about a stationary flow (except it is harder). Now, as R
increases the periodic motion increases in amplitude, and, it may be sup-
posed, the flow will eventually become unstable (say at R»). If this instability
is caused by a Hopf bifurcation to another limit cycle, then a second fre-
quency, f2, will be present. There is no reason that /3 and f; be related, so for
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FIGURE 14.5. Motion on a torus. If the path round the torus does not close, the
motion is quasiperiodic.

.
1

almost all cases f;/f> will be irrational. The flow is then quasiperiodic on a
torus (Fig. 14.5). Why quasiperiodic? If the flow due to the first frequency is
¢ ~ explif17] then the phase of this component will return to its initial value
after a time 7 such that fi¢ = 27m where m is any integer. Similarly the phase
of the second flow will return to its initial value after a time ¢t = 2an/f,,
where n is another integer. The flow will thus have an overall period T =
2am/ffi = 2nn/f3, requiring f1/f> = m/n. But if f; and f3 are irrationally
related, no such integers exist. Thus the flow has infinite period. But we can
approximate f;/f> as accurately as we wish by the ratio of two integers, so
to any desired degree of accuracy the flow may be regarded as periodic.

A third bifurcation will produce another frequency, and so on. Eventually,
Landau supposed, after many bifurcations a ““turbulent flow,” comprising
many independent and irrationally related frequencies, arises. Such a picture
is false, on both experimental and theoretical grounds. We shall now discuss
why, and what in fact does happen. We will discuss only three transition
sequences—although more may exist. We will pay most attention to the
period-doubling route, partly in the interests of space and partly because the
scaling properties are quite transparent here.

’

14.3.1 The Quasi-Periodic Sequence

The Landau sequence may be schematized as
Steady Periodic Periodic 2 Periodic 3 Periodic 4
= = = = .
flow Flow flow flow flow ’
where the arrows denote Hopf bifurcations. Now, a quasiperiodic flow is
predictable, meaning it does not display sensitive dependence on initial condi-
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tions. This is because quasiperiodic flow is just flow on a torus, and although
flow on a torus may be ergodic (i.e., it explores all of the available phase
space) the flow is not mixing (two orbits initially close together explore the
torus together) and is not unpredictable. However, turbulent flow is known to
be unpredictable, and was known to be so before “chaos theory,” excepting
the work by Poincaré, was discovered [9]. (We discuss predictability proper-
ties later in this chapter.) However, it is fair to say that the reasons for its
unpredictability were not at that time fully understood. Thus, the Landau
picture is not supported by observation or experiment. Theoretically, too, it
turns out that quasiperiodic motion is unstable to small perturbations of the
equations of motion. Two phenomena occur. First, the addition of a small
amount of nonlinearity may lead to frequency locking, in which the indepen-
dent frequencies become truly rationally related. Second, for larger values of
a nonlinearity parameter, the surface of the torus may crinkle, and a strange
attractor may arise. This is the ‘““Ruelle—Takens” or “quasiperiodic’ route to
chaos [10], and the sequence may be characterized as

(Steady) (Periodic) (Periodic 2)( (Periodic 3)) ( Strange )
= = == = .
Flow Flow flow flow Attractor
The precise number of Hopf bifurcations before chaos cmerges is probably
not important. The important point is that after a small number of bifurca-
tions a strange attractor generically emerges.

To examine these phenomena, and to keep the analysis tractable, it is
unfortunately necessary to keep only the vestiges of the Navier—Stokes equa-
tions. The price is that the approach is less deductive than we like; the reward

is universality. The simplest model displaying quasiperiodicity is probably the
circle map—the map of the circle onto itself

K
Onp1 =0, +Q— 5 sin 2r0, (modulo 1). (14.36)

If the nonlinearity parameter X is zero then the map displays only two kinds '
of behavior, periodic for Q rational and quasiperiodic for € irrational.
Rational numbers can by definition be expressed as the ratio of two integers,
p/q. Although dense (i.e., we can approximate any number arbitrarily closely
by a rational) they form a set of zero measure on the real line—which means,
loosely, that if we pick a number at random its chances of being rational are
zero. Thus, periodic behavior for this map is nongeneric. However, if we add
a small amount of nonlinearity, then frequency locking occurs and for a set of
© of nonzero measure (indicated by the shaded areas in Fig. 14.6) periodic
behavior occurs. (Note that for some numbers the quasiperiodic regime per-
sists longer than for other; these numbers are “more irrational,” in the sense
of the continued fraction representation. The golden mean (v5—1)/2 =
0.618... is the most irrational number in this sense, having entries that are all
unity.) For values of X greater than unity chaotic motion may arise.
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FIGURE 14.6. Frequency locking in the circle map (schema). The shaded regions
indicate periodic behavior, for which the parameter region grows as nonlinearity
increases. For K > 1 chaotic motion may ensue.

14.3.2 The Period Doubling Sequence '

This is based on the pitchfork bifurcation. In a pitchfork bifurcation a peri-
odic orbit (which can be replaced by a fixed point using a Poincaré map) is
replaced by a periodic orbit of twice the period. A great deal of progress can
be made by studying one-dimensional maps of the form:

Xnt1 =S (%n)y (14.37)

v where f(x) is an analytic function of x. Perhaps the most well known of these
is the logistic map

F(x) =rxa(1 = x2), | (14.38)

where r plays the role of control parameter. We will study this map is some
detail, to get a feeling for the mechanisms of period doubling. After that we
will study the universal scaling features of this and similar maps, and apply
some simple renormalization group arguments. First we note some general
properties of the map Eq. (14.37). The second iterate of the map yields

Xni2 =f (S (xn)) = S2(%n)- (14.39)

The nth iterate will be denoted f;,(x). Fixed points of Eq. (14.37) are found by
solving

x*=f(x").
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Stability of these is then determined by examining small perturbations around
the fixed point. Let

Xn=X*+ ep.

Then
Xnp1 =f(xn) =f(x" + &)
=f(x") +enf'(x") = x" +enf'(x")
=x"+ey41 (s2y). (14.40)
The error grows if |e,41/:] > 1; thus, the condition for instability is that
£/ > 1. . (1a41)

If a fixed point at x is unstable, then all higher iterates are also unstable at
xo. This is because

S3(x0) =1"(x0)f"(f (x0)) =1 (x0)f"(x1), - (14.42)
and at the fixed point x; = xp, and so
L) =101 (14.43)

In general the slope of the nth iterate is given by a simple extension of Eq.
(14.42), namely - f

n—1 ;
n=1l re. (14.44)
i=0
Now, for specificity, consider the logistic map Eq. (14.37). Graphically, the
situation is illustrated in Fig. 14.7. The solid curve displays the function Eq.
(14.38) and the dashed line is of unit slope (the identity line). To obtain suc-
cessive iterates pick an initial value, xo, along the abscissae and move parallel
to the ordinate until the function curve is intersected; the ordinate value then
gives x;. Then move horizontally to meet the dashed line, and then vertically
again to meet the solid curve, to obtain the next value in the iteration
sequence and so on, If 0 < r < 4 then the function always maps the inter-
val {0, 1} to itself. Because the map is quadratic, and therefore with single
extremum, there are up to two fixed points, at the origin x = 0 and (forr > 1)
at x = 1 - 1/r. These occur where the function crosses the identity line. Their
stability is determined by the value of f’, and we have

(i) Origin (x* =0); f/=r;and
G) x*=1-1/r;, f'=2—-r.
For 0 < r < 1 the origin, being the only fixed point, is stable. Beyond r = 1

the fixed point loses its stability and the other fixed point emerges, and for all
initial conditions the flow will eventually converge to this fixed point. This
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FIGURE 14.7. The logistic map for r = 2 - 5. Note the convergence to the stable fixed
point from any initial condition.

point itself becomes unstable when
2—r|>1=r=3. (14.45)

Thus for r > 3 there are no stable fixed points. What happens?

The answer to this is that the flow bifurcates from a fixed point to a peri-
odic flow (a Period 1 flow). To see this consider the map obtained by iterating
Eq. (14.38), A :

SF2(x) = (f (%)) = r?x(1 — x)(1 —rx(1 - x))
=r2x— (14+9r2x?+2r3x3 = r3x*. (14.46)

Its precise form will not turn out to be too important. However, we note that
it is a quartic, with three extrema, symmetrical about and with a minimum at
x = 1/2. [The positions of the other two minima can be obtained by an
application of Eq. (14.42). Because )

S5 (x0) = f"(x0) S (1), (14.47)

there is a zero at xo when the point to which it iterates has zero slope. Thus,
the points that iterate to x = 1/2, that is, f ~1(1/2), are maxima of f3.]

Now, the fixed point of f loses its stability as r increases through r =
R, =3, with x =2/3. The stability is lost in f> also [by Eq. (14.42) or
(14.44)]. However, as can be seen from Fig. 14.8, two new (stable) fixed
points in f> emerge. This is the first pitchfork bifurcation, so-called because
the values of the fixed points as r is increased look like a pitchfork (Fig. 14.9).
This bifurcation has given rise to the phenomena of period doubling, and the
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FIGURE 14.8. Period doubling in the logistic map. (a) For r > 3 the fixed point of f
is unstable. :

two new fixed points form a Period 2 flow, or a “2-cycle.” The slopes of these
two point are the same. We can see this because the actual iteration oscillates
between them: ;y

x1 = f(xo)
xo =f(x1).

(14.48)

Thus, using Eq. (14.47),
£ (xo) =1 (x0)f"(x1) = /(x1)- (14.49)

Indeed in general if the set of points {x;} forms an n-cycle such that for
each i
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FIGURE 14.8 (continued). (b) For r = 3.3 the 2-cycle is stable.
xi = fa(x]) : (14.50)
then each fixed point has the same slope in the f;, map, given by
n 7
=TI r'en- (14.51)
i=1

For r marginally bigger than R, the two new fixed points are very close
together, and consequently their slopes are less than unity and they are stable.
However, as r increases they move further apart, passing through a so-called
superstable cycle when the slopes of the slopes of the fixed points of f; are
zero. At a particular value of r, in fact at r = Ry = (1 4 v/6) = 3.4495, their
slopes become greater in magnitude than —1 and another pitchfork bifurca-
tion gives rise to four new stable fixed points, and Period 4 flow. Note that the
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FIGURE 14.8 (continued). (¢) For r > 1 + /6 the 2cycle is unstable. For r = 3.57
(illustrated) the absolute value of the slope of f3 is clearly greater than unity.

pitchfork bifurcations occur simultaneously because it is a single trajectory
that is being split, and the slopes at each of the fixed points are the same,
These new fixed points eventually become unstable and bifurcate to a Period
8 flow, and so on in a period-doubling sequence. The successive bifurcations
occur closer and closer together, in a geometric progression, and eventually
accumulate at some particular value of r, denoted R,, whose value is
3.5699456 for the logistic map. For r > R, the iteration sequence is chaotic.

Scaling and Universality

If one numerically integrates the logistic map and notes the values of r at
which successive bifurcations occur (R, Rz, elc.) then one finds that the ratio
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FIGURE 14.9. Pitchfork bifurcatiocns in the logistic map. The ordinate gives the
values of successive iterations. For R > R, the mapping is chaotic.

of intervals between bifurcations tends to a limit:
R,— R

8= lim =l _ 4.6692. 14.52a
A= RrH—l - Ry ( )
i
Because
lim R — Ry = lim Reo = Ry

n—x Ry — Rn+l n—o Ry — Ry ’

then Eq. (14.52a) is equivalent to

5= lim e B

n—o R — Rpyy

=4.6692. (14.52b)

Furthermore, the relative scale of branch splittings (see Fig. 14.9) is also
universal: ’
En

o= lim
=2 Ei4y

— 2.503. (14.53)

Here « essentially measures the reduction in scale that follows each bifurca-
tion. These parameters are universal, in the sense that their values do not
depend on the particular map (except that it be quadratic) and the ratios hold
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(in the limit # — o0) for every bifurcation. Let us try to understand why this
should be, before trying to deduce their values.

It is convenient to transform the logistic map Eq. (14.38) first by the shift
x=>x+ 1/2 and then by x = x(r/2 — 1)/2. These then yield the map

Xpe1 = 1 — Ax2. (14.54)

where

A= % G - 1). (14.55)

The map is centered at x = 0 and is such that if 0 < 2 < 2 then -1 < x < 1.
The fixed points of this are determined by Ax2 + x — 1 = 0, which become
unstable [by Eq. (14.41)] when 22x = 1, giving 2 = 3/4 (and x = 2/3). Thus
the first bifurcation occurs at 4 = A = 3/4. Iterating the transformation
gives

S2=Xpg2 = 1= 24242x2 — A3x%, (14.56)
Neglecting the quartic term, and rescaling by x = x/a we obtain
Xz = 14+ 2221 = )x2 =1 - 41x2, (14.57)
which is of the same form as Eq. (14.54) but with ‘
=) =222(A—1). (14.58)

Successive iterations of this map then yield

Xppom =1 — 2nx2  Jp = ¢(Amey). (14.59)

Now, the first bifurcation occurs when A = Ay = 3/4; the next bifurcation
(denoted by A = Aj) occurs when A =.3/4; that is, when ¢(A;) = A,. The
bifurcation after that occurs when ¢(¢4(A3)) = Ay; that is, when ¢(A3) =
(A2). Thus, the sequence of bifurcations is calculated by the sequence:

Ar=3, dA2)=A1, ¢A3)=As... (14.60)

These are easily calculated to be at 0.75, 1.2428, 1.3440, 1.3622, 1.3654,
. 1.3659, 1.3660, ... The bifurcations accumulate at the fixed point given by
Aw = ¢(Ax) giving Ay = (1 4+ v/3)/2 = 1.3660. This is to be compared to
the exact value 1.4011 obtained by a direct solution of Eq. (14.54). [Using Eq.
(14.55), we obtain the accumulation point for the map in its more common
form (14.38), R, = 3.54246, whereas the exact value is 3.56994]. The value
of A is not universal, being dependent on how the map is specifically defined.
However, the scale factors «;, tend in the limit#n — w toa,, = 1/(1 — Ag) =
—2.73 (cf. the exact value & = —2.5029). We can also estimate the ratio of
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FIGURE 14.10. From Period 2 to Period 4. (a)} At r = 1 4+ v/6 the 2cycle becomes
unstable.

bifurcation intervals, as follows. Using Eq. (14.60) in the limit 2 — oo we have
Ao — A= Do = ¢(Ami1)
~ Ao — { (Ac)(Ami1 — Ax) + ¢(Ax)}
= (Aw — Ami1)¢ (Aw) (14.61)

Hence

5 — ¢I(Aw) =n]21m M

L — (14.62)

For our simple approximations, this gives the value 6 =4 + V3 =5.732,
which is within 25% of the exact value. It is becoming clearer now why these
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FIGURE 14.10 ( Continued). (b) The 4-cycle is unstable (as indeed are all higher iter-

ates) at r = 3.57. Note that the inverse of the center portion (dashed) of (b) is very
similar to the entirety of Fig. 14.8 (c). This is a characteristic of universality.

values are universal (see also Fig. 14.10). After each bifurcation the values of
the iterated map f;» in the range [—1, 1] are determined by the values of f,; in
a part of the range smaller by a factor a. After many iterations, the determi-
nation of the iterated function is determined by the initial function closer and
closer to its maximum. If the maximum of fp (the initial map) is quadratic,
this fact alone suffices to determine « and 6.

The General Doubling Transformation

Rather than truncate the map after each bifurcation to keep its quadratic
form, we will try now to be a little more general. Consider the mapping
f1(x; 2) such that f(0) = 1. Equation (14.54) is an example of this. Then the
iterated map is f2> = f(f(x; 1)). However, the previous discussion suggests
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we rescale with the factor o) = 1/f3(1) to obtain

£ = afilfi(x/a)), @ = ﬁ%
Further transformations yield the sequence
1
Sro11(x) = Tfa(x) = anful fa(x/an)], on= 2ok (14.63)

where 7 is known as the “doubling operator.” In the limit of # — oo this
sequence tends to a unique limit, and the functional fixed point of the dou-
bling operator satisfies

g(x) = aglg(x/a)], g(0)=1. ~ (14.64)

This is a so-called “functional renormalisation group™ equation. Such a
function does exist, although it cannot be written in a closed form with a finite
number of termss It is an even function, because it may be obtained as an
iteration of an initially even function fy(x), and it has an infinite number of
extrema. If g is known, then the universal scale factor a is given by

g0 1
“ =]~ a) (14.65)

We can obtain approximate solutions to Eq (14.64) by substituting even
polynomial expansions for g. The simplest such solution is given by setting

g(x)=1+mx3. (14.66)
Then Eq. (14.64) gives ! '
1+ mx? = o[l +m(1 +m(x/x)?)?]. (14.67)

Equating powers of x gives a = 1 /(1 + m) and « = 2m yielding the numerical
values '

m=—(1+v3)/2=-1.366, o= (1+V3). (14.68)

Going to the next order, we set g(x) = 1 + mx? + nx*. Substituting into
Eq. (14.64) we obtain

m=—1.52224, n=0.127613,” o= —2.53404. (14.69)

These are quite close to the exact values [11]:

g(x) = 1 — 1.52763x2 + 0.104815x* — 0.0267057x°...

(14.70)
x=—2.5029...

[To obtain a polynomial expansion it is easiest just to iterate the sequence
(14.63), rather than to assume a polynomial expansion with unknown co-
efficients and substitute in (14.69) to obtain their values.] Finally, we may
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obtain accurate values of é by linearizing around the universal function g(x).
Close to the fixed point we may write

g: = g(x) + eh(x). (14.71)
Then
9:(9:(x)) = g:(g(x)) + &h(x))
= g(g9(x)) + £9'(9(x))h(x) + h(gx))]- (14.72)
And the universal equation for § is [11]:
g (g(x)h(x) + h(g(x)) = -—gh(ax). (14.73)

Because g{x) and « are already known, we can solve this to any desired accu-
racy by substituting a polynomial expansion, to obtain 6 = 4.66920. ...
Summarizing the period-doubling sequence we have then

Steady - Periodic - Period 2 - Period 4 . Strange

flow Flow flow flow Attractor ’
where the first bifurcation is typically of the Hopf type, with subsequent
bifurcations being pitchfork or period-doubling.

There is one other sequence we shall discuss, albeit rather briefly, before
trying to figure out what all this has to do with fluids.

14.3.3 The Intermittént Sequence

A
For this sequence we return to the one dimensional map. Suppose that the an
appropriate map (which governs the orbit) has, in some region, two inter-
sections with the 45° line (Fig. 14.11). In this diagram the left-most inter-
section is an attracting fixed point and the right-most one is a repellor. As our
control parameter varies, suppose the map effectively moves'to the left, and
undergoes a tangent bifurcation. When the map is just tangent, the intersec-
tion is an attracting fixed point that immediately disappears just after the
bifurcation. Consider now some initial conditions far from xp, just after the
tangent bifurcation, but still in its prior “‘basin of attraction.” The orbit will
still converge toward xg, because it does not realize yet that the fixed point is
no more. The system then spends many iterations close to the pseudo-fixed
point, before wandering away. The tangent bifurcation has replaced an
attracting fixed point by a strange attractor, but one in which the system
spends a lot of time near the pseudo-fixed point. This route is called the inter-
mittent sequence because for many iterations the map is close to the pseudo-
fixed point, undergoing motion that is very close to periodic—remember that
at the fixed point motion is periodic, having been reduced to a point via a
Poincaré map. The system will occasionally wander away from the pseudo-
fixed point, undergoing truly chaotic (broad-band) motion, or intermittent
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FIGURE 14.11. A tangent bifurcation. Two fixed points merge and then disappear,
giving rise to intermittent chaos. The similarity of f and f3 give rise to universality.

bursts of turbulence. The bifurcation sequence may be summarized as
Steady - Periodic ’_} Intermittent
flow Flow chaotic flow/’
where the bifurcation to the strange attractor is the tangent bifurcation.
This sequence too displays universal behavior [12]. Close to the tangent
fixed point, the function f(x) and its iterate f(f(x)) are rather similar,

except that the steps in the iterated map are twice as long. Let us express this
self-similarity by the equation

g(x) = ag(g(x/x)), (14.74)
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where o = 2. This differs from Eq. (14.64) in that an extra tangency condition
must be imposed; namely, g’(0) = 1 as well as g(0) = 0. We now find

9(x) =17 (14.75)

where r is arbitrary. The parameter convergence ratio can be found in a sim-
ilar way to that used in the period doubling case, yielding 6 = 4. Now, if the
control parameter R increases such that we move 1/6 = 1/4 time closer to the
fixed point (R = R_), the system stays twice as long (because « = 2) near to
the pseudo-fixed point. Thus, the average length of periodic motion 7, scales
as

1
~ 172
(R—R)"
and therefore decreases as the supercriticality increases.

Another way to see this result is as follows. Near the critical point R = R,
we may suppose that the mapping function can be approximated by

Xni1 = (R — R.) + xn + X2, (14.77)

Tp (14.76)

which we approximate by
dx
dt
Integrating this between two points on either side of the pseudo-fixed point
yiclds the time taken for the passage between those two points, namely

= R— R, +x°. (14.78)

i

_ 1 -1 H 1/27x2
Tp = R_R)" [tan™ (x/(R— Rc) "“];:
1
~—— (14.79)
(R— R.)'?

14.3.4 Fluid Relevance and Experimental Evidence

It is perhaps remarkable that anything in the above few sections has anything
at all to do with fluids, yet a number of experiments and simulations have
reproduced various of these sequences. Let’s first try to figure out why this
should be, before mentioning the actual experiments.

The obvious first question to ask is: When and why does a fluid behave like
a one-dimensional map? Now, a fluid, although multidimensional, is dissipa-
tive; the Navier—Stokes equations are of the form

%l: + Nonlinear and Pressure Terms = vV2u.

This means its phase space volume shrinks (for example, for each Fourier
component of the velocity field, ug, we have that di /dur < 0). If the flow is
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chaotic, the flow is stretching and folding in some directions, while shrinking
in others. Thus, the dimensionality of the flow is constantly reduced until it is
on its attractor. Because the attractor has been produced in this complex way
it is both thin and complicated. Prior to chaos, its dimension may be quite
small (order unity), and hence in some instances ideas from mapping theory
may apply [13]. This qualitative, but probably essentially correct, argument
nevertheless cannot be proven to hold (say by a series of rational approx-
imations of the Navier—Stokes equation) in general for a given arbitrary fluid
dynamical instability. Thus, there are many unknowns, and it is unclear pre-
cisely when any particular transition sequence will occur.

It is the universality of the sequences that gives rise to their robustness. For
example, the period-doubling sequence of Feigenbaum is by no means unique
to the logistic map. Most one-dimensional maps with a hump in the middle
will give quantitatively the same behavior (this is why the behavior is called
universal). What are the experimental signatures of a period-doubling cascade
[14]? Suppose we heat a liquid from below in a low aspect ratio container. If
the heating is too small, a balance between heating and heat diffusion is sta-
ble, and there is no motion. As the Rayleigh number increases (by making the
heating more intense), convection begins, and if the geometry is appropriate
two convective rolls appear. A probe measuring temperature at any given
point would still, however, give a constant reading, and hence the flow corre-
sponds to an attracting fixed point. As the temperature of the lower surface is
slowly increased (by slowly we mean that at each value of the temperature the
fluid is allowed to come to an equilibrium), then at some critical value the
rolls become unstable to a wave propagating along the roll axis. At any par-
ticular Rayleigh number in this regime a probe in the fluid would reveal a
single sinusoid; a power spectrum would yield a single frequency f, or single
period T'. The trajectory of the system in its phase space is a single closed loop
(Fig. 14.12). Further increasing the temperature contrast, a new oscillatory
mode (wave) appears, superimposed on the original one. Examining the
phase space trajectory would reveal a double loop, which only exactly repeats
after two cycles. A Fourier analysis would reveal the presence of a second
sinusoid, at double the original period. This is the first period doubling. How
does this look like a pitchfork? Well, for each valuc of the control parameter
(e.g., the Rayleigh number) plot each maximum and minimum value of the
temperature. For a single loop there are two such values, for a double loop
two maxima and two minima and so on. When plotted this way, each period
doubling bifurcation looks like a pitchfork. Note that the energy in the
second mode is less than that in the original (note that from a distance the
phase space trajectory still looks like a single loop), just as the amplitude of
the branch splittings gets smaller with each successive bifurcation on the one-
dimensional maps.

Increasing the temperature a little further, the trajectory splits again.
Another period doubling bifurcation has occurred, and the phase space tra-
jectory turns into a quadruple loop. The Fourier spectrum shows the domi-

.
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FIGURE 14.12. Period doubling. The upper row illustrates the trajectories in phase
space, as the period doubles and then quadruples. The lower row is a schema of the
corresponding frequency spectra.

nant scale is still at £, with a weaker contribution at f/2 (the doubled period)
and a still weaker contribution at f/4 and a 3f/4 harmonic. Ideally, we
would be able to see still more period doublings, but it is very hard to discern
them, as they they get closer and closer together as a function of Rayleigh
number, just as the theory predicts. Period doubling has also been obtained in
numerical experiments in two-dimensional convection [15].

The quasiperiodic route has also been observed in a number of hydro-
dynamical experiments. The experimentalist’s goal here is to increase the
control parameter slowly, and at closcly spaced values obtain a frequency
spectra (Fig. 14.13). The signature of this route would then be the appearance
of one, two, and perhaps even three or four independent frequencies, after
which the flow becomes chaotic and the spectral signature is broad-band. In
the experiments of Gollub and Benson [14] two apparently incommensurate
frequencies arose, f1 and f3, followed by frequency locking with fi/f2 =
9/4. Broadband spectra, a typical signature (although not a proof) of chaos
then appeared, with f] and f> still very visible. This was followed by strongly
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FIGURE 14.13. Schema of frequency spectra for the quasiperiodic transition
sequence. In (a) the spectrum is dominated by a single frequency, fy. In (b) a second
incommensurate frequency appears, and in Panel (c) fregencies are locked, by a small
shift from their initial values. Another bifurcation brings chaos and a broad-band
spectra, in (d). ”
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chaotic flow, with the initial frequencies largely subsumed by the turbulence.
Of course it may very difficult for the experimentalist to differentiate this
sequence from the appearance of more and more independent frequencies
(quasiperiodic flow), which in the presence of a small amount of experimental
noise may also have a broad-band spectrum, and very careful experimenta-
tion is needed to overcome this. Finally, intermittency has also been observed
in experiments [16, 17]. Figure 14.14 schematically illustrates a typical time-
series. Note that the intermittency predicted by this Pomeau—Manneville
mechanism has no obvious connection with the intermittency observed in
strong turbulence, although of course this isnot to say one does not exist.

The experimental support for these routes is fairly conclusive evidence for
the existence of chaos and strange attractors in weak turbulence. It would be
surprising indeed if, after passing through one of a number of fairly well-
understood transition sequences, which all imply chaos with all its ramifica-
tions, the subsequent passage to strong turbulence occurred via some sequence
through which the chaos were removed. Although this is not a proof that
chaos exists in turbulence, the question now of much more interest to the
physicist is: What good does it do me knowing there is a strange attractor in
turbulence?
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FIGURE 14.14. Schema of an intermittent time series. Periodic flows, when the flow
orbits close to a pseudo-fixed point, are separated by bursts of turbulence.

14.4 Strong Turbulence

14.4.1 Scaling Arguments for Inertial Ranges

We will skip over the little-understood area of the transition from low-order
chaos to fully developed ‘turbulence, and for the remainder of the chapter
focus on fully developed or strong turbulence. Much of the “modern” (say
post-1940) theories of this area have foundatiéns made of the scaling argu-
ments of Kolmogorov [18)]. For simplicity consider homogeneous, isotropic
turbulence in a fluid of constant, unit, density. Suppose that energy is input
into the fluid at some length scale L, by a stirring process, and a typical
resulting velocity is U. The ratio of the inertial terms to the nonlinear terms is
the Reynolds number Re = UL, /v. If this is large (and just by stirring vigo-
rously we can make it large), there is no effective means of removing energy at
the input scale. We may nevertheless expect there to exist some much smaller
scale, say Lp « Ly, at which the Reynolds number (based on Lp and the
velocity at that scale) is close to unity, and, hence for there to be energy
removal at that scale. Thus, energy must be transferred from the larger scales
to the smaller scales, for which nonlinearity is necessary. If the stirring is vig-
orous enough, the input and dissipation scales will be spectrally far removed,
and there will exist a range of intermediate scales for which neither stirring or
dissipation explicitly is important. This assumption, known as the locality
hypothesis, depends on the nonlinear transfer of energy being sufficiently
local (in spectral space). Given this, this intermediate range is known as the
inertial range. If the stirring produces an energy source of magnitude ¢ then in
a statistically steady state the flux of energy through the inertial range and the
dissipation must both equal ¢ (see Fig. 14.15). All the dynamical fields may be
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FIGURE 14.15. The putative energy and enstrophy cascades in three-dimensional (a)
and (b) two-dimensional turbulence. The ordinate is energy (log scale) and abscissae
wave number. The various subranges in reality blend smoothly together.
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Fourier decomposed, and denoting the amplitude of the wavenumber by k,
we may define an energy spectrum &(k) such that that the total energy
E =1 [u?dx (remember the density is unity) is given by

e8]
E= J &(k)dk. (14.80)
0

We will also denote a velocity magnitude at a scale / ~ 1/k by v or v(k),
so that &(k) ~ v(k)/k. This is also a useful stage at which to note that
Eqgs. (14.1) and (14.2), in the absence of viscosity, conserve the total energy.
Simple scaling arguments will now be used to give a relationship between
&(k) and e.

In the inertial range, the energy transfer is constant and cannot depend
explicitly on wave number. The energy spectrum cannot depend on the par-
ticular stirring and dissipation processes, because the energy transfer is local.
Thus, the energy spectrum &(k) is a universal function of ¢ and wavenumber
(what else is there?). To obtain the actual functional relationship, it is con-
venient to define an eddy turnover time t(k), which is the time taken for a
parcel with energy &(k) to move a distance 1/k. Thus,

(k) = (K36 (k) ~V2. (14.81)
Kolmogorov’s assumptions are then equivalent to setting
k&(k)
~—_ 14.82
- £ T(k) ? ( )
which, because we demand that ¢ be constant, yields the famous law:
&k) = AP35, (14.83)

where 2 is a universal, hopefully order one, constant. This spectral form has
been verified many times observationally, the first time using some very high
Reynolds number oceanographic observations [19]. '

The scaling relationship [Eq. (14.83)], as well as some other useful scaling
relationships, can be obtained in a slightly different, but essentially equiv-
alent, way as follows. If we for the moment ignore viscosity, the equation of
motion (14.1) is invariant under the following scaling transformation:

x=xA v=vl z=’>t).’_’, (14.84)

where r is an arbitrary scaling exponent. So far there is no physics. Now make
the following physical assumptions: First we make the locality hypothesis,
namely that the energy flux through a wavenumber &£ depends only on local
quantities [namely, the wavenumber itself and the energy &(k) or velocity
v(k)]. Second, the flux of energy from large to small scales is assumed finite
and constant. Third we assume that the scale invariance (14.84) holds, on a
time-average, in the intermediate scales between the forcing scales and dis-
sipation scales. This is likely to be strictly valid only in the limit of infinite
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Reynolds number, but for finite Reynolds number it is made plausible by the
locality hypothesis. [It is important to note that the infinite Reynolds number
limit is a limit, and is different from simply neglecting the viscous term in Eq.
(14.1), which gives the so-called Euler equations. This is because, as we sha]
see, this term contributes even in the zero-viscosity limit.] The time average in
practice need be no longer than a few longest eddy turnover times, and
depending on how local the energy transfer actually is we do not nced anp
infinite Reynolds number for the scaling to be valid in the inertial range.
Dimensional analysis then tells us that the energy flux scales as

US

o~ A2 (14.85)

from which the assumed constancy of ¢ gives r = 1/3. This has a number of
interesting consequences.

The velocity scales as v~ g!/3k~1/3, The velocity gradient scales as
Vo ~ ¢'B3k?/A, as does the vorticity w = V x v. These quantities thus blow up
(i.e., become infinite) at very small scales, but this is in fact avoided by a vis-
cous cut-off.

We can now recover Eq. (14.83) easily, because dimensionally

&~ 02k~ 2323 ~Y L 23

which is Eq. (14.83).

The structure functions S,, of order m, whlch are the average of the m’th
power of the velocity difference over distances I ~ 1/k, scale as (dv;)" ~
gn/3m™ o gm3k—m/3_In particular the second-order structure function, which
is the fourier transform of the energy spectra, scales as Sz ~ £2/3k~2/3,

The viscous effects effects become important at a range given by equating
the viscous and inertial terms in Eq. (14.1); that is

vik2p ~ kv?,
which yields
e\ 1/4 _
ky ~ (F . (14.86)

The scale /, ~ k! is called the Kolmogorov scale. In the limit of v1sc051ty
tending to zero, /, tends to zero, but the energy dissipation, perhaps amaz-
ingly, does not. The energy dissipation is given by

E= j vy - V2vdx. (14.87)

Because the length at which dissipation acts is the Kolmogorov scale, this
expression scales as (for a box of unit volume)

g2/3

E ~ vk2v? vmkz g, (14.88)
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with k& = k,. Hence, energy dissipation apparently does not depend on the
viscosity at all! This result is actually quite consistent with the whole picture.
Energy is input at some large scales, and the magnitude of the stirring largely
determines the energy input and cascade rate. The scale at which viscous
effects become important is determincd by the value of the molecular viscos-
ity by Eq. (14.86). If viscosity tends to zero, this scale becomes smaller and
smaller in such a way as to preserve the constancy of the energy dissipation.

Finally, the time scales as 7 ~ 1%/3 implying that for smaller scales the
“eddy-turnover time,” on which structures at that scale deform, becomes
smaller and smaller.

Two;Dimensional Turbulence

In two dimensions the situation is complicated by another quadratic invariant,
the enstrophy. Taking the curl of Eq. (14.1) to give a vorticity equation, and
restricting attention to two-dimensional flows, yields the vorticity equation:
% +u- V¢ =wW2%, (14.89)

where u = ui + vj and { = k - curl u. It is easily verified that when v =0, Eq.
(14.89) conserves not only the energy but also the enstrophy Z = I%Cz dx =
[ k28 (k)dk.

We now ask, how does the distribution of energy and enstrophy change in
a turbulent flow? The problem is analogous to that of rearranging mass on a
lever while still preserving the moment of inertia, with energy playing the role
of mass, enstrophy that of moment of inertia, and wave number the distance
from the fulcrum. Any rearrangement of mass such that its distribution also
becomes wider must be such that the center of mass moves toward the ful-
crum. Thus, energy would move to smaller wave numbers and enstrophy to
larger. Consistent with this, it is easy to show that energy dissipation goes to
zero as Reynolds number rises. The total dissipation of energy is, from Eq.
(14.89),

‘;—f =—v J ax. . (14.90)
Because vorticity itself is bounded from above [again using Eq. (14.89)] we
see that energy dissipation goes to zero as viscosity goes to zero, and hence
also in the infinite Reynolds number (but finite energy) limit. Thus, unlike the
three dimensional case, there is no mechanism for the dissipation of energy at
small scales in high Reynolds number two-dimensional turbulence. On the
other hand, we do expect enstrophy to be dissipated at large wave numbers.
These arguments lead one to propose the following scenario in two-dimen-
sional turbulence. Energy and enstrophy are input at some scale Ly and
energy is transferred to larger scales (toward the fulcrum), and enstrophy is
cascaded to small scales where ultimately it is dissipated. In the enstrophy
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inertial range the enstrophy cascade rate # is assumed constant. Using the
dimensionally correct scaling '

K38 (k)
| ~ (14.91)
yields the prediction
Ek) = '3k 3, (14.92)

where X' is also, it is supposed, a universal, order one, constant. 1t is of
course also quite possible to obtain Eq. (14.92) from scaling arguments iden-
tical to those following Eq. (14.84). The scaling transformation (14.84) still
holds, but now instead of (14.85) we assume that the enstrophy flux is con-
stant with wave number. Dimensionally we have

v’ 3r-3

. ne~ g3~ AT (14.93)
which gives 2 = 1. The exponent n determining the slope of the inertial range
is given, as before, by n = —(2r + 1) yleldmg the —3 spectra of Eq. (14.92).
Thus, the velocity now scales as v ~ #'/3k~1, and the time scales with dis-
tance as ¢ ~ I/v ~ n~1/3, Thus, it is length-scale invariant. The appropriate
Kolmogorov scale is given by equating the inertial and viscous term in Eq.
(14.1) or (14.89), which gives, analogously to (14.85)

i /3 172
kv~(—) . C(14.94)

v "

The energy dissipation is easily calculated to go to zero as v — 0. The en-
strophy dissipation, analogously to Eq. (14.88), goes to a finite limit given by

d 2 . 2
Z= 7 J {Fdx=v J {vee
~ vEk2v? ~ 1. (14.95)

So far so good. However, things in two dimensions are, unfortunately, not
quite as simple as they appear. First, note that timescale given by Eq. (14.81)
is apparently independent of scale. If the spectra were any steeper, then turn-
over times would actually increase with wave number. In fact the estimate
Eq. (14.81) of an eddy turnover time is actually rather poor for the steep
spectra found in two dimensional turbulence, and a useful refinement is:

= {j;(pzé(p))dp}"m, (14.96)

where ko is a lower wavenumber cut-off, recognizing the straining effects of
all velocity scales larger than the scale of interest. Using this in Eq. (14.90)
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yields the log-corrected range
&(k) = A 'y (log(k/ko)) ™ k3. (14.97)

This is likely to be observationally indistinguishable from the uncorrected
range. (Generally speaking, we can safely leave out logarithmic corrections in
final results, if not always in intermediate calculations. We will subsequently
neglect them.)

However, this has not fixed the underlying problem with the two-dimen-
sional phenomenology, which is as follows. The inertial range predictions are
based on the assumption of locality, in spectral space, of energy and ens-
trophy transfers. Now, a useful measure of this locality is given by the strain-
ing at a particular wavenumber, say k, from other wavenumbers. The total
strain T'(k) at k is given by ’

' T(k) = {J: &(p)pid log p}llz. (14.98)

The contributions to the integrand from each octave are given by '
&(p)p3Alog p. (14.99)

In three dimensions, use of the —5/3 spectra indicates that the contributions
from each octave below k increase with wave number, being a maximum
close to &, implying locality and a posteriori being consistent with the locality
hypothesis. However, in two_dimensions each octave makes the same contri-
bution. The strain, and possibly the enstrophy transfer, are hardly local after
all! This very heuristic result implies that the two-dimensional phenomenol-
ogy is on the verge of not being self-consistent, and suggests that the —3
spectral slope is the shallowest limit that is likely to be actually achieved in
nature or in any particular computer simulation, rather than a very robust
result. Why? Well, suppose the detailed dynamics attempt in some way to
produce a shallower slope; using Eq. (14.99) the strain is then local and the
shallow slope is forbidden by the Kolmogorovian scaling results. However, if
the dynamics organizes itself into structures with a steeper slope (say k%), the
strain is quite nonlocal. The fundamental assumption of Kolmogorov scaling
is not satisfied, and there is no inconsistency. In fact numerical simulations do
reveal a slope steeper than k=3, often dominated by isolated vortices. How-
ever, the dynamical processes leading to their formation, and their precise
relationship with the enstrophy cascade, are not at this time fully understood.

There is one other aspect of the phenomenoclogy that has been sometimes
thought to be a problem, but in fact is not. This is that in the limit of zero
viscosity, Eq. (14.95) implies that enstrophy dissipation remains constant,
whereas it has been shown rigorously that the inviscid equations—Eq. (14.89)
with the right-hand side set to zero—have no singularities and enstrophy dis-
sipation remains zero. This is not in fact a contradiction, first because we are
concerned with the zero viscosity /limit in Eq. (14.95). Even if we were to sud-
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denly ‘turn off’ the viscosity in an infinitely high resolution simulation of Eq.
(14.89), then the enstrophy inertial range (assuming it exists) would slowly
spread to larger and larger wave numbers. During this period of adjustment
the fluid indeed has zero enstrophy dissipation. It takes the fluid an infinite
time to come to equilibrium with an infinitely long inertial range. Only then is
the enstrophy dissipation nonzero, which is not an inconsistency with the rig-
orous results.

14.4.2 Predictability of Strong Turbulence

One of the central properties of turbulence is its unpredictability due to non-
linear interactions. Some authors will draw a distinction between “sensi-
tive dependence on initial conditions” and “unpredictability.” The former’s
meaning is unambiguous, and it is normally applied to deterministic systems.
The latter is sometimes applied only to indeterminism arising out of stochas-
ticity, when the equations of motion are not known. However, in this chapter
we take them to be synonymous, and use the latter (because it is but one
word) to mean unpredictability arising from chaos. Actually, the difference
between chaos and stochasticity lies not so much in the underlying dynamics,
but in our knowledge of them. Whereas chaos is essentially but a word for
deterministic “randomness,” stochasticity describes randomness arising from
incomplete knowledge of the system, as for examplc in Brownian motion.
Thus, in most cases the difference between ‘Stochasticity and chaos may be
thought of as merely-a difference in our knowledge of the dynamics. For ex-
ample, most computers have “random number generators” built in, and these
are often used in the simulation of stochastic systems. However, the algo-
rithm producing the random numbers is completely deterministic, and if we
regard that algorithm as part of the system, we have chaos, not stochasticity.

The modern ideas of nonlinear dynamics and chaos have not, interestingly
enough, had at this time much impact on theories of, or ideas of how to cope
with, strong turbulence. Even prior to the classical paper of Lorenz in 1963
and later Ruelle and Takens in 1971,it was believed that turbulence was truly
unpredictable [9], notwithstanding the picture of Landau of turbulence as a
large collection of periodic, and presumably predictable, motions. The unpre-
dictability was thought to arise from the utter complexity of the flow. The
reasons for the loss of predictability were probably only properly understood
when it was realized that even systems with a small number of degrees of
freedom could be unpredictable. Assuming that the dynamical systems argu-
ments applicable to weak turbulence apply to strong turbulence, and hence
that a turbulent fluid /s in fact unpredictable, then just using the scaling laws
we can heuristically obtain estimates of the predictability time for a turbulent
fluid [201].

The physical space fields {(x) may be expressed as an infinite Fourier sum
or integral, for example { = 3 {y exp(ix - k) or { = j(k exp(ix - k) dk. The
former is appropriate in a bounded domain (where the wave numbers are
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quantized), the latter in an infinite domain. We are usually concerned with a
finite domain, but will nevertheless often replace sums by integrals where it
will simplify things. In two dimensions (for simplicity) the inviscid vorticity
equation may be written in spectral form

agk ZEEN " @ipglply = VKL, (14.100)

where ay,, are geometrlcal coupling coeflicients which arise when Eq. (14.89)
is Fourier transformed. The hats over transformed quantities have been
dropped. At any given instant the equation of motion may be linearized
about its current state, and the subsequent motion would then be described by
an equation, valid for short times, of the form:

% + Argly =0, (14.101)
ar

and the cigenvalues of the matrix Az, (whose explicit form does not concern
us here) determine the short-term growth of errors in the system. Because the
system is chaotic, 4y, has positive (growing) eigenvalues. If spectral inter-
action in the inertial range are sufficiently local, it becomes meaningful to
inquire as to the growth of errors at any particular scale &, for then the matrix
Apg is dominated by terms close to its diagonal. In particular, the rate of error
growth at any particular scale is then given by the size of the appropriate
coefficient of 4y,, which is ku; where uy is just a typical velocity at scale k.
This of course is just the inverse of the eddy turnover time (14.81). After a
time 7%, errors will have grown sufficiently that a linear approximation is no
longer valid; at that scale errors will saturate but at the same time will begin
to contaminate the “next larger” (in a logarithmic sense) scale, and so on.
Thus, errors initially confined to a scale k at t = 0 will contaminate the scale
2k after a time 7;. The total time taken for errors to contaminate all scales
from k' to the largest scale kg is then glven by, treating the wavenumber

spectrum as continuous,
K d(in k
T = J d(in k)
ks

Tk
1Y |
_ J dlnk) (14.102)
K3E(k)’
If the energy spectrum is a power law of the form E = C’k~" this becomes
2

T = [C'k-3) (14.103)

(n—3)°

As k' — oo the estimate diverges for # > 3, but converges if n < 3.
What does this mean? First, we should point out that these arguments are

at best heuristic, and do not account for the more esoteric phenomena, such

as intermittency and coherent structures, believed by many to be important in
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strong turbulence. Nevertheless, taking them at face value they imply that
two-dimensional turbulence is indefinitely predictable; if we can confine the
initial error to smaller and smaller scales of motion, the payoff is that the
“predictability time’” (the time taken for errors to propagate to all scales of
motion) can be made longer and longer, indeed infinite. This is consistent
with what has been rigorously proven about the two-dimensional Navier—
Stokes equations, with or without viscosity; namely, that they exhibit “global
regularity,” meaning they stay analytic for all time provided the initial con-
ditions are sufficiently smooth (Rose and Sulem [4]). This does not mean that
two-dimensional flow is in practice necessarily predictable. Two-dimensional
turbulence is almost certainly chaotic, has positive Lyapunov exponents, and
an arbitrarily small amount of noise will render a flow truly unpredictable
sometime in the future. It is just that we can put off that time indefinitely if we
know the initial conditions well enough, and can reduce the amount of exter-
nal noise sufficiently.

In three dimensions, on the other hand, things are more worrisome. The
predictability tilne estimate from Eq. (14.103) converges as k' — o0 so that
even if we push our initial error out to smaller and smaller scales, the pre-
dictability time does not keep on increasing. The time it takes for errors ini-
tially confined to small scales to spread to the largest scales is simply a few
large eddy turnover times (because the eddy turnover times of the small scales
are so small). This is an indicator that something is badly wrong, either with
our methodology or with the Euler equations; because the system is classical,
we do not expect such finite time catastrophes. If one were able to prove
global regularity for the three-dimensional Euler equations then we would
know our analysis was wrong, but such a proofis lacking, and may not exist.
So it is still an open question as to whether the equations are well posed or
not. If the Euler equations were ill posed, it would mean that they are an
incorrect description of zero-viscosity turbulent flow, which would perhaps
not be so terrible anyway as no classical flow is inviscid, and we would be
saved from having to throw away the Navier-Stokes equations by viscosity.
No matter how small viscosity, if not zero, then at some small wave number
the local Reynolds number will be small and viscous effects will start to dom-
inate over inertial effects. Beyond the dissipation wave number, it is possible
to show that the energy spectrum gets steeper, and as soon as the asymptotic
spectra is steeper than —3 we are again assured of indefinite predictability. If
the Navier—Stokes equations were shown to have singularities, it would be a
more serious matter.

So what about the weather? Well, in the lower part of the atmosphere
(below 10 km, where the weather is) the large-scale flow behaves more like a
two-dimensional fluid than a three-dimensional fluid. This is because of the
twin effects of rotation and stratification, but we shall not go into that here.
At scales smaller than about 100 km, the atmosphere starts to behave three-
dimensionally. Now the current atmospheric observing system is such that
over continents the atmosphere is fairly well observed down to scales of a



14. From Laminar Flow to Turbulence 351

couple of hundred kilometers. If we knew the enstrophy cascade rate through
the atmosphere we could evaluate the predictability time using the formulae
derived above, but it is easier simply to do the sum manually, Fourier trans-
forming in our heads, as it were. Suppose then we have no knowledge of the
dynamical fields at scales smaller than 200 km. Aside from certain rather
intensc small-scale phenomena, the atmosphere is not especially energetic at
these scales (hurricanes, for example, are rather larger as well as being inter-
mittent) and we could estimate a typical velocity of about 1 m/s giving an
eddy turnover time of about 2 days. So in 2 days motion at 400 km scales is
unpredictable. The dynamics at these scales is a little more intense, say
U ~ 2 m/s. Coincidentally (?), this also gives a 2-day eddy turnover time, so
after 4 days motion at 800 km is unpredictable. Continuing the proccess, after
about 12 days motion at 6000 km is completely unpredictable, and our
weather forecasts are essentially useless. This is probably a little better than
our experience suggests as to how good weather forecasts are in practice, but
of course our models of the atmosphere are certainly not perfect. (Actually,
I’'ve fudged the numbers so they come out reasonable, having been rather
cavalier about factors of 2, , etc. More careful calculations, as well as com-
puter simulations, do give similar results though.) In principle, we could
make better forecasts if we could observe the atmospherc down to smaller
scales of motion. Observing down to 100, 50, and 25 km would (if the atmo-
sphere remained two dimensional) each add about a couple of days to our
forecast times.

However, we can’t go on forcver, because at small scales of motion the
atmosphere starts behaving three-dimensionally. As we have seen, because the
energy spectrum for three-dimensional turbulence is shallow, the eddy tum-
over times decrease rapidly with scale and the predlctablhty time is largely
governed by the predictability time of the largest scale of motion. Thus, the
theoretical limit to predictability is governed by the scale at which the atmo-
sphere turns three dimensional, probably about 100 km. So we see that
we can’t increase the length of time we can make good weather forecasts for
longer than about 2 weeks, no matter how good our models and no matter
how good our observing system. This is the theoretical predictability limit of
the atmosphere. The so-called butterfly effect has its origins in this argument:
a butterfly flapping its wings over the Amazon is, so it goes, able to change
the course of the weather a week or so later. How farfetched is this? Well, the
affect of a lone butterfly are probably drowned both by viscous dissipation
and more energetic eddies at larger scale. So although this argument may be
an exaggeration, there is little doubt that small-scale phenomena will affect
global weather some time later in an unpredictable manner.

One other point may be apposite. The predictability of a system is often
characterized by its spectrum of Lyapunov exponents. In a turbulent system
the largest Lyapunov exponent is likely be associated with the smallest scales
of motion, and the error growth associated with this effectively saturates at
small scales. The time scales of error growth affecting the larger scales, which
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are the time scales of most interest, are determined by slower, larger-scale
processes whether or not the cascade-like growth of error described above i
correct. This means that the largest Lyapunov exponents probably have
nothing whatever to do with the growth of error at the larger scales in g
turbulent fluid.

14.4.3 Renormalizing the Diffusivity

To obtain a predictability time for the large scales of turbulence, we succes-
sively summed the effects of the smaller scales. I’d now like to briefly discuss
one other application of this kind of approach, the idea now being to succes-
sively average over the smaller scales to produce an effective eddy diffusivity
for the large scales. This is the same idea used in renormalization group tech-
niques in condensed matter physics and discussed earlier with reference to
transition problems, but the arguments given here will be simple and self-
contained. Nevertheless, the discussion may be a little brief for those with no
background in tarbulence theory. Let us first discuss the problem.

A turbulent fluid may have many decades of scales of motion. Indeed, in
the most-observed fluid of all (the earth’s atmosphere) the forcing scales are
several thousands of kilometers and the dissipation scales are perhaps order
millimeters. Nevertheless, we cannot hope to explicitly describe all these
scales of motion, even with future generations of computers. (If we attempted
to do so by constructing a numerical model ,of the atmosphere with grid
points every millimeter, it would take a time longer than the current age of
the universe to advancé just one time step, even with computers 10 times as
fast as today’s.) If we just use the value of the molecular viscosity in a model
resolving only the large scales, energy will not be removed correctly, if at all.
This means that in an equation such as (14.89) we must use a much larger
viscosity, appropriate to these resolved scales, which represents the effects
that subgridscale, or unresolved, motions have on those resolved. Because
models of the large scales can be constructed and run on the computer, the
problem of turbulence lies, in a nontrivial sense, in deriving an expression for
such an “eddy viscosity.” _

As a step toward that goal, we will discuss a simpler problem, that of the
eddy diffusivity of a passive tracer. Such a tracer (#) obeys the equation

J
% + (u- V)¢ = xV2g, (14.104)
where  is the molecular diffusivity, akin to the viscosity. The Peclet number,
UL/« is analogous to the Reynolds number and is a measure of the size of the
inertial terms to the diffusive terms. Again, the problem arises as to what to
do if our model does not reach the small scales at which the diffusivity is
effective; we must derive an effective eddy diffusivity appropriate for high
Peclet number regimes. The problem is, or at least should be, simpler than the
eddy viscosity problem because Eq. (14.104) is a linear equation.
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Just as there is a cascade of energy (in three dimensional turbulence) to the
small scales there is a cascade of tracer variance, ¢2-stuff, from large scales to
small. Scaling arguments similarly give rise to inertial range predictions for
the spectrum of tracer variance. These are:

®(k) = Cyk=53¢1/3 (14.103)
in three dimensions and
®k) = C'yk 'y 13 (14.106)

in two dimensions, where C and C' are undetermined, dimensionaless, con-
stants and y is the rate of cascade of tracer variance, ®(k).

At sufficiently small scales the Peclet number becomes of order unity and
dissipation of ¢2-stuff occurs. If the diffusivity is sufficiently large, diffusion
occurs before (i.e., at larger wave numbers) than dissipation of energy by vis-
cosity. Because Eq. (14.36) is linear, it turns out that it is possible (after a
great deal of algebra [21]) to derive an cxprcssmn for the eddy dzﬂ"usnvny, ina
certain low Peclet number limit. The expression is

1

= &) ,
Dk) = L 2 . (14.107)
This is a sensible and unsurprising result, because it merely says that the eddy
diffusivity is determined by the combined motion of small eddies from a size
1/k and smaller, The result is of no immediate help, because it is valid only in
a low Peclet number limit. -

Note that Eq. (14.107) contains the actual molecular diffusivity in the
denominator. Now, suppose that Eq. (14.107), or an expression very similar
to it, is accurate at some wavenumber k, in the dissipation regime, and we
wish to obtain an expression for the eddy diffusivity at some slightly larger
scale, or smaller wave number k — Ak, Then at k — Ak the correct expression
for the eddy diffusivity will be the value at k£ plus a small contribution from
the wavenumber interval between k and k& — Ak. But in this interval, the dif-
fusivity appearing in the denominator should not only be the molecular dif-
fusivity, but should include the eddy d1ffu51v1ty appropriate at that wave-
number. That is:

28(k) Ak

D(k — Ak) = D() + 30 h s T

(14.108)
Thus, given the result valid for low Peclet number, we are able by successive
applications of Eq. (14.108) to bootstrap ourselves to a result valid in a low
wave number, high Peclet number regime (see [22]). From Eq. (14.108) we
obtain the differential equation

éD 2 &k)
ok 3(D+x) kP (14.109)
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which integrates, with the boundary condition of D(w0) =0, to give

4 [ &(p) , 1V

— 2,7

D) = K:+[k +3 . p? dp| .
In the low Peclet number limit, the expression is strongly dependent on the
molecular value. In the high Peclet number limit Eq. (14.110) simply reduces

to
00 172
D(k) = EL é;(f) dp] (14.111)

and there is no explicit dependence on the molecular diffusivity. We have
apparently succeeded, then, in obtaining a “renormalized” value of the dif.
fusivity, which would be appropriate to use in calculations that do not
explicitly resolve the diffusive subrange.

It is possible to use Eq. (14.111) to make testable predictions about the
values of " and o#; appearing in the inertial range expressions (14.83) and
(14.105), and (14.92) and (14.106), for energy and passive tracer-variance in
three and two dimensions, respectively. To do this first evaluate Eq. (14.111)
using Eq. (14.83) or (14.92) to give

(14.110)

2 \1/2
Ds(k) = (7) g3 —4/3 (14.112)
in three dimensions and - r
n 172
Dy(k) = (%ﬁ) A » (14.113)

in two. Now, the dissipation of tracer variance (¢2-stuff ) in reality is given by
X=K J:D pZ(D(;o) dp. _ (14.114)

Similarly, it is also equal to
x = D(k) J: p2®(p)dp, (14.115)

where the upper limit may now lie in fhe inertial range. For the three-
dimensional case, substituting Eq. (14.105) for ®(p) and Eq. (14.112) for
D(k), and performing the integration, gives a relationship between 2" and C,

namely
472\
=—(=) . 1

C 3(.%,) (14.116)

Experimentally, € and 2 are both approximately 1.5, which is consistent
with the prediction.
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In two dimensions, a similar calculation yields

12 1/2
!
={— . 14.
c (J[) (14.117)

There is currently no experimental confirmation or falsification of this pre-
diction. However, because the Kolmogorov scaling itself in two dimensions
remains unconfirmed, this may be moot.

It is tempting, but unjustified on any a priori basis, to suppose that in two-
dimensions the above ideas apply not only to a passive tracer but also to
vorticity—for note that Eq. (14.89) is the same form as Eq. (14.104). Then
from Eq. (14.116) we obtain a prediction for the value of the Kolmogorov
constant by setting C' = 2, to give ' = 121/3. We emphasize that this last
step is very speculative, although there are a couple of indicators that it may
not be completely nonsensical [23]. First, numerical simulations do indicate
that at the small scales of two-dimensional turbulence the vorticity field is
passively advected by the large field. Second, a subsequent but independent
full renormalization group treatment gave, perhaps remarkably, precisely the
same numerical number for ', It may be that such a treatment is implicitly
treating the vorticity as passive, although it is difficult to disentangle the
assumptions from the very elaborate calculations. In any case, as this stage
our reach has now far exceeded our grasp (but then what’s a heaven for?) and
we should now sum up.

14.5 Remarks

In this chapter we first discussed some basic notions of linear instability and
nonlinear equilibration. Then, temporarily leaving the Navier—Stokes equa-
tions behind, we discussed various sequences to do with the transition to chaos.
Much progress has undeniably been made in understanding the transition
problem using tools from “nonlinear science” or dynamical systems theory.
However, for the physicist these would be little more than mental gymnastics
were it not for the fact that a number of the sequences have actually been
observed in experiment. The experimental verification is important because at
the time of writing there is something of a gap between the scaling theories
and rigorous mathematical hydrodynamics. Ideally, one would like to be able
to do the following: take the Navier—Stokes equations for some fairly generic
geometry (e.g., three-dimensional convection in a box of arbitrary aspect
ratio, or a rotating cylinder) and show that a series of rational approxima-
tions for some particular range values of control parameter (say Rayleigh
number or Reynolds number) leads to a low-dimensional map or system of
ordinary differential equations for which the transition to instability and then
chaos is well understood. Although in some circumstances this goal can be
approached, in general it is a very difficult proposition-—it is even difficult to
rigorously obtain the appropriate Landau equation for a given instability,
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and this is a simpler task than elucidating the full transition sequence. In the
absence of this it is very difficult to predict ahead of time what particular
route a given flow will take, or even to say with confidence that the transition
to turbulence is understood. Numerical simulations and algebraic mampu-
lation languages, such as Maple, will undoubtedly help, as will using any
symmetry in the geometry.

The astute reader will also have noticed that there was no section entitled
“From Chaos to Turbulence.” This lamentable lack is not solely due to lazi-
ness or ignorance on the part of the author, although both may be applicable.
It is because little is quantitatively understood about the phenomenon. It is
certain that turbulence is chaotic, although it is not certain how the transi-
tion from low-dimensional chaos to higher-dimensional turbulence occurs,
whether it is in any sense universal, even whether it is a sensible question, and
SO on.

Bypassing this difficult topic, we then turned to strong turbulence. Although
scaling arguments prove useful in understanding the basic phenomenology,
further progress at a fundamental level has here too been slow. However, a
lot of useful practical information, for example the predictability limits of the
atmosphere, can be estimated using no more than these arguments. We then
discussed a rather more recondite topic, that of renormalizing the eddy dif-
fusivity in a turbulent flow using a successive averaging approach. Such
arguments have proved successful in a number of problems involving many
scales of motion, and their application to turbulence is attractive because they
apparently afford a means of beginning with an expression or idea valid in a
rather restrictive domain and bootstrapping to a regime of greater validity.
Nevertheless, more sophisticated application of renormalization group theory
has been a little controversial and there currently is probably no a priori
reason to prefer them over the more established renormalized perturbation
theories. ,

It is a truism to say that fluid mechanics in general is difficult because it is
nonlinear. Turbulence in particular is made even more difficult by the fact
that it involves many degrees of freedom, or put another way, its dimension-
ality is large. The impact of ideas in nonlinear dynamics, which have typically
dealt only with systems of low dimensionality, on strong turbulence is yet to
be seen. It may not be too important to understand the detailed structure of
the strange attractor in turbulence (presuming that the attractor is strange);
because the flow is so complex, any interesting properties manifest themselves
before the attractor has been fully explored. However, it is probably true to
say that the generic lack of predictability of fluid motion, as dictated and
explained by the presence of strange attractors in turbulence, actually under-
scores the necessity for a statistical theory rather than a deterministic theory
of turbulence. Whether the texture of what is traditionally meant by non-
linear dynamics (chaos, strange attractors, Lyapunov numbers, etc.) will play
a direct role in turbulence is unclear; rather the ideas may provide theoret-
ical foundation for statistical assumptions. In any case, the field (as it has
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been since Horace Lamb, in the 1920s, expressed more faith in the Almighty
being able to explain quantum electrodynamics than turbulence) is ripe for
progress.
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