
Appendix 9  A SHORT PROOF OF RIEMANN' S HYPOTHESIS 
 
Part I 
 
Riemann's hypothesis, notably that the complex zeros of 

 

 (1)  ζ(s) = Σn-s = Π(1– p-s)-1 
 

in which n runs through the natural numbers 1, 2, 3, 4, … and p through the primes 2, 3, 5, 7, …, all 
have their real parts equal to ½, is true if 

 

 (2)  |π(n) – li n| < |n½| 
 

from some n upwards. In fact the equivalent to Riemann's 1859 conjecture1 in terms of these 
formalities is a little weaker than (2), see Littlewood2 pp88sq, Edwards3 pp90sq, so I shall have proved 
his 147-year-old conjecture if I can prove that (2) is in fact true for some natural number k, say, and 
true without exception for all subsequent n > k. 

 

I shall in fact prove 
 

 (3)  |π(n) – li n| < |(li n)½| 
 

for all n > 1, which is more than enough because li n < n for all (n) in this range and, since  
li n > 1 in the range, |(li n)½| < | n½| for all these (n). This will imply that (2) is true for all n > 1. 

 

We can express (3) alternatively as, for n > 1,  
 

 (3A) li n – |(li n)½| < π(n) < li n + |(li n)½| or, stated more precisely in words, an absolute lower limit 
to π(n) is determined by li n plus its negative square root, and an absolute upper limit to π(n) is 
determined by li n plus its positive square root. 

 

Call a value of n for which π(n)* comes to within less than a unit of a chosen limit, but without 
crossing it, a touching of π(n) to that limit. The strategy is to choose limits that yield the greatest 
possible number of touchings, rather like the casino game of blackjack, where a score touching the 
limit has the best chance of winning, and a score over the limit always loses. 

 

In the summer of 1999, while still resident in London, I decided to try my putative limits to π(n) in 
(3A) by comparing them with the actual prime counts. As expected for theoretical reasons detailed 
below, I found no touching to my upper limit of li n + |(li n)½|, but was rewarded with a crop of no less 
than 106 touchings to my lower limit li n – |(li n)½|, many of the prime counts coming dangerously 
close to the limit but, miraculously as it seemed, none of them crossing it. 

 

It appeared I had discovered a glass floor to the prime-counting function that nobody hitherto knew 
existed. 'Glass' because there seems to be no compelling reason why the prime count, on coming so 
close to this arbitrarily-chosen (but admittedly rather beautiful) limit, should not occasionally go 
through it. But so many close encounters with never a collision could not have happened by "chance", 
so there must be a compelling reason for it. In fact, the "glass floor" turns out to be more like a granite 
rock, with the inexorable instruction to any prime count that approaches it, 'Thou shalt not pass'. 

 

I found I could use this rock-like barrier to predict unambigously all the primes from p1 = 2 through 
p48 = 223 on the grounds that if the prime count at n was so close to the limit that the same count at  
n + 1 would have taken it through, n + 1 would have to be prime to jump up the prime count and 
prevent this from happening. 

 

The 106 touchings range from n = 2, the least, through n = 568, the greatest. The closest approach to 
the limit occurs at n = 58. 

 

I give a sample including these salient points below. 

                                                 
* or any other count of primes over a finite sequence of (n), such as my limits for primes between squares. 



 
 

n π(n) 
lower limit 

li n – |(li n)½| margin π(n) – floor 

2 1 0.023 0.997 
28 9 8.903 0.097 
58 16 15.950 0.050 

222 47 46.934 0.066 
568 103 102.010 0.990 

 

Table 1 
 

Let us formalize, and if possible generalize, what we did. We chose a known asymptote to π(n), in 
this case li n, and made it a median M(n) to two curves at equal distances d above and below the curve 
of M(n). And we chose d to be some more or less simple fraction of M(n). This we can call the first 
phase of the procedure. The second phase is to adjust d (if necessary) to include between the two 
curves M(n) – d and M(n) + d all the prime counts we know about, say up to π(k), k being the largest 
number for which the prime count, and that of all n < k, is known. Thus 

 

 (4)  M(n ≤ k) – d < π( n ≤ k) < M(n ≤ k) + d 
 

in which π(n ≤ k) includes all the prime counts known so far. 
 

It is evident that if we choose a median that is "on average" greater than π(n) and adjust d so that 
M(n) – d is about right, M(n) + d will be too high. M(n) = li n is known to be "on average" greater than  
π(n), see Ingham4 pp 105sq, and this is confirmed by the fact that we get no touching at the upper 
limit. Similarly if we choose a median, such as n/log n, known to be "on average" lesser than  π(n), 
and adjust d so that M(n) + d is about right, M(n) – d will be too low. 

 

In fact we can use my limits, originally designed for primes between squares (see Appendix 7), A ± 
(B – 1) where A is n/log n and B is A/log A, as a ceiling and floor* to π(n). Now M(n) = A and d = B – 
1. We get 8 touchings to the ceiling and none in this stretch of (n) to the floor. 
 

n π(n) 
upper limit 
A + B – 1 

margin 
ceiling – π(n) 

19 8 8.914 0.914 
109 29 29.620 0.620 
110 29 29.824 0.824 
113 30 30.434 0.434 
114 30 30.637 0.637 
115 30 30.839 0.839 
199 46 46.960 0.960 
283 61 61.985 0.985 

 

Table 2 
 

It is clear that the more centrally we place the median in relation to the prime count, the narrower the 
band of errors between the upper and lower extremes of the count will become, so it would be possible 
to approach the most central median experimentally, by continuous readjustment. In 1932 Ingham4, 
without the assistance of electronic computers or calculators, did better than this and published a 
conditional formula for the most-central median, which we might call the mediant, to π(n). But since I 
can complete a proof of the Riemann hypothesis by employing as a median li n, skew**  though it is, I 
propose to do so before considering the above and other possible refinements. 

                                                 
* We go through the floor at n = 2, but the ceiling is so good that we can accept this one flaw in the floor. 
**  It would be more-appropriate to attribute the skewness to π(n), which is increasingly on the low side of the 
asymptotes that are its proven representatives as we approach 1 from above. This is because the asymptotes are 
continuous functions, whereas primes can exist only in the discontinuous medium of the natural numbers, so the 



 

Let us summarize what we have found so far. We have taken asymptotes to the prime count π(n) and 
employed simple fractions of these asymptotes to create bands wide enough to contain all the prime 
counts so far known. We have noticed that the touchings of the prime count to any one of the limits 
imposed by these bands always appear to be finite in number, and occur only when n is quite small, n 
in all known cases being less than a thousand. 

 

We can note further that the last (or what we suppose is the last) touching in any case as n proceeds 
upwards is the last time a zero appears in the integer part of the margin between the prime count and 
the error-limit we have chosen. It is evident, as the reader may discover, that we can repeat the 
procedure to find the last time the integer part of the difference is 1, and then the last time it is 2, 3, 4, 
and so on. All this suggests we are observing something that is very regular and lawful. 

 

This is to be expected since I pointed out5 in 1969 that a thing and what it is not must share the same 
definition, and so are in this respect mathematically identical. It has long been (and still is in some 
quarters) the fashion to think of the primes as somehow lawless and devilish. It was indeed this very 
thought that stopped Littlewood2, in 1907, from continuing his attempt to prove Riemann's conjecture. 
He began correctly, in the same way that I do, but gave up after six days in the false belief that the 
'devilment' in the primes would make his task impossible. 

 

There is no devilment in the primes. Their complement is the set of multiplication tables, which may 
be considered perfectly lawful. The primes are merely numbers that don't appear (except trivially as 
multiples of 1) in multiplication tables and so, thus sharing their definition with the composites, must 
be exactly equally lawful. 

 

It appeared that, in seeking to prove Riemann's conjecture, I had to find ways of measuring this 
extreme lawfulness of the primes that the text books of arithmetic have for the most part missed. It 
evidently occurs in prime counts. In fact the primes make adjustments, that appear almost like a 
conscious effort, to keep their count within bounds. Just before every interval with very few primes, 
which I call a prime desert, they build up their numbers by producing what I call a prime forest, an 
interval containing more primes than usual. Just before the desert between 199 and 223, containing 
only one prime, there appears a forest of primes between 190 and 200 to build up the count so that it 
won't be too depleted at the end of the ensuing desert. Thus 

 

n π(n) 
lower limit 

li n – |(li n)½| 
margin 

π(n) – floor 
199 46 42.932 3.068 
222 47 46.934 0.066 

 

Table 3 
 

Without this buildup of a safety-margin before the beginning of the desert, the prime count at the end 
of it would have gone through the floor. 

 

The power of my procedure is that we can adopt any limits we like, based on proven asymptotes, for 
the errors in the prime count. Whatever limits we adopt, we shall still find a regular procession of last 
times for the integer parts of the margins. We can check that this phenomenon continues on a regular 
basis in respect of all the numbers for which we already know, or can calculate, the prime count. If it 
continues to continue this way for all the numbers for which we do not yet know, or can never 
calculate, the prime count, then Riemann's hypothesis is true. If his hypothesis is false, then we can be 
sure that in some far-distant region of the number-system, somewhere beyond the 1024 or so numbers 
for which we already know, or can calculate, the prime count, the regularity of the errors will have 
gone wrong, not just a little bit, so as to breach one of my limits in (3) or (3A), but terribly wrong, 
enough to breach the Riemann limit in (2), not just once, for if we could show that any such breach 
were the last time it could happen, the hypothesis would still be true – no, to falsify Riemann's 
                                                                                                                                                         
chances of a "calculated prime" hitting a natural number get worse and worse as we go down the scale. As we 
approach unity the comparison between the calculated approximation, on the basis of x/log x, to the number of 
primes up to, shall we say x = 1+ 10–6, which is a million and one and a half very nearly, and the actual number, 
which is zero, becomes quite ludicrously inept. 



hypothesis this substantial breach of the regularity of the prime counts would have to go on happening 
an infinite number of times, again and again, for ever and ever amen. 

 

This seems, in the light of what we have discovered already, unimaginably unlikely, but 
'unimaginably unlikely' is not a proof. A proof is to produce some good-enough reason why the 
scenario I have just described cannot possibly happen. 

 

If it is true, as we have found so far, that the touchings of any prime count to any asymptotic limit 
we devise for it, are always finite in number, and we can say similarly for the integer parts 1, 2, 3, … 
of the margins between these counts and whatever limits we have devised for them, then this is 
equivalent to saying that the maximum errors in the prime counts, compared with the kinds of limit we 
have devised for them, must shrink as n grows larger. They do not need to shrink for the hypothesis of 
Riemann to be true, as long as they don't expand. But if we can find a proof that they shrink and, 
having shrunk, stay shrunk, this will be more than good enough. 

 

But this phenomenon has been known since Tschebycheff, and was proved by him in the middle of 
the 19th Century. For an example I can take Sylvester's 1892 improvement on Tschebycheff's upper 
limit to π(n), determined at n/log n x 1.04423. So between them they proved that 

 

 (5)  π(n) < 1.04423(n/log n) 
 

for all n greater than some largeish number k. 
 

I remember many years ago I determined exactly what k is, but we do not need to know this for my 
present illustration. It is certainly greater than n = 1010, because π(1010) = 455 052 511 and 
1.04423(1010/log 1010) = 453 503 326.839 and this is smaller. All we need to know now is that the 
Tschebycheff-Sylvester inequality in (5) will eventually become true, and, more importantly, true for 
ever after, when n has reached k, which is I guess in the region of about 1012,  it doesn't matter. 

 

This proves that the maximum positive error of the prime count from its mediant definitly shrinks 
and stays shrunk as n grows larger, so all that remains is the proof of a similar shrinkage of the 
maximum negative error*. Again I use the Tschebycheff-Sylvester formula. I could equally well use 
Tschebycheff's limits, but I don't have them to hand. 

 

 (5A)  Ts↓n = 0.95695(n/log n) < π(n) < 1.04423(n/log n) = Ts↑n 
 

for all sufficiently large n. 
 

This time to discover what order of (n) is 'sufficiently large' is much easier. 
 

n π(n) Ts↓n within limit? 
2 1 2.761 no 
3 2 2.613 no 
4 2 2.761 no 
5 3 2.973 yes 
6 3 3.205 no 
7 4 3.442 yes 
8 4 3.682 yes 
9 4 3.920 yes 

10 4 4.156 no 
11 5 4.380 yes 

> 11   yes 
  

 Table 4 
 

                                                 
* It is of course strictly unnecessary to prove the shrinkage on both sides of the mediant, since the shrinkage on 
one side will shift the mediant to make a similar shrinkage on the other. Thus a more-elegant lemma to my proof 
would be to choose just one known uniquely high peak (or uniquely deep trough) in the prime count, such as the 
peak at n  = 113 in π(n)/(n/log n) = 1.225 058 713, that has already been independently proved can never be 
repeated or approached again. 



We see from Table 4 that there are only five breaches of the Tschebycheff-Sylvester bottom limit for 
π(n), and that 'sufficiently large' in this case means ≥ 11. That there are no further breaches for n > 10 
is confirmed by Rosser and Schoenfeld6. 

 

This proves that the maximum error of the prime count on both sides of its mediant shrinks and stays 
shrunk as n grows larger. 

 

To complete my proof of the Riemann hypothesis I had to find proven limits to the prime count that 
are independent of mine, and that would establish the principle of shrinkage on which mine are based. 
I would blush to admit how long I spent trying to compose an independent proof of the principle of 
shrinkage before realizing that it had already been done for me 150 years ago. 

 

So the permanent shrinkage of the maximum errors on both sides of the mediant value of the prime 
count has been proved, and this implies that the prime count must stay within my limits of (3) and 
(3A), and this in turn implies that (2) is true from n = 2 upwards, and this in turn implies the truth of 
the Riemann hypothesis QED. 
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Part II 
 
Now that I have proved it, it is time to take a closer look at what the Riemann hypothesis is about. It is 
about the errors (that is, the wanderings) of the prime count from itself. 

 

Since the plotted curve of π(n) is a bit irregular, the most plausible way to measure the errors is to 
plot a curve of the peaks of π(n) on the one side, and another curve of the troughs of π(n) on the other. 
Now the mediant of these two curves is the curve that runs exactly equidistant between them, and this 
we can call, for short, the mediant of π(n). 

 

To calculate this mediant for any finite n is easy enough, but what we really want to know is the 
mediant of π(n) for all n to infinity, and this looks as if it might be more difficult to find. It is 
important to find it if we can, because it is the errors as measured from this, what we might call the 
absolute mediant of π(n), that are what Riemann's hypothesis* is really about. 

 

Fortunately Riemann's hypothesis is rather weak, which is why I could use a proven asymptote, li n, 
to this absolute mediant, and treat the asymptote as if it were the mediant itself. Although the 
asymptote li n is some distance from the absolute mediant, it is close enough for the weak RH to fall 
within its ambit. Hence my easy proof. 

 

Ingham4, pp 105, etc, performs a series of remarkable calculations to show, conditionally, "that li n – 
½ li n½ is 'on the average' [his quotation marks recognize the imprecision of his language for what I 
have detailed more precisely in terms of median curves] a better approximation  to π(n) than li n". The 
condition for his theorem is that the Riemann hypothesis be true, so by proving the hypothesis I 
promoted his theorem from conditional to absolute. 

 

Ingham's theorem is in fact more informative than his careful provisos would suggest, for I can 
easily show that it computes exactly the absolute mediant to π(n) that we have been seeking, and will 
serve, therefore, as a basis for my next series of theorems, which will impose much narrower limits on 
the possible errors of π(n) than Riemann's did. 

 

Ingham's theorem is not intuitively obvious, at least not to me, but I had meanwhile devised two 
more functions, which I call bli n and λ(n), that must compute values that are close to the absolute 
mediant of π(n), if not spot on, and these functions share the advantage of being intuitively obvious. 

 

What are now called brownian logarithms (see Appendix 7, note at the end), were devised by me in 
1999 to yield a better estimate than li n of the mediant value of π(n). The brownian logarithm logb n is 
the logarithm of n to the dependent base b = (1 + n-½) n½. It is written lob n, and the brownian 
logarithmic integral bli n is computed in an exactly similar way to the traditional logarithmic integral  
li n, notably by 
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Define the density point dp(x) to be the real number r at which the density d(x), in primes per 
integer, at the real number x, is exactly log-1 r. According to Gauss's guess gg, the density of primes 
(presumably in primes per integer, although he didn't say so, and presumably at x, although he didn't 
this either) is d(x) = log–1 x and we should have no need to introduce the new number r. But in practice 
in all these comparisons of prime counts with the exponential functions we have chosen to represent 
them, we find that the representation, particularly in the early reaches of (x), is not quite exact. Since 
all the natural numbers, i.e. 2 and 3, in the neighbourhood of e are prime, the prime density here is 1, 
and the density point is e. From here, considering it in relation to the centre point of successive integer 
squares, it rapidly rises to the higher of the two squares, from which it sinks asymptotically towards 
the half-way point between them. 

 

                                                 
* I suppose it should be called Riemann's theorem now that I have proved it, but the epithet hypothesis, having 
been used for so long, is likely to stick to it for ever, like Goldbach's conjecture (which I proved in 1998) and 
Bertrand's postulate (which Tschebycheff proved in 1848). 



Theorem (density point theorem) 
 

The density point of the half-way point between successive perfect squares is bounded by the higher 
of the two squares and the half-way point between them (i.e. it stays exactly in the top half of the 
interval between the squares). 

 

My function 
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where <x> is the fraction part of x, and [x] the integer part, calculates what the absolute mediant of 
π(n) would be if the density point of the concentration of primes in the interval between successive 
perfect squares were always at the exact half-way point between the squares (i.e. if gg were exactly 
true). 

 

My Table 5 is remarkable in showing the near-identity of Ingham's conditional curve  
R2(n) = li n – ½li n½  for the absolute mediant of π(n), the condition being the truth of the Riemann 
hypothesis, compared with my two curves bli n and λ(n) which are both unconditional (i.e. they must 
indicate the mediant whether the RH is true or not). The fact that neither of my curves differs from 
Ingham's by as much as a unit even at n = 109 is startling evidence that the RH must be true, but of 
course no amount of empirical evidence constitutes more than a pointer unless it is backed by some 
principle ensuring that the prime count will always stay within certain limits.  

 
 

n bli n R2(n) = li n – ½li n½ λ(n) 
4 2.426 834 2.445 003 2.182 713 

10  5.123 627 5.011 680 4.705 190 
102 27.356 750 27.043 342 26.670 954 
103 171.304 251 170.861 627 170.498 086 
104 1 231.611 320 1 231.074 145 1 230.678 850 
105 9 594.837 009 9 594.226 236 9 593.839 265 
106 78 539.415 762 78 538.744 333 78 538.341 943 
107 644 687.647 215 644 686.924 672 644 686.531 202 
108 5 761 587.073 71..     5 761 586.307 11.. 5 761 585.901 09.. 
109 50 847 518.781 5… 50 847 518.000 1… 50 847 517.604 2… 

 

Table 5. Ingham's conditional mediant R2(n) to π(n) compared with Spencer-Brown's unconditional 
mediants bli n and λ(n). 

 

I elaborate my formula (0) in Appendix 7 to 
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where j is the number of iterations (i.e. successive values of k) we rquire to get a decent answer. My 
calculator is programmed to take k up to j = 11, i.e. to calculate R11(n), which differs only by a decimal 
place or so from R7(n) so is probably more accurate than we need*. Any further degree of accuracy 

                                                 
* Both R7(n) and R11(n) are accurate enough to show that the figure given in Lehmer's List of Prime Numbers 

under the heading 'Riemann' at n = 106 is wrong in the units column. For this n I compute 
li n  = 78 627.549 16 

R11(n) = 78 527.402 17 
both rounded and exact to ten significant digits. My figure for li n shows that Lehmer's column headed 
'Tchebycheff' are all calculations of li n rounded to the nearest unit, and not false values obtained by beginning 
the integration in the wrong place (at 2 instead of zero) which Lehmer mistakenly insists that they are. Why has 
it taken 92 years for anyone to notice this major catastrophe? But there is worse to come. Edwards3 p 2, gives a 

table of computations by Gauss that includes, for n = 106, ∫ n

dn

log
= 78 627.5. Edwards whinges that 'Gauss does 



manifests only in some remote decimal place, and is entirely swamped by the errors in the prime 
count, so the extra labour of taking j higher contributes nothing of any interest to our approximate 
knowledge of the prime count. I mention this merely to explain to the reader my otherwise mysterious 
use of the sign R2(n) to represent li n – ½li n½. It merely takes the formula in (8) up to the second 
iteration of k. 

 

My proof of Riemann's hypothesis confirms Ingham's conditional inference that R2(n) is a reliable 
indicator of the absolute mediant to the peaks and troughs of the errors of π(n), and the fact that it falls 
smack in the middle of my calculations of the independent functions bli n and λ(n) suggests that R2(n) 
really is the absolute mediant to the errors of π(n), or if not can differ from it only microscopically. 

 

We can therefore in practice safely take it to be so. Now to get close enough to my original "glass 
floor" for π(n), the new error limit must be exactly ±½(R2(n)) ½, or in full ±½(li n – ½li n½)½, so that  

 

(9) R2(n) – ½|(R2(n))½| <  π(n) <  R2(n) + ½|(R2(n))½|  for all n ≥ 2, that is, for all positive prime 
counts without exception. 

 

This, for example at n = 108, is more than four times stronger than Riemann's hypothesis, and the 
ratio gets better as n gets bigger*. And since we are now at the proper centre of the peaks and troughs 
of the prime count, we can expect to find touchings of the prime count to both limits. 

 

There are just four touchings to my top limit, which I detail in Table 6, compared with 81 touchings 
to my bottom limit, a sample from which I list in Table 7. The first is at n = 2, the last at n = 556, and 
the closest to the limit is at n = 28. 

 

It should be bourne in mind that since the primes can be defined only in the natural number system 
(n), they strictly have no existence in the continuum of real numbers, so the values of li x and the other 
asymptotes at points between integers can have no meaning in respect of the prime count. See footnote 
on p 2. 

n π(n) 
top limit S↑n = 

R2(n) + ½|(R2(n))½| 
margin 

S↑n – π(n) 
2 1 1.621 0.621 
3 2 2.538 0.538 
5 3 3.814 0.814 
7 4 4.827 0.827 

 

Table 6. The four touchings of π(n) to Spencer-Brown's absolute top limit to π(n). 

                                                                                                                                                         

not say exactly what he means by the symbol∫ n

dn

log
'. Well, a simple computation would have settled the matter, 

wouldn't it? But Edwards doesn't wish to let on that he doesn't know how to do this, so he turns to the figure of 

78 628, wrongly labelled by Lehmer as ∫
x

t

dt

2 log
for x = 106, and stupidly concludes that Gauss began the 

integration at 2 instead of correctly at zero which all 19th Century gentlemen were taught to do. And there is yet 
still worse to come. Every 20th Century author of arithmetic, including Ingham, and of course Hardy and Wright, 
has copied this mistake. It has become a religious shibboleth, accepted as gospel truth by referees who should 
know better but don't. This slipshod and slapdash approach to computing by so many 20th Century practitioners 
is undoubtedly among the reasons why the RH remained unproved for so long. Without the ready ability to 
compute li x exactly to at least 3 decimal places, which members of former generations (including my father, 
who suffered under the same teachers as Littlewood) could all do by hand, my microscopically sensitive limits to 
the prime count could never have been discovered. 
* In general, at n = 102k, my theorem is more than k times stronger than Riemann's. 



 

n π(n) 
bottom limit S↓n = 
R2(n) –  ½|(R2(n))½| 

margin 
π(n) – S↓n  

2 1 0.573 0.427 
3 2 1.176 0.824 
28 9 8.900 0.100 
58 16 15.824 0.176 
222 47 46.700 0.300 
556 101 100.065 0.935 

 

Table 7. A sample from the 81 touchings of π(n) to Spencer-Brown's absolute bottom limit to π(n). 
 
In this context it is interesting to compare, for various values of n, my 'at most' figure for the 

amplitude of the errors of π(n) with Littlewood's 'at least' figure for their amplitude at around the same 
value of n. These are given in Table 8. (My calculator works to twelve visible digits, the first ten of 
which are reliable* for calculations involving n < 1012. For larger numbers the number of reliable digits 
may be less, but rather than guess I print all twelve and let the reader decide, or check by 
recomputing.) 

 

Before my researches began, we knew of no appropriate 'at most' limit to the amplitude of the errors 
of the prime count, hence no proof of Riemann's hypothesis. But my limit of ±½(R2(n))½, or in full 
±½(li n – ½li n½)½, is so much stronger than Riemann's hypothesis, and arrived at by more powerful 
methods that can be made entirely independent of Riemann's, that it must be classed as an altogether 
different theorem. The importance of Riemann's paper1 is its ground-breaking nature, wherein even its 
troublesome conjecture pointed the way to theorems that, without it, might never have been noticed. 

 

n 
Littlewood's 'at least' value for the amplitude 
of the error η(π(n)) > ±li n½ • logloglog n 

Spencer-Brown's 'at most' value for the amplitude 
of the error η(π(n)) < ±½(li n – ½li n½)½ 

1018 66 862 009.574 6 78 644 968.303 5 
1024 52 249 153 086.2 67 888 879 369.0 
1030 4.307 877 647 62 • 1013  6.060 610 302 90 • 1013 
1036 3.675 331 864 96 • 1016 5.525 602 749 35 • 1016 

 

Table 8. Littlewood's 'at least' figure for the amplitude of the errors of π(n) compared with Spencer-
Brown's 'at most' figure for their amplitude, calculated at n = 1018, 1024, 1030, and 1036. 
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* To check the accuracy of my program for li x, I used it to calculate Soldner's constant, which it finds between 

1.451 369 234 88 and 
1.451 369 234 89. 

Weisstein gives 
1.451 369 234 6  

but I don't trust his 10th decimal place. Do you? 
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