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Remarks on the predictability properties of two- and three-dimensional
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SUMMARY

This paper discusses the relationship between certain well-posedness resuls or the equations of motion
and simple phenomenological erguments pertaining to e predictability of the flow fields. The barotropic and
quash-geostrophic equations have been shown to be well-posed wnder certain conditions. From this, it has been
inferred that Lorenz's conjecture of finite predictability time for any scale of iniial error i false. Such an
inference is justified i the error energy may be made small by confning the error to sml scales of motion.
Ttis snown that this may be achieved, given finite bounds on the vorticity, It s also shown that there is o
contradiction between essertially Kolmogorovian phenomenclagical arguments and the well-posedness of the
equations, since the conditions under which a finite predictobilty time is predicted by the former are those
underwhich the equations do not necessarily adit of smoothsolutions. Given smooth enough nital conditions,
then phenomenclogical turbulence arguments and rigorous exislence proofs imply that the predictability time
of a barotrapic fluid may be made as long as we wish ifthe inital error scale can be made smll enough, Both
sels of arguments also imply that enstrophy dissipation tends lo zero s viscosiy tends to zero. For a (hree-
dimensionl fluid phenomenology implies 2 finite precictabilty time, and non-zero energy dissipation a5
yiscosity tends to zero, implying the ill-posedness of the three-dimensional Eler equaticns.

1. INTRODUCTION

It has been known for some time that for the equations of motion governing
barotropic, or two-dimensionl, flow well-behaved solutions exist, That is to say given
smooth enough initial conditions the fow does not ‘blow-up', even i nviseid. Specificaly,
in two dimensions in a bounded domain the Euler equations exhibit ‘global regularity’,
mezning the fow remains analytic for all time, provided the inifial vortcity is Holder
continuous (3 condition stronger than ordinary continuity but weaker than differen-
tiabliy). If the initial velocity is then n-times differentiable (C") (it will be at least at
once differentiable if vorticity is Holder continuous) it remains so for ll times, and in
particular solutions with C* (infnitely differentiable) initil conditions remain so always.
However, if the initial vorticity is unbounded, or merely discontinuous, the results do
not go through (although this i not to say that the Bow s then necessarily ill-posed!). See
Rase and Sulem (1978) for a review. In three dimensions no such resuls have been
obtined, and global regularity may not exist because vortex stretching can lead to
extremely rapid vortcity growth possibly causing singulariies n finite time. In two-
dimensional flow the offending term, @+ VU, is identically zero and vorticityis conserved.
Tn quasi-geostrophic fow vortex stretching arises only through the action of planetary
Yortiity f and again no catastrophic growth of relative vorticty can occur, Indeed in a
series of papers Bennett and Kloeden rigorously demonstrated the important result that
the quasi-geostrophic equations are well-posed under farly weak conditions (see Bennett
and Kloeden 1981a, and references therein). Being well-posed in the classical sense
means having unique, smooth solutions which depend continuously on the initial data.
This has important implications for predictability. Let yy(t) and y{r) be the stream-
functions of two solutions of the barotrapic or quasi-geostrophic equations of motion,
Then the theorems imply that at any time >0 and given any ¢>0, there exists &
8(t, €) > 0 such that, if

B0~ 0N <0 then |Bly(0) - walf <e )
1039
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for any 1 for which a solution exists, E(y) i the energy of the solution and E(p, = ;)
will be referred to as the error energy, or simply the error.

Lorenz (1969) had previously conjectured that the earth's atmosphere might be an
example of a fluid system for which for any particular future time there is a limit below
which the error energy cannot be reduced, no matter how small the initial error, if not
zero. This suggestion seems to stem from phenomenological reasoning and the use of 3
closure model of two-dimensional furbulence. We shall refer tothis s “inite predictabilty
as opposed to ‘indefinite predictability implied by (1). Any well-posedness of the
equations of motion seems at odds with any such conjecture, as pointed out by Bennett
and Kloeden (op. cit.). However, Lorenz's argument does not pertain to point sources
of error, but to global disturbences of a characteristic scale, or wavenumber, He had
argued that the time taken for an error initially confined to the smallest scales of motion
to dominate all scales could under certain conditions be finite, no matter how small the
scale of the initial error. To make the connection with the regularity proofs it must be
shown that we can make the error energy as small as we like by confining the error to
ever smaller scales of motion, in the Fourter sense. Although this may seem physically
obviaus, its proof (given in section 2) is not entirely trivial. We consider only two-
dimensional flow, in a doubly-periodic finite domain. &t is then shown, in section 3, that
the regularity proofs are in fact consistent with simple phenomenclogical arguments
since the latter do imply indefinite predictability for two-dimensional (but not threg-
dimensional) flow evolving from sufficiently smooth initial conditions, Section 3 also
contains a discussion of the zero-viscosity limit of two- and three-dimensional fows.
Readers not interested in the mathematical proof may skip section 2,

2. RIGOROUS PREDICTABILITY PROPERTIES
The baratropic equation of motion on an f plane is

(V) ar+ Iy, Vy) =0 2
where
, . opd_, e,
I, V) =—=Vyp-—=F
¥ x dy / ay dx
If o=V, then dfdr ([w'dk) =0, for n=0,1,2,.... Let §= [0’ d, and E =
[ (Vy)*dx. In all cases the integral is over the domain. We suppose the solution of (2)
may be written as the double Fourier series

W)= 2 2 et o
M=-zj=-x
and to ensure reality of the streamfunction, 9, = Y%, All lengths are non-dimen-
sionalized by L/ where L is the length of the (square) doman.
Let

NN
LRI S
m=-Nn=-N

and let = V1), etc. We may suppose the ‘truc’ state of the atmosphere is given by
1(v,) and our ‘observation’ of it by 1(r, ). Then the well-posedness of the cynamical
equations will indeed imply the falsehood of Lorenz's conjecture (inasmuch as it pertains
only to two-dimensiona! flow) and hence indefinite predictability if the following theorem
is true:

=

e s .

a

8]
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Theorem: At time =0, given any ¢ > ( there exists a fimite N'> 0 and a &> 0 such that
if
‘w"m - wnm; <6 for ’m‘! |”| <N

then |E(y - 9)|<e.

In English, the theorem implies that we may make the total error energy as small
as we like by accurately measuring all scales of motion down to some observational cut-
off seale, provided this scale is small enough. Below we give a couple of proofs, or
sufficiency conditions, for the theorem. ‘Proof' 1 is given by way of introduction. Note
that the theorem need hold only at ¢ = 0 (the time at which we make the ‘observations’).

‘Proof 1. Assume the energy spectrum is a function of some power of the wavenumber
k= (" + )", Thus suppose E(k)= Bk~ where the total energy is [5 E(k) k. (Such
spectra will be referred to as ‘' spectra. The replacement of a discrete spectrum by a
continuous one is convenient, and not severe.) Then the energy in the scales £ > Nisa
finite, decreasing function of Nif # > 1. However, to assume a power law behaviour, for
the instantaneous spectrum, is very restrictive, We have really assumed the result, rather
than proven it. Note that unless 11> 3 the enstrophy, and hence the vorticity, are not
bounded and the equations no longer have necessarily well-behaved solutions.

Procf 2. This proof assumes @ to be continuous and therefore (by periodicity) bounded-
conditions which are also required in the regularity proofs, Differentiability need not be
assumed. Note that continulty implies v and " are integrable. Enstrophy § s then also
bounded by § < w? 4, where A s the domain area and w, is the maximum absolute
value of o within the domain, also denoted max |o].

Define ¢ = 1 - . Then the energy in the error field is

B~ | 9 = - 0T~ 70

The first integral, which exists, is zero, So

.

B(p)=- | oo
<l 0
<marg [ Vol

where ma|¢| denotes the maximum value achieved by |¢| within the domain, Now, we
can make || as small as we like everywhere by making the sum of the coefficients inits
Fourier expansion sufficiently small, For we have, where a single summation sign implies
2 sum over all m], o] <

|¢| = IE ¢"l" ei1"“+”.v)| s E M)HIII ei{"u+’IY)| = z |¢)”1H " (5)

Further, we can make the infinite sum on the r.h.s. of (3) as small as we please, by setting
[t = Wl < (V) Tor all |, [#| <N, no matter what the value of the remaining
coefficients. To see this write

E l‘pmn’ = 2 W!ﬂ"’ + g I‘pmn‘ (6)
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Wher the sums written 2, (1) denote partial sums over al |, ] greater than (less
than) N.

Using the Cauchy-Schwarz inequality, and the fact that the individual terms in the
frst sum on the r.h.5, are all less than 6, (6) becomes

2 1, 0 2 i I
Bl <is1fo+ (Sl +ret] x[Seter)

<(IN+1)18 4 SEDVAN-L,
Hence, using (3),

|9 < (N + 170 + SAD1EN-, m

We have written %, (m’ + %) ~ DN%, where ) is a fnite constant. This is valid for
large.V, as can be seen casily by approximating the sum by the integral [ (2 dk) K,
(Any additional terms in the summation are all of higher order in N'.) By choosing 8
small cnough (such that N*6— 0 as N ) and Nlarge enough we may make ¢ as small
a we like everywhere, To complete the proof requires that the integral

1=ﬂm-@ux=ﬂwm@
is bounded for all . Certainly
I< A (max|o| + max|a) ®)

which is bounded for finite N. As N = =, d is not, however, obviously bounded

since there exist continuous, periodic functions whose Fourier series do not converge
everywhere, However, we have

ISﬂdﬂ+IWM. 0

The firs term is bounded by assumption (its upper bound is A max|us). The second term
i also bounded because, by the Canchy-Schwarz inequality

17
f |m1dx~:~U cﬁzdx) A",

But even as N = the right-hand side i certainly bounded by Bessels inequality, which
ensures

Lich‘uzdeS.

C Noe

(10)

Note that we have ot proved or required that G- w as N— =, To do so requires
stronger assumptions about w.
Using (4), (7), (8) and (10) the theorem follows, namely that we can make the

energy in the error () field as small as we like by making the first ¥ Fourier components
of its streamfunction sufficiently small

3. PHENOMENQLOGICAL PREDICTABILITY PROPERTIES

We have shown that, given bounded vorticiy, the energy in the initial ‘error field
may be made as small as we like by choosing N sufficiently large, where N is the
wavenumber beyond which no information exists regarding the flow, A corollary is that -

PR S —
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the series (3) is uniformly convergent. Although the result s perhaps physically obvious,
it seems worthwhile cementing the connection between spectral predictability theories &
Ju Lorenz (1969) and regularity proofs of the simplified equations of motion. The simple
consequence is that the time taken for an error, concentrated initially at small scales, to
dominate large scales may be made as long as we like by choosing the initial error scale
small enough, provided the conditions for well-posedness are satisfied.

Arguments to the contrary.(Lorenz 1969; Lilly 1972) may be expressed as follows.
(This and all of the arguments following are heuristic.) An eddy turnover time 7, may
be defined, partly on dimensional considerations, by

=B (0

TEE(k) = Ck™, then 7, = C'k~3 where C and C' are constants. This s the time taken
for fow structures of scale 1/k to be distorted by a velocity {kE(k)}'*. Now suppose -
and this s the crucial assumption - that the time taken for error to propagate from a
scale k to scale k/2 is proportional to 7, Then the total time for error to propagate
through scales from k= k; to k=115 :

P
T= C70-3 (yhered? =)

m=0
’ 1 = 7lp+-3)2
- =) )
Alternatively, in a continuous wavenumber spectrum
“odnk)
= =[C k=325 0 - ), 1%
Sl L B

As k;~ = both estimates converge for n <3, and so predictability is always finite, in
apparent contradiction to the well-posedness results. Note that a finite predictability time
T need only be the time taken for error to contaminate all scales (and not necessarily
dominate all scales) for ill-posedness to ensue.

However, 2 spectrum shallower than &~ is not expected for two-dimensional fiow.
Dimensional arguments suggest that one write, for inviscid flow,

1e= PR/, (1)

where 17, is the enstrophy castade rate, If (11 is used for 7, and we demand 7 to be

independent of , we find o
o

E(k) = Kk (1)

where K; is an order-one constant, If the flow is inviscid, and (14) is valid for all
wavenumbers, then predictabilty is indefinite. The regularity proofs are not violated.
However, the dimensional arguments are not set in stone. (See, for example, Frisch et
al. (1978) for alternative models.) Suppose a spectrum shallower than n-= 3 exists, then
the finite predictability apparently violates the well-posedness. However, for such a
shallow spectrum the total enstrophy i infinite, which in turn implies that the vorticity
somewhere in the fluid is infinite, Now, enstrophy s conserved by the fluid (indeed it is
this which enables one to construct existence thearems for the flow for both barotropic
and quasi-geostrophic motion). So that unless enstrophy is initially unbounded, it remains
bounded. But if it is initially unbounded then so, somewhere, is vorticity; the regularity
proofs fail and in particular condition (1) i not necessarily valid. Again then, there is no
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contradiction between the phenomenological arguments leading to (12) and the well-
posedness proofs.

Kraichnan (1971) argues that for the -3 spectrum enstrophy transfer is insufficiently
local for (14) to be consistent with a constant 1. Instead of an eddy-turnover time given

by (11), he suggests
k ) -2
TﬁU p'E(p)dp] :
1

For any spectrum stesper than =3, this is to be preferred over (11) since the latter gives
% 3 k>, which is unphysical. For n < 3, the two are equivalent for large k. Use
of (1) in (13) leads to the logarithmically corrected spectrum;

(k)= Ry i) (16)

where k, is some lower cut-off wavenumber, The predictability time of a fuid with such
a spectrum is then given by

(3

_ fh Ak
, U pEp)dph”
“{lﬂ(kl/kz)}m for kl >/C3,

This also diverges as k,— <, implying indefinite predictability.

Thus, for inertial ranges of infinite extent the phenomenology predicts indefirite
predictability for both a ~3 and a logarithmically corrected -3 spectrum. These are
actually stronger (but less well-founded) results than can be obtained rigorously, since
for both spectra the enstrophy [ K°E(K)dk is infinite and the proofs can no longer
guarantee that (1) be satisfied,

Iflenstropy is initially bounded, its value remains constant, If initial conditions with
Vo fnite are imposed, then Vi will remain finite (but may grow very rapidly). Now, Va
will.be i{lﬁnite if the energy spectrurm is shallower than n = 5 as k— =, Thus it must take
an infinite tme to set up a putative inertial range shallower than 1 = 5, Loss of pre-
Qictability then never arises. If the initial conditions are C°, say because all the energy
is confined to Fourier modes of finite k, the spectrum must fall off at least exponentially
2 k— oo for all time. Thest conditions have interesting consequences for the formal zero
v;scosity limit of the equations. First, though, let us note that if viscosity is non-zero the
right-hand side of (2) s replaced by »¥*y. Since  positive viscosity can only ct to
flecr?ase enstrophy a spectrum shallower than k™ can arise only if enstrophy s initiall
infinite as before. So viscosity certainly does not lead to loss of predictability,

Viscosity can be expectec to become important at scales smaller than k', obtained
by equating an energetic timescale (15) with a viscous timescale 1/vk%, For k,> 1 this
gives, assuming E(k) = Ky, ”

by~ (P M) fory <3

(1)

(182)

or
k,~ 7"y forp>3 (18b)

while for the log-corrected ~3 spectrum we find
Infk, k) PR = Ry, (1)

tl“hesg e)fpressions are valid after the inertial range has been set up (which may require
infinite time as »— (). Beyond £, the energy spectrum will fall of rapidly (steeper than

R, Y .
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¥~ or else enstraphy cissipation becomes infirite), The inartial range itself (k < k,) may
in principle be made as large as we wish by reducing the coefficient of viscosity, or
equivalently increasing the Reynolds number (Re). The total enstrophy dissipation as
p— s given by

_ by
§=limy J PEE de (1)

=0

i

This converges to zero for a spectrum steeper than 1= 3, but it is independent of » for
an = 3ora logarithmically corrected ~3 spectrum (the integral then converges 0 ~1).
However, this is not to say ensirophy dissipation remains fnite if viscosity s turned off.
For at such time, the flow has bounded enstrophy. Hence the asymptotic spectrum (i.c.
35 k%) must always be steeper than =3 and the integral (19) remains zero for all
time. Different arguments with a similar conclusion are given in Beanett and Kloeden
(1981b).

Phenomenological arguments lead to the same conclusion. One may suppose that,
after viscosity is ‘tuned off the high wavenumber fimit of a -3 (or log-corrected -3)
inertial range spreads to higher and higher wavenumbers. By analogy with the arguments
leading to (12) one may suppose that the time it takes to spread from wavenumbers K to
2% is proportional to the eddy turnover time 7. Thus it takes an infinite time for such
an inertial range to cover all waverumbers, and unti such time (19) is zero. Closure
arguments (which many would say are equally phenomenological) by Pouquet ef
(1975) also imply zero enstrophy dissipation in the zero viscosity limit.

It fs instructive to carry through the equivalent phenomenological arguments for a
three-dimensional fuid, for which no global regularity proof has been obtained, For such
a flid, Kolmogorov dimensional arguments suggest an inertial range of the form

Bl = Kifk”

where 1= 53, B is e energy cascade rate and Ky an order-one constant. The energetic
eddy turnover times {PE(R)" and {[% p*E(p) dpl™ are now roughly equivalent,
beczuse most of the contribution to the integral in the latter expression comes from
p~ k. The time taken for errors initally confined to scales of wavenumber greater than
k, to spread to wavenumber k(<k,) is

Cff dnk) B i
[ VIPE(R) e - )

k2

which evidently converges for large k. Thus, no matter how small-the initial error
(provided it e in the inertial range), cales of characteristicsize I become unpredictable
in 2 detaled sense after a time §RR° ~ E(ly) A ~ U}

The zeto viscosity limit of three-dimensional flow also differs from the two-
Gimensional case, Equating the energetic turover time to the viscous timescale
indicates viscosity will be important for wavenumbers greater than order k,, where k,=
[y~ ]5#1), The energy dissipation in the inviscid Fimit s then given by

. k:‘
E= limU VJ I E(k) dk.
Jer |

This is independent of » for n= 3/3, zero for a steeper spectrum. However, in contrast
to the two-dimensional case, there is no conservation law preventing such a range
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extending infinitely (energy conservation 5 # very weak constraint on the allowable
power spectrum). Further, the phenomenology now does imply thata ~3/3 inertial range
will extend to infinity within a finite fime (T, ) using (12) (with a minor correction due
to the overall amplitude of the energy spectra felling as it extends, to conserve energy).
For<T,, energy dissipation is zero. For > 1, energy dissipation is finite. If the intial
spectrum is concentrated at scales Iy and with .ms, velociy 0 {0)1, the ‘catastrophe’

will oceur in a time (7, ) of order Jyu%(0)}*. Such arguments sugaest that the three-
dimensional inviscid Navier-Stokes equations are not viell-posed.

"4 CONCLUSIONS

Given certain smoothness conditions (which imply boundedness) on the vortcity of
a two-dimensional fuid, both heuristic arguments based on error trangfer being related
to eddy turnover time and rigorous results pertaining to the existence of solutions of the
equations of motion imply that the predictabilty time ofthe uid may be made indefinitely
long by.choosing the scale of the initial error small enough, (There is no a priori reason
why phenomenology and regularity should lead to the same results, although they should
be consistent unless one ( presumably phenomenology) is wrong, The rigorous arguments
do not necessarily demand il-posedness if vorticity is not bounded, rather they guarantee
wel-posedness if certain conditions (like Holder-continuity) are met. They give bounds
which must be satisfied by any heuristc theory but can only falsify it if such a theory
predicts ill-posedness when well-posedness is known.)

The rigorous results on enstrophy disspation n the zero-viscosity limit (that it goes
to 2¢ro) depend (as do all the rigorous proofs) on the imposition of smooth initial
conditions. Again the phenomenology s in accord, Heuritically one sometimes imagines
an inertial range strefching to infinity as the Reynolds mumber increases, It is precisely
this which the proofs prohiit, unless one unrealistically (and experimentally unverifiably)
takes the infnite time limit before letting viscosity g0 1o zero in the expression, (1),
governing the high wavenumber cut-off of the inertial range, However, for any non-zero
viscosity one still does imagine that enstrophy is dissipated faster than energy, and
selective-decay hypotheses (e.g. Bretherton and Haidvogel 1976) which conjecture that
2 fluid will choose to be in a minimum enstrophy state for a given total energy are not,
at least by this result, invalidated. Enstrophy, in any case (even zero viscosity), will
ahways be expelled from the large-scale.

It s interesting that phenomenology predicts il-posedness (and finite enstrophy
dissipation) for spectra shallower than ~3, and that spectra strictly steeper than this (as
k=) are tequired for rigorous well-posedness. If one believes the phenomenology,
then this suggests that a fittle (but only a lttle) improvement can be mace in the rigorous
proofs for two-dimensional flow. For a -3 (perhaps log-corrected) spectrum extending
to infinity enstrophy is unbounded the phenomenalogy still predicts well-posedness
whereas the regularity proofs can say nothing, For a three-dimensional Auid, the lack of
a global regularity proof for the Euler equations s consistent with the phenomenological
preciction of a finite predictability time for any initial error within the inertial range, and
the-ability of a ~5/3 inertial range to extend infintely (thereby implying fnite energy
dissipation) as »— 0. Either the 3-D Euler equations are ll-posed, or the phenomenology
isincorrect as Re— %, Assuming the former, boundary layer and other three-dimensional
processes ultimately provide the theoretical predictability limits n the atmosphere, There
i5 10 point in ever having an observing system of much finer resolution than the scales
at which such processes become important, because error growth is so rapid within them.
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Qur present observational network is probably sufficiently coarse that such problems are
unlikely to be relevant.
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