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1 Introduction

The 3 — 2 — 1 Euler angles are one of the most widely used parameterisations of
rotations. O’REILLY gives a history on page 184 of [4]. This review will give an
overview of the important feautures of this set of Euler angles, and show that they
are the ones used in [2] and [3].

Let {E;,Es, E3} be a basis for a fixed spatial frame, and let {e;, ez, es} be a
basis for a body frame. The 3 — 2 — 1 Euler angles provide an orthogonal matrix
Q Wthh maps {El, EQ, Eg} to {el, €9, 83},

Q
{E,Eg, E3} ———  {ej, ey e3}
by breaking the action of Q up into three steps
{E,Ey, B3} —  {aj,ay,a3} — {by,by,b3} — {ej e e3},

where {a;,as, a3} and {by, by, bs} are intermediate frames of reference.

2 Map from E; to a;: the yaw rotation

In this section the details of the map

L(w’E3)
{Eb E,, E3} —_— {al, as, 33}

are constructed using the rotation tensor
L(1,E3) = (I — E; ® E;) cos ) + E3sint + B3 ® Es, (2.1)

where
(a®@b)c:=(b-c)a, ab,ccR?®,
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Figure 1: Schematic of the yaw-pitch-roll motion in terms of the Euler angles 1, ¢
and 6.

and
0 —das (05}
ﬁ = as 0 —ay| . (22)
—Qa9 aq 0

The hat-matrix has the property that
ab=axb, abecR?.

The rotation (2.1) is a counterclockwise rotation about the Z— axis as shown schemat-
ically in Figure 1.
The new basis is

a; = L(¢, E3)E1 = E1 COS@Z) + E3 X E1 SiIl@Z)
ay = L(¢, E3)E2 = E2 COS@Z) + E3 X EQ SiIl@Z)
az = L(w, Eg)Eg = E3 .

Using the identities
E1XE2:E3, E3XE1:E2, EQXEgZEl,

the matrix representation of the map is

a cos® siny 0 E,;
as | = |—siny cosy 0 E,
as 0 0 1 E3

This is the first equation of (6.23) on page 184 of [4].



3 Map from a; to b;: the pitch rotation

In this section the details of the map

L(0,a2)
{81, ay, a3} E— {bb b,, b3}

are constructed using the rotation tensor
L(0,a) = (I—a; ®ay)cosh +a;sinf + a, ® ay,

where
as = —E;siny + Eycosv.

The new basis is

b; = L(#,ay)a; = a;cosf +ay x a;siné
b, = L(9>a2)a2 = as
by = L(#,ay)a3 = agcosf + ay x agsinf,

with matrix representation,

b, cos 0 —sinf a;
b, | =] 0 1 0 as
bs sinf 0 cos as

This is the second equation of (6.23) on page 184 of [4].

4 Map from b, to e;: the roll rotation

In this section the details of the map

L(¢,b1)
{b1>b2,b3} —_— {81792793}

are constructed using the rotation tensor
L(¢,b1)=(I-b; ® b1)005¢+61 sing +b; @by,

where
b; = a;cosf —azsinf.

The new basis is
€ = L(Qb, bl)b1 =b,

es = L(¢,b1)by =Dbycosd + by X bysing
e3s = L(¢,b1)bs =Dbscos¢+ by x bgsing,

with matrix representation,

e 1 0 0 b,
ea | = 1[0 cos¢ sing b,
es 0 —sing cos¢ bs

This is the third equation of (6.23) on page 184 of [4].

3

(3.3)

(4.4)



5 The composite rotation from E; to e;

In this section the details of the map

L(¢,b1)L(0,a2)L(¢,a3)
{E1,E2,E3} {91792,63}

are constructed. Using the above results

€ 1 0 0 cosf 0 —sind cos® siny 0| [E;
€ = |0 cos¢ sing 0 1 0 —siny cosvy O | E
€3 |0 —sing cos¢| |sinf 0  cos® 0 0 1 E3
cos 6 0 —sinf cosy siny 0| [E;
= |sin¢sinf cos¢ sin¢cosf —siny cosy Of | Es
[cos¢psinf) —sing cos¢cost 0 0 1| \E3
cos f cos ) cos f sin Y —sinf E,
= |sin¢sinfcosy —cos¢siny sin¢sinfsiny + cos ¢ cosy  sin ¢ cos E,
[cos@sinfcostp +singsingy  cos@sinfsiny —singcosyp cospceost| \Es

Write this as
e=Q’E.

Then

cosfcosty sin¢sinfcosy — cospsiny cos ¢ sinf cosy + sin ¢ sin
Q = |cosfsinty sin¢gsinfsiny + cospcosyy cos@sinfsin — sin ¢ cos Y
—sin @ sin ¢ cos 6 cos ¢ cos 6
(5.5)
To see that this is the correct Q, construct Q directly.

6 Direct construction of Q

By definition
Q = L(¢7 bl)L(07 aQ)L(qu)? E3) :

In order to construct a matrix representation of the composite rotation, use the
property of rotation tensors

L(6,Rb) =RL(4,b)R”.
when R is any proper rotation. Define
A3 = L(¢7 E3) ) A2 - L(07 EQ) ) Al = L(¢7 El) .

Then
L(Q, ag> = L(Q, A3E2) = A3A2Ar§ s
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and

L(¢,b1) = L(¢,L(0,az)a)
= L(6,a:)L(¢,a;)L(0, as)”
— AsALATL(,a1)AsATAT
— AALATL(6, AsE;)A;ATAT
— A ALATALA ATAATAT
— AyA,AATAT.

Hence
Q= A3A2A1A5A§A3A2A§A3 = A3AA| = (A?AFQFA?)T)T .

with matrix representation

1 0 0 cos 0 —sind cosy siny 0 4
Q= 0 cos¢ sing 0 1 0 —siny cosy 0 ,
0 —sing cos¢| [sinf 0  cosf 0 0 1
confirming the form of Q.
7 Angular velocities
To compute angular velocities start with the representation
cosy —siny 0 cosf 0 sind| [1 O 0
Q=A3A5A; = |sinyy cosyp 0 0 1 0 0 cos¢p —sing]| ,
0 0 1| [—sinf 0O cos@| |0 sing  cos¢

and use the properties
AAT =$E;, AAT =6E,, A;AT =¢E;.
Now differentiate Q,
Q = A3ALA | + Az ALA + AALA, .
The body angular velocity is
@ = Q'Q

= A{ATAL(Q)

— ATATAT <A3A2A1 + AsALA, + A3A2A1>

— PATATE;ALA, + 0 ATE, A, + 6B, .

bt



But R —
A{EgAl - (A,{Eg),

. ATE, = |I-E,®E;)cos¢—sin¢E, + E, @ E;| E,
= Ejcos¢ — sin pE; X Ey
= Escos¢p — Egsin¢.
Similarly -
ATE;A, = (ATE,),
and R
ATE; = |(I-E;®Ey)cost —sinbEy + Ey @ Ey| Eg
= Ejscosf —sinfE,; x E;
= Eszcosf — E;sinf.
Continuing -
ATATE;A5A, = (AT(Escos — Eysinf)
and

AT(Escos — E;sinf) = —E;sinf + cosf ATE;
= —E;sinf + cos0(E;zcos ¢ — E; x Egsin ¢)
= —E;sin6 + cos0(E;cos ¢ + Egsin ¢)
= —E;sinf + E;cosfsin¢ + E3cosf cos ¢ .

Substitute into the expression for the body angular velocity,

Qb = (—E;sind + Eycosfsin ¢ + Ez cos 6 cos @)
—i—@(Eg cos ¢ — Ezsin ¢) + OE,
= E(¢ — sin0) 4+ Ey (¢ cos sin ¢ + 6 cos ¢)
+E3(17b cos @ cos ¢ — fsin o).
In [4] the body angular velocity is denoted by wor and the above expression for §2°

agrees with wor on page 188 of [4].
In matrix form

Qb 1 0 —sin 6 ¢
Q51 = |0 cos¢g cosfsing 0
04 0 —sing cosfcosp| \1)
Write this is _
Q'=B"'O.



Then
1 singtanf cos¢tanf

B= |0 cos ¢ —sin ¢
0 singsect cosgpsect

As shown below in §9, this expression agrees with [B] := B in [2] and in [3].

8 Small angle approximation

For small angle approximation rewrite the body representation of the angular ve-
locity as

Qb ¢ 0 0 —sinf ¢

Bl =(60]+1]0 cosp—1 cosfsing 0

Qb ¥ 0 —sing cosfcosp—1] \4
Hence for small angles

o ¢ 0 0 —0 ¢

Bl=10]+ |0 -3¢ 1 o) 1 0+

o) \i) Lo o -1\

Neglecting the higher order terms, the small angle approximation is

Qb ¢
Bl ~|6
Q3 ¢

The problem is how to approximate the rotation matrix. The rotation matrix lies
on a manifold so standard linearization will result in a matrix which is no longer a
rotation. Applying the small angle approximation to Q in (5.5)

1 — 6 R ¢
Qapprox — ﬂ) 1 _¢ =1 + Q] , e = 0
-0 ¢ 1 (0

The problem is that Q**™* is no longer a rotation

Q)T £ Q)

Using this approximation will give some motion of a vehicle but not a rotation.
There is however a standard way to approximate a rotation matrix using the Cayley
transform. Redefine Q?PP** ag

QMY = 1+ 10)1-10)".

Then Q' is orthogonal and so is a rotation, and it has the same order of accuracy
as Qapprox .



In general the angular velocity can be linearized, but extra care is necessary in
linearizing rotations. On the other hand, there is no reason for these linearizations.
In both analysis and numerics it is better to use the exact expressions, even for small
angles..

9 Notation in [3]

On page 222 of [3] the ship translational displacements, denoted by (&1, &2, &3), in the
steady moving system and the Eulerian angles, denoted by (e, ez, e3), are related
by

él Uy
52 [R] O U9
§ | _ us 9.1
By w | (9.1)
€2 0 |B] Us
ég L ] Ug

This is equation (5) in [3]. In equations (6)-(7) in [3], the matrices [B] and [R] are
defined as follows
1 sine; taney, cose; taneg
[B] = |0 cos €1 —sine; :
0 sine; secey cose; seces

and
cos ey coses sinep siney coses — coseq sines  cosep siney coses + sineq|sin ey
[R] = |cosey sine; sine; siney sines + cose; coses |sine; | sin ey sines — sine; cos ez

—sin ey sin e; cos es CcoS e COS €y

Replacing e; = ¢, ea =0, e3 = and & = q1, & = ¢ and & = g3 it is clear (after
correcting two boxed typos in [R]) that [R] = Q and [B] = B. The first boxed
term should be sin e5 — sin e3 and the second boxed term should be sine; — cose; .
In (9.1), the angular velocity (u4,us,ug) is related to the Euler angles by

Uy €1
Us = [B] -1 €9
Ug €3

Hence it is clear that uy = Q8 us = Q% ug = Q5.
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