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The Riemann Zeros and
Eigenvalue Asymptotics*
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Abstract. Comparison between formulae for the counting functions of the heights t,, of the Riemann
zeros and of semiclassical quantum eigenvalues E,, suggests that the ¢, are eigenvalues of
an (unknown) hermitean operator H, obtained by quantizing a classical dynamical system
with hamiltonian H.]. Many features of H_ are provided by the analogy; for example,
the “Riemann dynamics” should be chaotic and have periodic orbits whose periods are
multiples of logarithms of prime numbers. Statistics of the ¢,, have a similar structure to
those of the semiclassical Ey; in particular, they display random-matrix universality at
short range, and nonuniversal behaviour over longer ranges. Very refined features of the
statistics of the ¢, can be computed accurately from formulae with quantum analogues.
The Riemann-Siegel formula for the zeta function is described in detail. Its interpreta-
tion as a relation between long and short periodic orbits gives further insights into the
quantum spectral fluctuations. We speculate that the Riemann dynamics is related to the
trajectories generated by the classical hamiltonian H, = X P.
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1. Introduction. Our purpose is to report on the development of an analogy,
in which three areas of mathematics and physics, usually regarded as separate, are
intimately connected. The analogy is tentative and tantalizing, but nevertheless fruit-
ful. The three areas are eigenvalue asymptotics in wave (and particularly quantum)
physics, dynamical chaos, and prime number theory. At the heart of the analogy is a
speculation concerning the zeros of the Riemann zeta function (an infinite sequence
of numbers encoding the primes): the Riemann zeros are related to the eigenvalues
(vibration frequencies, or quantum energies) of some wave system, underlying which
is a dynamical system whose rays or trajectories are chaotic.

Identification of this dynamical system would lead directly to a proof of the cel-
ebrated Riemann hypothesis. We do not know what the system is, but we do know
many of its properties, and this knowledge has brought insights in both directions:
from mathematics to physics, by stimulating the development of new spectral asymp-
totics, and from physics to mathematics, by indicating previously unsuspected corre-
lations between the Riemann zeros. We have reviewed some of this material before
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[1, 2, 3, 4, 5, 6], but these accounts do not include several recent developments to be
described here, especially those in the last part of section 4 and all of sections 5 and 6.

To motivate the approach from physics, we begin with the counting function for
the primes, m(x), defined as the number of primes less than x (thus 7(3.5) = 2); this
is a staircase function, with unit steps at the primes p. The density of primes is the
distribution

(1.1) ' (x) =) 6(x—p).

At the roughest level of description, and with the distribution appropriately smoothed,

1
log x

(1.2) ™' (x)

(as implied by the prime number theorem: m(x) ~ x/logx).

One of Riemann’s great achievements [7, 8] was to give an exact formula for
7’(z), constructed as follows. First, 7/(x) is expressed in terms of a function J(x) [7,
Chap. 1] that has jumps at prime powers:

100Mkz1/k
1.3 2)y==Y =g (2V/F).
0 o) = Y (o)

In this formula, p are the Mobius numbers (1, —-1,—1,0,—1,1,...) [7]. Each of the
partial densities J' is the sum of a smooth part (dominated by (1.2)) and an infinite
series of oscillations:

(1.4)  J' () 1 <1_x( 1 ) 2 Z cos {Re (t,) log x}

" logz 2—-1)) zxlogx R aImtn

ety >0

(see section 1.18 of [7]). Here the numbers ¢, in the oscillatory contributions are
related to the complex Riemann zeros, defined as follows.
Riemann’s zeta function, depending on the complex variable s, is defined as

(1.5) ((s) = H (1 - p_s)fl

p

Z n~° (Res>1)
n=1

and by analytic continuation elsewhere in the s plane. It is known that the complex
zeros (i.e., those with nonzero imaginary part) of {(s) lie in the “critical strip” 0 <
Res < 1, and the Riemann hypothesis states that in fact all these zeros lie on the
“critical line” Res = 1/2 (see Figure 1). The numbers ¢,, in (1.4) are defined by

(1.6) ¢C(3+ity) =0 (Ret, #0).

If the Riemann hypothesis is true, all the (infinitely many) ¢,, are real, and are the
heights of the zeros above the real s axis. It is known by computation that the first
1,500,000,001 complex zeros lie on the line [9], as do more than one-third of all of
them [10].

Each term in the sum in (1.4) describes an oscillatory contribution to the fluctu-
ations of the density of primes, with larger Ret,, corresponding to higher frequencies.
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Fig. 1 Complex s plane, showing the critical strip (shaded) and the complexr Riemann zeros (there
are trivial zeros at s = —2,—4,...).

Because of the logarithmic dependence, each oscillation gets slower as x increases.
This slowing-down can be eliminated by the change of variable u = log z; thus

f () = %exp (Fu) [ur’ (expu) — 1] + 1
(L.7) = _ Z cos {Re (t,) u} exp {—Im (t,) u} + O (exp (—%u)) .
Ret,>0

If the Riemann hypothesis is true, Imt,, = 0 for all n, and the function f(u), con-
structed from the primes, has a discrete spectrum; that is, the support of its Fourier
transform is discrete. If the Riemann hypothesis is false, this is not the case. The fre-
quencies t,, are reminiscent of the decomposition of a musical sound into its constituent
harmonics. Therefore there is a sense in which we can give a one-line nontechnical
statement of the Riemann hypothesis: “The primes have music in them.”

However, readers are cautioned against thinking that it would be easy to hear
this prime music by constructing f(u) as defined in (1.7) and then converting it into
an audio signal. In order for the human ear to hear the lowest Riemann zero, with
t; = 14.13..., it would be necessary to play N ~ 100 periods of cos(t;u), requiring
primes in the range 0 < z < exp(27N/t;) ~ exp(45) ~ 1017.

On this acoustic analogy, the heights ¢,, (hereinafter referred to simply as “the
zeros”) are frequencies. This raises the compelling question: frequencies of what?
A natural answer would be: frequencies of some vibrating system. Mathematically,
such frequencies—real numbers—are discrete eigenvalues of a self-adjoint (hermitean)
operator. That the search for such an operator might be a fruitful route to proving the
Riemann hypothesis is an old idea, going back at least to Hilbert and Polya [7]; what
is new is the physical interpretation of this operator and the detailed information now
available about it.

The mathematics of almost all eigenvalue problems encountered in wave physics
is essentially the same, but the richest source of such problems is quantum mechan-
ics, where the eigenvalues are the energies of stationary states (“levels”), rather than
frequencies as in acoustics or optics, and the operator is the hamiltonian. Reflect-
ing this catholicity of context, we will refer to the ¢, interchangeably as energies or
frequencies, and the operator as H (Hilbert, Hermite, Hamilton. . .).
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To help readers navigate through this review, here is a brief description of the
sections. In section 2 we describe the basis of the Riemann-quantum analogy, which
is an identification of the periodic orbits in the conjectured dynamics underlying the
Riemann zeros, made by comparing formulae for the counting functions of the ¢,, and
of asymptotic quantum eigenvalues. Section 3 explains the significance of the long
periodic orbits in giving rise to universal (that is, system-independent) behaviour in
classical and semiclassical mechanics and, by analogy, the Riemann zeros. The appli-
cation of these ideas to the statistics of the zeros and quantum eigenvalues is taken
up in section 4. Section 5 is a description of a powerful method for calculating the ¢,
(the Riemann-Siegel formula), with a physical interpretation in terms of resurgence
of long periodic orbits that implies new interpretations of the periodic-orbit sum for
quantum spectra. The properties of the conjectured dynamical system are listed in
section 6, where it is speculated that the zeros are eigenvalues of some quantization
of the dynamics generated by the hamiltonian H, = X P.

2. The Analogy. The basis of the analogy is a formal similarity between repre-
sentations for the fluctuations of the counting functions for the Riemann zeros ¢,, and
for vibration frequencies associated with a system whose rays are chaotic. For the t,
(assumed real), the counting function is defined for ¢ > 0 as

(2.1) N(@) = i@(t—tn),

where © denotes the unit step. Central to our arguments is the fact that N (¢) can
be decomposed as follows [11]:

(22) N ()= N () +Na(t),
where
N () = GTt) +1= % [argl“ (i + 2zt> - ;tlogﬂ} +1
23) t 7 1
=3 log(zm) +8+O(t>
and
(2.4) Na (t) = %Elii%lmlogé <;+it+a) .

(The branch of the logarithm is chosen to be continuous, with A (0) = 0.)

These two components can be interpreted as the smooth and fluctuating parts of
the counting function. Here and hereinafter the notation (- - -) denotes a local average
of a fluctuating quantity, over a range large compared with the length scales of the
fluctuations but small compared with any secular variation. Implicit in such averaging
is an asymptotic parameter; in the present case this is ¢, and the averaging range is
large compared with the mean spacing of the zeros but small compared with ¢ itself.

The formula for (N') can be obtained from the functional equation for ((s) [7]. It
follows by differentiating the last member of (2.3) that the asymptotic density of the
zeros is

(2.5) (d (1)) = % log (;) 10 <t12)
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Fig. 2 Thick line: Divergent series (2.6) for the counting function fluctuations Ny of the Riemann
zeros, including all values of m and the first 50 primes p. Thin line: Exact calculation of

Na from (2.4).

and therefore that the mean spacing between the zeros decreases logarithmically with
increasing t. Underlying the formula for Ny are the observations that the phase of a
function jumps by 7 on passing close to a zero, and that ((s) — 1 as Res — o0, so
that between the jumps in Mg this function varies smoothly, implying that its average
value is zero.

Now we substitute into (2.4) the Euler product (1.5), disregarding the fact that
this does not converge in the critical strip, and obtain the divergent but formally
exact expression

Na (t) = —iIleog{l - W}

1 > exp(—%mlogp) .
= 7;2 Z — sin {tmlog p} .

p m=1

(2.6)

This formula gives the fluctuations as a series of oscillatory contributions, each labelled
by a prime p and an integer m, corresponding to the prime power p™. Terms with
m > 1 are exponentially smaller than those with m = 1. The oscillation corresponding
to p has a “wavelength” (that is, t-period)

_ 2
logp’

(2.7) Tp

In order to discriminate individual zeros, sufficiently many terms must be included
in the sum for this wavelength to be less than the mean spacing; from (2.5), this gives
p < t/27. When truncated in this way, the sum (2.6) can reproduce the jumps quite
accurately for low-lying zeros, as Figure 2 shows, even though the complete sum
diverges.

Consider now a classical dynamical system [12] in a configuration space with D
freedoms, coordinates q = {q1,...,qp}, and momenta p = {p1,...,pp}. Trajectories
are generated by a hamiltonian function H(q, p) on the two-dimensional phase space
{q, p}, whose conserved value is the energy E. In quantum physics, q and p are
operators, with commutation relation [q, p] = ih, where i = h/27 is Planck’s con-
stant. Then H(q, p), augmented by boundary conditions, becomes a hermitean wave
operator, whose eigenvalues, discrete if the system is bound, are the quantum energy
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levels F,,. More generally, this formalism applies to any wave system (e.g., water
waves [13]) with coordinates q and wavenumber k, defined by a dispersion relation
w(q, k), the connection between the quantum and wave formalisms being

Familiar wave equations appear when the commutation relations are implemented
with k = —iV, and Hamilton’s equations are the corresponding ray equations (in

optics these are the rays generated by Snell’s law or Fermat’s principle). For example,
a locally uniform medium (H independent of q) with impenetrable walls corresponds
to “quantum billiards,” where waves are governed by the Helmholtz equation with
Dirichlet boundary conditions, and the (straight) rays are reflected specularly at the
walls [14]. Of special interest to us is the asymptotics of the eigenvalues E,, in the
semiclassical limit A — 0, which from (2.8) is equivalent to the short-wavelength or
high-frequency limit.

Waves, in particular the eigenfunctions of H, usually depend not on individual
trajectories but on families of trajectories, whose global structure is an important
determinant of the energy-level asymptotics. Of interest here is the case where the
trajectories are chaotic [15, 16, 17], that is, where E is the only globally conserved
quantity and neighbouring trajectories diverge exponentially. Then on a given en-
ergy shell (that is, for given F), the usual structure—and the one we will consider
here—is that all initial conditions generate trajectories that explore the (2D — 1)-
dimensional energy surface ergodically, except for a set, dense but of zero measure, of
(one-dimensional) isolated unstable periodic orbits.

An important result of modern mathematical physics, central to the Riemann-
quantum analogy, is that these isolated periodic trajectories determine the fluctuations
in the counting function N (E) of the energy levels [18, 19, 20, 21]. Using the notation
(2.2), with E replacing ¢, we can separate N/ (F) into its smooth and fluctuating parts
(N (E)) and Ng(E). The averaging is over an energy interval large compared with
the mean level spacing but classically small, that is, vanishing with A. We state the
formula for Nj(F) and then explain it:

1 >, sin{mS, (E) /h— twmpu,}
2.9 Na (E) ~ = .
29 e sz:mz::l m |det(M;”—I)|

The symbol ~ indicates that the formula applies asymptotically, that is, for small
h. (In the special case of the Selberg trace formula [21], corresponding to waves on
a compact surface of constant negative curvature, the formula is exact.) The index
p labels primitive periodic orbits, that is, orbits traversed once. The index m labels
their repetitions. Therefore, the two sums together include all periodic orbits. S,(E)
is the action of the primitive orbit p, that is,

(2.10) Sy (E) = y{p -dq.
P

In terms of S}, the period of the orbit is
05,

2.11 T, = 2.

( ) P oOF

The hyperbolic symplectic matrix M, (the monodromy matrix) describes the exponen-
tial growth of deviations from p of nearby (linearized) trajectories, between successive
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crossings of a Poincaré surface of section transverse to p. p, is the Maslov phase, de-
termined [22] by the winding round p of the stable and unstable manifolds containing
the orbit.

Physically, the appearance of periodic orbits is not surprising. The levels E,,,
counted by N, are associated with stationary states, that is, states or modes that are
time-independent. By the correspondence principle, their asymptotics should depend
on phase space structures unchanged by evolution along rays, that is, the invariant
manifolds with energy E. In the type of chaotic dynamics we are considering, there are
two types of invariant manifold: the whole energy surface, which determines (N (E))
as we will see, and, decorating this, the tracery of periodic orbits, which determines
the finer details of the spectrum as embodied in the fluctuations Mg (E).

For long orbits, the determinant is dominated by its expanding eigenvalues, and,
for large Tp,

(2.12) det (MJ* — 1) ~ exp (mA,T})

where )\, is the Liapunov (instability) exponent of the orbit p. Thus, approximately,

@)~ 1y orlamhl)

p m=1

m)\T)

(2.13)  Na( sin {msp (E) /h - ;wmup} .

Now we can make the formal analogy with the corresponding formula (2.6) for the
counting function fluctuations of the Riemann zeros:

Quantum Riemann
Dimensionless mS,
actions I mtlogp
(2.14) Periods mT, mlogp
Stabilities INT, tlogp= A, =1
Asymptotics h—20 t — oo

The nonappearance of & on the “Riemann” side indicates that the dynamical system
underlying the zeros is scaling, in the sense that the trajectories are the same for all
“energies” t, as in the most familiar scaling system, namely, quantum billiards, where,
for a particle of mass m, energy scales according to the combination k = /(2mFE) /A,
and, for an orbit of length L,, S,/h = kL,. With the analogy, primes acquire a new
significance, as primitive periodic orbits, whose periods are logp. The index m in (2.6)
then labels their repetitions.

The fact that all orbits have the same instability exponent (unity) indicates that
the Riemann dynamics is homogeneously unstable, that is, uniformly chaotic. More-
over, the dynamics does not possess time-reversal symmetry. If it did, degeneracy
of actions between each orbit and its time-reversed partner would lead to their con-
tributing coherently to NV(t), so that for most orbits (those that are not self-retracing)
the prefactor in (2.6) would be 2/7 rather than 1/7.

An alternative form of the periodic-orbit sum (2.9), which will be useful later, is
in terms of the level density

d N (E)

(2.15) d(B) = =

Denoting primitive and repeated periodic orbits by the common index j (= {p,m}),
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we can write
1
(2.16) dn (B) = — ; Ajcos{S; (E) /h},

where for convenience we have absorbed the Maslov indices into the actions, and the
amplitude A; is

T;
m\/det|(Mj — |)|

as h — 0. For the Riemann zeros, the corresponding formula, from (2.6) and (2.14),
has p; =0,

(2.17) Aj ~

log p T;
(2.18) A; = Z—Ejexp{—%Tj}7

and is an identity rather than an asymptotic approximation.

There are two discordant features of the analogy [1], to which we will return. First,
the exponential decay of long orbits in the quantum formula (2.13) is an approximation
to the determinant in (2.9), whereas for the Riemann zeros the exponential in (2.6)
is exact. Second, the negative sign in (2.6) indicates that when the Maslov phases
Ty, /2 are reinstated in (2.13) their value should be 7 for all orbits, but this is hard
to understand because if the index is 7 for a given orbit it should be 27 for the same
orbit traversed twice.

The smooth part (N (E)) of the counting function is, to leading order in %, the
number of phase space quantum cells (volume h”) in the volume Q(E) of the energy
surface H = E; thus (V(E)) ~ Q(E)/hP. For billiards,  is proportional to the
spatial volume confining the system (this is Weyl’s asymptotics [23]). The mean level
density is thus

(2.19) (d(B)) ~

In the quantum formula (2.13), each orbit contributes an oscillation to ANVq(E),
with energy “wavelength” (cf. (2.7))

h

(2.20) = T )

This should be compared with the mean spacing of the eigenvalues, which is the
reciprocal of the mean level density and so (from (2.19)) of order A”. An important
implication is that the oscillation contributed by a given orbit has, asymptotically, a
wavelength much larger than the mean level spacing. Thus in order to have a chance
of resolving individual levels it is necessary to include at least all those orbits with
periods up to

(2.21) Ty (E) = 27h (d) = O (thl) .

This evokes the time-energy uncertainty relation, so T is called the Heisenberg time.
Asymptotically, Ty corresponds to very long orbits, or, in the Riemann case, large
primes py (t) = t/2m (cf. the discussion following (2.7)). In what follows, this emphasis
on long orbits will play a key role.
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3. Long Orbits and Universality. In a classically chaotic system, the periodic
orbits proliferate exponentially as their period increases [24], with density

number of orbits with periods between T and T + dT'

p(T) T

(3.1) exp (AT

N as T — oo.

Here, ) is the topological entropy of the system. In the cases we are interested in, A
can be identified with a suitable average of the instability exponents of long periodic
orbits (cf. (2.12)). In the Riemann case, where according to (2.14) the periodic orbits
correspond to primes, (3.1) nicely reproduces the prime number theorem (1.2) and
thereby reinforces the analogy (the repetitions, labelled by m, give exponentially
smaller corrections).

From (2.18), the proliferation in (3.1) cancels the decay of the intensities A3 for
long orbits. One way to write this is

(3.2) lim fZAQ (T —T;)

T—oo T

This is the sum rule of Hannay and Ozorio de Almeida [25]. Tts importance is threefold:
first, it does not contain & and so is a classical sum rule. Second, the amplitudes A;
nevertheless have significance in quantum (i.e., wave) asymptotics, because they give
the strengths of the contributions to spectral density fluctuations. Third, the rule is
universal: (3.2) contains no specific feature of the dynamics—it holds for all systems
that are ergodic. One way to appreciate the naturalness of this universality is to
imagine that a long orbit with energy E, inscribed on the constant-energy surface
H = FE, forms an intricate tracery that, with the slightest smoothing, could cover
the surface uniformly with respect to the microcanonical (Liouville) measure. This
“phase-space democracy” is the basis of Hannay and Ozorio de Almeida’s derivation.

Expressed mathematically, this ergodicity-related sum rule corresponds to an
eigenvalue vy = 1 (associated with the invariant measure) of the Perron-Frobenius
operator that generates the classical flow in phase space. Equivalently [26, 27], it
corresponds to a simple pole at s = 0 of the dynamical zeta function {p(s), defined
(for two-dimensional systems, for example) by

S (-50)

p m=0

(3.3)

where A, is the larger eigenvalue (|]A,| > 1) of the monodromy matrix M. The rest of
the spectrum of the Perron—Frobenius operator, or equivalently the analytic structure
of {p(s) away from s = 0, determines the rate of approach to ergodicity—that is, it
is related to the system-specific short-time dynamics.

Now recall that according to (2.21) the long orbits determine spectral fluctuations
on the scale of the mean level separation. The universality of the classical sum rule
suggests that the spectral fluctuations should also show universality on this scale.
And by the Riemann-quantum analogy, we expect this spectral universality to extend
to the Riemann zeros t,,.

It is in the statistics of the levels and Riemann zeros that the universality appears.
This is to be expected, since ergodicity is a statistical property of long orbits.
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It is important to note that we are here considering individual systems and not
ensembles, so statistics cannot be defined in the usual way, as ensemble averages.
Instead, we rely on the presence of an asymptotic parameter (see the remarks after
(2.4), and before (2.9)): high in the spectrum (or for large ¢ in the Riemann case),
there are many levels (or zeros) in a range where there is no secular variation, and it
is this large number that enables averages to be performed. Universality then emerges
in the limit # — 0 (or ¢ — o0) for correlations between fixed numbers of levels or
ZEros.

A mathematical theory of universal spectral fluctuations already exists in the more
conventional context where statistics are defined by averaging over an ensemble. This
is random-matriz theory [28, 29, 30, 31, 32|, where the correlations between matrix
eigenvalues are calculated by averaging over ensembles of matrices whose elements
are randomly distributed, in the limit where the dimension of the matrices tends
to infinity. Here the relevant ensemble is that of complex hermitean matrices: the
“Gaussian unitary ensemble” (GUE). As will be discussed in the next section, it is
precisely these statistics that apply to high eigenvalues of individual chaotic systems
without time-reversal symmetry, and also to high Riemann zeros, in the sense that
the spectral or Riemann-zero averages described in the previous paragraph coincide
with GUE averages.

First, however, we give a very simple argument [33] showing that the approach to
universality must be nonuniform. The classical sum rule (3.2) applies to long orbits
but not to short ones, because these will reflect the specific dynamics of the system
whose spectrum is being considered. Therefore, spectral features that depend on short
orbits can be expected to be nonuniversal. From (2.20), these are fluctuations on the
energy scale ¢g = h/Ty, where Tp is the period of the shortest orbit. This scale is
asymptotically small but still large compared with the separation of order h” between
neighbouring eigenvalues. On this basis, we expect universality to be a good approx-
imation for correlations between eigenvalues separated by up to O(1/hP~1) mean
spacings, but not for larger separations. For the Riemann zeros, Ty = log2 (equa-
tion (2.14)), whereas the mean separation between zeros is 27w/ log(t/2m). Therefore
universality for zeros near ¢ should break down beyond about log(¢/27)/log 2 mean
spacings. We regard the observation of the breakdown of random-matrix universality
for the Riemann zeros [34], in accordance with this prediction, as giving powerful
support to the analogy with quantum or wave eigenvalues.

4. Periodic-Orbit Theory for Spectral Statistics. In discussing statistics, it will
be simplest to measure intervals between eigenvalues or Riemann zeros in units of the
local mean spacing. We denote such intervals by z, and the corresponding levels or
zeros, referred to a local origin, by x,; in these units, (d(z)) = 1. We will mainly
be concerned with statistics that are bilinear in the level density, the simplest being
the pair correlation of the density fluctuations, defined in [31], in the sense of a
distribution, as

R (z;y) = probability density of separations x of levels or zeros
close to a scaled position y
(1) :%mgné(xm—xn—x)
=(d(y—32)d(y+37)) -6 (@)
=14 {da(y— 3z)da (y+ 32)) —6(x).
(In the second member, the sum is over a stretch of N levels near y, with N >>1.) R
gives the correlation between levels near F, or, correspondingly, Riemann zeros near
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t; for simplicity of notation, we will henceforth not indicate these base levels (denoted

y in (4.1)).
Closely related to R is the form factor K(7) (the name comes from crystallogra-
phy), defined as

K(r)=1+ /00 dx exp {2miz7} (R (z) — 1)

(4.2) 1l — .
= =6(r)+ 5 D Y _exp {2mit (wm — )},

where the sum is as in (4.1). Here the variable 7 (conjugate to z) is the scaled time

(4.3) T= T,
where Ty is the Heisenberg time (equation (2.21)). With the definitions given, both
R and K tend to 1 at long range; the term 6(z) in R ensures that this requirement is
compatible with (4.2).

Other statistics that are bilinear in d can be expressed in terms of K or R. A
useful one is the number variance:

%32 (x) = variance of number of levels or zeros in
an interval where the mean number is x

= (¥ 1+ o) ~ N (s~ $a) ~ o)

44 o -
(44) = % ; dr KT(2 ) sin? (7a7)
:x+2/0 dy (@ — ) [R(y) — 1].

The correlation function (4.1) is determined by the spectral density fluctuations,
for which there is the semiclassical formula (2.16). Our aim in this section is to explain
how to employ this observation to calculate these bilinear statistics, obtaining not only
the universal random-matrix limit but also the corrections to this corresponding to
large eigenvalue or zero separations, or short times. The argument is subtle and has
several levels of refinement, of which we start with the simplest [3, 5, 33].

We will calculate K (7). The first step is to substitute (2.16) into (4.1), thereby
obtaining a double sum over periodic orbits. Since all the actions are positive, we can
simplify the averages (over a small interval of eigenvalues or along the critical line)
using

(4.5) (cos {S;/n} cos {Sk/h}) = % (cos {(S; — Sk) /R}).

The dimensionless intervals x that we will be considering may be large but must
correspond to classically small energy ranges, so we can approximate the actions
using

T T} x?
(4.6) S; <E0:|:2<d>)5j:tz<d>+0<<d>2>,

where S, Tj, and d are evaluated at Ey. Elementary manipulations, and evaluating
the integral in (4.2), give the asymptotic (that is, small-h) form factor as the double
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sum

(40K (1) = W <ZZAjAk cos{(5; — Sk) /h} 6 (ITI - 4Tjrzzl>T,’fL>> :

J k

It is convenient now to consider separately the diagonal part Kgiae of the sum
(terms with j = k) and the off-diagonal part Kog (terms with j # k). For Kgiag, we
have

1 2 Tj
(4.8) Kaiag () = W ;AJ‘S <|T| 27 (d) h)'

In the limit & — 0, 7 fixed, the sum over orbits can be evaluated using the Hannay-
Ozorio sum rule (3.2), giving

(4.9) lim Kaiag (7) = 7].

This is universal: all details of the specific dynamics have disappeared. Because of the
Riemann-quantum analogy, the same behaviour should hold for the pair correlation
of the Riemann zeros. Here we make contact with the seminal work of Montgomery
[35], who indeed proved (4.9) in that case.

Now we observe that in random-matrix theory the exact form factor of the GUE
is

(4.10) Kaue (1) =m0 —|r)+ O (7] -1).

(© is the unit step.) For later reference, the GUE pair distribution function, obtained
from (4.2), is

. 2
(4.11) Reug (z) =1 - (Sm(m)

T
Evidently the approximation (4.9), based on periodic orbits, captures exactly the
random-matrix behaviour for |7| < 1, without invoking any random matrices. This
led Montgomery [35] to conjecture (following a suggestion of Dyson and independently
of any semiclassical argument) that for the Riemann zeros K(7) = Kgug(7) in the
limit ¢ — oo.

Clearly, (4.9) does not give the random-matrix result when || > 1. Indeed
it fails drastically by not satisfying the requirement, necessary for any form factor
representing a discrete set of points (eigenvalues or zeros), that K(7) — 1 as 7 — oo.
This failure reflects the importance of K., and implies that for large 7 (long orbits)
the off-diagonal terms in the double sum (4.7) cannot vanish through incoherence,
as might naively be thought, but must conspire by destructive coherent interference
to cancel the term 7 from Kagj.e and replace it by 1. This is consistent with the
Montgomery conjecture, which implies

(4.12) Ko (1) = O (|7 = 1) (1 = |7])

in the limit t — oo.
One reason why Kgiae alone is inadequate is the proliferation of orbits: for suf-
ficiently long times, there will be many pairs of orbits whose actions differ by less
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than %, so that they cannot be regarded as incoherent in (4.7). This phenomenon,
that in some appropriate sense the large-7 limit of the double sum must be 1, is the
semiclassical sum rule. Originally [33] the rule was obtained by a different argument,
and was mysterious. Now there is a better understanding of the mechanism by which
the cancellation occurs [36, 37]; we will discuss it later.

Indeed, for the Riemann zeros, (4.12) can be derived [4] using a conjecture of
Hardy and Littlewood [38] concerning the pair distribution of the prime numbers.
These correlations are important because if the logarithms of the primes (primitive
orbit periods) were pairwise uncorrelated, Kog, being the average of a sum of random
phases, would be zero. The Hardy-Littlewood conjecture is that ma(k; X), defined
as the number of primes p < X such that p + k is also a prime, has the following
asymptotic form for large X:

X
4.13 ~——=C(k
(413) ™ (2) ~ O
with
0 if kis odd

(4.14) C (k)= 9 H (1 _ 1) H <pl> if k is even

2 )

q>2 (q - 1) p>2 b= 2
plk

where the g¢-product includes all odd primes, and the p-product includes all odd
prime divisors of k. Pairwise randomness would correspond to C'(k) = 1. It can be
demonstrated [4] that as K — oo

K
(4.15) Y C(k)~K - 3logK
k=1
and so on average
1
4.16 Ck)y~1——
(116) () ~1 - 37

for large k. This in turn was shown to imply (4.12) in the limit ¢ — oo [4].

We have seen that Kgjae is universal in the limit 2 — 0; that is, it is independent of
the specific features of the dynamics. These reappear—in a dramatically nonuniform
way—in the approach to the limit. To see this, note first that it is only for short orbits,
that is, when 7 << 1, that universality breaks down. Next, choose a 7* corresponding
to a time much longer than the shortest period T and shorter than the Heisenberg
time Ty, that is,

1o

<1
27r(d>h<<T <

(4.17)

We continue to use the Hannay-Ozorio sum rule for 7 > 7*, the limit (4.12) for Kog
ensuring the correct GUE formula (4.10) for 7 > 1, but take the contributions from
orbits with period T; < 2m(d)hr* directly from (4.8). Thus

K(T)%KGUE(T)

(4.18) 1 25 (1 — — 5\ e —ir
+4(W<d>h)2n<2%m*z4]6(|| o RUCTGE)
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0.60

0.55

variance

0.5

0.45

0.40

Fig. 3 Number variance Y.%(x) (4.4) of the Riemann zeros t, near n = 10'2, calculated from
(4.18) (with % = 1/4), (2.14), and (2.18) (thin line), compared with 3.%(x) computed from
numerically calculated zeros by Odlyzko [39, 40] (thick line); all the zeros are close to t =
2.677 x 1011, and their smoothed density is (d) = 3.895.... Note the resurgence resonances
(cf. (4.23)) associated with the lowest zeros t1, ta, and t3, and that the theory fails to capture
small, fast oscillations in the data.

is a candidate for a semiclassical formula for the form factor. Later we will see that this
is not quite correct: the proper incorporation of the off-diagonal terms in the double
sum introduces a small but important modification near 7 = 1. For the moment, we
continue to discuss (4.18).

This formula for K (1), applied to the Riemann zeros, is extremely accurate. When
employed in conjunction with (4.4) to calculate the number variance of the zeros [34],
it reproduces almost perfectly this statistic as computed from numerical values of high
zeros [39, 40]. Figure 3 shows that the agreement extends from the random-matrix
regime (small x) to the far nonuniversal regime. Note however the tiny oscillatory
deviations; we will return to these later.

For the pair correlation, we have

(4.19) R (z) = Rgugr (z) + R (x).

Remarkably, it is possible to calculate the correction R, explicitly and in closed form
at this level of approximation. The formula was obtained for both the Riemann zeros
and for general systems in [41], and independently in [42] for the Riemann zeros. From
(4.18), (4.2), and (2.14), we get

1 log? p {xmlogp}
R.(z) ~ Rl () = —— cos
WrR@=grns 2 e @
(4.20) p"" <exp(2m(d)7")

*

-2 / dr cos {2mat},
0
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where (d) is given by (2.15). The sum is insensitive to the value of 7* provided this
is not too small, so we set 7* = co. Next, we write
log? (p™

(4.21) log?p = log” (»™) + (1 —m)log® p.

m
This corresponds to separating R} into contributions from primitive orbits (first term)
and repetitions (second term). In the repetitions, the sum over m can be evaluated
explicitly. For the first term, we use [7]

m a+1i00
(4.22)  J (w) = Z W = ﬁ/ _ dsw* 'log ¢ (s) (a>1).
p,m a—100

Some tricky but elementary manipulations now give

R! (z) = # [ 5 (’9£RelogC(1 — &)
w2s) 2(n (d))” | & 2
Z log” p
— (pexp {i¢logp} — 1)°
where
(4.24) g=-1

(d).

This formula has a very interesting structure, worth discussing in detail. First,
& — 0 in the limit ¢ — oo for any fixed z, and so the pole in the zeta function
cancels the singularity 1/£2. Second, the prefactor 1/(d)? ensures that the correction
R! is asymptotically small in comparison with Rgug (equation (4.11)). Third, the
dependence on ¢ shows that R. involves the separation between zeros in the original
variable ¢ = Ims (heights of zeros along the critical line), rather than the scaled
separation z; this means that structural features of R! appear asymptotically at larger
x than the oscillations in Rgug, as expected for nonuniversal features of correlations.
Fourth, the contributions from repetitions (the sum over p in (4.23)) are less significant
than those from primitive orbits (first two terms), as Figure 4 shows. Fifth, and most
important, the appearance of ((1 — i€) indicates an astonishing resurgence property
of the zeros: in the pair correlation of high Riemann zeros, the low Riemann zeros
appear as resonances. This is illustrated in Figure 5. The resonances also appear as
peaks in the nonuniversal part of the number variance (Figure 3).

For generic dynamical systems without time-reversal symmetry, it can be verified
directly that the analogue of (4.23) is [41, 43]

S
2 (wh(d))”

— 82Rel -R
e % elog Cp (i€) ezp:mijo (|A, \Amexp{ ZfT}*l) H

R (z) =

where (p is the dynamical zeta function defined in (3.3), and now & = z/h(d). Again,
the pole in the zeta function (now at s = 0) cancels the singularity 1/¢2. In this
case, the resonances discussed above are caused by singularities of log(p(s) away
from s = 0, that is, by subdominant eigenvalues of the Perron—Frobenius operator.
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Fig. 4 Nonuniversal correction to the pair correlation of the Riemann zeros, calculated from (4.23)
as RY waled (&) = 2 (w(d))? Re (x). Parts (a) and (c) include repetitions; (b) and (d) omit

repetitions.
R v
0.8
0.6
0.4
0.2
5 10 15 20 X 25

Fig. 5 Pair correlation R(x) of the Riemann zeros, calculated “semiclassically” (thick line) from
(4.19) and (4.23), for zeros near n = 10°, and random-matriz behaviour Rgus(x) (thin line);
note the first nonuniversal resurgence resonance near x = 21.

Now we return to the tiny oscillatory deviations noticeable in Figure 3, reflecting
small errors in (4.19) and (4.23). These are again associated with the approach to the
t — oo limit of the form factor, rather than the limit itself: whereas (4.23) captures
the appropriate large-t asymptotics of Kgjag, the GUE-motivated replacement (4.12)
incorporates only the ¢ — oo limit of Kog-.

For the Riemann zeta function, this can be corrected as follows. We have already
noted above that the formula (4.12) for K, can be derived using the smoothed
expression (4.16) for the Hardy-Littlewood conjecture. The large-t asymptotics we
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0.385

variance

0.38

47 48 49 X 50

Fig. 6 Number variance 3.%(z) (4.4) of the Riemann zeros tn near n = 10°, calculated from (4.19)
and (4.26), including the off-diagonal correction (4.27)—(4.28) [70] (full line), compared with
S 2(x) computed from numerically calculated zeros by Odlyzko [39, 40] (dots); all the zeros
are close to t = 3.719 x 108, and their smoothed density is (d) = 2.848. ...

seek comes from using the original unsmoothed form (4.14) [5, 41]. The result is that
(4.26) R.(z) = R () + R% (z),

in which R! is given by (4.23), and

9 1 cos (2mx)
R (z) = —
(4.27) () 2 (m (d))” { ¢
1C(1+6)? Re {exp (2miz) b (5)}} |
where
& 1\2
(4.28) b =1]] <1 - H)

is a convergent product over the primes. As with the diagonal term (cf. the discussion
after (4.24)), convergence as £ — 0 is ensured by the pole of the zeta function.

This second correction, although small, does incorporate the small oscillations,
through the trigonometric functions with argument 27z. Asymptotically (that is, as
t — 00), these oscillations are fast (cf. (4.23)—(4.24)) in comparison with the variations
from the resonances of the zeta function. When employed in conjunction with (4.4),
the correction accurately reproduces the oscillatory deviation (Figure 3) in the number
variance of the zeros; this is illustrated in Figure 6.

Unfortunately, this derivation of (4.27) for the Riemann zeros cannot be imi-
tated for general chaotic dynamical systems because we have no a priori knowledge
of the correlations between the actions of different periodic orbits, analogous to the
Hardy-Littlewood conjecture for the primes. It is possible to get some information by
working backwards and, assuming that the GUE expression (4.10) or (4.11) describes
the pair correlation of eigenvalues in generic chaotic systems without time-reversal
symmetry, deriving the universal limiting form of the implied action correlations [37].
(This procedure essentially follows an analogous derivation for the primes themselves,
assuming the Montgomery conjecture [44]). An interesting feature of this approach
is that it leads to predictions about classical trajectories based on the distribution of
quantum energy levels. However, it gives no information about the deviations from
random-matrix universality that are the focus of our concern here.
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Recently a theory has been developed that overcomes these difficulties [5, 41]. Tt
is based on two observations.

First, as already noted above, quantum eigenvalues (or Riemann zeros) are re-
solved by the trace formula if the sum (2.9) over periodic orbits is truncated near the
Heisenberg time Ty (this will be made more precise in the next section). Hence, if
the trace formula thus truncated generates the approximation

(4.29) N (E) = (N (E)) + Ng (E)

to the counting function, the quantities E,, defined by
(4.30) N (En> =n+3

should be good semiclassical approximations to the exact eigenvalues. The theory is
based on calculating the correlations in this approximate spectrum.

Second, the diagonal terms Kgiag(7) are asymptotically dominant in the form
factor for 7 < 1, corresponding to times less than Tp. This implies that orbits with
periods less than Ty make contributions that are effectively uncorrelated; treating
them in this way allows the correlations in the E,, spectrum to be computed exactly.

For chaotic systems without time-reversal symmetry, the result is that when = >>
1 the deviations from the GUE formula can also be represented in the form (4.26),
(4.25), and (4.27), where (1 4 &) is replaced by (p(i€) (defined by (3.3)) and, in
(4.28), b(&) is replaced by

b(E) = %H 2601 {exp (—iT,€)  exp (—iT,8)
P
(4.31) ‘ (») ‘2
AL AT }A_ll exp (iTp€) } ﬂ
p o fp o |y P @ P
‘CD (Zf)’
(again & = x/h(d)). Here + is the residue of the pole at s = 0 of {p(s), 2¢1 is the ¢-
hypergeometric function [45], and (7 is the pth element of the product over primitive
orbits in (3.3).

The formal similarity between the results for the Riemann zeros and for the
semiclassical eigenvalues is striking, and reinforced by the fact that the derivation
of (4.31) just outlined leads precisely to (4.28) when applied to the zeros. Indeed,
by Fourier-transforming (4.26) with respect to ¢, this can be regarded as a heuristic
derivation of the Hardy-Littlewood conjecture. In the same way, Fourier-transforming
the corresponding result for dynamical systems with respect to 1/A leads to a classical
periodic orbit correlation function corresponding directly to the Hardy-Littlewood
conjecture and reducing to the universal form conjectured in [37] in the long-time
limit. It is a challenge to derive these correlations within classical mechanics.

We finish this section on connections between statistics of the Riemann zeros
and quantum eigenvalues by remarking that the results for pair correlations extend
to correlations of higher order. Thus Montgomery’s conjecture for the two-point
correlation of the Riemann zeros generalizes to all n-point correlations. Specifically,
the irreducible n-point correlation function

(4.32) Ry (21,73, ,7n) = (d1>" <del (t+$>>




254 M. V. BERRY AND J. P KEATING

tends asymptotically to the corresponding GUE expression:

(4.33) lim R, (z1,25...,2,) = det S,

t—o0

where the elements S;; of the n x n matrix S are given by

sin{m (z; — z;)}

(4.34) Sij = s (x4, 75) = (2 — ;)

(1—6).

The analogue of Montgomery’s theorem for the diagonal contributions to R, was
proved for n = 3 [46] and then for all n > 2 [47]. The off-diagonal contributions were
calculated using a generalization of the Hardy-Littlewood conjecture for n = 3 and
n = 4 [48] and then for all n > 2 [49]. In all cases the results confirm the conjecture
(4.33) and (4.34). The nonuniversal deviations from the GUE formulae (4.33)—(4.34)
were calculated for n = 3 and n = 4 [41] using the method outlined above, and take
a form (related to the structure of ((s) as s — 1) directly analogous to that already
discussed. As expected, this extends to the higher order correlations of quantum
eigenvalues.

5. Riemann-Siegel Formulae. A powerful stimulus to the development of analo-
gies between quantum eigenvalues and the Riemann zeros has been the Riemann-Siegel
formula for ((s). As explained in [7], this very effective way of computing the zeros
(especially high ones)—employed in most numerical computations nowadays—was
discovered by Siegel in the 1920s among papers left by Riemann after his death 60
years earlier. We present the formula in an elementary way, chosen to facilitate our
subsequent exploration of its intricate interplay with quantum mechanics. Riemann’s
derivation [11, 50] was different, and a remarkable achievement, because although it
was one of the first applications of his method of steepest descent for integrals it was
more sophisticated than most applications today, in that the saddle about which the
integrand is expanded is accompanied by an infinite string of poles.

It is a consequence of the functional equation satisfied by ((s) [11] that the fol-
lowing function Z(t) is even, and real for real ¢:

(5.1) Z(t)=exp{if (t)} ¢ (5 +it).

Here 6(¢) is the function appearing in the smoothed counting function (2.3) for the
zeros. Naive substitution of the Dirichlet series (1.5) gives the formal expression

(5.2) Z () = exp {if (¢ }Z exp {’ffjog ni

This is doubly unsatisfactory. First, it does not converge—a defect shared with its
relative (2.6) for Mg(t) (cf. (2.4)) and similarly originating in the inadmissibility of
(1.5) in the critical strip. Second, it is not manifestly real as Z(¢) must be.

Both defects can be eliminated by truncating the series (5.2) at a finite n = n*(¢)
and resumming the tail. The truncation n*(t) is chosen to be the term whose phase
0(t) —tlogn is stationary with respect to t; the asymptotic formula for 6 (last member
of (2.3)) gives

(5.3) n* () = Int (@) .



THE RIEMANN ZEROS AND EIGENVALUE ASYMPTOTICS 255

A crude resummation [1] using the Poisson summation formula leads to a result equiv-
alent to the “approximate functional equation” [11]:

n*(t)
cos{0 (t) —tlogn
(5.4) Z(H =23 {(721/2 B
n=1

This is a remarkable example of resurgence: the resummed terms in the tail n > n*(t)
are the complex conjugates of the early terms 1 < n < n*(t), so that the series in
(5.4)—called the “main sum” of the Riemann-Siegel expansion—is real, like the exact
Z(t). The zeros generated by the first term alone (n = 1), that is, cosé(t) = 0,
have the correct mean density (cf. (2.3)). Higher terms shift the zeros closer to their
true positions, and introduce the random-matrix fluctuations. It is worth mentioning
that the zeros obtained by including successive terms in (5.4) cannot be regarded as
the eigenvalues of hermitean operators that approximate the still-unknown Riemann
operator, because these partial sums of the main sum each have zeros for complex ¢ [6].

Unfortunately, the truncation (5.3) introduces another defect: the sum is a dis-
continuous function of ¢, unlike Z(¢), which is analytic. The discontinuities can be
eliminated by formally expanding the difference between (5.2) and the sum in (5.4)
about the truncation limit N(¢), to obtain the correction terms in (5.4). This will de-
pend on the fractional part of /(¢/27) as well as its integer part n*, so it is convenient
to define

t 1
5.5 t)=4/—=n"(t —(1—2(1)).
(55) a(t) =1/ oe =" () + 3 (12 (1)
The expansion is in powers of 1/a (henceforth we do not write the ¢-dependences

explicitly), and gives

(5.6) Z(t) =2 nz cos {6 (t) — tlogn} n (1) i c. (z)

nl/2 al/? a’
r=0

This procedure was devised in [4], where it was used to calculate the first correction
term Cp(z), and elaborated in [51] in a study of the higher corrections.

The sum over r is the Riemann-Siegel expansion. Its terms C,.(z) are constructed
from derivatives (up to the 3rth) of

cos {5 (= + 3)}
cos{mz}

(5.7) Co (2) =

with coefficients determined by an explicit recurrence relation involving the coeffi-
cients (Bernoulli numbers) in the Stirling expansion of 0(t) for large ¢. The next few
coefficients are

0(3) (Z)

Cr(z) = i)27r2 ’
P () A (2)

C2(2) = grz + Dsgt

(5.8) <1>7r <5>7T 9)
O (Z): C(O (Z)+CO (Z) + CO (Z)
3 3272 12074 ' 1036876’
(= S0 | 19657 (2) , UG (2) | G5 (2)

12872 153674 2304076 49766478
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(superscripts in brackets denote derivatives). Gabcke [50] calculated C,(z) for r < 12.
Later terms get very complicated; for example,

Cao (2) = 332727711 (2) ¢ 117753804989C " (2)
20 \#) = 271877906944 710 3208534883328 w12
+13899745416281Cés)(z) n 311274631265011C'? (2)
692692325498880 714 164583696538533888 710
" 2431103703048530417C{'® (2)
449313491550197514240007 18
" 232544268738862214941C2% (2)
373186948553264049684480000720
361888761444289010497C %Y (2
+ 0
106489993378346112059965440000722
665406310453227159231 z
n 4 453227 77C®)
68430469744925211609733791744000007 2%
n 391261681973226653C%? (2)
(5.9) 25057539453517100072893440000000726
n 1259995823308801C5% (2)
85717103786692288213155840000000728
n 713214794639C5"” ()
85717103786692288213155840000000730
n 50407933481C5* (2)
17650884544555675988853050572800000 732
" 1039499C5* (2)
176836320112431633283499950080000073%
n 224115 (2)
321391973789793928418521000181760000730
n 5909 (2)
T36362023 16509828105 757248 1505689600007
+ CU (z)
9327162384492722424337957734989168640000720 *

An elaborate asymptotic analysis [51] shows that the high orders (“asymptotics
of the asymptotics”) can be represented compactly as a “decorated factorial series”
whose terms are

I (ir)
5.10 Cr(2)= —==f(r2)),
(5.10) (2) (m/i)” f(r,2)

where for large r

£~ Y (D e ()
(5.11) m=0
y {sin{(?m +1)y/rtcos{(m+ 3) 7wz} (reven) }
cos{(2m + 1) /r}sin{(m+ 3) 7z} (rodd) [’

Comparison with numerically computed C..(z) (up to r = 50, using special techniques
to evaluate the derivatives of Cy(z)) shows that these formulae capture the fine details
of the Riemann-Siegel coefficients, even for small r.

The factorial in (5.10) means that the sum over r in (5.6) is divergent in the
manner familiar in asymptotics: the terms get smaller and then diverge. Asymptotics
folkore suggests, and Borel summation (implemented analytically and checked numer-
ically) confirms, that optimal accuracy obtainable from the Riemann-Siegel formula
(without further resummation) corresponds to truncating the sum at the least term.
This has

(5.12) r* = Int (27t)



THE RIEMANN ZEROS AND EIGENVALUE ASYMPTOTICS 257

and the resulting error is of order

(5.13) Z(t)—2 i cos{f(t) —tlogn} ()" i Cr (2) = O (exp{—nt}).
n=1

nl/2 al/? a’
r=0

The accuracy is very high: even for the lowest Riemann zero, r*(¢;) = 89 and
exp{—7t;} ~ 10720, Nevertheless, it is possible to do better, as we shall see later.

Now we turn to the quantum analogues of the Riemann-Siegel formula for clas-
sically chaotic systems with D > 1, as envisaged in [1], explored in detail in [52],
and derived in [53]. These studies are motivated by the hope that such an effective
method of computing Riemann zeros might lead to a useful way to calculate quantum
eigenvalues.

First, the counterpart of Z(t) in (5.1) is a function with zeros at the quantum
energy levels E,,; this is the quantum spectral determinant

A(E) =] A(E, E,) (E — E,) = det {A(E, H) (E — H)}

(5.14) n
= det Aexp {trlog (E — H)},

where H is the hermitean wave operator (section 2) and the real factor A is introduced
to make the product converge. Hermiticity implies that A is real for real F; this
“quantum functional equation” is analogous to the functional equation for {(s), which
implies that Z(t) is real for real ¢.

To find the counterpart of the Dirichlet series (5.2), we note that the quantum
eigenvalue counting function can be written (cf. (2.4)) as

(5.15) N(E) = —% ;i_r)r(l)ImTrlog{l —(E+ie)/H}.

Now the decomposition into smooth and fluctuating parts, together with the periodic-
orbit formula (2.9), leads to

(516) A (E) ~ B (B)exp {—ir (W ()} [ Jexp ¢ = 37 = LWES(M(E) /Ti)}\
p m=11mM e ;’L —

where B(FE) is real and nonzero for real E and where we have absorbed the Maslov
indices into S.

Expanding the product over primitive orbits p and the exponential of the sum
over repetitions m, we obtain a series of terms that can be labelled by

(5.17) n={0,1,2...} & {m,} ={mi,ma...}.

Here m,, represents the number of repetitions of the orbit p. Each term corresponds
to a sum over actions:

(5.18) Sn (B) =Y myS, (E).

The expansions lead to

(519)  A(E)~ B(E)exp{—ir (N (E))} 3 D, (E) exp {iS,, (E) /1)

n=0
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with an explicit form for the coefficients D,, that we do not give here [52]. As (5.18)
indicates, the terms n correspond to composite orbits, or pseudo-orbits, consisting of
combinations of repetitions of different periodic orbits. We label the composite orbits
so that increasing n corresponds to increasing period

(5.20) 7. (p) = 218

with n = 0 representing no orbit at all, that is, m, = 0 (for which the coefficient
Dy =1).

The sum (5.19) is the counterpart of the Dirichlet series (5.2) for Z(t), with
composite orbits n related to primitive orbits p in the same way that the integers n
are related to the primes p (cf. (1.5)). Moreover (5.19) diverges, like the sum (2.9)
from which it was obtained, and it is not manifestly real as the exact A(E) must be.
Our interpretation of the Riemann-Siegel formula suggests a similar resummation of
the tail of the series (5.19) after truncation at the term whose phase is stationary with
respect to E. This term—the counterpart of n*(t) in (5.3)—represents the composite
orbit defined by

A
dE
The corresponding period 7*(E) is

(5.21) (S, (B) /h— 7 (N (E))] = 0.

(5.22) T*(E) = nh{d (B)) = 1Ty (E),

where Ty (E) is the Heisenberg time (2.20).

Comparison with the Riemann-Siegel main sum in (5.4) suggests that the sum of
the composite orbits with 7,, > 7* is, approximately, the complex conjugate of the
sum of the orbits with 7,, < 7*. In fact, this relation can be derived using arguments
based on analytic continuation with respect to F [53]. These arguments also indicate
a more detailed correspondence: between the sums of groups of terms with periods
T* 4+ X and 7* — X. The resulting “Riemann-Siegel lookalike” formula is

(5.23) A(E)~2B(E) Y Dyn(E)cos{S,(E)/h—m(N(E)}+--.
T, <T*(E)

(For a different derivation, see [54].)

With (5.23) it is possible to reproduce some low-lying quantum eigenvalues, and
of course the fact that the sum is finite is a major advantage over the infinite divergent
series (2.9) and (5.19). However, for a chaotic system with D > 1 the number of terms
with 7, < 7* is exponentially large in 1/A, so the Riemann-Siegel lookalike is not as
useful for calculating high quantum eigenvalues as (5.4) is for calculating Riemann
zeros. The origin of the difference is the exponential proliferation of periodic orbits
(and composite orbits), together with the fact that (d) increases as 1/AP, whereas for
the Riemann zeros, whose classical counterpart appears to be quasi-one-dimensional,
(d) increases as logt. Moreover, (5.23) is discontinuous at the energies of composite
orbits with period 7 *.

No way has yet been found to implement the obvious suggestion of cancelling the
discontinuities in the quantum formula (5.23) by a series of corrections analogous to
the terms involving C(z) in the Riemann-Siegel expansion (5.6). However, a different
completion of the Riemann-Siegel main sum was discovered ([55], generalizing an idea
in [4]), that does have a quantum analogue.
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In this alternative approach to the resummed Dirichlet series, the abrupt trun-
cation is replaced by a smoothed cutoff involving the complementary error function
and an optimization parameter K. An argument involving analytic continuation in ¢
leads to

7 (#) = 2Re i exp {i [0 (ntz/g tlognl}

(5.24)

1 ’ '
X iErfc {(1ogn -0 (1)) 2([(2_29//(?5))}

with an explicit expression for the correction terms. With K chosen appropriately, this
smoothed sum can reproduce Z(t) to an accuracy equivalent to that of the Riemann-
Siegel main sum together with several correction terms. The corrections in (5.24) form
an explicit asymptotic series enabling Z(t) to be calculated with an accuracy of order
exp(—t?); this improvement over the Riemann-Siegel exp(—mt) is possible because
(5.24) involves the higher transcendental function Erfc, whereas the Riemann-Siegel
expansion involves only elementary functions. Several related representations of Z(¢)
are now known [56, 57, 58].

The improved representation (5.24), together with the explicit correction terms,
can readily be adapted to the quantum spectral determinant. The smoothed version
of the Riemann-Siegel lookalike (5.23) is obtained by an argument involving analytic
continuation with respect to 1/A, leading to

A(E)=2B(E)Re) [Dn (E) exp{i[m (N (E)) — Sn (E) /hl}
n=0

Sp (E) — 7 (N1 (E))
X 2EI‘fC{2 (th_ s <N2 (E)>) }:| "

where N; denotes the ith derivative of A with respect to 1/h. A numerical test
of this formula for the hyperbola billiard (a classically chaotic system with D = 2)
shows that it can reproduce quantum eigenvalues with high accuracy, even resolving
near-degenerate pairs of levels [59)].

Finally, we note an important clue to the Riemann dynamics, hidden in the
asymptotics (5.10), (5.11) of the Riemann-Siegel expansion (5.6). It concerns the
implied small exponential exp{—=t} (cf. the error in (5.13)). The same exponential
appears in the asymptotics of the gamma functions in 0(¢) (equation (2.3)). Quantum
mechanics suggests this is the “phase factor” corresponding to a periodic orbit with
imaginary action (an “instanton” in physics jargon). If we write

(5.25)

)

(5.26) exp {iS} = exp {—nt}
(remembering i = 1 for the Riemann zeros), the implied period is

oS  8S

5.27 T=—" = — =,
( ) O'energy’ Ot .

So, it seems that as well as the real periodic orbits in (2.14), with periods m log p,
there are complex periodic orbits, with periods that are multiples of imx.

6. Spectral Speculations. Although we do not know the conjectured Riemann
operator H whose eigenvalues (all real) are the heights ¢,, of the Riemann zeros, the
analogies presented so far suggest a great deal about it. To summarize:
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a. H has a classical counterpart (the “Riemann dynamics”), corresponding to a
hamiltonian flow, or a symplectic transformation, in a phase space.

b. The Riemann dynamics is chaotic, that is, unstable and bounded.

c. The Riemann dynamics does not have time-reversal symmetry. In addition,
we note the recent discovery [60, 61] of modified statistics of the low zeros for the
ensemble of Dirichlet L-functions, associated with a symplectic structure.

d. The Riemann dynamics is homogeneously unstable.

e. The classical periodic orbits of the Riemann dynamics have periods that are
independent of “energy” t, and given by multiples of logarithms of prime numbers.
In terms of symbolic dynamics, the Riemann dynamics is peculiar, and resembles
Chinese: each primitive orbit is labelled by its own symbol (the prime p) in contrast
to the usual situation where periodic orbits can be represented as words made of
letters in a finite alphabet.

f. The Maslov phases associated with the orbits are also peculiar: they are all .
The result appears paradoxical in view of the relation between these phases and the
winding numbers of the stable and unstable manifolds associated with periodic orbits
[22], but finds an explanation in a scheme of Connes [62].

g. The Riemann dynamics possesses complex periodic orbits (instantons) whose
periods are multiples of i7.

h. For the Riemann operator, leading-order semiclassical mechanics is exact: as
in the case of the Selberg trace formula [21], ¢(1/2 + it) is a product over classical
periodic orbits, without corrections.

i. The Riemann dynamics is quasi-one-dimensional. There are two indications of
this. First, the number of zeros less than t increases as tlogt; for a D-dimensional
scaling system, with energy parameter «(E) proportional to 1/A, the number of energy
levels increases as a(E)”. Second, the presence of the factor p~™/2 in the counting
function fluctuation formula (2.6), rather than the determinant in the more general
Gutzwiller formula (2.9), suggests that there is a single expanding direction and no
contracting direction.

j. The functional equation for (s) resembles the corresponding relation—a con-
sequence of hermiticity—for the quantum spectral determinant.

We have speculated [6] that the conjectured Riemann operator H might be some
quantization of the following extraordinarily simple classical hamiltonian function
H, (X, P) of a single coordinate X and its conjugate momentum P:

(6.1) Hy (X,P)=XP.

Now we outline the reasons for this tentative association of X P with ((s).
At the classical level, (6.1) has a hyperbolic point at the origin in the infinite-
phase (X, P) plane, and generates the following equations of motion and trajectories:

6.2) X=X, ie, Xt)=X(0)exp(t); P=—P, ie, P(t)=P(0)exp(—t).

Thus classical evolution is uniformly unstable, with stretching in X and contraction in
P. Furthermore, the motion has the desired lack of time-reversal symmetry: velocity
cannot be reversed (X is tied to X in (6.2)) and so the orbit cannot be retraced.

At the semiclassical level, we can try to estimate the smoothed counting function
(N(E)) of energy levels E,, generated by the quantum version of (6.1). For this
it is necessary to specify a value of Planck’s constant 4. We choose i = 1; other
choices simply rescale the energies. (M (F)) is the area A under the constant-energy
hyperbola E = X P, measured in units of the “Planck cell” area 2wh = 27, with a
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P
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Planck cell

Fig. 7 Phase space for H., = X P, with cutoffs for semiclassical regularization.

Maslov index correction given by « /47, where « is the angle turned through along
the orbit in phase space (this correction gives the “1/2” in the quantization of the
harmonic oscillator). We encounter the immediate difficulty that A is infinite: motion
generated by H = X P is unbounded, and so does not give discrete quantum energies.
As will be clear later, closing the phase space to make the motion bounded is a central
unsolved problem. In the interim, a simple (perhaps the simplest) expedient is to
regularize by truncating in X and P as indicated in Figure 7. The result (unaltered
by representing the Planck cell by a rectangle instead of a square) is that (N (F)) is
precisely the asymptotics of the smoothed counting function for the Riemann zeros
(last member of (2.3)), including the term 7/8, with ¢ replaced by the energy E.

At the quantum level, the simplest formally hermitean operator corresponding to
(6.1) is

(6.3) H:%(XP+PX) — <X£(+;>.
The formal eigenfunctions, satisfying

(6.4) Hyp (X) = EYp (X)

are

(6.5) ¥e (X) = g

We note the appearance of the power X ¢ appearing in the Dirichlet series for ((s)
(as integer—®) and the Euler product (as prime®), with the symmetrization (6.3)
placing s on the critical line.

It is evident that X P is simply a canonically rotated version of the inverted
harmonic oscillator P? — X2, which in turn is a complexified version of the usual
harmonic oscillator P? 4+ X?2. Some of these connections have been noted before [63,
64, 65, 66, 67]. The first-order operator X P is the simplest representative of this
class, with the monomials (6.5) avoiding the complications of the parabolic cylinder
eigenfunctions of P2 — X?2.
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To evaluate the corresponding momentum eigenfunction ¢g(P) (Fourier trans-
form of (6.5)), it is necessary to specify a continuation across X = 0. The simplest
choice, for a reason to be given later, is to make the wavefunction even in X, that is,
to replace X by |X|. Then

1 o0
P)= — dX X)exp (—1PX
or (P) \/%/_oo e (X) exp (—iPX)
A T (5t 3iE)
VAT T (] - 3iE)
B A
V2 |P/2r| /AT

exp {2i0 (E)}.

It follows that, up to factors that can easily be made symmetrical, the position and
momentum eigenfunctions are each other’s time-reverses. Thus we find a physical
interpretation of the function 0(¢) (defined in (2.3)) at the heart of the functional
equation (cf. (5.1)) for {(s).

The major problem remaining is to find boundary conditions that would convert
X P into a well-defined hermitean operator with discrete eigenvalues. This is equiva-
lent to specifying the way in which parts of the (X, P) plane are connected so as to
compactify the (quantum and classical) motion. Some hints in this direction follow.

Our observations about the complex periodic orbits of the Riemann dynamics
(see the last paragraph of section 5) suggest that X and —X should be identified.
The reason is that the complex orbits of X, obtained by replacing ¢ by it in (6.2),
have period 27, which becomes the desired im (equation (5.27)) on identifying +£X.

To proceed further, we consider the symmetries of X P, in the hope (so far un-
realized) of superposing solutions of (6.4) acted on by operations in the symmetry
group, with each solution multiplied by the appropriate group character. An obvious
symmetry is dilation: X P is invariant under

(6.7) X—-KX, P-— P/K

From (6.2), K corresponds to evolution after time log K. This implies that the opera-
tor (6.3) generates dilations, in the same way that the momentum operator generates
translations, and the following series of transformations makes this obvious:

FUX) = f exp flog K + 1o X)) = exp { QoK) 72 b £ (1)

1

—exp { (0w ) X 100 = KX 1 (0) = o (X0,

(6.8)

One possibility is to choose the integer dilations K = m, and the characters unity.
Then the superposition of solutions (6.5) does contain ((1/2—iE) as a factor, but there
seems no reason to impose the condition that this must vanish. Moreover, the set of
integer dilations does not form a group (the inverse multiplications 1/m are missing).

Another possibility, closely related to the ideas of [62], is to use not all integers
but the group of integers under multiplication (mod k) [68]. This would have two
advantages. First, it involves only integer dilations. Second, including the characters
x(n) of this group (sets of k complex numbers with unit modulus) opens the possibility
of widening the interpretation as eigenvalues of X P, to include the zeros of Dirichlet
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L-functions. These are defined by the series

(6.9) Les)=Y 2 (Z‘).
n=1

n

(The special case x = 1 corresponds to ((s).) It is conjectured that for all these L-
functions the complex zeros lie on the line Res = 1/2. On this interpretation, each L-
function corresponds to a different self-adjoint extension of X P under identification of
positions X that are related by dilations in the group of integers under multiplication
(mod k). An analogy is with the quantum mechanics of a particle in a periodic
potential (e.g., an electron in a crystal): from the Bloch-Floquet theorem, solutions
of the underlying differential equation are all periodic up to a phase factor exp(ia);
each choice of « is a different self-adjoint extension, and generates a discrete spectrum.
The analogy is imperfect, because « is continuous, whereas the L-functions cannot be
continuously parameterized. A closer analogy is with quantization on a torus phase
space [69], where for topological reasons the permited phases are discrete.

The dynamics (6.2) suggests that the system might be closed by connecting the
asymptotic positions with the asymptotic momenta. Then particles flowing out at
X = zoo would be reinjected at P = £oo. Related to this is a class of dilations
where K is H-dependent (of course these are still symmetries of H). Specifically, the
choice K = 2x /(X P) yields the canonical transformation
2w XP?

P’ P=h= o

corresponding to exchange of X and P (the more familiar X — P, P — —X does not
leave X P invariant). A short calculation gives the transformed quantum wavefunction
11(X1) in terms of the untransformed momentum wavefunction ¢ as

(i)

(6.10) XX =

6.11 Py (X1) =
We do not know how to convert this “quantum exchange” into an effective boundary
condition, but note its connection with the following intriguing identity, obtained from
the momentum wavefunction formula (6.6) and the functional equation for {(s):

XY2¢ (3 —iE) Y (X) — PY2¢ (3 +iE) ¢p (P) =0,

(6.12)
where PX =27 (= h).

If (only) the minus were a plus, this would be a condition generating the Riemann
Zeros.

We can sum up these scattered remarks about X P by returning to the properties
listed at the beginning of this section. X P is consistent with point a, part of b (X P
dynamics is unstable but not bounded), and ¢, d, g, h, i, and j. Concerning point e,
the appearance of times that are logarithms of integers begins to be plausible in view
of the association between dilation and evolution, but primes do not appear in any
obvious way. We have no explanation of property f.
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