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The advection of a tracer field in a fluid flow can create complex scalar structures and increase the
effect of weak diffusion by orders of magnitude. One tool to quantify this is to measure the flux of
scalar across contour lines of constant scalar. This gives a diffusion equation in area coordinates
with an effective diffusion that depends on the structure of the scalar field and, in particular, takes
large values when scalar contours become very extended. The present paper studies the properties
of this effective diffusion using a mixture of analytical and numerical tools. First the presence of
hyperbolic stationary points, that is, saddles, in the scalar concentration field is investigated
analytically, and it is shown that these give rise to singular spikes in the effective diffusion. This is
confirmed in numerical simulations in which complex scalar fields are generated using a
time-periodic flow. Issues of numerical resolution are discussed and results are given on the
dependence of the effective diffusion on grid resolution and discretization in area or scalar values.
These simulations show complex dependence of the effective diffusion on time as saddle points
appear and disappear in the scalar field. It is found that time averaging �in the presence of an
additional scalar source term� removes this dependence to leave robust results for the effective
diffusion. © 2008 American Institute of Physics. �DOI: 10.1063/1.2998461�

I. INTRODUCTION

When a scalar tracer is injected into a fluid flow it is
advected with the fluid and exposed to molecular diffusion,
both of which form key aspects of the mixing properties of
the flow. Advection stretches and folds the material lines of
the scalar, and molecular diffusion removes the resulting fine
scale structure in the scalar field. While advection and diffu-
sion are important effects in scalar mixing processes, in gen-
eral it is hard to separate their individual effects from one
another. However, by defining a quasi-Lagrangian coordinate
system based on the area inside scalar concentration contours
the reversible effects of advection can be separated from the
irreversible effects of diffusion.1,2 In this isotracer coordi-
nate system the effects of advection are incorporated into the
coordinate system and the advection-diffusion equation be-
comes a pure diffusion equation in area coordinates with an
effective diffusion. This effective diffusion then quantifies
solely the irreversible effects.

The effective diffusion from the quasi-Lagrangian ap-
proach measures the diffusive flux of the scalar tracer across
concentration contours. It depends only on the instantaneous
distribution of the scalar field and so can be calculated with-
out knowledge of the flow field. However, when a fluid flow
generates complex scalar fields, for example, by chaotic ad-
vection, the effective diffusion indirectly reveals information
about the transport and mixing properties of the underlying
flow. The simple nature of this approach and its ease of
implementation make it an attractive tool for studying com-
plicated systems such as the transport and mixing properties

of atmospheric flows.3,4 This diagnostic has been tested on a
number of idealized flows to understand its properties. In a
scalar field advected by the nonlinear Kelvin–Helmholtz in-
stability, Nakamura1 found that regions of high effective dif-
fusion occur in the center of a shear layer where the tracer
�temperature in this case� is well mixed. Outside this well
mixed region the effective diffusion drops off and this led
Nakamura1 to conclude that there is a link between regions
of high effective diffusion and well mixed regions of the
tracer in the flow. Shuckburgh and Haynes5 made a careful
study of effective diffusion as a rigorous diagnostic for quan-
tifying flows and they strengthened the link between regions
of high effective diffusion and well mixed regions showing
that high effective diffusion occurs in regions of high mate-
rial line stretching. This was achieved by studying a simple
two-dimensional time-periodic flow with the form of a me-
andering jet and comparing the effective diffusion with other
Lagrangian mixing diagnostics such as Poincaré sections6,7

and finite-time Lyapunov exponents.8,9 In fact it was found
that the effective diffusion was better able to distinguish bar-
riers in the flow when compared with finite-time Lyapunov
exponents.5

As the effective diffusion is easy to implement and no
prior knowledge of the velocity field is required, this method
is appealing to experimentalists too. The scalar concentra-
tions can be calculated using grayscale images and thus the
required integrals in the effective diffusion �see Sec. II� can
be calculated by counting pixels, e.g., see Deese et al.10

The purpose of this paper is also to examine the robust-
ness of effective diffusion as a diagnostic using two-
dimensional scalar fields given analytically or from
advection-diffusion in idealized flows. Our starting point is
to understand singular behavior in the effective diffusion,
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which arises when the scalar field contains stationary points
that are saddles, that is, have locally hyperbolic contour
lines. This could be significant because in the evolution of a
complex field such saddles will be continually created and
destroyed, leading to complex behavior of the effective dif-
fusion and opens the question of how useful a diagnostic it
really is.

We begin by considering an instantaneous snapshot of a
saddle point for which we can write down the scalar field
analytically. Using numerical methods we show that the ef-
fective diffusion along the concentration contour through the
saddle point is singular, and we confirm analytically that the
singularity is logarithmic. We then study scalar advected by
an incompressible time-periodic flow, with a fixed steady
source of scalar so as to produce a strictly time-periodic sca-
lar distribution. We observe that over a period of the flow the
saddle points of the scalar field move through the region of
high effective diffusion, corresponding to the well mixed re-
gion of the flow. We also determine the numerical resolution
required to obtain robust results and how time averaging may
be used to obtain a mean eddy diffusion without complex
time dependence and singularities that then characterizes the
mixing over one period of the underlying flow. Our motiva-
tion for this study is to test the robustness of the effective
diffusion diagnostic so that it may be used on dynamical
vortex problems where the vorticity field may contain saddle
points in highly nonlinear regimes such as during the forma-
tion of cat’s eyes.11

The paper is set out as follows. In Sec. II we state the
form of the transformed advection-diffusion equation, define
the effective diffusion, and give the numerical method, fol-
lowing previous work. In Sec. III we use a two-dimensional
analytical scalar field to show that the effective diffusion has
a logarithmic singularity at tracer values where contours pass
through a saddle point. This information is then used in the
numerical simulations in Sec. III C to show that peaks in the
effective diffusion relate directly to saddle points in the sca-
lar field. In Sec. III D we introduce a source of scalar into the
simulations so as to produce a time-periodic scalar field. By
time averaging, we demonstrate that high values of the time-
averaged effective diffusion correspond to regions in the sca-
lar field which are well mixed and where the material lines
are highly stretched. Our concluding remarks and comments
are given in Sec. IV.

II. FORMULATION

In an incompressible fluid, the evolution of a scalar
tracer with concentration c�x , t� is given by the advection-
diffusion equation

�c

�t
+ u · �c = � · �� � c� + S , �1�

where ��x , t� is the molecular scalar diffusion, S is a source
term, and u is a prescribed incompressible velocity field. By
making a transformation to isotracer coordinates,12 Eq. �1�
reduces to a diffusion-only equation for the time evolution of
the scalar as a function of area in two dimensions1 or volume
in three dimensions.2 We define the area or volume of a

scalar contour C as the region bounded by this contour or
surface, i.e., everywhere where the scalar concentration
c�x , t� is less than or equal to C. Therefore we write

A =� � H�C − c�x,t��dA, V =� � � H�C − c�x,t��dV ,

�2�

where H�X� is the Heaviside function. Thus in two dimen-
sions, A=0 when C=Cmin and A=Amax when C=Cmax using
obvious notation. We also define ��C , t� to be the bounding
contour or surface of the region where A or V is less than C
at time t.

Under this change of coordinates the two-dimensional
scalar evolution equation becomes

�C�A,t�
�t

=
�

�A
�Keff�A,t�

�C�A,t�
�A

� + �S	A, �3�

with an effective diffusion that can be written as

Keff =
�A

�C
�

��C,t�
�
�c
ds �4�

or as

Keff =
��
�c
2	A

��C/�A�2 , �5�

where the weighted contour average of a quantity � is given
by

��	A =
�

�A
�

c�C�A,t�
�dA = ��

�

ds


�c
�−1�
�

�
ds


�c

�6�

�see Refs. 1 and 5�. A similar equation holds in three dimen-
sions, with A replaced by V. Throughout this work we as-
sume that the molecular diffusion ��x , t� is constant; hence �
can be taken outside the integrals in Eqs. �4� and �5�.

A. Numerical method for calculating
the effective diffusion

When we consider a two-dimensional scalar field that is
defined analytically, the effective diffusion may be calculated
using Eq. �4�. This can be manipulated and evaluated simply
as a single integral over the x coordinate �see Sec. III A for
more details�. However, when we consider flows where the
scalar concentration is only known from a full numerical
simulation of Eq. �1�, we use Eq. �5� to calculate Keff at a
given time value using the following algorithm.5 First we
define a set of C values from Cmin to Cmax with a constant
spacing �C, and for each of these values A�C� is calculated
via Eq. �2�. The function A�C� is calculated using a box
counting technique, where we assume that the value of the
scalar at the grid point gives the scalar value in the entire
grid box surrounding that point. Then the square of the scalar
gradient, 
�c
2, is calculated at each grid point, and this
quantity is integrated over the area bounded by the desired
tracer contour to obtain �c�C�A,t�
�c
2dA using the same box
counting. Taking central finite differences of this integral
with respect to the area coordinate then gives �
�c
2	A, which
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on dividing by ��C /�A�2 and multiplying by � gives Keff.
Like the term �
�c
2	A, the quantity �C /�A is calculated us-
ing a central difference scheme, and so Keff is prone to nu-
merical error arising from these terms, as is discussed in
more detail in Sec. III B. The effective diffusion in three
dimensions is calculated in a similar fashion, with volume
integrals replacing the area integrals. The accuracy of Keff in
conjunction with the resolution of numerical simulations is
discussed in Sec. III B.

III. EFFECTIVE DIFFUSION IN TWO DIMENSIONS

A. Effective diffusion in scalar fields
with saddle points

Consider the scalar field in two dimensions given by

c�x,y� = 1
2 �cos x − cos y� �7�

in the periodic, Cartesian domain �x ,y�� �−� ,��. A contour
plot of this scalar field is given in Fig. 1, where the dashed
contours are negative and the solid ones are positive. This
scalar field has two saddle points, one at �0,0� and the other
at �−� ,−��, both of which lie on the scalar concentration
contour C=0. �These saddle points are the two distinct
saddle points; the others present are due to the periodicity of
the scalar field.� The area A inside the scalar concentration
contour C can thus be calculated from Eq. �2� as

A = �
−�

� �
−�

�

H�2C − cos x + cos y�dxdy . �8�

This quantity is evaluated numerically, and �A /�C is calcu-
lated via finite differences. The function A�C� for this scalar
field can be seen as the solid line in Fig. 2�a�. Because of the
symmetry of the scalar field, A�C� is an odd function with a
rapid increase in area around C=0. We shall see later that the
gradient at C=0 is in fact infinite and it is this infinite gra-
dient that leads to a singularity in Keff.

To calculate the effective diffusion we need the quantity

F�C� = �
��C�


�c
ds �9�

from Eq. �4�, which �apart from a factor �� is minus the
diffusive flux of scalar over the contour ��C�. This flux can
be transformed for C�0 to

F�C� = 8�
0

	 
�c
2


sin y

dx , �10�

where 	=cos−1�2C−1�. Here we have used the fact that

ds

dx
= �1 +

sin2 x

sin2 y
�1/2

=
2
�c


sin y


and that the contour C hits the line y=� at x=	 in the upper
right quadrant. The same expression holds for C
0 by sym-
metry. Using Eq. �7� we can write F�C� solely in terms of x
by noting that


sin y
 = �1 − cos2 y�1/2 = �1 − cos2 x + 4C cos x − 4C2�1/2.

A numerical integration for F�C� and so Keff�C� for this sca-
lar distribution are shown as the solid lines in Figs. 2�b� and
2�c�, respectively, where we have set �=1. The plot of
Keff�C� appears to have a singularity at C=0, and because
F�C� in Fig. 2�b� appears to be well behaved at C=0, then
the singularity must arise from the term �A /�C.

To check the nature of this singularity we expand Eqs.
�8� and �10� for small C to show that Keff has a logarithmic
singularity along the concentration contour C=0. The calcu-
lations are included in Appendix A, and we just quote the
results:

A�C� = − 8C ln
C
 + 2�2 + 19.07C + O�C2� , �11�

F�C� = 4C2 ln
C
 + 8 − 15.1C2 + O�C3� , �12�

Keff�C� = − 64 ln
C
 + 88.56 + O�C ln
C
� . �13�

From these expansions we see that in fact F�C� is not well
behaved at C=0, but its singularity is weaker than the
one from �A /�C which is O�ln
C
�. These asymptotic expan-
sions are plotted as the dashed lines with their numerical
equivalents in Fig. 2. We see that the asymptotic results and
the numerical results are in excellent agreement around
C=0, and in fact the asymptotic results for A�C� are
graphically indistinguishable from the numerical results for
−0.5
C
0.5.

This logarithmic singularity in Keff is not just restricted
to the case where two saddle points have the same concen-
tration contour passing through them. As a further example
we consider the scalar field

c�x,y� = 1
2 �cos x − � cos y� , �14�

with 0
�
1. A contour plot of this scalar field with
�=0.5 is shown in Fig. 3. We examine the numerical inte-
gration for Keff�A� with �=1.0, 0.75, 0.5, and 0.25, shown in
Fig. 4. As � is reduced from 1 in Fig. 4, the single singular
point at A=2�2 �C=0� becomes two singular points with a
region of lower effective diffusion in between. For �
1 the
saddle point at �0,0� now has the scalar concentration value

y

π

−π
−π x π

FIG. 1. Contour plot of scalar field �7� showing a saddle point at the origin.
Negative concentration contours are dashed and positive contours are solid.
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FIG. 2. Plots of �a� A�C�, �b� F�C�, and �c� Keff�C� with the numerical results plotted as the solid lines and the small C asymptotic results as the dashed lines
for scalar field �7�.
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FIG. 3. Contour plot of scalar distribution �14� with �=0.5 showing two
saddle points, one at the origin and one at �−� ,−��. Negative contours are
dashed and positive contours are solid.
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FIG. 4. Plot of Keff�A� for scalar distribution �14� with �=1 and �=1, 0.75,
0.5, and 0.25 corresponding to lines 1–4, respectively.
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C= �1−�� /2�0, which is different from the saddle point at
�−� ,−��, which has the value C=−�1−�� /2
0. For the
case �=0.5 these correspond to C= �1 /4, respectively,
which themselves correspond to the values of A given in Fig.
4. The reason we plot these results as a function of A rather
than C is because varying � changes the upper and lower
limits of C, while the upper and lower limits of A remain
fixed at Amax=4�2 and Amin=0, respectively. For this reason,
in many figures in this paper we will use A as the indepen-
dent variable, so as to obtain the same range no matter
what the concentration field limits are. As � is reduced
toward zero the singularities move toward the limiting area
values Amin=0 and Amax=4�2, and the region of almost
constant diffusion between the singular points extends until
for �=0 the diffusion will be constant everywhere and
c�x ,y�= 1

2cos x.
We note that the logarithmic singularity in Keff in two

dimensions is not present in the equivalent three-dimensional
calculation, which is given in Appendix B.

B. Parameter optimization for two-dimensional
numerical simulations

When we consider an analytically defined scalar field as
in Sec. III A, we are able to obtain Keff with a high degree of
accuracy by increasing the resolution of the integrals in Eqs.
�2� and �4�. However, in numerical simulations our accuracy
is restricted by the resolution of the simulation, so in this
section we assess the optimal parameters for the numerical
evaluation of Keff for a scalar field generated under
advection-diffusion with a given molecular diffusion �.

When calculating the effective diffusion using the nu-
merical method outlined in Sec. II A, there are two param-
eters that we can vary. These are the concentration step size
�C and N, which is the resolution of our simulation com-
puted on an N
N computational grid. �Note that the true
level of structure in the scalar field depends on � and that
decreasing � just requires reducing �C to pick out the fine
structure of Keff, and so variations in � can be considered as
variations in �C for optimizing purposes.� Unfortunately the

parameters �C and N are not independent because for a
given simulation, reducing �C requires an increase in N to
retain the accuracy of the results: a smaller �C introduces
numerical oscillations in Keff through the finite difference
method. A larger value of N will overcome this by producing
more accurate evaluations of the integral in Eq. �4� before
the finite difference procedure is applied. An increase in �C
on the other hand would allow for a smaller value of N;
however, then some fine scale structure in Keff may be
missed. Thus for any value of N there is an optimal value of
�C which minimizes the numerical oscillations but also
maximizes the physical features that are resolved in Keff. To
study this issue we use the numerical scheme defined in Sec.
II A to calculate the effective diffusion for a scalar field
which is known analytically so that we also know Keff to a
high degree of accuracy using form �4�. For this optimization
study we use the scalar field given by Eq. �14� with �=0.5,
and we call the highly accurate solution the “true solution.”

To calculate the error between the effective diffusion cal-
culated using the method in Sec. II A and the true solution
we use a mean square error given by

E =
1

M
�
i=1

M

�Keff�i� − Keff
true�i��2, �15�

where Keff
true is the true form of the effective diffusion and

Keff�i� is the effective diffusion calculated at the M values of
C. This error is plotted in Fig. 5�a� as a function of the
simulation size N for �C= �0.0025,0.005,0.0075,0.01�Cmax

represented by lines 1–4, respectively. We choose �C to be a
multiple of Cmax because then regardless of the value of
Cmax, Keff will still have the same number of points distrib-
uted along the A axis, which is the quantity against which we
plot Keff. This is a reasonable choice of �C for the simula-
tions discussed in this paper.

For small values of N we see in Fig. 5�a� that small �C
values give a poor agreement with the true solution because
of the numerical error from the finite difference methods for
both the numerator and denominator of Keff, introducing
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FIG. 5. Plot of �a� the mean square error E and �b� the capped mean square error Ẽ as a function of the size of the simulation N for �C=0.0025Cmax

�line 1�, 0.005Cmax �line 2�, 0.0075Cmax �line 3�, and 0.01Cmax �line 4�. In panel �b� the calculation does not include points where Keff
true�250.
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large oscillations into Keff. As N is increased, the smallest
value of �C eventually gives the smallest error at around
N=2000. However, when we examine a plot of Keff for this
value of N and �C �not shown here� we find that the actual
agreement with the true solution is good around the peaks in
Keff, but over the rest of the function there still exist large
numerical oscillations, which makes the agreement quite
poor. The reason for this is that the mean square error is
dominated by the singular peaks in Keff, so well resolved
peaks can mean a small error even if the agreement over the
rest of the function is visually poor. Thus we remove the
peaks from the error calculation by modifying the mean
square error in Eq. �15� to exclude any points where

Keff
true�250, and we call this Ẽ. A plot of Ẽ as a function of N

is plotted in Fig. 5�b� with the same values of �C as in panel
�a�. Comparing the results in this panel to those in panel �a�
we see that where the �C=0.0025Cmax result gave the small-
est error for N�2000, we see that this value now does not
give the smallest error until N
4096. This shows that al-
though the small C increments allow for a better approxima-
tion of the peaks in Keff it does not approximate the rest of
the function as well as �C=0.005Cmax does.

For the numerical simulations in this paper we shall use
N=2048 because this is large enough to give a fine grid
resolution but small enough so that it is not computationally
expensive. Hence guided by the results in Fig. 5�b� we use an
increment in C of �C=0.005Cmax to produce the best nu-
merical results. Although we are not able to give a general
optimized step size �C�N� for all problems, for periodic
flows like those considered in this paper, a reasonable con-
centration step size would be �C
10Cmax /N.

C. Two-dimensional numerical simulations
with no source term

We now consider scalar fields generated numerically by
advection and diffusion: specifically we consider a scalar
concentration c�x ,y , t� whose evolution is governed by Eq.
�1� with � constant and with no source term �S=0�. The fluid
velocity is taken to have the unsteady form

u = 2 cos2 t�0,sin x� + 2 sin2 t�sin y,0� , �16�

and initially c�x ,y ,0�=2 cos x. The numerical scheme for
solving Eq. �1� transforms the N
N domain into Fourier
space by writing

c�x,y,t� = �
j=−N

N

�
k=−N

N

ĉjk�t�e−i�jx+ky�,

where the time integration of the advection is performed via
the second order Adams–Bashforth method and diffusion is
integrated exactly. It is well known that this velocity field
generates island regions of recirculation, separated by bands
of chaotic mixing.13,14 These features are reflected in the
evolution of the advected scalar field, for example, the
“whorls” and “tendrils” of Berry and Balazs15 or the mirror-
ing of the saddle points and unstable manifold structure of
the flow in the advected scalar contours of Ghosh et al.16

Thus, with mild abuse of language, we refer to islands and

chaotic regions of the scalar field, corresponding to these
regions of the flow.

With the initial condition c�x ,y ,0�=2 cos x, the simula-
tions can be thought of as starting with a scalar field with
constant effective diffusion and allowing it to evolve toward
a distribution similar to that in Eq. �7� except with some time
dependence included. Panels showing the scalar distribution
for �=0.01 at times t=0, 10, 20, 30, 40, and 50 are shown in
Fig. 6, where for t�30 we can distinguish the two pairs of
islands �seen colored medium gray or red online at the top
and bottom of the panels and black or dark blue online on the
left and right of the panels� which trap scalar, and the region
of rapid chaotic mixing in between �see also Fig. 10 below�.
For t=10 the scalar field has a rather disorganized structure
when compared to the t=50 panel, with no single region of
coherent high and low scalar concentrations. However, as
time increases to t=50 the scalar becomes more organized
with two coherent regions of negative scalar at the left and
right of the panel and two positive regions of scalar at the top
and bottom of the panel. Thus we might expect the scalar for
t=10 to contain more saddle points and Keff to be more com-
plicated when compared to Keff for the t=50 distribution. We
also expect Keff for t=50 to have its largest values in the
chaotic mixing region where the filament lines are most
stretched.

Figure 7 plots the effective diffusion Keff�A� at t=10
for the above simulation with fixed �C=0.005Cmax and
N=512, 1024, 2048, and 4096. The plots are separated by an
additive constant with the N=512 result at the bottom and
the N=4096 result at the top of the panel. The lowest reso-
lution simulation, N=512, produces a Keff with fine scale
oscillations and many sharp peaks that could be mistaken as
features of Keff. These oscillations are clearly visible between
A=16 and 23. However, as N is increased many of these
large oscillations decrease or disappear, showing that they
are merely numerical error from the finite difference calcu-
lations of the numerator and denominator of Keff. For the
large N simulations there are a few clear peaks left in Keff,
which can be shown to correspond to saddle points in the
scalar field distribution, see Fig. 9 below.

Figure 8 shows the effective diffusion Keff�A� for the

x x x−π

π

π

−π

π

y

y

t=0 t=10 t=20

t=30 t=40 t=50

−π
−π

π −π π

FIG. 6. �Color online� Plot of the scalar field c�x ,y , t� for the numerical
simulations at t=0, 10, 20, 30, 40, and 50, with �=0.01. In each figure the
maximum scalar value at each time is colored medium gray �red online� and
the lowest value is black.
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simulations in Fig. 6 at the times t=10, 20, 30, 40, and 50,
numbered 1–5, respectively. These results are separated by a
constant for clarity. We see that at t=10 �line 1� the effective
diffusion has many small peaks and troughs, as discussed in
the previous paragraph. This behavior could be anticipated
from the t=10 panel in Fig. 6, which shows a very compli-
cated distribution containing saddle points corresponding to
the peaks in Keff. At t=20 �line 2� the scalar field appears
more organized than that at t=10. This is reflected in Keff

where we now only see four clear peaks close to A=4, 15,
25, and 36, respectively. As time increases �see lines 3–5� the
two peaks close to A=2�2 move together and combine into
one large peak. The other two peaks move closer to A=5 and
A=35 and persist for long times, although the effective dif-
fusion at these points is small compared to the large diffusion
across contours close to A=2�2.

Figure 9�a� plots Keff as a function of C at t=20; this is
a stretched version of line 2 from Fig. 8, where Keff is de-
picted as a function of A. We can now read off that the peaks
occur at C
 �0.08 and C
 �0.35. Thus in Fig. 9�b� we
plot the t=20 panel from Fig. 6 as a contour plot, with the
five contour levels −0.07, −0.079, −0.09, −0.345, and
−0.355. Examining these contours we can clearly see two
saddle points situated at the points marked with an X. These
points correspond to the peaks in panel �a� at C
−0.08 and
−0.35, thus confirming that peaks in the effective diffusion in
two dimensions are due to logarithmic singularities which
occur at concentration contours passing through saddle
points.

D. Two-dimensional numerical simulations
with a source term

We have seen that the effective diffusion shows quite
complex time dependence as saddle points are created, de-
stroyed, and moved within the scalar field. The obvious so-
lution is to perform a time average. However, the scalar dis-
tribution decays with time and so the system is not in a
stationary state. Furthermore if the system is run for a long
time, the scalar field will become constant �at least to nu-
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FIG. 8. Plot of Keff�A� for the panels shown in Fig. 6. Lines 1–5 represent
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FIG. 9. Plot of �a� Keff�C� for �=0.01 at t=20 and �b� the corresponding contour plot from Fig. 6 with contour levels given at −0.07, −0.079, −0.09, −0.345,
and −0.355. The two saddle points corresponding to the singular values of C in panel �a� are represented by X in panel �b�.
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merical accuracy� in well mixed regions while slowly decay-
ing in any island that is present. These potential problems
were indicated by Shuckburgh and Haynes,5 who suggested
introducing a source term to give a stationary state with non-
trivial scalar structure in the well mixed regions.

In this section we therefore introduce a source term
S=cos x into Eq. �1� and initially set c�x ,y ,0�=0. This guar-
antees that a strictly periodic scalar field will be established
in the asymptotic limit t→�. However, for practical pur-
poses this is still not entirely satisfactory: we find that the
effective diffusion rapidly approaches an approximately pe-
riodic state in the chaotic band region. However, scalar
slowly builds up in the islands �i.e., Cmax slowly increases
with time�, where advection and diffusion operate on long
time scales �of the order of �−1� and this scalar slowly leaks
into the chaotic region. Although it must eventually saturate,
the time scale for this is beyond that of our simulations. On
the other hand even if there is a slow evolution of the island
concentrations over a long time scale, we may anticipate that
the effective diffusion will equilibrate quickly since the ef-
fective diffusivity is invariant under rescaling of the scalar
field. In any case we take a pragmatic approach and use the
scalar fields with moderate � obtained on these time scales to
study the evolution of the scalar field over one period of the
flow �T ,T+��. We then time average Keff and investigate
how this quantity varies with both the period start time T
and �.

The approximately periodic state that is established in
the chaotic region for scalar �16� can be seen in Fig. 10
which shows 
c�x ,y , t�
c�5 �left panels� and the correspond-
ing Keff�A� �right panels� for t=10� to t=11� in increments
of � /4 with �=0.01. In the real space panels the scalar field
is capped at 
c
=5 to eliminate islands and so emphasize the
chaotic region of the flow where large effective diffusion
occurs and the line filaments are stretched the most. The
center of the chaotic band �medium gray region, red region
online� is close to 
c
=0 and the black regions are regions
where 
c
�5.

By considering the right-hand panels in Fig. 10 we see
that over one period of the flow, the effective diffusion varies
a considerable amount for 10
A
30 but outside of this
range the variation is small. At t=10� �Fig. 10�a�� Keff has
two spikes of large effective diffusion around A=2�2 and
two other peaks around A=12 and 28. Considering only
A�2�2, the peak in Keff closest to A=2�2 occurs at approxi-
mately �� /2,0� in the real space plot, while the other peak
in Keff corresponds to a saddle point at the origin. At
t=10�+� /4 �Fig. 10�b�� the saddle point near �� /2,0� has
practically been diffused away and this can be seen by the
increase in the medium gray colored region �center of the
chaotic band, red online� in this area. The other saddle point
on the other hand begins to intensify and the effective diffu-
sion peaks grow until at t=10�+3� /4 �Fig. 10�d�� it is close
to its maximum value. Beyond this time, t=11� �Fig. 10�e��,
the flow returns the scalar approximately to its t=10�
distribution.

The movement of the scalar in time is related to the flux
of the scalar which itself is related to the rate of change in
the concentration contours via

�C

�t
+

�Fd

�A
= −

�FS

�A
,

where Fd is the diffusive flux and FS is the source flux. These
are defined as
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FIG. 10. �Color online� Plot of 
c�x ,y , t�
c�5 and the corresponding effective
diffusion Keff�A� with �=0.01 for �a� t=10�, �b� t=10�+� /4,
�c� t=10�+� /2, �d� t=10�+3� /4, and �e� t=11� over one period of the
flow with a source term S=cos x.
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Fd = − �
�
�2c
	
�C/�A

,

FS = − �
C�c�A,t�

SdA

�see Ref. 1�, and F=−Fd from Eq. �9�. In Fig. 11 we plot
both �a� Fd�A� and �b� Fd�A�+FS�A� for the scalar field
depicted in Fig. 10 with the times t=10�, 10�+� /4,
10�+� /2, and 10�+3� /4 denoted by lines 1–4, respec-
tively. The diffusive flux in Fig. 11�a� contains some fine
scale structure, but this is purely numerical. The diffusive
flux has large gradients between A=0 and 10 and between
A=30 and 40 for each time value, but between A=10 and 30
the diffusive flux increases in value for t=10�+� /4 and
t=10�+� /2 and then decreases again as the peaks in Keff�A�
reach their largest values, as in Fig. 10�d�. This diffusive
flux, however, is not solely driving the scalar distribution
because we have the source term too. If we include the effect
of this source term, then we have the flux which is plotted in

Fig. 11�b� and from this figure it is easier to describe how the
effective diffusions in Fig. 10 govern the scalar evolution. In
Fig. 11�b� the turning points of the flux appear to coincide
with the peak values of Keff, i.e., the saddle points in the
scalar field. At t=10� �line 1� the flux gradient is mainly
positive for A
2�2 and negative for A�2�2, so the scalar
is being diffused away from the C=0 �A=2�2� contour.
However, by t=10�+� /2 �line 3� the flux gradient has now
changed sign close to A=2�2 and the scalar is now diffusing
toward the C=0 contour.

Figure 12 plots �a� Keff�A� and �b� C�A� at t=10� �solid
line� and t=11� �dashed line�. Figure 12�a� shows that at the
beginning and end of each flow period the effective diffusion
is approximately the same, even though over this period the
scalar and the scalar flux vary considerably, as shown in
Figs. 10 and 11�b�. The variation of scalar concentration with
A over one period of the flow is given in Fig. 12�b�. During
the period this curve becomes modified as the scalar is rear-
ranged, but after each period we see that the lines have a
very similar appearance. For 13�A�27 the two results are
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indistinguishable, showing that the injected scalar from the
source term is mixed in this region, a region which is ap-
proximately the same as the region where the diffusion var-
ies greatly over one period, see Fig. 11�a�. For values of A
outside this region in Fig. 12�b� the value of the scalar in-
creases in magnitude as the scalar builds up in island regions
of low effective diffusion.

Although Fig. 10 shows how the effective diffusion var-
ies over one period of the flow, it is difficult to interpret these
figures into one average effective diffusion plot. To over-
come this we define

K̂eff = Keff
�C

�A
� �C

�A
�17�

to be the time-averaged effective diffusion where the bar
signifies an average over one period of the flow. In Fig. 13�a�
we plot K̂eff�A� for various values of � ranging from
�=10−2 �top line� to �=10−6 �bottom line�. Each of these
results was time averaged over the period from T=50� to
T+�. By this time Keff has settled down into an approximate
periodic state, and hence the time-averaged effective diffu-
sion has appeared to settle down as shown in Fig. 13�b�. This

figure shows K̂eff�A� for �=10−4 time averaged over one pe-
riod starting at 10�, 20�, 40�, and 50�, and the difference
between the T=40� and the T=50� results is small, showing
that Keff probably reaches a steady state. For each value of �
in Fig. 13�a� the largest effective diffusion values occur close
to A=2�2 �C=0� and as � is reduced the two maximum

peaks in K̂eff�A� move toward this value. For �=10−4 these

two peaks have become a single maximum in K̂eff. As � is
reduced it takes longer for the scalar in the islands to diffuse,
and so Keff takes longer to settle down into a periodic state.

The maximum value of K̂eff reduces steadily with � and the
difference between successive � values becomes small by

the time �=10−6. This suggests that K̂eff�A� and hence

Keff�A� may approach an inviscid limit; however, the results
in Fig. 13�a� may not have settled down to a steady state, and
Fig. 13�b� shows an extremely slow drift that needs to be
examined on an O��−1� time scale. The investigation of this
is beyond the scope of this paper and is left for future study
with the use of simpler flows and mappings.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have explored the effective diffusion
diagnostic for both idealized, given scalar fields and for ad-
vection of a passive scalar in a simple, periodic chaotic flow.
We studied a two-dimensional scalar field which contains a
saddle point and found that along scalar contours which pass
through such saddle points the effective diffusion has a loga-
rithmic singularity. This result was confirmed by two-
dimensional incompressible time-periodic simulations of the
advection-diffusion equation. The numerical parameters
were optimized to remove most of the numerical oscillations.
These oscillations could be removed further by using a more
accurate method for calculating A�C� from Eq. �2� than the
box counting technique chosen. However, the box counting
method was sufficiently fast and accurate for the purpose of
this study. We note that the peak in the effective diffusion
that arises from saddle points can be considered a geometri-
cal artifact: it is the fact that �A /�C diverges at such points
that makes Keff diverge. The actual flux at such contours
remains finite.

By introducing a source of scalar in our numerical simu-
lations we found that the scalar field exhibits an approximate
periodic behavior with the period of the flow, and that in
regions of high effective diffusion, the scalar concentration
from the source term is well mixed. By considering a time
average of these simulations we observe that as � is reduced,
the effective diffusion still peaks around scalar concentration
contours which occur in the chaotic bands of the scalar field.
This study shows that the time-averaged effective diffusion
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FIG. 13. Plot of �a� K̂eff�A� for �=10−2, 10−3, 10−4, 10−5, and 10−6 from top to bottom and �b� K̂eff�A� for �=10−4 with T=10�, 20�, 40�, and 50� for a scalar
field with a source term.
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appears to settle down to a steady state for large times, at
least for moderate �. The time-averaging process also re-

moves the singular spikes from Keff and makes K̂eff nonsin-
gular; thus it is highly beneficial to time average Keff for
flows of this type.

However, for small �, the scalar distribution only con-
verges on very long time scales, beyond our simulations,

because of the presence of islands. The resulting K̂eff initially
converges rapidly in the chaotic region and then shows a
slow drift with time. The time-averaged results presented in

this study suggest the existence of an inviscid limit for K̂eff.
However, to confirm this Eq. �1� needs to be integrated to
times of O��−1� to allow the scalar to reach a steady periodic
state, or perhaps smaller values of � may need to be consid-
ered. Both of these are beyond our simulations and are left
for future study.
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APPENDIX A: ASYMPTOTICS
FOR A TWO-DIMENSIONAL SCALAR FIELD
WITH A SADDLE POINT

Here we consider the two-dimensional scalar field �7�
with 
C
�1. Hence we are considering a concentration con-
tour close to the saddle points at �0,0� and �−� ,−��. We
assume 0
C�1; however, a similar expression also holds
for −1�C
0 by symmetry. The region A /4 given by Eq.
�2� for this contour C is given in Fig. 14. The value of A for
this value of C can be split into three parts,

A�C� = 4��
0

�−	

ydx + �
�−	

	

ydx + �
	

�

�dx�
= A1�C� + A2�C� + A3�C� ,

where y=cos−1�cos x−2C� from Eq. �7� and
	=cos−1�2C−1�. Using the fact that C�1, we can approxi-

mate these integrals and calculate the small C form of A�C�.
Clearly A3�C� can be evaluated explicitly as

A3�C� = 4�2 − 4� cos−1�2C − 1�

= 8��C + 4
3�C3/2 + O�C5/2�

for small C.
To evaluate the area A2�C� we expand the integrand

y=cos−1�cos x−2C� for small C to give

cos−1�cos x − 2C� = x +
2

�1 − cos2 x�1/2C

−
2 cos x

�1 − cos2 x�1/2C2 + O�C3�

and integrate this with respect to x, which gives

A2�C� = 4� x

2
�

�−	

	

− 8C� �1 − cos2 x�1/2 tanh−1�cos x�
sin x

�
�−	

	

+ 8C2� 1

2 sin x�1 − cos2 x�1/2�
�−	

	

+ O�C3� .

Hence we find

A2�C� = − 8C ln C + 2�2 − 8��C − 4
3�C3/2 − 8C2

+ O�C5/2� .

A systematic approach in evaluating A1�C� would be to
evaluate the integrand for small x, integrate this expression
with respect to x, and finally expand the solution for small C.
However, using this method we find that the leading order
terms in the small C expansion of A1�C� rely greatly on
many terms of the small x expansion of the integrand due to
the nonuniformity of the series. Thus we approximate the
leading order term of this integral by using the full numerical
solution. We assume A1�C�=A11C+o�C�, and we calculate
A11 simply as

A11 = lim
C→0

A − 2�2 + 8C ln C

C
� 19.07.

Thus the first three terms in the small C expansion for A are

A�C� = A1 + A2 + A3 = − 8C ln C + 2�2 + 19.07C + O�C2� ,

and hence

�A

�C
= − 8 ln C + 11.07 + O�C� .

This shows that the effective diffusion has a logarithmic sin-
gularity at C=0 unless the integral F�C� has a stronger sin-
gularity. Although the numerical solution in Fig. 2 shows that
this is not the case, we calculate the small C expansion for
F�C� for completeness; this process is outlined below.

As in the above analysis, we split the integral F as

0

C

ρ x

=πy

=π

A
4

FIG. 14. Plot of the region A /4 for scalar field �7� with the contour
0
C�1.
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F�C� = 2�
0

	

I�x,C�dx

= 2�
0

�−	

I�x,C�dx + 2�
�−	

	

I�x,C�dx = F1 + F2,

where

I�x,C� =
sin2 x

�1 − cos2 x + 4C cos x − 4C2�1/2

+ �1 − cos2 x + 4C cos x − 4C2�1/2.

To calculate F2�C� we expand the integrand for small C and
integrate, which gives

F2�C� = 4C2 ln C + 8 − 14C + O�C2� .

This is an interesting result because the form of F�C� in Fig.
2 is that of an even function; hence we do not expect to have
any terms of O�C� in our expansion. We show below that
F1�C� is of O�C2�, so at this point we neglect this O�C� term
as calculations not presented here show that it will be re-
moved when we include more terms in the asymptotic ex-
pansion of the integrand.

We again use the numerical solution to evaluate F1�C�
by assuming F1�C�=F11C

2+o�C2�, and thus

F11 = lim
C→0

F − 8 − 4C2 ln C

C2 � − 15.1.

Therefore

F�C� = F1 + F2 = 4C2 ln C + 8 − 15.1C2 + O�C3� ,

which when combined with �A /�C, as in Eq. �4�, gives

Keff�C� = − 64 ln C + 88.56 + O�C ln C� .

APPENDIX B: EXACT SOLUTION OF Keff
FOR A THREE-DIMENSIONAL SCALAR FIELD
WITH A SEPARATRIX

In this appendix we show that Keff is nonsingular at
three-dimensional hyperbolic points. We consider a cylinder
of a scalar tracer, with height 2 and radius 1. Inside the
cylinder are two cones which meet at the origin as depicted
in Fig. 15. Inside the cones the scalar is positive and outside
it is negative; hence the origin is a separatrix. The scalar
distribution can be given analytically as

c�r,�,z� = z2 − r2, �B1�

where �r ,� ,z� are the usual cylindrical polar coordinates.
The volume of scalar corresponding to the concentration
contour C is given via Eq. �2� as

V�C� = �
r=0

1 �
�=0

2� �
z=−1

1

H�C − z2 + r2�rdrd�dz . �B2�

This quantity can be calculated numerically, but by the same
argument as in Appendix A this integral and the correspond-
ing three-dimensional version of �c�C�A,t�
�c
2dA can be cal-
culated exactly for this scalar field. Thus for this particular

scalar field we have a closed form for Keff�C�. The triple
integral �B2� can be simplified to

V�C� = �
0

2� �
0

1

zrdrd�

= 4��
0

�1 − C�1/2

�C + r2�1/2rdr + 4��
�1 − C�1/2

1

rdr ,

which can be integrated to give

V�C� =
2�

3
�2 + 3C − 2C3/2� .

When C
0 then the volume integral changes to

V�C� = 4��
�− C�1/2

1

zrdr = 4��
�− C�1/2

1

�C + r2�1/2rdr

=
4

3
��1 + C�3/2. �B3�

Thus

V�C� = �
4

3
��1 + C�3/2, C 
 0,

2�

3
�2 + 3C − 2C3/2� , C � 0. � �B4�

For the evaluation of F�C� we can convert the surface inte-
gral into an integral over r and �. We again have to consider

FIG. 15. A plot of the three-dimensional scalar field given in Eq. �B1�. The
inner cones represent the surface given by C=0, and inside these cones the
scalar is positive and outside it is negative.
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the cases C�0 and C
0 separately, but we can get two
exact solutions for this scalar field. When C�0 we have

F�C� = 2�
0

�1 − C�1/2 �
0

2�


�c
�1 + �dz

dr
��1/2

rdrd�

= 8��
0

�1 − C�1/2 � �2r2 + C�3

r2 + C
�1/2

rdr

=
�

�2
�2�2�2 − C�3/2 − 3�2C�2 − C�1/2 + �2C2

+ 3C2 ln��2 + �2 − C�1/2

�1 + �2�C1/2 �� .

For the case when C
0 then the only change to this calcu-

lation is the limits of integration; thus the integral for F
becomes

F�C� = 8��
�− C�1/2

1 � �2r2 + C�3

r2 + C
�1/2

rdr

=
�

�2
�2�2�2 + C�3/2�1 + C�1/2

− 3�2C�2 + C�1/2�1 + C�1/2

+ 3C2 ln� �2 + C�1/2 + �2�1 + C�1/2

�− C�1/2 �� .

Thus the effective diffusion for this three-dimensional prob-
lem is given as

Keff�C� =��2�2�1 + C�1/2�2�2�2 + C�3/2�1 + C�1/2 − 3�2C�2 + C�1/2�1 + C�1/2 + 3C2 ln� �2 + C�1/2 + �2�1 + C�1/2

�− C�1/2 �� , C 
 0,

�2�2�1 − C1/2��2�2�2 − C�3/2 − 3�2C�2 − C�1/2 + �2C2 + 3C2 ln��2 + �2 − C�1/2

�1 + �2�C1/2 �� , C � 0. �
�B5�

Figure 16 plots �a� V�C� �solid line� and �V /�C �dashed line�
and �b� Keff�C� for the three-dimensional scalar field given
by Eq. �B1�. We note that in panel �a� both V�C� and �V /�C
are continuous functions, but V�C� has a discontinuity in its
second derivative at C=0. Thus �V /�C has no singularity at
C=0 unlike in the two-dimensional case. Also as F�C� has
no singularities then Keff�C� in Fig. 16�b� has no singularity
at C=0 either. Although there is no singularity in Keff at
C=0, the maximum effective diffusion still occurs at this

point, and so we may expect to see peaks in three-
dimensional effective diffusion plots, which will be impor-
tant in the mixing of scalar tracers as for the two-
dimensional case in Sec. III, but this investigation is left as
future study.
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