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Abstract:

It is well known that “The Riemann hypothesis is equivalent to the statement that for every € > O the
function M(x)/wa"3 approaches zero as x —o0”, where M is the Mertens function. Starting from the
definitions of M(x) and {(s) we derive an integral equation about M(x): from that we derive that
IM(x)|<x"**%; the proof of the Riemann hypothesis follows.
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1. Introduction

Riemann devised the Riemann zeta function: {(z), where z is a complex number z=x+iy and i is the
“positive” imaginary unit such that i’=-1.

The Riemann Hypothesis states all the nontrivial zeros are the complex numbers z=1/2 + iy, with
suitable values of y [the line z=1/2 + iy in the z plane is named Critical Line]. All the “known”
zeros computed up to now [up to 2018], more than 10'* zeros have been computed, all on the
Critical Line.

Many people tried to prove RH and making it a theorem; the author himself, using the theory of
Hilbert Spaces, tried it [2] after studying the book of Titchmarsh [1]; there one finds that the
Riemann hypothesis is equivalent to the statement that for every & > 0 the Mertens function
M(x)=0(x1/2+£).

The function of Mertens is defined by the sum

M(n) = Zn:u(k)

where p(k) is the Mobius function [1], k and n being integer numbers.

For x, a real number, the Mertens function is defined by the sum
n=<x

M) = ) uio) (1)

Mertens conjectured that [M(n| < v/n; if this were true then Riemann’s hypothesis would be true.
The Mertens conjecture was disproved by A. Odlyzko and H. te Riele [3] in 1984.

2. Connections between M(x) and {(s)

In this section we use the standard symbols for the Riemann zeta function C(s); s is the complex
variable, s=c+it; X is a real variable.
From the definition (1) one can prove that, for 1< c
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IF RH is true formula (2) holds also for ¥2<c.




On the other hand one can prove that
c+ioco s
M) = 5— -
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From (3) and (2), without assuming that RH is true, we derive the integral equation
1

x
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We will prove it after the introduction to the Theory of Distributions (next section).

ds, forc>1 3)

3. Theory of Distributions Basics

Distribution theory [4] can be thought of as the completion of differential calculus, because in the
theory any distribution can be differentiated any times we want (it is one of the two great
revolutions in mathematical analysis in the 20th century).

It is known what a function f(x), with x real, is. The same for f(s), with s complex.

We can generalise the definition of a function f(x) by computing the integral

<f.0>= [ @00 dy .

The functions @(x) are named fest functions and are vanishing outside a bounded subset of the space
R and are such that all partial derivatives of all orders of ¢©(x) are continuous. [for the case
“monodimensional”!]
The integral is to be intended in terms of Lebesgue integration theory.
Any function gives rise to a distribution by setting < f, @ >= [ f(x)@(x) dx, at least if the
integral can be defined. This is certainly true if fis continuous, but actually more general functions
will work.
The so called “Dirac 8-function” actually is defined only as a distribution by <8,0>=¢(0).
It cannot differentiated as a function, but it can differentiated as a distribution by <&',p>=-¢'(0).
In the real space R we can define the Heaviside function H(x) [also named step function] which is

T _ {O, forx <0

() = 1, forx=0

H(x) cannot be differentiated at x=0. On the contrary, the distribution <H,@> can be differentiated
and we have <H',p>=<9,0>: we indicate it with the symbol 8(x).
There is a second type of step function, actually distribution, named as well Heaviside function
H(x) which is

0, forx<o0
1

H(x) = 3 forx=0
1, forx>0

The derivative of this distribution is <H',p>=<8,0>=1/25(x)

For distributions we can define all the operations (and others) we can define for functions: e.g.
Fourier transforms, Laplace transforms, integration, derivation, ....

In the next sections we will consider the Mertens function, in the sense of the Distribution Theory,
in order to take advantage of the Theory.

4. The integral equation for M(x)

Inserting (2) into (3) we get [without assuming that RH is true]
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Some manipulations of (6) give
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To prove (8) we need to consider first the integral, where x and y are real variables, and s the
complex variable, s=c+it
1 c+ico xS dS c+ico [ r ds
T 2mi i
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Integrating, when x<y, one gets 0O; integrating, when x= y, one gets Y2; integrating, when x>y, one
gets 1.
This is the second type of step distribution, H(u-1) with u=x/y; when x=y H(u-1)=H(0).

1
The complex integral in (7) then is related to the distribution > o (u — 1) which is O for any u#1.

That means that the integral about the “integration variable y” must be 0 above x. Therefore we get
(8). M(x) is the distribution related to the Mertens function.
This is the point given in the title:

ISEE IT, BUT I CAN’T BELIEVE IT

5. The integral inequality for the absolute value [M(x)|
In order to prove the Riemann Hypothesis RH, we must find the distribution |M(x)| related to the

integral equation (8).
For the absolute value we have being >0,

M 1 (%M
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Let’s put g(t)=|M(t)|, considered as a distribution, and find its Laplace transform (p is the complex
variable)

6o) = Lg(D)] = f ePtg(t)de

Then

[ & dt] G (w)dw



Therefore

1 1(”
G(p) < (E-I_ e)gj G(w)dw
p

If we seek a solution

['(a)/p* = L[t* 1] with o >0

we get
(1 ) 1 1
— < (z+¢

a 2 p%(—a+1)

that is
1

(a—1)< (E + &) (10)
By choosing a=3/2 we have a-1<1/2+¢, that is t"#** as solution of the integral inequality (9), and
eventually

1
IM(x)| < x2*¢ (11)

6. Conclusion

Since we know that “The Riemann hypothesis is equivalent to the statement that for every € > 0 the
function M(x)=0(x1/2+8)”, where M is the Mertens function and we found that |M(x)|<x]/ 2+t is the
solution of the integral inequality about [M(x)| [derived from integral equation about M(x), found
from M(x) and {(s)], the proof of the Riemann hypothesis is proved. (see also [2])
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