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Abstract

This paper demonstrates that deterministic sea wave prediction (DSWP)
combined with constrained optimal control can dramatically improve the ef-
ficiency of sea wave energy converters (WECs), while maintaining their safe
operation. A point absorber WEC employing a hydraulic/electric power take
off system is focused on. Maximising energy take-off while minimising the
risk of damage is formulated as an optimal control problem with a disturbance
input (the sea elevation) and with both state and input constraints. This
optimal control problem is non-convex, which invalidates direct use of

quadratic programming algorithms for the optimal solution. It is demon-

strated that the optimum can be achieved by bang-bang control. This
paves the way to adopt a dynamic programming (DP) algorithm to resolve
the on-line optimization problem efficiently. Simulation results show that
this approach is very effective, yielding at least a two-fold increase in energy
output as compared to control schemes which do not exploit DSWP. This
level of improvement is possible even using relatively low precision DSWP
over short time horizons. A key finding is that only about 1 sec of prediction
horizon is required, however, the technical difficulties involved in obtaining
good estimates necessitate a DSWP system capable of prediction over tens
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of seconds.
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1. Introduction

Ocean waves provide an enormous source of renewable energy [1, 2]. Re-
search into wave energy was initially stimulated by the oil crisis of the 1970s
[3]. Since then many different types of sea wave energy converters (WECs)
have been designed and tested [4, 5], but this is still a relatively immature
technology (compared to solar or wind energy) and is far from being com-
mercially competitive with traditional fossil fuel or nuclear energy sources.
Progress is hampered by two fundamental problems:

1. Inefficient energy extraction, often due to the fact that the WEC’s
dynamic parameters are not optimally tuned and their control is not
optimal for most wave profiles.

2. Risk of device damage. In order to prevent WECs from being damaged
by large waves, they have to be shut down, especially during winter
storms. Such periods of inactivity can last for days.

Extracting the maximum possible time average power from WECs, while
reducing the risk of device damage involves a combination of good fundamen-
tal engineering design of the devices and effective control of their operation.
The traditional approach to these issues exploits short term statistical proper-
ties of the sea [6] but it has been shown [7, 8] that doing so severely limits the
average power that can be extracted. The above two problems are ad-

dressed by considering schemes designed to achieve optimal control. It will
be shown that (as [9–11] demonstrated in the 1970s) methods for achieving
the maximum power output are inevitably non-causal and require prediction
of the shape of the incident waves. The recent development of deterministic

sea wave prediction (DSWP) as a scientific discipline [12–28], particularly real
time DSWP [12–19, 26, 28] now makes such an approach realistic. For a va-
riety of reasons high accuracy real time DSWP is very demanding. However
it will be shown that the optimal control techniques described here provide
considerable improvements over traditional WEC control methods, even with
modestly accurate DSWP and relatively short prediction horizons.
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Figure 1: Schematic diagram of the point absorber

The dimensions of point absorbers are small compared with the wave-
length of incoming waves and they are potentially very efficient if their fre-
quency response function closely matches the spectrum of the incident waves
(resonance). Passive control methods (such as impedance matching) have
been explored to improve energy extraction by tuning the dynamical param-
eters of the devices [9, 29–31]. Most of these approaches are linear control
schemes. A non-linear control method that has received some attention is
latching, [32–37]. This attempts to force the phase angle between the float
and the wave at the WEC to be similar to conditions at resonance. The
above control strategies do not use prediction of the forces acting on the
WEC and thus inevitably lead to sub-optimal energy extraction. Since the
early work [5, 9, 11] there have been a number of authors who have recog-
nized the importance of DSWP in the control of a variety of floating body
applications [7, 8, 17, 37, 38], but these have, as yet, not been incorporated
into actual control schemes.

The point absorber model used is shown in Fig. 1 and roughly corre-
sponds to the Power Buoy device PB150 developed by OPT Inc, see [39].
On the sea surface is a float, below which hydraulic cylinders are vertically
installed. These cylinders are attached at the bottom to a large area anti-
heave plate whose vertical motion is designed to be negligible compared to
that of the float. The heave motion of the float drives the pistons inside the
hydraulic cylinders to produce a liquid flow. The liquid drives hydraulic mo-
tors attached to a synchronous generator. From here, the power reaches the
grid via back-to-back AC/DC/AC converters. The mechanical circuit corre-
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Figure 2: A mechanical circuit representation of the point absorber

sponding to this simplified model is shown in Fig. 2. Here hw is the water
level, hv is the height of the mid-point of the float and D is the hydrodynamic
damping of the float including added damping due to the damping effect of
the movement of the float [1]. K is the hydrostatic stiffness giving the buoy-
ancy force, which can be calculated from the float geometry, while m is the
mass of the float including “added mass” [1]. The friction force acting on the
float is ff = Df ḣv. In order to simplify the model the frequency dependence
of both D and m is neglected (see, e.g., [29]). The static component of the
friction force ff is also neglected. For a more thorough investigation of
the modeling issues of point absorbers, see [1, 40, 41].

The control input is the q-axis current in the generator-side power con-
verter, to control the electric torque of the generator. The generator torque
is proportional to the force f acting on the pistons from the fluid in the
cylinders. Since the motion of the float imposes a velocity v on the piston,
the extracted power P (t) at time t is expressed as

P (t) = f(t)v(t). (1)

This power is smoothed by the capacitors on the DC link of the converters.
In the model in this paper, the modest power losses in the hydraulic
transmission, the generator and the converters will be neglected.

To avoid damage, and for overall performance reasons, two constraints
have to be considered in any real WEC. One concerns the relative motion of
the float to the sea surface (it should neither sink nor raise above the water
and then slam), which can be expressed as

|hw − hv| ≤ Φmax. (2)
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The other constraint is on the control signal set by limitations on the allow-
able converter current. This constraint can be expressed as

|f | ≤ γ. (3)

The control objective is to maximize the extracted energy subject to the
constraints (2) and (3). Note that there is further constraint on the motion
of the float because of the limited excursion of the piston with respect to
the cylinder (see Fig. 1). This constraint has the form |hv| ≤ λ. However,
this constraint should not be considered, since λ is assumed large

enough compared to the expected excursion.
The constraints imposed on WECs significantly affect the power that can

be extracted. It has been shown that by using control strategies that incor-
porate these constraints, considerable increases in the energy output can be
obtained without increasing the risk of damage [7, 8]. The ability to han-
dle constraints combined with the development of real-time wave prediction
methods has recently led to an interest in the use of model predictive control

(MPC) for wave energy devices [42–44]. The work published to date has
used standard MPC techniques and they rely on the formulation of a convex
quadratic programming (QP) problem. The underlying problem formulations
and the cost function representations in [42–44] differ from the case in this

paper. The question is left open if the convexity assumption holds for
a broad class of constrained optimal control problems for WECs. However,
this assumption does not hold for the problem formulated in this paper and
many other similar optimal control problems [45, 46].

In this paper, the constrained optimal control problem is solved using fun-
damental principles from optimal control theory [47–49], see Section 3, and
real time deterministic sea wave prediction [12–19, 26, 28]. It is demonstrated
that the optimal control is of bang-bang type, meaning that the control input
f is always at one edge of the allowed range, see Subsection 3.2. As will be
shown, for an arbitrary sea wave input known over an interval of time (not
a sine wave), direct numerical computation of the optimal control scheme is
not realistic. Consequently, dynamic programming (DP) [45], which is well
suited for constrained optimal control problems [50], is employed. Some
detail is sacrificed in the hydrodynamic modelling, leading to a model of
manageable complexity for on-line DP.

The implementation of DP on a WEC control system is based on the as-
sumption that the sea surface shape can be predicted for a short time period.
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This requirement has been a bottleneck for the development of suitable opti-
mal control strategies for WECs. However, the developments in deterministic
sea wave modeling techniques have made real time sea wave prediction for
a short time period realizable, [12–19, 26, 28]. A key finding from this work
is that the prediction horizons required are considerably smaller than those
resulting from the previous studies [42–44].

For the sake of comparison, simulations have also been performed for var-
ious non-prediction-based WEC control strategies. The results demonstrate
the following benefits of the approach proposed in this paper. 1) Signifi-
cant increase in energy output. Up to a two-fold increase is achieved in
energy output when compared to nearest rivals which do not exploit sea state
prediction. 2) Robustness to the accuracy and prediction horizon of DSWP.
Especially important is the possibility of reducing the prediction horizon, be-
cause the difficulties associated with real time DSWP increase significantly
with the prediction horizon.

The structure of the paper is as follows. Section 2 formulates the con-
strained optimal control problem for the WEC. Section 3 provides a detailed
analysis for this optimal control problem. The dynamic programming control
strategy is developed in Section 4, and compared in simulation with several
other control methods in Section 5.

2. The WEC model

It is convenient to replace the mechanical circuit in Fig. 2 with its
electrical equivalent, shown in Fig. 3. The relationship between the electrical
and mechanical elements from Figures 2 and 3 is:

R =
1

D
, L =

1

K
, m = C, Rf =

1

Df

.

Moreover, force and velocity in Fig. 2 correspond to current and voltage in
Fig. 3. Hence, w and v are voltages associated with the vertical velocities of
the sea level and float, respectively; the current iL corresponds to the spring
force in Fig. 2; the current through Rf corresponds to the friction force
between the float and the lower part of the WEC that is rigidly connected
to the heave plate. The control input u is the current associated with the
control force f in Fig. 2 (numerically, they are the same).
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Figure 3: The equivalent electric circuit representation of the WEC

From the circuit, the following state space model holds

[

diL
dt
dv
dt

]

=

[

0 − 1
L

1
C

− 1
C
( 1
R
+ 1

Rf
)

] [

iL
v

]

+

[

1
L
1

RC

]

w +

[

0
− 1

C

]

u. (4)

The extracted energy in the time interval [0, T ] is E =
∫ T

0
vu dt. The two

constraints corresponding to (2) and (3) can be expressed as |iL| ≤ δ and
|u| ≤ γ, respectively, where δ = Φmax/L.

If the constraint |iL| ≤ δ is violated, which means that the float moves
outside some acceptable limit with respect to the water surface, then the in-
cremental buoyancy force gets much smaller, due to the smaller cross-section
of the buoy at the water level, and a nonlinearity is introduced into the WEC
model. Φ denotes the magnetic flux of the inductor, which corresponds in the
mechanical circuit to the vertical displacement difference between the water
level and the mid-point of the float Φ(t) =

∫ t

0
(w− v) dτ. Then the nonlinear

behavior of the inductor can be approximated by

iL =







Φmax/L+ (Φ− Φmax)/kL, if Φ > Φmax

Φ/L, if |Φ| ≤ Φmax

−Φmax/L+ (Φ + Φmax)/kL, if Φ < −Φmax

(5)

where k > 1 is a constant and Φmax = Lδ.
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3. The WEC optimal control problem

3.1. Problem formulation

Introducing the state vector x = [iL v]⊤ allows (4) to be rewritten as

ẋ = Acx+Bcuu+Bcww, (6a)

v = Ccx , Cc = [0 1] . (6b)

The control objective is to maximize the energy E =
∫ T

0
v(t)u(t) dt ex-

tracted over a time interval [0, T ], assuming that the disturbance input w is
known. The following constraints must also be satisfied (for all t ∈ [0, T ]):

|x1| ≤ δ , |u| ≤ γ . (7)

Thus, the optimization problem is

maximize E subject to (7). (8)

Note that if the constraints (7) were removed and if w were a sine wave
then, for large T , this would become an impedance matching problem, which
has an simple analytic solution. If w is not a sine wave, and it is not known
in advance, then this “solution” becomes non-causal [1] and various causal
approximations to it have been studied in [51–54].

3.2. Optimal control analysis

In the following analysis, problem (8) is recast by introducing the cost
functional

Jε(u) =

∫ T

0

[

−v(t)u(t) +
ε

δ − |x1(t)|

]

dt (9)

where, for some (small) ε > 0, the penalty term ε
δ−|x1(t)|

replaces the state

constraint [55]. The modified cost function is more conservative than (8),
because ε

δ−|x1(t)|
→ ∞ as |x1(t)| → δ. Put

U = {u : [0, T ] → [−γ, γ] u measurable} ,

then the problem is to minimize Jε(u) with respect to u ∈ U subject to x, v
being the solution of (6). It is known that for ε → 0 (ε > 0) the solution of
the above unconstrained (in state) optimal control problem converges to the
solution of the constrained optimal control problem (8), see [55].
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To solve the optimization problem for Jε, Pontryagin’s Minimum Princi-
ple ([47, Ch. 1], [48] or [49]) is used. First introduce the pre-Hamiltonian

H(t, x, λ, u) = L(t, x, u) + λ⊤(Acx+Bcuu+Bcww) (10)

where L(t, x, u) = −y(t)u(t) + ε/(δ − |x1(t)|) is the integrand of Jε(u), see
(9), and λ = [λ1 λ2]

⊤ denotes the co-state. Recall that the co-states λ1, λ2

satisfy the differential equation [47, p. 18]

dλi

dt
= −

∂H

∂xi

, i = 1, 2. (11)

Using the notation Rp =
RRf

R+Rf
, the pre-Hamiltonian becomes (by a short

computation)

H(t, x, λ, u) = −

[

y(t) +
λ2(t)

C

]

u(t) +
ε

δ − |x1(t)|

+
λ1(t)

L
(w(t)− y(t)) +

λ2(t)

C

(

x1(t) +
w(t)

R
−

y(t)

Rp

)

.

Pontryagin’s minimum principle states that if u∗ is the optimal input and
x∗, λ∗ are the optimal state and co-state trajectory, then u∗ minimizes H :

H
(

x∗(t), u∗(t), λ∗(t), t
)

≤ H
(

x∗(t), u0, λ
∗(t), t

)

for all t ∈ [0, T ] and all u0 ∈ [−γ, γ]. Since H is linear in u, its minimum
with respect to u is always achieved at u = γ or at u = −γ. More precisely,

u∗(t) =











γ if y(t) +
λ2(t)

C
> 0,

−γ if y(t) +
λ2(t)

C
< 0.

(12)

If y(t) + λ2(t)
C

= 0 then the minimum principle does not give u∗(t), but the
times when this happens are negligible (they form a set of measure zero).

This type of control, jumping between a finite number of extreme points,

is called “bang-bang control”. To find u∗ the sign of y(t) +
λ2(t)

C
for all

t ∈ [0, T ] has to be determined. The function

H0(t, x, λ) = min
u0∈[−γ,γ]

H(t, x, λ, u0)
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is called the Hamiltonian. Here

H0(t, x, λ) = ∓

[

v(t) +
λ2(t)

C

]

umax +
ε

δ − |x1(t)|
+

λ1(t)

L
(w(t)− v(t))

+
λ2(t)

C

(

x1(t) +
w(t)

R
−

v(t)

Rp

)

.

According to Pontryagin’s minimum principle, along an optimal trajectory
the system evolves according to the canonical equations

ẋ =
∂H0

∂λ
, λ̇ = −

∂H0

∂x
,

with terminal condition λ(T ) = 0 as there is no terminal cost in the functional
Jε. Thus, to find the optimal control it is necessary to solve the two-point
boundary value problem

ẋ1 = −
1

L
x2 +

1

L
w

ẋ2 =
1

C
x1 −

1

RpC
x2 ∓

1

C
γ +

1

RC
w

λ̇1 =
±ε

(δ − |x1|)2
−

λ2

C
, (+ sign if x1(t) < 0)

λ̇2 = ±γ +
λ1

L
+

λ2

RC
,

xi(0) = x0
i , λi(T ) = 0, i = 1, 2,

where the sign before γ is taken from the input u(t) for every t ∈ [0, T ],

which, in view of (12), is determined by the sign of x2(t) +
λ2(t)
C

. The sea
surface velocity w may be considered as a disturbance signal.

This problem must be solved numerically and unlike for initial value prob-
lems, where forward stepping can be used, here some form of iteration scheme
is necessary (so called shooting methods). This is computationally expensive
and the problem is ill conditioned. Therefore, instead of numerically solving
the two point boundary value problem, the optimal control will be approxi-
mated using discretization and DP, see Section 4. This makes it possible to
compute the discretized control input step by step without having to solve
the canonical equations. However, Pontryagin’s minimum principle is still
important for showing that the optimal control is of bang-bang type, which
dramatically simplifies the DP algorithm.

10



3.3. Sea-wave model and wave prediction

The computational cost of real time DSWP methods for short-crested
waves forces the sea-wave model to be a linear superposition of a number
of long-crested swells, which is the conventional oceanographic wave model
[6]. Additionally, it is assumed that the sea surface is statistically stationary
over the timescale of the prediction process (typically a few minutes). At
the WEC site the wave height at a position (x, y) ∈ R

2 and at time t ∈ R is
described by

h(t, x, y) =

M
∑

m=1

N
∑

n=1

An,m cos(κndm(x, y)− ωnt+ Φn,m),

where, for fixed m ∈ {1, . . .M}, the sum
∑N

n=1An,m cos(...) describes one
particular long-crested swell/wave front. Here N ∈ N is the number of
frequencies ωn, the wave number is κn = 2π/λn where λn is the wave length,
dm(x, y) is the “distance” of the point (x, y) to the mth wave front passing
through the origin (dm(x, y) may be negative) and Φn,m is a phase-shift.
Approximately, κn ≈ ω2

n/g holds, where g is the gravity constant. The
precise relationship depends also on the depth of the water.

One form of real time DSWP [12–19] involves two steps: (1) determine
the continuously updated directions of component waves (typically this uses
a few minutes of data) and (2) for a particular wave profile (typically requires
30 seconds of data) find the particular parameters An,m and Φn,m. Using the
wave directions and the magnitudes and phases allows the short wave profile
to be predicted when it has propagated to the prediction site. This approach
to real time DSWP for short crested waves requires some form of remote
sensing technology such as wave LIDAR [56], or an array of wave buoys.

4. Dynamic Programming for WEC control

4.1. A brief introduction to dynamic programming

Dynamic programming (DP), originally developed by [45], is a powerful
approach for numerically solving discrete optimization problems [46]. It is a
multi-stage decision process based on Bellman’s principle of optimality [45].
Based on this principle, the process of making a decision can be simplified

by breaking the process down into a sequence of decision steps.
DP has also long been recognized as being naturally suited for resolving

a wide variety of optimal control problems [46, 57]. This is mainly because
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it allows diverse forms of the criterion functions and broad classes of systems
to be controlled, which can be nonlinear and time varying.

The DP optimization procedure is briefly described as follows.
The first step is to discretize the continuous system model, ẋ = f(x, u, w, t)
to its discrete time form x(k + 1) = g(x(k), u(k), w(k), k) and quantize each
state variable xi(k) and each control variable ui(k). The second step is to
define a sequence of criterion functions Jk(y, u), k = 1, . . . N , representing
the performance values (energy in the present work) from the time k to
the final time N for all admissible inputs u(i), outputs y(i) and states x(i),
i = k, . . . N , that satisfy the system’s dynamic equations. The third step is
to find the optimal control sequence in a recursive manner. The conventional
computational procedure of the DP algorithm starts with determining the
optimal values of JN obtained at the final stage N for all possible states
and control inputs. Then the optimal values Jk, k = 1, . . . , N , can be found
backwards by a recurrence relationship. The crucial point of the algorithm is
that since the optimal values of Jk+1 for all required states of the system have
already been calculated in the previous step, only one stage of optimization
is required for obtaining the optimal value of Jk. This is very efficient. When
this recursive calculation procedure finishes at the initial stage k = 1, the
optimal value of J1 for the whole process and the corresponding optimal con-
trol sequence at each quantized initial state can be determined. Because this
DP algorithm performs the calculation recursively from the last stage back-
ward to the initial stage, it is usually called backward dynamic programming

(BDP).

4.2. Implementation of dynamic programming for optimal control

Optimal control based on DP can be implemented off-line or on-line, ac-
cording to the characteristics of the control problem. Some optimal control
problems can be solved by running the BDP algorithm off-line and storing
in memory the optimal control values for all the quantized initial states. At
each sampling instant, the control signal is generated by looking up the mem-
ory based on the measured or estimated state. Using this off-line method,
the real-time implementation speed can be very fast, because the main com-
putational burden is removed to off-line.

In the on-line implementation of the DP algorithm for WECs, at each
sampling instant, the DP algorithm determines the optimal control input to
achieve maximal energy extraction for the WEC over the prediction horizon,
while satisfying input and state constraints. Denote the sampling period by
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Ts. Then the N -stage receding horizon is t0 + Hp, where Hp = N × Ts is
the prediction time and t0 is the present time. The receding horizon slides
forward by one sampling period after each execution of the algorithm. At t0,
the DP algorithm produces an optimal control input sequence for the interval
[t0, t0 + Hp]; however, the control action which is applied to the system is
only the first value (at time t0) of this control input sequence. The next
execution of the algorithm computes the optimal input for the system within
the interval [t0+Ts, t0+Hp+Ts], with updated sea surface/wave prediction,
but only the control input value at t0 + Ts is applied to the system, and so
forth. This on-line optimization control method is known as model predictive

control (MPC), and also as moving horizon control [58, 59].
For this on-line implementation of the DP algorithm in the WEC control,

forward dynamic programming (FDP) is better suited than BDP. The FDP
algorithm is also based on the principle of optimality, but it calculates the
cost by sweeping from the initial stage to the last stage. There are two
reasons for adopting FDP as an on-line optimization algorithm. First, FDP
can significantly reduce the on-line computational burden. In FDP, at each
sampling instant only the optimal control signal corresponding to one initial
state is calculated, i.e., the state measured at the present time. In BDP,
the optimal control signal is calculated at each possible grid point. Hence
the on-line computational speed and memory storage space for FDP are
significantly reduced compared with the BDP. Second, in FDP there is no
constraint imposed on the final state.

4.3. The FDP algorithm for WEC control

4.3.1. Problem setup

In view of the recursive nature of the FDP, it is first necessary to discretize
the WEC’s continuous time model (6). The discretized model is

x(k + 1) = Adx(k) +Bduu(k) +Bdww(k), (13a)

y(k) = Cdx(k). (13b)

Corresponding to the input and state constraints (7), the control input and
the state are constrained in the sets U and X, respectively:

U := {u ∈ R| − γ ≤ u ≤ γ}, (14)

X := {x ∈ R
2| − δ ≤ x1 ≤ δ}. (15)
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Given a predicted wave velocity sequence w(N) = {w(0), . . .w(N−1)} and a
measured initial state x(0) ∈ R

2, DP aims to resolve the following constrained
optimization problem:

min
u

N−1
∑

k=0

[−y(k)u(k)] subject to (13)

x(k) ∈ X for k = 0, . . .N − 1,

u(k) ∈ U for k = 0, . . .N − 1.

(16)

4.3.2. Quantization

An essential step in performing DP optimization within reasonable com-
putational limits is to quantize the state space X and the input space U. It
is assumed that u can only take one of the two boundary values of U, −γ
and γ. This is a reasonable assumption in view of the analysis in Section 3.

The quantization of the two-dimensional state space is shown in Appendix
A. Note that in the algorithm, it is not necessary to perform the state
quantization physically, since the only purpose of the state quantization is
to divide the state space into equivalence classes over which the minimum
costs are compared [46]; this will be explained in Subsubsection 4.3.4. For
a system with a higher state dimension, more sophisticated quantization
methods should be used, see [60].

4.3.3. DP recurrence relation

For every k ∈ {1, 2, . . .N}, denote u(k) = (u(0), u(1), . . . u(k − 1)). To
proceed the DP optimization, it is necesary to derive the recurrence relation.
Define, for k ≥ 1, the cost function Jk from the initial state x(0) to the
present time k by

Jk(u(k)) =

k−1
∑

i=0

[−y(i)u(i)] (17)

which depends on u(k). Note that the sequences of states (x(0), . . . , x(k))
and outputs (y(0), . . . , y(k)) are uniquely determined by the input sequence
u(k), the initial state x(0) and the wave velocity sequence w(N). Define,
for k = 1, 2, . . .N , the minimum cost Ik(x) from the initial state x(0) to any
reachable present state x by

Ik(x) = min
u(k)

{

Jk(u(k)) | x(k) = x
}

(18)
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and set I0 = 0. This function Ik(x) is defined only for those states x that can
be reached from x(0) without violating the constraints (7) and the minimum
is taken over those input sequences u(k) for which the constraints remain
satisfied up to the time k. According to (13), a reachable state x at time k
can be reached from possibly several states z at time k − 1 using the input
u(k − 1) at time k − 1, if they satisfy

x = Adz +Bduu(k − 1) +Bdww(k − 1) . (19)

Note that, since Ad is invertible and w(k−1) is given, this determines z as a
function of x and u(k − 1). The function Ik satisfies the recurrence relation

Ik(x) = min
u(k−1)

{

−(Cdz)u(k − 1) + Ik−1(z) | (19) holds
}

. (20)

The minimum is taken over all values u(k−1) ∈ [−γ, γ] for which z resulting
from (19) is also a reachable state.

Using (18), (20) is proved:

Ik(x) = min
u(k)

{

−y(k − 1)u(k − 1) +

k−2
∑

i=0

[−y(i)u(i)]

∣

∣

∣

∣

∣

x(k) = x

}

= min
u(k−1)

min
u(k−1)

{

−(Cdz)u(k − 1) +

{k−2
∑

i=0

[−y(i)u(i)]
∣

∣ x(k − 1) = z

}

∣

∣

∣

∣

∣

z is such that (19) holds

}

= min
u(k−1)

{

−(Cdz)u(k − 1) + Ik−1(z) | (19) holds
}

.

4.3.4. Summary of the DP computation procedure

At stage k, for each possible state vector x(k) within the quantized state
space, equation (13a) is used to compute all feasible states x(k + 1) by ap-
plying the wave signal input w(k) and each of the two possible control input
values u(k) = γ and u(k) = −γ.

The DP optimization procedure is started at the initial stage k = 0
with initial condition x(0) and cost function I0 = 0. Then in view of
the recurrence relation (20), compute I1 = minu(1){−y(0)u(0) + I0}, I2 =
min

u(2){−y(1)u(1) + I1} and so on until

IN(x) = min
u(N)

{

−y(N − 1)u(N − 1) + IN−1(z) | (19) holds with k = N
}
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power

x(0)

w(0)

Figure 4: Block diagram for WEC control using FDP (0 stands for the present time)

is reached. Note that the sequence w(k) is used in the above iterations to
compute the output sequence y(k) via the system dynamics (13).

Since it is not possible to guarantee that the next state x(k + 1) is ex-
actly on a grid point, it is necessary to associate the state with the nearest
quantized state. This associating procedure is given in Appendix B.

After associating all the possible values of the state x(k + 1) with their
nearest quantized states, a comparison is made, based on the recurrence re-
lation (20), to find the minimum cost from the initial stage to the present
stage. If several state values are associated with the same quantized state,
only the control signal and the index of the state corresponding to the mini-
mum cost are recorded. If some state is driven outside the state constraint,
then a large constant value r > 0 is added on to the cost function to penalize
the state constraint violation, i.e. Ik is set to Ik + r. Note that at each stage
and each reached state, the true values of the state and cost are recorded.
This iteration can be continued until the last stage is reached. At the last
stage, the state associated with the minimum cost is searched. Then by trac-
ing back from this final state, the optimal control sequence and the optimal
state trajectory can be derived.

4.4. The implementation of the FDP for WEC control

In summary, the implementation for WEC control based on the FDP can
be represented by the framework shown in Fig. 4, where Ē = [1, 0, . . . 0] is
used to extract the first control value u∗(0) of the control sequence u∗(N). At
each sampling instant, the WEC control is given as the following procedure:

Step 1 Predict the sea wave magnitude and speed for the next N steps, i.e.
the values of w(k) with k = 0, . . .N − 1;

Step 2 Implement the DP algorithm using the measured state value x(0)
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Figure 5: The wave amplitude and velocity data used in the simulations

and w(k) with k = 0, . . .N−1, which is estimated in Step 1; an optimal
control sequence u∗(N) = {u∗(0), u∗(1), . . . u∗(N − 1)} is determined;

Step 3 Implement only the first control of u∗(N), i.e., u∗(0), on the WEC
for one sampling period Ts;

Step 4 At the next sampling instant, repeat the procedure from the Step 1.

5. Numerical simulation

The numerical parameters used approximately reflect those of a moderate
sized point absorber such as the PB150, but are not intended to be a precise
description of any actual system. The float diameter is d = 9 m. The height
of the float is ∆h = 2.4 m, hence the range of the float heave motion is
[−1.2, 1.2]m. The sea water density is ρ = 1025 kg/m3. The gravity constant
is 9.8 N/kg. The stiffness is K = π(d/2)2ρg = π × (9/2)2 × 1025 × 9.8 =
6.39 × 105 N/m. The mass of the float is ms = 10 × 103 kg. For a circular
cylinder, the added mass is equivalent to the displaced mass of the sea water
[61]. Here the added mass is estimated to be 7 × 104 kg. Then the total
mass is m = ma + ms = 8 × 104 kg. The damping coefficient is taken as
D = 2 × 104 Nm/s. The damping ratio corresponding to the friction is
Df = 2× 104 Nm/s. In the simulations, Φmax = 1.2 m. The coefficient k for
the nonlinearity of the inductor is chosen as k = 4. The maximum control
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Table 1: Parameters used for the WEC control system modelling

Description Notation Values
Density of sea water ρ 1025 kg/m3

Gravity g 9.8 N/kg
Diameter d 9 m
Height ∆h 2.4 m
Maximum heave motion Φmax 1.2 m
Damping D 2× 105 Nm/s
Damping (friction) Df 2× 105 Nm/s
Float mass ms 10× 103 kg
Added mass ma 70× 103 kg
Stiffness K 6.39× 105 N/m
Maximum input magnitude γ 3× 105 N

input is chosen to be γ = 3 × 105 N. These parameters are summarized in
Table 1.

Real sea wave data gathered off the coast of Cornwall, UK is used. The
sea level and velocity for a period of 50 sec used for simulations in this paper
are shown in Fig. 5.

The electrical circuit shown in Figure 3 is used as the plant model to
be controlled. This model is discretized by an “exact discretization” with a
sampling time of Ts = 0.04 sec (this means that a zero order hold is added

at the inputs and a sampler at the output, both working with the period Ts).
The discrete time model is of the form (13), with

Ad =

[

0.9937 −2.5254× 104

4.9398× 10−7 0.9739

]

Bdu =

[

6.3412× 103

−4.9398× 10−7

]

Bdw =

[

2.5380× 104

1.6221× 10−2

]

Cd =
[

0 1
]

In the dynamic programming algorithm, the ranges for the quantization
of x1 and x2 are [-1200, 1200] and [-7, 7] respectively, and the number of grid
points on x1 and x2 are Nx1 = Nx2 = 50.

MATLABTM and SIMULINKTM was used to perform the simulations,
but real-time code would be written in a language such as C combined with
dedicated hardware realized functions. The continuous time model of the
WEC is built using SIMULINKTM. The FDP algorithm is written in m-code

18



and then embedded into an S-function to suit the use of SIMULINKTM. The
simulations are run on a PC with Intel c© CoreTM i7 CPU at 2.8 GHz and
with 6.0 GB memory. Denote the computational time for performing the
FDP algorithm at one sampling instant by Tc, then Tc ∝ N × Nx1 × Nx1.
When Nx1 = Nx2 = 50 and N = 25, Tc ≈ 0.068 sec. Although Tc is a bit
larger than the sampling period Ts = 0.04 sec, this will improve considerably
when the algorithm will be written in C and compiled into an executable
code on a dedicated processor.

The BDP algorithm was also implemented in the same setting as the
FDP for comparison. It is found that the BDP algorithm is approximately
8 times slower than the FDP algorithm for most of the simulations in this
paper, although BDP yields the same control performance as FDP. In the
sequel, only the results obtained by FDP are shown.

5.1. DP control and a comparison with other control strategies

In this subsection, two sets of simulations with the prediction horizon
for DP control fixed as Hp = 1 sec, i.e. N = 25 (it will be shown why
this horizon is chosen in the next subsection) are presented. Firstly, it
is assumed that the FDP algorithm is implemented when the future wave
profiles can be perfectly predicted without any prediction error. Secondly,
since the sea wave prediction error is unavoidable, it is assumed that, at each
sampling instant, the standard deviation of the prediction error increases,
due to the fact that the longer the prediction time, the worse the prediction
accuracy. Fig. 5 shows the example of wave speed used in the simulations,
over a time interval of 50 sec. In the simulation, the predicted wave data for
the DP algorithm is created by adding a sequence of prediction errors ek to
the real wave speed data at each sampling instant from the present time to
the end of the prediction time. This ek is generated by ek = λek−1+wk, with
k = 1, 2, . . . N . Here wk is Gaussian white noise, wk ∼ N (0, 0.1) and the
initial value of ek is e0 ∼ N (0, 0.8). λ = 1.001 is taken, making the filter
unstable, to match with realistic prediction errors that grow as the prediction
time grows. The values taken are deliberately very conservative (i.e., in a
real application the prediction errors to be smaller is expected) [12]. Note
that e0 is not zero; see Section 5.2 for an explanation.

To demonstrate the effectiveness of the DP control, its performance is
compared with two alternative control strategies:
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a) Linear control:

u(k) =







γ, if Fy(k) > γ;
Fv(k), if −γ ≤ Fv(k) ≤ γ;
−γ, if Fy(k) < −γ.

(21)

where F is a constant feedback gain and v is the voltage associated with
the vertical velocity of the buoy.

b) Bang-bang control:

u(k) =

{

γ, if v(k) > 0;
−γ, if v(k) < 0.

(22)

In order to consider the constraint on Φ when implementing these two
elementary control strategies, two methods are employed:

Method 1 The magnitude of control signals are reduced to lessen the con-
straint violation on Φ. For bang-bang control, the magnitude of the
control input signal is reduced by choosing a smaller value of γ. For
linear control, either a smaller γ is chosen and/or the feedback gain
F is reduced so that the constraint on Φ is satisfied. However, the
simulations show that a better performance can usually be achieved by
reducing the value of F alone than by reducing γ (or both γ and F
together). This is because reducing γ can cause more severe input sat-
uration, which can further degrade control performance, while reducing
F leads to a smaller control signal, which can lessen or even avoid the
saturation, see Fig. 6. In the simulations, γ = 9× 104 is chosen for the
bang-bang control and F = 4.5× 104 is chosen for the linear control.

Method 2 The control signals are modified to lessen the constraint viola-
tion on Φ during the simulation period as follows: 1) the signal Φ is
measured at each sampling instant; 2) if this measured Φ exceeds a
predefined limit, denoted by [−Φ̃max, Φ̃max], then the control input is
set to zero, i.e., u = 0. Note that the value of Φ̃max is not generally the
same as the actual limit of Φ; Φ̃max is purely used as a tuning parame-
ter, and its magnitude is influenced by the wave’s speed profile. In the
simulations, Φ̃max = 0.4 m is tuned for both the bang-bang control
and the linear control.
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(a) Bang-bang control (method 1)
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0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4
x 10

5

Time (sec)

In
p
u
t
(N

)

(c) Linear control (method 1)

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2
x 10

5

Time (sec)

In
p
u
t
(N

)

(d) Linear control (method 2)
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(e) DP (without prediction error)
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(f) DP (with prediction error)

Figure 6: The control input as a function of time. The inputs generated by all the
candidate controllers satisfy the input constraint.
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Figure 7: The vertical displacement difference between the water level and the mid-point
of the float. The state constraint is satisfied for the DP control with or without prediction
error and the control methods i), ii) and vi); but a constraint violation occurs for the
control methods iii), iv) and v) at about 14 seconds.

In summary, the simulation results are compared in the following cases:

i) Dynamic programming without prediction error;

ii) Dynamic programming with prediction error;

iii) Bang-bang control method 1;

iv) Bang-bang control method 2;

v) Linear control method 1;

vi) Linear control method 2;

The control input signals are plotted for all the control methods in Fig.
6, and it is clear that the inputs are all limited within [−3 × 105, 3 × 105]
N. Fig. 7 shows the buoy movement displacement Φ (in meters) when using
all the control methods. It can be seen that the constraint on Φ is satisfied
for the cases i) ii) and vi), but not for the cases iii), iv) and v), no matter
what tuning parameters are tried. Although the control methods in cases
iii), iv) and v) cannot be used in reality due to the constraint violations, the
simulations are still included here for comparison.
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(a) Bang-bang control (method 1)
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(b) Bang-bang control (method 2)
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(c) Linear control (method 1)
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(d) Linear control (method 2)
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(e) DP (without prediction error)
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(f) DP (with prediction error)

Figure 8: Extracted power as a function of time, over 50 sec. Note that the power generated
by DP control can be negative at some time instants.
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Figure 9: Extracted energy over time. It shows that the WEC controlled with the DP
algorithm generates the most energy.

Fig. 8 shows the power generated in each case. The power generated by
DP control can be negative at some time instants. The energy generated in
each of the cases is plotted in Fig. 9. It can be seen that the energy generated
using DP without prediction error (2.39 × 107 J) is 2 times of the amount
generated using the linear control of method 2, i.e. case vi), (1.19 × 107

J). When the prediction error exists, the amount of generated energy by
DP (2.30 × 107 J) is 4% less than the amount when perfect prediction is
assumed. Fig. 9 demonstrates the robustness of the DP algorithm and also
the importance of sea wave prediction in improving the performance of the
DP control of WECs. Note that, to improve the numerical accuracy, the
generated power and its integration (i.e. energy output) are both calculated
by sampling the WEC continuous model at a frequency of 1000 Hz.

In practice it is possible to use the modified bang-bang control or the
linear control for the small sea waves and a large limit Φmax; however, it is
more difficult to choose the appropriate values of Φ̃max, γ and F in practice
than in simulation, because these tuning parameters can vary dramatically
due to the changing statistical properties of the waves. Choosing safe values
would cause an extra amount of generated energy to be sacrificed.

24



0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

4.8
x 10

5

Prediction horizon (sec)

A
v
er
a
g
e
p
ow

er
g
en

er
a
ti
o
n
(W

)

Figure 10: Average power generation at different prediction horizons assuming perfect
prediction. The average power increases dramatically with the length of the prediction
horizon up to about 1 second and saturates after 1 second.

5.2. The influence of prediction horizon on DP control performance

In this discussion it is assumed that there is no prediction error, because
the results with prediction error are very similar. Fig. 10 shows the aver-
age power generation using the DP control strategy at different prediction
horizons from Hp = 0.4 sec (corresponding to N = 10) to Hp = 2 sec (corre-
sponding to N = 50). The average power is Pavg = E/T , where T = 50 sec
and E is the energy generated during 50 sec. It can be seen that the average
power increases sharply with Hp when Hp ≤ 1 sec (corresponding to N=25),
and it saturates after Hp = 1 sec. This means that a prediction horizon
of only Hp = 1 sec can be used without degrading the WEC performance
significantly, while reducing the computational burden.

The simulations show that the prediction horizon required to secure the
majority of the benefits from optimal control is very short, typically one
second. The natural conclusion is that a very short wave prediction time is
required from the DSWP, so short in fact that it suggests that simple linear
extrapolation from the present wave profile data should be effective. This
at first appears surprising because the early work by Falnes suggested long
prediction times would be required. The explanation is that Falnes’ approach
was to obtain an estimate of the Fourier transform W (jω) of the incoming
wave profile and then conjugate match the frequency response of the WEC
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to this. Clearly this requires a long enough predictive time window to obtain
a reasonable estimate of W (jω).

The obvious conclusion would appear to be that the extra effort involved
in providing DSWP is not justified in practice, suggesting that by knowing
the WEC motion the wave profile can be determined. For totally linear
WECs, obtaining the profile of a multi-directional sea in this manner would
imply de-convoluting the WEC impulse response from the WEC motion to
determine the wave system in the x, y, t domain. However the WEC motion
is subject to constraints and other nonlinearities, so that it is not possible
to estimate the wave profile from local data. It is necessary to use wave
sensors placed sufficiently far from the WEC to minimise the effect of the
wave system created by WEC motion. This distance causes a propagation
delay which once more necessitates substantial prediction times, of the order
of 10 seconds. Thus the conclusion is that while in principle a long prediction
horizon of tens of seconds is not required for optimal WEC control, in practice
it is the only way that the predictive control can be realized.

6. Conclusion

In this paper, the constrained optimal control problem of WECs is ad-
dressed. DP has been used as an on-line constrained optimal controller on
a point absorber. Two other elementary control strategies are also proposed
for a comparison purpose. A numerical simulation demonstrates the promis-
ing direction of using DP to control the WECs. The success of using the
on-line constrained optimization technique relies on the recent development
of real time sea wave prediction methods.

In future work, the following topics are worthy of pursuing:
1) Efficient optimal control algorithms for high order WEC models.
2) Integrating the sea wave prediction model in the controller.
3) Optimal control of a whole wave farm, taking coupling into account.
4) Experimental tests for the control algorithms.
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Appendix A. Quantization of the state space

Suppose xi ∈ X, with i = 1, 2, are evenly divided by Nxi points in the
range of [ximin, ximax], so that the length of each interval is

∆xi =
ximax − ximin

Nxi − 1
.

For the WEC control problem, x1min = −δ, x1max = δ hold. Since no
constraint is imposed on x2, the values of x2min and x2max should be chosen
such that the interval [x2min, x2max] is large enough to guarantee that the
trajectory of x2 is always within this range.

The grid points of X ∩ {x ∈ R
2 x2min ≤ x2 ≤ x2max} are

xi,ti = ximin + (ti − 1)∆xi with ti = 1, . . . , Nxi, i = 1, 2

where the first subscript i represents the ith component of x, while the second
subscript ti represents the tthi quantized value of the corresponding ith state
component. The set of quantized state vectors is given by

X
Q =

{

x(j) x(j) =

[

x1,t1

x2,t2

]

,
j = (t2 − 1)Nx1 + t1,
t1 = 1, . . . , Nx1, t2 = 1, . . . , Nx2

}

,

where the superscript j represents the index of each vector in X
Q.

Appendix B. Associating quantized state

Given a state x(k+ 1) = [x1, x2]
⊤, the index j of the nearest point x(j) ∈

X
Q can be determined by:

j1 = ⌊(x1 − x1min)/∆x1 + 0.5⌋

j2 = ⌊(x2 − x2min)/∆x2 + 0.5⌋

j = j2Nx1 + j1 + 1.

Here ⌊c⌋ is used to find the largest integer smaller than c ∈ R.
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