PROBLEMS AND PHENOMENOLOGY
IN TWO-DIMENSIONAL TURBULENCE

G.K. VALLISt

Abstract. Various aspects of two-dimensional turbulence are summarized, and certain numer-
ical experiments are described. The successes and failures of ‘classical’ phenomenology, and the
implications for atmospheric dynamics, are discussed.

1. Preamble. This is a short and incomplete but fairly self-contained descrip-
tion of a selection of developments in two-dimensional turbulence, concentrating
on those which have occurred over the last decade or so and their relationship to
classical or Kolmogorov based phenomenology. It is not a comprehensive review,
and the reader will perforce not obtain a completely balanced viewpoint. However,
it is hoped that some appreciation may be gained for the current status of the field
and some of the outstanding problems. It may be read by the neophyte without
referral to the original literature, although not all statements are proven. For back-
ground material see Kraichnan and Montgomery (1980) and Lesieur (1987). The
goal is to give the simplest discussion of the salient physics of current problems,
not for pedagogic reasons but because this is the most effective way to assess the
field. Notable omissions are discussions of closure, geostrophic turbulence, vortex
dynamics, and multi-fractals.

We first very briefly recall some elementary results in 2-D fluid dynamics and in-
viscid statistical mechanics. There is nothing new here, and the reader familiar with
the material may skip directly to §4, where we review the classical cascade argu-
ments arising from Kolmogorov-Kraichnan-Batchelor-Leith (KKBL) phenomenol-
ogy for forced viscous problems (Kolmogorov, 1942: Kraichnan, 1967; Leith, 1968;
Batchelor, 1969). Then we summarize some of the more recent numerical evidence
which seems to throw some doubt on the detailed applicability of the classical phe-
nomenology. We also discuss some numerical work which highlights some successes
of classical ideas, and which point to the difficulty one may have in constructing
broad new frameworks. Various questions and problems are littered throughout.

2. Basic results of inviscid turbulence

2.1 Existence. The motion of an incompressible, two dimensional fluid is gov-
erned by the vorticity equation:

D¢
(21) o7 =0
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where J(¢,() = 8v/8z3(/8y — Oy /8yO(/Bz and ( is the vorticity and ¢ the

streamfunction. These are connected by
(2.3) (=V%=k-Vxu

where u = ui + vj is the horizontal velocity and {i,], k} are unit vectors in the x-,
y-, and z-directions respectively.

It has been known for over fifty years (see e.g. Rose and Sulem, 1978) that this
equation is well-posed in the following sense. If the initial vorticity field is Holder
continuous, and the initial velocity is C®, then the velocity field will remain so for
all finite time. This result is a global regularity result, and is often referred to as
proving the existence of unique solutions to (2.1). A corollary of this is that the
solutions at time ¢ > 0 depend continvously on the data at t = 0. The addition of a
viscous term ¥V to the right-hand-side of (2.2) is not necessary to prove existence,
but nor does it invalidate the result. This result is sufficient to enable us to refer
to 2-D turbulence as a dynamical system, whereas no such statement is strictly
possible for 3-D turbulence, since the existence of solutions without singularities
for neither the Euler equations nor the Navier-Stokes equations has been proven.
This has some ramifications for predictability, as discussed in Leith and Kraichnan
(1972) and Vallis (1985). Essentially, it means that two-dimensional turbulence is
predictable in an ‘epsilon-delta’ sense, in that an error in prediction at any finite
future time may be made as small as we like by making the initial error small enough.
This does not mean that 2D turbulence is not chaotic: for a wide parameter range
it has positive Lyapunov coefficients and is unpredictable in that sense.

2.2 Inviscid Invariants. Vorticity itself is a Lagrangian invariant, because
the form of (2.1) implies that material fluid elements carry their values of vorticity
with them. The consequence of this is that any integral function of vorticity is
conserved. This actually follows with no equations: If a material element carries its
vorticity, then it carries with it any function of the vorticity, and the evolution is
merely a re-arrangement of any function of the vorticity. Thus the measure of any
value of any function of vorticity is unchanged, and thus by definition the Lebesgue
integral of the function over the domain is unaltered.

To see this more conventionally, multiply (2.1) by G'({), where G is any differ-
entiable function. Then it immediately follows that
(2.4) oG +J(,G) =0.

ot
Integrating over the domain we have, provided there are no boundary contributions,
that

(2.5) / J($,G) dx =0
and therefore

d
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(This result requires that G be differentiable.) Note that no relationship between
streamfunction and vorticity is used in these proofs. This is related to the fact that
when (2.2) is written in Hamiltonian formalism, these invariants are independent
of the form of the Hamiltonian, and depend only on the form of the Lie-Poisson
bracket. Such invariants are called Casimirs.

A special case of (2.6) is the conservation of enstrophy,

(2.7) % /(2d x =0.

A form of energy is also conserved by (2.2). Explicitly,

dE

(2.8) E= /(w)za x, =0,

B

3. Statistical mechanics. This is a property of the spectrally expanded
version of (2.2). For simplicity, consider a doubly-periodic plane on which (2.2)
applies. Then we may expand

(3.1) P(x) = Z“ﬁk exp(tk - z)
k

and similarly for {(x), where we note the spectral coefficients of ¢ and 1 are related
by (i = —k?%¢i. (Spectral and physical space variables are denoted with the same
symbol, being differentiated by their arguments.)

Substituting (2.4) into (2.2) yields the infinite system of ODE’s

(3'2) ék = Z Akpq(p(q
rq

where Ay,, are geometric coefficients. The precise form of the Ay, is less important,
here, than the fact that they vanishes unless

(3.3) k+p+gq=0
This leads immediately to the detailed Liouville property,

(3.4) G _

dd
This means that the volumes in phase space are conserved, or that the flow in the
phase space is incompressible, a necessary precursor to doing almost any sort of
statistical mechanics on the system (Tolman, 1938).

Because of the presence of Liouville’s theorem and the invariants of motion, it
is natural to try to predict ensemble averages on the basis of classical statistical
mechanics. The immediate question arises, out of the infinity of Casimir invariants,
which ones should be used? The answer is actually determined by the fact that we
can only do the statistical mechanics in spectral space for a truncated version of
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(2.4): if all wavenumbers are included, the generalized equipartition state we may
expect to achieve would imply zero amplitude in each mode. Hence we must do the
problem first for a finite number of modes, and then let the truncation wavenumber,
k.., tend to infinity. Only the quadratic invariants survive the spectral truncation—
the energy and enstrophy. This is because the energy and enstrophy are conserved
triad-wise, meaning that any interacting triad (2.6) will conserve them. However,
the non-quadratic invariants plainly do not survive the truncation, because they are
not preserved in a single triad. Thus, whereas

(3.5) / T, Q)dx =3 "AkpyCaGyly = 0

kpg

where the primed sum indicates that the sum is taken only over modes included in
the truncation, no such finite truncation is able to reproduce the result

(36) / GO, C)d x = 0

unless G(() is a linear function of (.

Under the conditions of a spectral truncation of (2.4), with energy and enstrophy
invariants alone, we may assume the Gibbs distribution

3.7 P x e (E+ed)

Standard methods then lead to the predicted energy distribution

1

(3.8) Ui = (—E—+_ka)

where Uy = k?||? is the energy of mode k. The parameters a and b are Lagrange
multipliers, whose values are given by the values of energy and enstrophy. This is
sketched in fig. 1, for two values of k,,. As the truncation wavenumber tends to
infinity, then it is not difficult to show that a — k% /exp(kZ ) and & — k2,, where
the values of energy and enstrophy are both taken to be unity. Energy is trapped
more and more at the lowest wavenumber, and enstrophy is pushed to the highest
wavenumbers. This result is often used to infer the direction of the cascades in forced
dissipative turbulence—enstrophy to high wavenumber and energy to small. The
physical content is similar to the statement that a given spectrally localized energy
distribution will, if the distribution broadens, transfer energy to small wavenumbers
and enstrophy to large.

4. Cascade phenomenology. We first note that in the limit of infinite
Reynolds number, energy dissipation is zero. The viscous equation of motion is
D¢
4.1 = =vV?
(e1) v
That is, the value of vorticity is conserved on parcels, except for the action of
viscosity which can only act to reduce maximum values. (Actually, we have not
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Fig.1 (a) Energy and (b) enstrophy spectra in thermal equilib-
rium for two diffferent truncation wavenumbers. In the limit
of infinite resolution, energy is trapped entirely at the lowest
wavenumber, whereas no enstrophy remains at finite wavenum-
ber.

rigorously proven this, but it is almost obvious from (4.1).}) From (4.1), we derive
the the energy equation

As R, — o0, or v — 0, energy dissipation can only remain finite if {(?d x becomes

(4.2)

infinite, which in a finite domain requires ¢ to be infinite somewhere. This is
forbidden by (4.1) (and more rigorously using regularity results) and hence energy
dissipation goes to zero. Enstrophy dissipation, on the other hand, is given by

Dz

(4.3) Dt = %2 /(V2 P)idx = —u/(VC)zd x
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This may stay finite as R, — 00, and indeed under KKBL phenomenology is hy-
pothesized to stay constant, as discussed more below.

In forced dissipative turbulence, we heuristically imagine stirring at some large
or intermediate scale, and that dissipation occurs at small scales. In three-dimensional
turbulence the sense of energy transfer is unambigously to small scales. However,
in two-dimensions energy dissipation vanishes at high Reynolds number. Further,
the arguments based on the inviscid statistical mechanical equilibrium suggest that
as the truncation wavenumber increases, enstrophy alone cascades to small scales.
These considerations, along with the original ones of Kolmogorov (1941), lead one to
propose the following phenomenology in homogeneous two-dimensional turbulence
(cast in the same lines as I olmogorovs original assumptions regarding the nature
of three-dimensional turbulence, except we use the inertial range flux, #, in place of
dissipation rate, 9):

(0) Given a spectrally local energy and enstrophy source (i.e. it has spectrally
compact support) we assume that there is a finite flux of enstrophy to small
scales and energy to large. In a steady state the enstrophy flux is equal to
enstrophy dissipation. (Corollary: Without introducing artificial viscosities,
the energy flux will keep on cascading to larger scales. In a finite domian it will
accumulate at the largest scale.)

(1) In the scales smaller than the forcing scale the energy spectrum E(k) (or more
generally the n-variate probability distributions for the velocity differences v(x+-
r) — v(x)) is assumed to be a universal function of the mean enstrophy flux 7,
the kinematic viscosity v, and the wavenumber k (or the difference vector |r|).

(2) If the wavenumbers k are large in comparison to the dissipation scale, then
the energy spectrum is independent of v. This is equivalent to assuming that
the enstrophy flux through a wavenumber k depends only on local quantities,
namely the wavenumber and energy £(k) or velocity v(k), and is not a direct
function of wavenumber. This is essentially the locality hypothesis.

(3) In the scales significantly larger than the forcing scale, the energy spectrum is
a universal function of the energy flux, € and wavenumber.

Assumption (0) is unique to two-dimensional turbulence. Assumption (1) is
analogous to Kolmogorov’s first hypothesis, and (2) Kolmogorov’s second hypoth-
esis. Assumption (3) is equivalent to (2), but applied to the energy cascading
range. Note that energy dissipation is not a meaningful quantity, and the energy
flux through the energy range must clearly be used in its place. Indeed it is likely
that the flux is a more central quantity to the dynamics than dissipation for the
enstrophy range also—since at high Reynolds numbers the enstrophy dissipation is
driven by the flux through the equilibrium range. Certainly we may also imagine, in
a thought experiment, a fluid of extremely high (‘almost infinite’) Reynolds number
in which the high wavenumber end of the enstrophy range is still extending itself,
and has not yet reached the dissipation range. There is nevertheless a flux of enstro-
phy to small scales, and an enstrophy equilibrium range, but virtually no enstrophy
dissipation. It seems likely that the dynamics in the inertial range is essentially
the same as that for the finite Reynolds number case. If this is so, it implies that



the enstrophy flux is the dynamically important quantity in the enstrophy range.
Such a thought experiment is however not possible for the 3D case, in which the
dissipation scale is reached in finite time no matter how small the viscosity.

In the energy range, it makes little sense to invoke a hypothesis akin to (1) by
itself, since energy dissipation is not dynamically important. Thus hypothesis (3) is
immediately proposed. (One might have hypothesized a dependence on forcing type,
as indeed one might have for the enstrophy range). Indeed, the assumption that
the energy spectrum in the enstrophy (energy) range is independent of the energy
(enstrophy) flux already implicitly assumes some degree of locality. In general
the utility of the KKBL theory will depend very much on the extent to which
the locality hypothesis is satisfied and the energy spectra are independent of the
details of the forcing and dissipation. The conditions under which it holds are
the subject of continuing investigation and controversy in both two- and three-
dimensional turbulence.

Dimensional analysis may then be used to ascertain the functional forms of the
spectra in the two ranges. Such an analysis is closely related to the use of the scale
invariance of the equations, as follows. In the absence of viscosity, the equation of
motion (2.2) is invariant under the following scale transformation:

(4.4) z=zdv=v) t=>tA\""

where r is an arbitrary scaling exponent. Kolmogorov’s first and second hypotheses
are essentially equivalent to assuming that the dynamics obeys the scale invariance
(4.4), on a time-average, in the intermediate scales between the forcing scales and
dissipation scales.

Dimensional analysis then tells us that the energy flux € scales as

v3

(4.5) e~ T~ A3r-t

from which the assumed constancy of ¢ gives r = 1/3. The velocity scales as
v ~ €!/3k~1/3 Then we obtain a prediction for the energy spectrum:

(4.6) E(k) ~ v¥k™! ~ 3723k = KP3E33

where K is a dimensionless constant. In the Kolmogorov theory the slope of the
energy spectrum k™" is related to the scaling exponent r by n = —(2r + 1).

The enstrophy flux 5 scales as

4.7 v e
(4.7) N~ T

which from the assumed constancy of 1 in the enstrophy range gives r = 1, and an
associated energy spectra of

(4.8) E(k) = K'n?Pg~3,
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where K’ is a constant. In (4.6) and (4.8), € and n are averages. That is, n2/3 =723
and not n2/3, where an overbar denotes an average.By convention the overbar is
omitted where it will cause no confusion.

At small scales, dissipation must become important. Dimensionally, we expect
this to occur at the inner scale I, given by

(4.9) I, ~ (”73)1/6

The structure functions S,, of order m, which are the average of the m'th power
of the velocity difference over distances I ~ 1/k, scale as (fv;)™ ~ "™ ~ k=™, In
particular the second-order structure function, which is the Fourier transform of the
energy spectra, scales as Sp ~ k=27, for r < 2.

Before discussing questionable aspects of the phenomenology, we mention one
aspect sometimes thought to be a problem, but which is not. Enstrophy dissipation
scales as

, d 2 2
= = v
(4.10) 7= u ]C d ”/C ¢

~vkiv? ~

where k, ~ 1/1,. This scaling must hold even in the infinite Reynolds number, or
zero viscosity, limit. However, it is known rigorously that enstrophy dissipation is
zero for zero viscosity, and that there are no singularities in the vorticity gradient
field. Is this not inconsistent? No. Viscosity becomes important at wavenumbers
smaller than k,. If the Reynolds number is increased slowly, allowing the fluid
time to equilibrate at each new value, the enstrophy dissipation will indeed stay
constant although it takes an infinite time to achieve an infinite Reynolds number.
If we ‘turn-off’ viscosity, it also takes an infinite time for the enstrophy inertial range
to extend itself into the dissipation scale, and only then may dissipation resume.
For all finite time, the dissipation is zero. The point is that the phenomenology
takes an infinite time to establish itself (unlike in three dimensions); for finite time
at infinite Reynolds number there is no enstrophy dissipation, and no contradiction
with the regularity results.

Two aspects of the phenomenology are of immediate concern, namely nonlocal-
ity and intermittency.

4.1 Nonlocality. If the locality assumption is not made, then in the enstrophy
range the energy spectrum may take the general form

(4.11) E(k) = K'n?k= f(k/ko)g(k k)

where k, and k, are the forcing and dissipation scales, respectively. Such an equa-
tion is no use if f and ¢ are arbitrary. If the locality hypothesis is satisfied, f and
g are eliminated and the spectral slope is k=3,

In addition to the obvious requirement of a local step-wise cascade of energy or
enstrophy discussed more below, an additional, more subtle, requirement for locality



is chaos. For even if the enstrophy cascade to small scales proceeds by relatively
local triad interactions, if there is no chaos then at each step of the cascade a memory
of the large scale forcing will be retained. Indeed this has been hypothesized to be
the cause of the —2 spectra in Burgers ‘turbulence’. Here the governing equation is

Ou Ou 8%u

E + UE = V@'.
From smooth initial data, it can readily be shown that shocks form in the u-field,
and energy cascades to small scales where it is dissipated. Because of the formation
of shocks, the energy spectrum is proportional to k~2. But if there is an energy cas-
cade, should not Kolmogorov scaling hold and the energy spectrum be proportional
to k=3/3? The resolution of this paradox is that Burgers equation is not chaotic.
The Cole-Hopf transformation (see e.g. Whitham, 1974) renders (4.10) into a linear
heat conduction problem, for which the solution may be found analytically. Thus
the energy cascade is not chaotic; the energy flux may ‘remember’ the largest scales,
f(k/k;) is not unity, and a -5/3 spectrum is not required.

Two-dimensional turbulence, whilst it may be well-posed, is certainly chaotic.

It therefore seems unlikely that a local enstrophy or energy cascade could proceed
without producing KKBL spectra. Is the cascade process in fact local? Given such
KKBL spectrum, we may heuristically estimate whether, a posteriort, the enstrophy
range spectrum is local and thence self-consistent. To estimate this we calculate
the contribution to strain at a waveumber p from all other smaller wavenumbers.
The strain, S(k)is given by:

k
S(k) = /k E(p)p*dp

k
~ / 7]2/3dlnp
ko

This indicates that for a —3 spectrum, each octave makes the same contribution to
the strain integral, implying the spectrum is hardly local after all. Although this is
not a rigorous result, or even a closure based result, it is likely that it is the root cause

(4.12)

of all the ‘problems’ associated with the non-compliance of numerical simulations
with KKBL phenomenology, as described below. A related aspect of this problem is
as follows. Self-consistency demands that the characteristic timescales of the small
scales be small compared with the large scales, in order that they may remain in
equilibrium with the large scales. Dimensionally, an eddy-turnover timescale for a
scale k is simply

(k) ~ g7/

which plainly does not decrease with decreasing scale. Even a slightly ‘improved’
estimate of this, namely

(413) ww)= ([ 5 @] "

decreases only logarithmically with wavenumber.
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Although these considerations are heuristic, explicit numerical computations by
Ohkitani (1990) and Maltrud and Vallis (1991) (henceforth MV) do indicate that
enstrophy transfer in the inertial range is quite non-local, in the sense that very
elongated triads dominate the palinstrophy production. The upshot of these con-
siderations is that the -3 slope is not so much the likely outcome of an experiment,
but the shallowest slope which can be achieved. For if the spectral energy slope
is shallower than -3, most of the contribution to the integral in (4.12) comes from
the neighbourhood of p, implying locality. In that case, the dimensional arguments
following (4.4) must apply and a slope shallower than -3 is inconsistent. However,
given a spectral slope steeper than -3, the contributions to the integral in (4.11)
come mainly from the low-wavenumber end. The transfer is therefore highly non-
local, and the freedom to choose arbitrary dimensionless functions in (4.11) means
that such spectra are by no means inconsistent.

This apparent inconsistency in the strict -3 spectra led Kraichnan (1971) to
propose a log-corrected range. The reasoning goes as follows. Dimensionally, the
enstrophy flux is the ratio of the enstrophy to a time. That is,

_ LE(R)E
(4.14) n==C (k)

where C is a dimensionless constant. To estimate 7(k) we use (4.13), which yields
(4.15) E(k) = K'n**k~3(In(k/k,)) /3

The log-correction, even if present, is likely to be observationally indistinguishable
from a true -3 range. It should be emphasized that (4.15) does not unambiguously
overcome the problems associated with non-locality in the enstrophy range. For
(4.13) recognizes non-locality, and proposes a phenomenological solution. In effect,
the scheme predicts f(k/k,) = (In(k/k,))"/? and g(k/k,) = 1. Enstrophy transfer in
the log-corrected range is still non-local. However, with the hindsight of numerical
simulations discussed below, there seems no compelling reason why such a form
should be chosen by the dynamics. For example, if the energy spectrum is aware of
the low wavenumbers, then why should the energy spectrum not also depend on the
form of the forcing? To paraphrase Kraichnan himself in a slightly different context
(Kraichnan, 1974), once we abandon the Kolmogorov 1941 theory a Pandora’s box
of possibilities is opened.

In contrast to the —3 case, the —5/3 energy spectra is phemonenologically more
local and self-consistent, although closure estimates indicate the energy transfer
is much less local than in the -5/3 equilibrium range in three dynamics (Kraich-
nan, 1971). Numerical experiments show it to be a quite robust feature of two-
dimensional turbulence.

4.2 Intermittency. Intermittency in general refers to the nonconstancy of en-
ergy of enstrophy transfer or dissipation. The general area of intermittency in tur-
bulence is too large to summarize concisely, and when restricted to two-dimensional
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turbulence it is too new and involved for a clear picture of its dynamical effects and
importance to have emerged. A full discussion leads into the burgeoning theory of
fractals and multi-fractals (Paladin and Vulpiani, 1987; Warn, 1991). This section
is therefore likely to rapidly become outdated, and probably already is. We restrict
attention to the forward enstrophy cascade and make a few general remarks.

There is no difficulty with KKBL phenomenology if the cascades rates are con-
stant in space and time. This requirement seems unlikely to be achieved in practice.
In a particular realization of a (homogeneous) ensemble the intensity of the small
scale turbulence is likely to depend on the intensity of the local forcing (Landau
and Lifshitz, 1987; Warn 1991), and global universality will fail. The essential prob-
lem is that the energy spectra is a nonlinear function of the enstrophy flux 7, or
dissipation ¥ and

(416) 7 P

(Note that 7 = ¥, but that higher powers of these two quantities need not be equal.)
The left hand side of (4.16) is an average whereas the right-hand-side is the 2/3
power of an average.

This particular objection is overcome by a modified or refined theory (Kol-
mogorov, 1962). The essential aspect of this theory (as applied to the enstrophy
range of 2-D turbulence) is that the enstrophy dissipation, 9, is replaced by a
‘coarse-grained’, or spatially averaged, dissipation obtained by averaging ¥ over a
small area of size a ~ 1/k. If this is 4, then the prediction of the energy spectrum
becomes

(4.17) E(k) = K92k

However, this seems unsatisfactory (also see Kraichnan, 1974). First, attention is
drawn to the dissipation field, rather than the flux through the inertial range which
physically seems more important. Whereas their means must be equal, their higher
order statistics need not. Second, it is arbitrary, or at best ad koc. This applies in
particular to Kolmogorov’s rather specific assumptions about the log-normality of
the energy dissipation (in three dimensional turbulence).

In any case, the modified Kolmogorov theory does not fundamentally change the
picture of a succession of random cascade steps. In three-dimensional turbulence the
—5/3 law seems experimentally well satisfied, but higher order structure functions
do not obey Kolmogorov scaling (e.g. Anselmet, 1984). In two dimensions the
energy slope itself does not appear to follow the Kolmogorov form (see §5), and
it is currently not known how the higher order structure functions behave. There
has naturally been much interest in determining how intermittency may modify the
energy slope and higher order structure functions. Various models have attempted
to include the effects of a fluctuating energy dissipation, or intermittency, including
the beta-model of Frish et al. (1978) based on the Novikov-Stewart model (Novikov
and Stewart, 1964). The idea of the beta model is that dissipation is not space-
filling, and at each ‘step’ in the cascade process the energy transfer is confined to
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a smaller region of space. This affects the phenomenology for two-dimensions, as
follows (Basdevant et al., 1981).

If the turbulence is confined to an ‘active’ sub-domain, the energy spectrum in
the active sub-domain, call it E(k), determines the important dynamical quantities
like eddy-turnover time. Thus,

(418) w0 ={ [ REGIp} "

If we suppose that the active spectrum at each scale occupies a sub-domain propor-
tional to (k/k,;)™7, then we have

(4.19) E(k) = (k/k;)""E(k)
Using (4.18) and (4.19) in the formula

K E(k)
(k)

(4.20) n=

we obtain an energy spectrum given by

(4.21) E(k) ~ k373,

which is steeper than -3, and an active spectrum given by:
(4.22) E(k) ~ k3+2/3

which is’shallower than -3. In this theory, 2 — vy may be interpretated as the fractal
dimension of the dissipative structures (and therefore 0 < v < 2). The steepest
spectrum possible is therefore -11/3, although if intermittency in time is allowed
further steepening may occur.

Benzi et al. (1986) argue that, in fact, beta models (except for the special case
of Kolmogorov’s law) cannot be applied to two-dimensional turbulence, because for
nonzero 7 such models lead to singularities in the velocity field, which are forbidden
by regularity. In other words, enstrophy dissipation must be space filling and cannot
be confined to a fractal measure. The putative singularities arise because the active
spectra is shallower than -3: From (4.22) we obtain
bv(r) R

(4.23) e

which is singular as 7 — 0. However, the singularity only arises in the limit r — 0.
It does not seem logically forbidden that in the equilibrium range the enstrophy flux
be confined to a fractal dimension, and the beta-like models may be applicable there.
In the dissipation range the energy spectrum may be quite steep, and structures
space filling with an ‘active’ spectrum steeper than -3. It is in any case likely
that the application of fractal and multi-fractal ideas in two dimensional turbulence
will continue (e.g. Mizutani and Nakano, 1989). Certainly, their use must also
be reconciled with the appearance of isolated vortices, as Benzi et al. (1986) have
already attempted. One hopes that such ideas can be used to give specific, testable
predictions rather than simply providing a qualitative framework in which to view
the subject.
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5. Experimental results

5.1 Decaying Turbulence. The first indications that the enstrophy inertial
range was not as predicted by classical phenomenology came with the early numer-
ical integrations of two-dimensional turbulence. Although the phenomenology may
strictly only be applied to forced-dissipative turbulence, for only then may a statis-
tically steady state be achieved, simulations of turbulence decaying under the action
of a weak dissipation display the intrinsic dynamics most cleanly. Simulations such
as those of Fornberg (1977) and, most clearly, McWilliams (1984) show clearly the
emergence of isolated, long-lived vortices from structureless initial conditions (Fig.2,
see color insert). They are ‘long-lived’ because their lifetime is much longer than a
typical eddy turnover timescale at a scale defined, for example by their diameter.
The dynamics of their emergence is described elsewhere (e.g. McWilliams, 1990),
but, having emerged, their destruction is only effected by collision with another vor-
tex. Indeed, the motion of the vortices is determined largely by the other vortices,
just as in the motion of point vortices. This was clearly demonstrated by Benzi et
al. (1987a). At a certain point in an integration of decaying turbulence after the
emergence of isolated vortices, a parallel point vortex simulation was begun, with
the strengths and initial positions of of the point vortices determined from the full
simulation. For a number of eddy turnover times, the motion of the point vortices
resembled quite closely that of the vortices in the original simulation.

The investigation of vortex dynamics continues for its own ends. Recently the
spontaneous emergence of dipoles and tripoles has been reported (Legras et al.,
1988), although whether they are intrinsically important or whether they are im-
probable chance occurrences with little effect on the fundamental dynamics is not
clear. For our purposes, the issue is only how vortex emergence affects the classical
phenomenology.

5.2 Forced-Dissipative Dynamics. Whereas decaying turbulence may be
useful for elucidating the dynamics in its purest form, only in forced-dissipative
turbulence can a statistically steady state be achieved and hence clean comparisons
with the predictions of classical phenomenology made. Currently (c. 1991), sim-
ulations can routinely be performed at resolutions of about 5122, although much
higher resolution can be achieved in special circumstances or for isolated experi-
ments. Whereas this resolution would not be enough to unambiguously confirm or
falsify various subtle predictions about the precise slope of the energy spectra or
the value of Kolmogorov’s constant, or even if it exists, it is certainly adequate to
indicate clear failures and successes.

A typical experiment consists of forcing in some fairly localized spectral region,
and removing enstrophy at high wavenumbers with some form of viscosity. The
form of the viscosity has been found not to be a crucial aspect (McWilliams, 1984,
and others), and to achieve as high a Reynolds number as possible ‘hyper-viscosities’
are used. These take the form v(—1)"*!V2"( with typical values in simulations of
n = 2 or 4; normal molecular viscosity has the value n = 1. The forcing is typically
a white-noise or markovian, or a negative viscosity (an instability forcing), at much
larger scales than the dissipation scale. Since the forcing introduces energy as well
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as enstrophy, energy must be removed at large scales. This is usually achieved
either with a Rayleigh drag confined to small wavenumbers, or with a viscosity
proportional to an inverse Laplacian. To achieve the maximum resolution possible
in a single experiment, the forcing range is either chosen to be at high wavenumbers,
leading to a well-resol ved energy equilibrium range, or at low wavenumbers, leading
to as well-resolved as possible enstrophy equilibrium range.

At this resolution, it has become clear that the dynamics of the enstrophy range
is indeed influenced by the underlying presence of coherent vortices. One gross but
objective measure of the presence of coherence in a field is the vorticity kurtosis, de-
fined by Kr =< (* > / < (® >%, where <> denotes a spatial average. The kurtosis
is a rough measure of the ratio of the distances between the vortices to the vortex
size. Even with nearly white-noise forcing (in time) the vorticity kurtosis builds to
values considerably larger than the Gaussian value of three. Vortices are typically
maintained at or somewhat smaller than the forcing scale. There is some, but not
conclusive, evidence that the coherent structures persist only to a scale somewhat
larger than the dissipation scale (Legras et al., 1988; MV). In some experiments
it has been noted that the spectral energy slope seems to shallow at a wavenum-
ber intermediate between the forcing scale and the dissipation scale. Now, we may
calculate the contributions to the kurtosis from a given range of wavenumbers by
spectrally truncating the vorticity field, calculating the associated physical space
field, and then calculating its kurtosis. We thus define the kurtosis ‘as a function
of wavenumber’, i.e. Kr(k) by including spectral contributions for all wavenumber
less than k. This is plotted in fig. 3, where it seen that Kr(k) increases until just
that wavenumber at which the energy spectrum begins to shallow. However, at
this stage it has not been ascertained definitively how robust these results are, and
what role resolution and viscosity play. The addition of differential rotaion to such
simulations is also quite effective at reducing the overall kurtosis, although zonal
structures may begin to form when differential rotation rates are high (MV).

Nonlocality

The dynamics of the enstrophy range is certainly non-local, by which is meant
that the dynamics of the inertial range is aware of the nature of the forcing at
much smaller wavenumbers. This is made very apparent in experiments in which
the forcing is such as to introduce anisotropy at the largest scale, but in which
the dynamics of the inertial range are strictly isotropic. A very effective way of
doing this is to include an artificial ‘3—effect’?, which applies only in the limited
wavenumber regime in which the isotropic energy and enstrophy producing forcing
is being applied. The two classes of forcing, taken together, may be considered as
a single anisotropic forcing. In the classical picture, the enstrophy cascade pro-
ceeds by a series of small steps, the memory of the forcing details being slowly lost.
Thus, one may expect that the small scales would gradually become more isotropic.
However, this is not seen at all—the small scales remain anisotropic. It is hard
to envision a purely local, chaotic cascade which results in no return to isotropy

IThe B— effect here, due to differential rotation, is completely unconnected with the beta
models referred to earlier. To differentiate, the effects of rotation are denoted with a Greek 3.
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at the small scales. Closure arguments may provide some quantitative insight into
this phenomena. Herring (1975) shows that the dynamics may be partitioned into
a return-to-isotropy tendency, plus an anisotropy producing aspect. Herring’s ar-
gument may be paraphrased as follows: The production of anisotropy is largely due
to the non-local straining of small scales by the anisotropic large scales, while the
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isotropizing tendency is largely by local interactions. The Test Field Model gives
the following phenomenological estimates for these:

(5.1) Production ~ /0 k%()ﬂ)—dp Ei(k)
and

(5.2) Destruction ~ 7(k)E,(k)
where

(5.3) (k) = { / " PE(p) dp)

Here E, (k) and E;(k) are the anisotropic and isotropic energy spectra, respectively,
and 7(k) is an eddy turnover time. If the production and destruction terms are
in balance, then E (k) ~ 1/7(k). The important point is that if E;(k) is k=% or
steeper, then E, (k) does not decrease significantly with wavenumber. On the other
hand, for three dimensional turbulence, where E ~ k~3/3, E, will indeed fall off
with wavenumber. These results may be thought of as a consequence of the basic
result of nonlocality in spectra steeper than k3.

Intermitiency

In decaying non-rotating simulations, the forward enstrophy transfer is almost
completely inhibited where isolated vortices form. Indeed, phase scrambling leads
temporarily to an enhanced cascade (McWilliams, 1991). Thus a form of intermit-
tency arises simply from the presence of isolated vortices. When vortices collide and
merge, there will be a rapid cascade of enstrophy to small scales, and presumably a
corresponding burst of enstrophy dissipation—‘presumably’ because I am not aware
of numerical experiments confirming this. This form of intermittency has, super-
ficially, little to do with non space-filling structures and fractal dimensions. It is
also associated with a degree of structure less than hospitable to the application of
closure theories and classical phenomenology (Herring and McWilliamns, 1985).

White noise random forcing acts to inhibit the formation of isolated vortices and
reduce this form of intermittency. Indeed Herring and McWilliams (1985) found
that in such circumstances moment closure (TFM) performs fairly well. Disper-
sive wave dynamics (e.g. Rossby waves due to a B—effect) also act to inhibit the
formation of coherent structures and this form of intermittency (Holloway; 1984,
MV), and in such circumstances moment closure may also be expected to succeed
reasonably well (see also Bartello and Holloway, 1991). But if differential rotation
is sufficiently strong so as to engender the formation of zonal jets, moment closure
may again be in trouble, although this case has not been extensively investigated.

In the areas between the vortices, the cascade continues in a form more akin
to classical phenomenology. Intermittency of the kind discussed in §4.1, which is
not necessarily associated with obvious visible structures, may arise. The spectrum
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in these regions may be expected to be closer to the phenomenological predictions,
with small intermittent or other corrections. Indeed, just this was found by Benzi
et al. (1986), who found a -3 spectrum for the fluid between the vortices whereas
the spectrum of the coherent vortices themselves was found to be rather steeper,
typically closer to -5. How wave dynamics affects intermittency between the vortices
is not well known, and may be moot because of the large effects on the vortices
themselves.

A final point: In those situations in which vortices do dominate, the intermediate
field may be interpreted as being passively advected by the velocity field set up by
the intense vortices, and any intermittency will be similar to that of a passive scalar.
As we discuss in the next section, passive scalars appear to exhibit fairly robust -1
spectra, and where enstrophy is behaving passively we obtain a -3 energy spectrum.
Thus intermittent corrections may have to be small.

5.3 Passive Scalar Dynamics

A passive scalar tracer, call it ¢, in two-dimensional dynamics obeys the same
equation as the vorticity equation, namely
9¢

(5.4) 5 T/ =F-D

where F' and D represent forcing and dissipation. Since we no longer require ¢ =
V23, (5.4) is in a sense more general than the vorticity equation. If D = —£kV?¢,
then the Peclet number UL/« is analogous to the Reynolds number. Thus, if a
simulation is begun with ezactly the same intial conditions on ¢ and vorticity, and
with the same forcing and dissipation, then the two fields will remain identical,
with necessarily the same spectral slope, for all time. This will not of course hold
generally, although a simple phenomenological argument suggests that a -1 spectrum
will be hard to avoid. (Note that a -3 energy slope corresponds to a -1 enstrophy
slope)

We suppose that tracer is supplied at some large scale (low wavenumber). In the
inviscid case the conserved quantities are of the form [ G(¢)d x, where G(#) is any
sensible function. The only quadratic invariant, f ¢%d x is therefore analogous to
enstrophy, and we therefore expect a cascade of tracer concentration to small scales.
In the tracer inertial range the transfer of tracer, call it y, is assumed independent
of wavenumber and equal to the rate of its dissipation. Thus,

(5.5) X ~ kw

.
where 7 is given by (4.13), and ®(k) is the squared spectral amplitude of ¢, so
that [¢?d x = [&(k)dk. In a log-corrected —3 energy range we obtain (k) ~

(ln(k/ko))_l/a, which leads to
(5.6) a(k) ~ k7 (In(k/ko)) "

If the energy spectrum is steeper than -3, say it is -n, then from (4.13) for
k>>k,, r(k) ~ k"% n other words, because the contributions to the strain



18

integral cornes mainly from the large scale, r(k) is a constant. The passive scalar
spectrum is now

(5.7) P(k) ~ k71,

(This is identical to the sometimes called Batchelor spectrum, which is the spectrum
of a passive scalar beyond the Kolmogorov dissipation range but prior to the tracer
dissipation scale, a range which exists if the Peclet number exceeds the Reynolds
pumber). The point is that the passive scalar spectrum is rather insensitive to
the energy spectrum, and unlike the case for vorticity where it is easy to envision
consistent circumstances leading to a steep spectrum, the -1 spectrum is rather
robust.

Babiano et al. (1987) attribute the shallower spectrum of a passive scalar to
the lack of the presence of intense vortices in the tracer field, because the tracer,
being passive, is unable to concentrate itself like vorticity. This point of view has
been questioned as being artifactual (Holloway and Bartello, 1991). The point of
Holloway and Bartello is that differences in the vorticity and passive scalar dynamics
arise even in the absence of isolated vortices in the vorticity field, and furthermore
that such differences are in fact quite well predicted by closure (in this case, TFM),
which takes no explicit account of isolated vortices. In this interpretation, the
shallow tracer spectrum arises, at least in part, from the efficiency of wavenumber
local interactions (see also Holloway and Kristmansonn, 1984). Certainly, the cause
and effect relationship between the spectral slope and the physical space dynamics
of a passive scalar field has not been unambiguously determined (as it has not
for the vorticity dynamics). Does the apparent phenomenological necessity of a -1
spectrum somehow forbid the formation of intense ‘passive tracer vortices’? Or is
their absence primarily because of the dynamical reasons outlined in Babiano et al.,
enabling classical phenomenology to work? Or are the isolated vortices a complete
red herring here?

5.4 Energy Inertial Range. At scales larger than a forcing scale energy is
expected to cascade to large scales. Numerical experiments confirm this is the case.
Preliminary analyses of these results also indicate that the energy transfer in the
-5/3 range is more local than enstrophy transfer in the -3 range.

It appears in fact that the inverse energy cascade is rather robust, with an
energy spectrum close to -5/3 and an apparently more-or-less universal value of the
Kolmogorov constant of between 6 and 10. Numerical results have been obtained
by Frisch and Sulem (1984) and, at much higher resolution, by Maltrud and Vallis
(1991), with consistent results (fig.4).

The role of isolated vortices appears, at least superficially, to be less important in
the energy range than in the enstrophy range. In a number of numerical experiments
at 5122, MV applied a stochastic forcing confined to wavenumbers close to 180. The
energy dissipation was a Rayleigh drag applied only to wavenumbers less than 10.
Thus the wavenumber range between 10 and 180 is truly ‘inertial’. A well resolved
energy inertial range with a spectrum very close to -5/3 was obtained. Visual
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Fig.4. Flow diagnostics from a 512? simulation forced in the
range 160 < k < 165. (a) Time averaged energy spectrum.
(b) Time series of vorticity kurtosis (solid curve) and stream
function kurtosis (dashed curve) from a statistically steady por-
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(d) The Kolmogorov constant Cy(k) = k3/3 E(k)e(k)~?/3. The
average value of C, is 5.8. (From MV)

inspection of the vorticity field indicated, perhaps surprisingly, no sign of isolated
vortices in the energy inertial range, and a corresponding value of kurtosis close to
the Gaussian value of 3. It is surprising because it has sometimes been thought
that the inverse energy cascade occurs through vortex merger. Instead, we see a
process more akin to vortex ‘clumping’. Of course in a spectrum as shallow as -5/3
it is rather difficult to imagine isolated vortices of the kind found in the enstrophy
range, since rapid variations in vorticity at the edge of the vortices naturally give
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rise to steep spectra, along the lines of Saffman’s argument (Saffman, 1971) that
vortex discontinuities give a —2 spectrum of vorticity and a —4 energy spectrum.
The presence of any kind of large scale structure in the inverse energy cascade
remains open. Two issues are outstanding: First, what is the role of the forcing
type? MV used a stochastic forcing, with little correlation in time—in some sense a
‘strong’ forcing because the forcing timescale is shorter than a dynamical timescale.
A ‘slower’ forcing, either a negative viscosity or a redder stochastic forcing might
allow the dynamics of the energy inertial range to organize itself through vortex
merger. On the other hand, the rather good agreement with phenomenological
predictions for those expeiments which have been done implies that the inertial
range dynamics may indeed be independent of the details of the forcing. The
second issue is more subjective, involving recognition of structures in the inertial
range. Perhaps structures exist, but simply cannot be seen in the vorticity field by
eye. Only the Shadow knows.

5.5 Dual Forcing Regimes and Atmospheric Dynamics

In atmospheric dynamics the spectral slope of energy is observed to go from a
-3 slope for scales larger than about 500km to a -5/3 slope for smaller scales (Nas-
trom and Gage, 1985). At large scales baroclinic instability produces an effective
forcing scale of a few thousand kilometers, at which two-dimensional turbulence is
perhaps an acceptable lowest order model of the dynamics. We therefore expect
an enstrophy cascade to small scales, and indeed the -3 slope has been thought to
be the natural consequence such a cascade, and an observational verification of a
basic result of two-dimensional turbulence. However, in the light of newer numer-
ical simulations which tend to produce steeper slopes, this slope actually becomes
something of a mystery—why is the atmosphere itself is so close to a -3 slope when
simulations of geostrophic turbulence are not? It is especially germane when one
considers that the driving of the atmosphere is an instability forcing, more akin to
a negative viscosity than a stochastic forcing, and instability forcings tend to give
the steepest spectral slopes. The answer plainly does not lie in in the fact that the
atmosphere is a continuous fluid and simulations are done on a finite grid, for the
atmosphere is only two-dimensional over a finite range. The answer may lie in the
phenomenology: a -3 slope tends to arise in the presence of a time independent
eddy turnover time. In the atmosphere time independence may come from shear
instabilities, or from surface drag, or any number of phenomena. Alternatively
the inhomogeneity plus anisotropy (the S—effect) may act as a destructive influ-
ence on nascent isolated vortices (whose presence seems associated with the steeper
slopes). The relatively unstructured enstrophy throughput then reproduces a more
clasical inertial range with lower kurtosis and shallower spectral slope than that of
many simulations. However, if the —3 spectrum is brought about by the destruc-
tion of coherent vortices by anisotropic Rossby waves we would expect, according
to the simulations, anisotropic small scales, whereas observations of atmosphere
show isotropic small scale motion (Nastrom and Gage, 1985). It would appear that
these issues could be addressed with models of geostrophic turbulence somewhat

intermediate between pure turbulence models and atmospheric General Circulation
Models.
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Energy is also effectively 'input’ into the large scale system through convective
activity at scales of tens of kilometers. This, while plainly not two-dimensional,
occurs at a scale not much smaller than the smallest two-dimensional scales. It
has been hypothesized (e.g. Lilly, 1989) that convective input produces a two-
dimensional inverse energy cascade, and hence a -5/3 slope. The question arises
as to where this energy is dissipated, and what happens when the inverse energy
cascade meets the forward enstrophy cascade? Numerical simulations of this phe-
nomena indicate that the enstrophy and energy cascade barely interact (fig.5 and
fig. 2e). The intermediate range is made truly invisicid, and an equilibria is reached
with a change in spectral slope at an intermediate wavenumber k. close to the phe-

ke ~ (g)l/z

where 1 and € are the energy and enstrophy cascade rates, both taken positive. It

nomenological estimate

seems remarkable that a forward enstrophy cascade, and an inverse energy cascade,
can co-exist over the same wavenumber range, with zero dissipation.

This result by no means resolves the issue of the observed change in spectral
slope in the atmosphere. It should be regarded merely as evidence that the dual
cascade mechanism is a possibility. Other possibilities exist, and should be inves-
tigated. These include the possibility that the non-gestrophic energy spectrum of
gravity waves, being shallower (possibly a -2 slope) than the geostrophic energy
spectrum of the enstrophy range, begins to dominate at smaller scales. Again this
idea could be tested with simple models, this time of shallow water turbulence.

6. Discussion. The picture of two-dimensional turbulence which has emerged
over the last decade or so, for decaying non-rotating turbulence, is one of the emer-
gence of isolated vortices which, through phase correlations across many length
scales, evidently severely curtail the enstrophy cascade. Between the vortices, the
enstrophy cascade continues in a business as usual fashion. The vortex dynamics is
rather well described by point-vortex like Hamiltonian dynamics, except when vor-
tices collide and enstrophy is dissipated. The total energy spectrum is dominated
by the vortices, and, in the slowly evolving period after the vortices have formed
but before the system has reduced itself to a very small number of vortices, the
energy spectrum tends to be steeper than the classical -3 prediction. If it makes
sense to speak of a finite number of vortices, this number decreasing with time,
then self-similarity in the field must be foregone (for otherwise there is an infinite
number of vortices). This seems to arise because of the ‘pac-man’ like dynamics of
vortices merger, large vortices engulfing the smallest ones as they move through the
fluid. Still Benzi et al. (1987b) find that the vortex structure is actually self-similar
and the situation does not seem entirely clear.

Vortex emergence persists in forced-dissipative calculations, although vorticity
kurtosis rarely reaches the extreme values of the decaying calculations. The most
basic of the predictions of two-dimensional phenomenology—that of an inverse en-
ergy cascade and forward enstrophy cascade—plainly has much truth. Inthe inverse
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n(k) (dashed curve). (From MV.)

energy cascade coherent structures do not stand out and vortex coalescence appears
not to be a dominant mechanism. The predicted -5/3 energy spectrum appears to
be fairly well born out, with a Kolmogorov constant between 6 and 10. Experiments
done thus far have mainly used a fairly white stochastic forcing, and should be re-
peated with an instability forcing, or a stochastic forcing with a long time-scale, to
ascertain their effects on the energy range. It is rather disquieting that the value
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of the Kolmogorov constant is not known to greater precision, and that slightly
different methods of calculation give slightly different results (see MV), possibly in
part due to slight departures from an exact —5/3 slope. Warn has suggested (pers.
comm.) that its value may be non-universal, even though the spectral slope may
be. (The argument based on intermittency, is not unique to two-dimensions. See
also Kraichnan, 1974.)

In the enstrophy inertial range the classical -3 spectrum appears not to be a
robust feature, the primary reason for this being nonlocality of enstrophy transfer.
It remains to be seen whether at extremely high Reynolds numbers a -3 spectrum is
yet achieved, independent of forcing details. Results at current resolutions indicate
that at least 20482, and probably much higher, will be required to see qualitative
changes from present results. Nevertheless, the notion of an enstrophy transfer to
small scales is robust. The enstrophy transfer to small scales occurs largely between
vortices, and in this region one may conjecture that KI{BL theory has quantitative
validity (i.e. -3 slope with a more-or-less universal value of Kolmogorov’s constant).
Although coherent vortices plainly affect the inertial range dynamics their presence
is sensitive to dispersive wave dynamics, in particular to Rossby waves caused by
differential rotation. Increasing this is a rather efficient way to reduce the kurtosis
and disperse compact structures. Similarly, white noise forcing can scramble the
phases and remove the structured nature of the vorticity ﬁeld..

Inertial range intermittency takes two forms (for the enstrophy range). Most
obviously, in decaying turbulence the isolated vortices themselves inhibit the enstro-
phy cascade and when vortices collide enstrophy is rapidly cascaded to the small
scales. More subtly, but perhaps more conventionally, there may be intermittency
in the enstrophy flux or dissipation between the vortices, analogous to intermittency
in energy dissipation in three dimensional turbulence. There seems little obvious
relationship between the two, except that certain arguments suggest that between
the vortices the fluid is essentially passive, and therefore the dynamics therein is
largely determined by the intense vortices themselves. The effects of dispersive wave
dynamics and stochastic forcing on intermittency are not well known, except that
both seem likely to reduce it, just as they are destructive influences on isolated
vortices.

A couple of dilemmas arose in relation to atmospheric dynamics. Simulations
and the phenomenology outlined in this note indicate there is little reason to expect
a —3 energy slope in 2D turbulence, or most likely in geostrophic turbulence. Yet
this is what is observed in the atmosphere. Why? Further, it is not understood
what causes the return to isotropy in the atmosphere. This may related to non-
geostrophic effects, or to it having a rather shallow spectrum.

In summary, for pure two-dimensional turbulence, isolated vortices imply the
presence of more structure in the vorticity field (in the enstrophy range) than a
purely statistical picture seems able to cope with, and the strong non-Gaussianity
of the vorticity field probably makes the application of closure theories, including the
renormalisation group, suspect. But strong forcing and/or wave-dynamics muddies
the waters and restores a neo-classical picture in which structures do not play a
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dominant role. For all of these reasons a single framework for turbulence—be it

structured or statistical-—seems unlikely to emerge.

This work was funded by NSF (ATM 8914004) and ONR (N00014-90-3-1618).
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