Appendix 9 A SHORT PROOF OF RIEMANN' S HYPOTHESIS

Part |

Riemann's hypothesis, notably that the complexszefo
1)  9=2zn*=N(1-p9*

in whichn runs through the natural numbers 1, 2, 3, 4, ...patdough the primes 2, 3, 5, 7, ..., all
have their real parts equal to %, is true if

(2 ) ~lin| <p"

from somen upwards. In fact thequivalent to Riemann's 1859 conjecttiia terms of these
formalities is a little weaker than (2), see Lititsod® pp88sq, Edwardp90sq, so | shall have proved
his 147-year-old conjecture if | can prove thati§in fact true for some natural numlkesay, and

true without exception for all subsequert k.

| shall in fact prove

(3  m(n)~lin|<|(lin)

for all n > 1, which is more than enough becausedin for all (n) in this range and, since
li n> 1 in the range, |(H)”] < |n”| for all theser{). This will imply that (2) is true for ath > 1.

We can express (3) alternatively as,rior 1,

(3A) li n—|(lin)4 <7(n) < li n+ |(lin)* or, stated more precisely in words, an absobset limit
to 1(n) is determined by I plus its negative square root, and an absoluterdppit to Ti(n) is
determined by In plus its positive square root.

Call a value of for whichi(n)” comes to within less than a unit of a chosen Jitnit without
crossing it, douching of T(n) to that limit. The strategy is to choose limhat yield the greatest
possible number of touchings, rather like the aagiame of blackjack, where a score touching the
limit has the best chance of winning, and a scees the limit always loses.

In the summer of 1999, while still resident in Long | decided to try my putative limits tgn) in
(3A) by comparing them with the actual prime couAts expected for theoretical reasons detailed
below, | found no touching to my upper limit ofli+ |(li n)*, but was rewarded with a crop of no less
than 106 touchings to my lower limitri— |(li n)*, many of the prime counts coming dangerously
close to the limit but, miraculously as it seemaahe of them crossing it.

It appeared | had discovered a glass floor to tiregacounting function that nobody hitherto knew
existed. 'Glass' because there seems to be no timgpeason why the prime count, on coming so
close to this arbitrarily-chosen (but admittedlthex beautiful) limit, should not occasionally go
through it. But so many close encounters with neveollision could not have happened by "chance”,
so there must be a compelling reason for it. I, the "glass floor" turns out to be more like argte
rock, with the inexorable instruction to any prigwint that approaches it, 'Thou shalt not pass'.

| found | could use this rock-like barrier to predinambigously all the primes fropa= 2 through
pss = 223 on the grounds that if the prime count atas so close to the limit that the same count at
n + 1 would have taken it through;+ 1 would have to be prime to jump up the primerdand
prevent this from happening.

The 106 touchings range frame 2, the least, through= 568, the greatest. The closest approach to
the limit occurs ah = 58

| give a sample including these salient points welo

" or any other count of primes over a finite seqeewfcf), such as my limits for primes between squares.



n Ti(n) IiIOnW—e|r(II;T)I1t/2| marginti(n) — floor
2 1 0.023 0.997
28 9 8.903 0.097
58 16 15.950 0.050
222 47 46.934 0.066
568 103 102.010 0.990
Table 1

Let us formalize, and if possible generalize, whatdid. We chose a known asymptotetn), in
this case In, and made it a mediavi(n) to two curves at equal distanakabove and below the curve
of M(n). And we chosel to be some more or less simple fractioMgh). This we can call the first
phase of the procedure. The second phase is tetddjfinecessary) to include between the two
curvesM(n) —d andM(n) + d all the prime counts we know about, say upii9, k being the largest
number for which the prime count, and that ofnadl k, is known. Thus

4) Mnh<k—-d<m(n<k)<M(n<k) +d
in whichi(n <k) includes all the prime counts known so far.

It is evident that if we choose a median that is dwerage” greater thauin) and adjustl so that
M(n) —d is about rightM(n) + d will be too high.M(n) = li nis known to be "on average" greater than
1(n), see Inghafhpp 105sq, and this is confirmed by the fact thatst no touching at the upper
limit. Similarly if we choose a median, suchrdl®g n, known to be "on average" lesser tham),
and adjusd so thatM(n) + d is about rightM(n) —d will be too low.

In fact we can use my limits, originally designed primes between squares (see AppendiAd),
(B—1) whereA isn/log n andB is Allog A, as a ceiling and flooto T(n). NowM(n) = A andd = B —
1. We get 8 touchings to the ceiling and none im stretch off) to the floor.

upper limit margin
n|mn A+B-1 ceiling —m(n)

19 8 8.914 0.914
109| 29 29.620 0.620
110, 29 29.824 0.824
113| 30 30.434 0.434
114| 30 30.637 0.637
115/ 30 30.839 0.839
199| 46 46.960 0.960
283| 61 61.985 0.985

Table 2

It is clear that the more centrally we place thaliae in relation to the prime count, the narrovier t
band of errors between the upper and lower extrexhétge count will become, so it would be possible
to approach the most central median experimentaylyontinuous readjustment. In 1932 Ingham
without the assistance of electronic computersatoutators, did better than this and published a
conditional formula for the most-central medianjetthwe might call thenediant, to 1i(n). But since |
can complete a proof of the Riemann hypothesisnigi@ying as a median ti, skew’ though it is, |
propose to do so before considering the above et possible refinements.

" We go through the floor at= 2, but the ceiling is so good that we can acttéptone flaw in the floor.

™ It would be more-appropriate to attribute the skess tat(n), which is increasingly on the low side of the
asymptotes that are its proven representativeseagpproach 1 from above. This is because the asyespare
continuous functions, whereas primes can exist mntlie discontinuous medium of the natural numissshe



Let us summarize what we have found so far. We telken asymptotes to the prime coufr) and
employed simple fractions of these asymptoteseaaterbands wide enough to contain all the prime
counts so far known. We have noticed that the timgshof the prime count to any one of the limits
imposed by these bands always appear to be finember, and occur only whens quite smalln
in all known cases being less than a thousand.

We can note further that the last (or what we sapps the last) touching in any casengsoceeds
upwards is the last time a zero appears in thgénteart of the margin between the prime count and
the error-limit we have chosen. It is evident,testeader may discover, that we can repeat the
procedure to find the last time the integer pathefdifference is 1, and then the last time £,i8, 4,
and so on. All this suggests we are observing sungethat is very regular and lawful.

This is to be expected since | pointed®ont1969 that a thing and what it is not must shhessame
definition, and so are in this respect mathemdsigdéntical. It has long been (and still is in s®m
guarters) the fashion to think of the primes asedwow lawless and devilish. It was indeed this very
thought that stopped Littlewoddn 1907, from continuing his attempt to proveRé&n's conjecture.
He began correctly, in the same way that | dogawe up after six days in the false belief that the
‘devilment' in the primes would make his task ingiole.

There is no devilment in the primes. Their completig the set of multiplication tables, which may
be considered perfectly lawful. The primes are tgamambers that don't appear (except trivially as
multiples of 1) in multiplication tables and soushsharing their definition with the composites,sinu
be exactly equally lawful.

It appeared that, in seeking to prove Riemann'gecture, | had to find ways of measuring this
extreme lawfulness of the primes that the text kaafkarithmetic have for the most part missed. It
evidently occurs in prime counts. In fact the prinmeake adjustments, that appear almost like a
conscious effort, to keep their count within bountisst before every interval with very few primes,
which | call a prime desert, they build up theimhers by producing what | call a prime forest, an
interval containing more primes than usual. Jukireethe desert between 199 and 223, containing
only one prime, there appears a forest of primésden 190 and 200 to build up the count so that it
won't be too depleted at the end of the ensuingrtieBhus

lower limit margin
T i | m(n) — floor
199 46 42.932 3.068
222 47 46.934 0.066
Table 3

Without this buildup of a safety-mardaefore the beginning of the desert, the prime catithe end
of it would have gone through the floor.

The power of my procedure is that we can adoptlianiis we like, based on proven asymptotes, for
the errors in the prime count. Whatever limits wlet, we shall still find a regular processionatl
times for the integer parts of the margins. We daack that this phenomenon continues on a regular
basis in respect of all the numbers for which weay know, or can calculate, the prime count If i
continues to continue this way for all the numbersavhich we do not yet know, or can never
calculate, the prime count, then Riemann's hypahgsrue. If his hypothesis is false, then we ban
sure that in some far-distant region of the nungystem, somewhere beyond thé*i so numbers
for which we already know, or can calculate, thengrcount, the regularity of the errors will have
gone wrong, not just a little bit, so as to breank of my limits in (3) or (3A), but terribly wrong
enough to breach the Riemann limit in (2), not juste, for if we could show that any such breach
were the last time it could happen, the hypothesisld still be true — no, to falsify Riemann's

chances of a "calculated prime" hitting a natutahber get worse and worse as we go down the #alee
approach unity the comparison between the calaiperoximation, on the basisxfog x, to the number of
primes up to, shall we say= 1+ 10° which is a million and one and a half very neaalyd the actual number,
which is zero, becomes quite ludicrously inept.



hypothesis this substantial breach of the regylafithe prime counts would have to go on happening
an infinite number of times, again and again, f@rend ever amen.

This seems, in the light of what we have discovalegady, unimaginably unlikely, but
‘'unimaginably unlikely' is not a proof. A prooftis produce some good-enough reasby the
scenario | have just describeahnot possibly happen.

If it is true, as we have found so far, that thectings of any prime count to any asymptotic limit
we devise for it, are always finite in number, avelcan say similarly for the integer parts 1, 2,3,
of the margins between these counts and whatewés e have devised for them, then this is
equivalent to saying that the maximum errors inghime counts, compared with the kinds of limit we
have devised for them, must shrinknegrows larger. They do not need to shrink for thpdthesis of
Riemann to be true, as long as they don't expantlif Bre can find a proof that they shrink and,
having shrunk, stay shrunk, this will be more tigand enough.

But this phenomenon has been known since Tschefiyahe was proved by him in the middle of
the 19" Century. For an example | can take Sylvester'® 18®rovement on Tschebycheff's upper
limit to 1i(n), determined at/log n X 1.04423. So between them they proved that

(5) m(n) < 1.04423(/log n)
for all n greater than some largeish numker

| remember many years ago | determined exactly Wistbut we do not need to know this for my
present illustration. It is certainly greater than 10°, becauset10') = 455 052 511 and
1.04423(18/og 10°% = 453 503 326.839 and this is smaller. All wechezknow now is that the
Tschebycheff-Sylvester inequality in (5) will evaally become true, and, more importantly, true for
ever after, whem has reachel, which is | guess in the region of about? Gt doesn't matter.

This proves that the maximum positive error ofphiene count from its mediant definitly shrinks
and stays shrunk asgrows larger, so all that remains is the proof eimailar shrinkage of the
maximum negative errarAgain | use the Tschebycheff-Sylvester formuleolild equally well use
Tschebycheff's limits, but | don't have them todhan

(5A) Ts/n=0.95695(/log n) < T(n) < 1.04423¢/log n) = Tstn
for all sufficiently largen.

This time to discover what order af)(is 'sufficiently large' is much easier.

n | m(n) | Ts/n | within limit?

2 1/2.761 no

3] 2]2.613 no

4| 2|2.761 no

5/ 3]2.973 yes

6| 3[3.205 no

7| 4(3.442 yes

8 413.682 yes

9] 4]3.920 yes

10| 4]4.156 no

11| 5/4.380 yes
>11 yes

Table 4

" It is of course strictly unnecessary to proveshenkage on both sides of the mediant, sincehhialsage on
one side will shift the mediant to make a similariskage on the other. Thus a more-elegant lemmaytproof
would be to choose just one known uniquely highkgeauniquely deep trough) in the prime count,tsas the
peak an =113 int(n)/(n/log n) = 1.225 058 713, that has already been indepdigdeoved can never be
repeated or approached again.



We see from Table 4 that there are only five breadalf the Tschebycheff-Sylvester bottom limit for
m(n), and that 'sufficiently large' in this case mearid. That there are no further breachesferl0
is confirmed by Rosser and Schoenfeld

This proves that the maximum error of the primentan both sides of its mediant shrinks and stays
shrunk as grows larger.

To complete my proof of the Riemann hypothesisd teafind proven limits to the prime count that
are independent of mine, and that would establisiptinciple of shrinkage on which mine are based.
I would blush to admit how long | spent trying mnepose an independent proof of the principle of
shrinkage before realizing that it had already bd@me for me 150 years ago.

So the permanent shrinkage of the maximum errotsotim sides of the mediant value of the prime
count has been proved, and this implies that timegocount must stay within my limits of (3) and
(3A), and this in turn implies that (2) is truerima = 2 upwards, and this in turn implies the truth of
the Riemann hypothesis QED.
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Part |1

Now that | have proved it, it is time to take asd@dolook at what the Riemann hypothesis is aboid. |
about the errors (that is, the wanderings) of ttiag countfrom itself.

Since the plotted curve afn) is a bit irregular, the most plausible way to swea the errors is to
plot a curve of the peaks ofn) on the one side, and another curve of the troofin) on the other.
Now the mediant of these two curves is the curegihns exactly equidistant between them, and this
we can call, for short, the mediantmgh).

To calculate this mediant for any finibds easy enough, but what we really want to knothés
mediant ofri(n) for all n to infinity, and this looks as if it might be madédficult to find. It is
important to find it if we can, because it is thiees as measured from this, what we might call the
absolute mediant of T(n), that are what Riemann's hypothesssreally about.

Fortunately Riemann's hypothesis is rather wealkgwis why | could use a proven asymptota, li
to this absolute mediant, and treat the asymptoteitwere the mediant itself. Although the
asymptote In is some distance from the absolute mediant,dioise enough for the weak RH to fall
within its ambit. Hence my easy proof.

Inghant, pp 105, etc, performs a series of remarkableutations to show, conditionally, "thatrli—
% lin”is 'on the average' [his quotation marks recogttigémprecision of his language for what |
have detailed more precisely in terms of medianesira better approximation tgn) than lin". The
condition for his theorem is that the Riemann higpsts be true, so by proving the hypothesis |
promoted his theorem from conditional to absolute.

Ingham's theorem is in fact more informative thandareful provisos would suggest, for | can
easily show that it computes exactly the absolwdiemt torin) that we have been seeking, and will
serve, therefore, as a basis for my next seriisesrems, which will impose much narrower limits on
the possible errors ai(n) than Riemann's did.

Ingham's theorem is not intuitively obvious, atskeaot to me, but | had meanwhile devised two
more functions, which | call bh andA(n), that must compute values that are close toliselate
mediant ofri(n), if not spot on, and these functions share thaaidge of being intuitively obvious.

What are now called brownian logarithms (see Appefrdnote at the end), were devised by me in
1999 to yield a better estimate than bf the mediant value af(n). The brownian logarithm lem is
the logarithm oh to the dependent babe= (1 +n™) " It is written lobn, and the brownian
logarithmic integral blin is computed in an exactly similar way to the ttiadial logarithmic integral
li n, notably by

© o[

1+e

Define thedensity point dp(x) to be the real numberat which the density &), in primes per
integer, at the real numberis exactly log r. According to Gauss's guess gg, the density ofgsi
(presumably in primes per integer, although he 'tghy so, and presumablyxatlthough he didn't
this either) is &) = log™ x and we should have no need to introduce the nembatr. But in practice
in all these comparisons of prime counts with tkgomential functions we have chosen to represent
them, we find that the representation, particularlthe early reaches af)( is not quite exact. Since
all the natural numbers, i.e. 2 and 3, in the nedginhood ofe are prime, the prime density here is 1,
and the density point i From here, considering it in relation to the cemtoint of successive integer
squares, it rapidly rises to the higher of the sgaares, from which it sinks asymptotically towards
the half-way point between them.

" | suppose it should be called Riemarthémrem now that | have proved it, but the epithgpothesis, having
been used for so long, is likely to stick to it éwer, like Goldbach'eonjecture (which | proved in 1998) and
Bertrand'gostulate (which Tschebycheff proved in 1848)



Theorem (density point theorem)

The density point of the half-way point between successive perfect squares is bounded by the higher
of the two squares and the half-way point between them (i.e. it stays exactly in the top half of the
interval between the sguares).

My function

(7)

(Y21

Mn)= 3,

k=1

ok <n1/2>2[n1/2]
+
log(k® +k+%5)  log([n"?]* +[n"?] +%5)

where <> is the fraction part of, and K] the integer part, calculates what the absolutdiams of
1i(n) would be if the density point of the concentrat@ primes in the interval between successive
perfect squares were always at the exact half-wiyt petween the squardse( if gg were exactly
true)

My Table 5 is remarkable in showing the near-idgriaf Ingham's conditional curve
Rx(n) = li n— %lin* for the absolute mediant ofn), the condition being the truth of the Riemann
hypothesis, compared with my two curvesrbéindA(n) which are both unconditional (i.e. they must
indicate the mediant whether the RH is true or.fdte fact that neither of my curves differs from
Ingham's by as much as a unit even at1@ is startling evidence that the RH must be tru¢ dbu
course no amount of empirical evidence constitotese than a pointer unless it is backed by some
principle ensuring that the prime count will alwasgay within certain limits.

n bli n Ry(n) = lin—%lin* A(n)

4 2.426 834 2.445 003 2.182 713
10 5.123 627 5.011 680 4.705 190
10° 27.356 75( 27.043 342 26.670 954
10° 171.304 251 170.861 627 170.498 086
10' 1231.611 320 1231.074 145 1 230.678 850
10° 9 594.837 009 9 594.226 236 9 593.839 265
10° 78 539.415 769 78 538.744 338 78 538.341 948
10’ 644 687.647 215 644 686.924 672 644 686.531 20
10° 5761587.07371 5761586.307 11 5761 585.901 09
10’ 50 847 518.7815 | 50847 518.0001 | 50 847 517.604 2

Table 5. Ingham's conditional medid{n) to 1(n) compared with Spencer-Brown's unconditional
mediants bln andA(n).

| elaborate my formula (0) in Appendix 7 to

(8) Rj(n):ki_l

w(K) it/

Kk

wherej is the number of iterations (i.e. successive vahfd) we rquire to get a decent answer. My
calculator is programmed to takeip toj = 11, i.e. to calculat®;1(n), which differs only by a decimal
place or so froniR;(n) so is probably more accurate than we negdy further degree of accuracy

" Both R/(n) andRy4(n) are accurate enough to show that the figure dgivérehmer's List of Prime Numbers
under the heading 'Riemanntat 1¢ is wrong in the units column. For thid compute

lin =78627.549 16
Rii(n) = 78 527.402 17
both rounded and exact to ten significant digity.fidure for lin shows that Lehmer's column headed
"Tchebycheff' are all calculations ofilirounded to the nearest unit, and not false valbégined by beginning
the integration in the wrong place (at 2 insteadesb) which Lehmer mistakenly insists that they. &/hy has
it taken 92 years for anyone to notice this majastrophe? But there is worse to come. EdwWards gives a

table of computations by Gauss that includesnferl(®, J'lﬂ =78 627.5. Edwards whinges that ‘Gauss does
ogn



manifests only in some remote decimal place, aedtisely swamped by the errors in the prime
count, so the extra labour of takipgigher contributes nothing of any interest to approximate
knowledge of the prime count. | mention this metelgxplain to the reader my otherwise mysterious
use of the sigiR,(n) to represent in — %lin”. It merely takes the formula in (8) up to the seto
iteration ofk.

My proof of Riemann's hypothesis confirms Inghaoarditional inference th&.(n) is a reliable
indicator of the absolute mediant to the peakstemgyhs of the errors af(n), and the fact that it falls
smack in the middle of my calculations of the ineleglent functions bl andA(n) suggests thd;(n)
really is the absolute mediant to the errorsio), or if not can differ from it only microscopicgll

We can therefore in practice safely take it to deNow to get close enough to my original "glass
floor" for T(n), the new error limit must be exactly #%(n)) *, or in full +%(li n — %lin")* so that

(9) Ra(n) — 2| Rx(N))™ < T(N) < Ru(n) + ¥|Rx(n))”] for alln> 2, that is, for all positive prime
counts without exception.

This, for example at = 1, is more than four times stronger than Riemaryp®thesis, and the
ratio gets better asgets bigger And since we are now at the proper centre optraks and troughs
of the prime count, we can expect to find touchiofythe prime count to both limits.

There are just four touchings to my top limit, whicdetail in Table 6, compared with 81 touchings
to my bottom limit, a sample from which I list iralble 7. The first is at = 2, the last at = 556, and
the closest to the limit is at= 28.

It should be bourne in mind that since the prinas lwe defined only in the natural number system
(n), they strictly have no existence in the continuafmeal numbers, so the values af ind the other
asymptotes at points between integers can havesaainyg in respect of the prime count. See footnote
onp 2.

n | ) top limit Stn = margin
Re(n) + ¥2|Re(N))"] Stn —m(n)
2 1 1.621 0.621
3 2 2.538 0.538
5 3 3.814 0.814
7 4 4.827 0.827

Table 6. The four touchings ofn) to Spencer-Brown's absolute top limitrtm).

not say exactly what he means by the synﬁl?él;—n ". Well, a simple computation would have settlesl itimtter,
wouldn't it? But Edwards doesn't wish to let ont thewdoesn't know how to do this, so he turns eédfitjure of

78 628, wrongly labelled by Lehmer é% for x = 1¢°, and stupidly concludes that Gauss began the
2

integration at 2 instead of correctly at zero whadh19" Century gentlemen were taught to do. And theyeis
still worse to come. Every 30Century author of arithmetic, including Inghamdanf course Hardy and Wright,
has copied this mistake. It has become a religibilsboleth, accepted as gospel truth by refereessivbuld
know better but don't. This slipshod and slapdasita@ach to computing by so many™0entury practitioners
is undoubtedly among the reasons why the RH rerdainproved for so long. Without the ready abiliy t
compute lix exactly to at least 3 decimal places, which membéformer generations (including my father,
who suffered under the same teachers as Littlewoaald all do by hand, my microscopically sensitiveits to
the prime count could never have been discovered.

" In general, ah = 10*, my theorem is more thartimes stronger than Riemann's.



N N bottom limit §n = margin
" Ryn) — ¥ARM)” | () - Sin

2 1 0.573 0.427
3 2 1.176 0.824
28 | 9 8.900 0.100
58 | 16 15.824 0.176
222 | 47 46.700 0.300
556 | 101 100.065 0.935

Table 7. A sample from the 81 touchingstr) to Spencer-Brown's absolute bottom limitrim).

In this context it is interesting to compare, farious values ofi, my ‘at most' figure for the
amplitude of the errors af(n) with Littlewood's 'at least' figure for their atitpde at around the same
value ofn. These are given in Table 8. (My calculator wdrkswvelve visible digits, the first ten of
which are reliablefor calculations involvingi < 10 For larger numbers the number of reliable digits
may be less, but rather than guess | print alltevaind let the reader decide, or check by
recomputing.)

Before my researches began, we knew of no apptepaamost' limit to the amplitude of the errors
of the prime count, hence no proof of Riemann'sotlygsis. But my limit of +¥/Rx(n))*, or in full
+15(li n — %2lin”)™, is so much stronger than Riemann's hypothesisaeived at by more powerful
methods that can be made entirely independentesh&in's, that it must be classed as an altogether
different theorem. The importance of Riemann's papets ground-breaking nature, wherein even its
troublesome conjecture pointed the way to theortais without it, might never have been noticed.

N Littlewood's 'at least' value for the amplitug8pencer-Brown's ‘at most' value for the amplitude
of the errom(r(n)) > +li n” « logloglogn of the errom(m(n)) < +%(li n — %lin%)*
10" 66 862 009.574 B 78 644 968.303 5
107 52 249 153 086.2 67 888 879 369.0
10%° 4.307 877 647 62 « 1Y) 6.060 610 302 90 « 19
10% 3.675 331 864 96 - 1) 5.525 602 749 35 « 1D

Table 8. Littlewood's 'at least' figure for the ditojole of the errors ofi(n) compared with Spencer-
Brown's 'at most' figure for their amplitude, caétad an = 10%, 1074, 10°°, and 16°.
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" To check the accuracy of my program fax, |l used it to calculate Soldner's constant, witifinds between
1.451 369 234 88 and
1.451 369 234 89.

Weisstein gives
1.451 369 234 6

but | don't trust his 0decimal place. Do you?
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