A new asymptotic representation for {(}+ir) and
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By analytic continuation of the Dirichlet series for the Riemann zeta function {(s) to
the critical line s = }+it (¢t real), a family of exact representations, parametrized by
a real variable K, is found for the real function Z(t) = {(3+it)exp{if(f)}, where & is
real. The dominant contribution Z(t, K) is a convergent sum over the integers » of
the Dirichlet series, resembling the finite ‘main sum ’ of the Riemann—Siegel formula
(RS) but with the sharp cut-off smoothed by an error function. The corrections
Zy(t,K), Z,(t. K) ... are also convergent sums, whose prineipal terms involve integers
close to the RS cut-off. For large K, Z, contains not only the main sum of RS but also
its first correction. An estimate of high orders m » | when K < f& shows that the
corrections Z, have the ‘factorial/power’ form familiar in divergent asymptotic
expansions, the least term being of order exp{—3iK*¢}.

Graphical and numerical exploration of the new representation shows that Z, is
always better than the main sum of RS, providing an approximation that in our
numerical illustrations is up to seven orders of magnitude more accurate with little
more computational effort. The corrections Z; and Z, give further improvements,
roughly comparable to adding RS corrections (but starting from the more accurate
Z,). The accuracy increases with K, as do the numbers of terms in the sums for each
of the Z,,.

By regarding Planck’s constant % as a complex variable, the method for Z{t) can
be applied directly to semiclassical approximations for spectral determinants 4(E, %)
whose zeros E = E,(#) are the energies of stationary states in quantum mechanics.
The result is an exact analytic continuation of the exponential of the semiclassical
sum over periodic orbits given by the divergent Gutzwiller trace formula. A
consequence is that our result yields an exact asymptotic representation of the
Selberg zeta function on its critical line.

1. Introduction

Riemann’s celebrated function {(s) arises not only in connection with prime numbers
{Edwards 1974) but also as a model for spectral determinants in quantum chaology
{Berry 1986, 1991; Berry & Keating 1990; Keating 1992a, ). It is often necessary
to be able to represent {(3+1f) in a simple way high in the critical strip ([Im¢| <1,
|Ret| » 1) and calculate it there with great accuracy. Particularly important is the
critical line ¢ real, where, according to the Riemann hypothesis, the non-trivial zeros
lie. Qur purpose here is to describe a way of doing this which has some advantages
over the method currently used, and which can be applied directly to the analogous
functions in quantum mechanics.
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The method is an extension of the formal approximating scheme introduced in
Keating (19924a) for semiclassical formulae, and applied to {(s) in Keating (1992b).
Here we go further; first, by eliminating the formal aspect of this approach; second,
by pursuing it to its natural conclusion to obtain a complete asymptotic expansion ;
and third, by fine-tuning a parameter to improve convergence.

It follows from the functional equation for {{s} that the function defined by

Z(t) = expf{if(t)} {3 +it) (1}
with exp (i0(t)} = [II:E%%T exp{—XitInn} ()
4 2

is an even function of ¢ (# is odd). Moreover, it is real when ¢ is real, as is 8(t). The
simplest representation for £(s), namely the Dirichlet series

fo)= Z — (3)

converges only when Res > 1, and so fails when used in (1} for real {, generating a
Z(t) that is neither obviously real nor obviously even.

Computation of Z(t) for real { using (3) requires analytic continuation. A powerful
method, now universally used when ! is large (Haselgrove 1963 ; Brent 1979 ; Odlyzko
1987), is the Riemann—Siegel formula (Edwards 1974 ; Titchmarsh 1986}, hereinafter
called RS:

Z =23 W— (— 1)V (27”) 5 (27“)1!2 POpH}+RP(1).  (4)
n=1 J=0

Here N(t) and p(t) are defined by

a t ey t ,

and the functions @¥(p) are combinations of derivatives of

P (p) = cos{2n(p?—p— 1)}/ cos {2np}. (6)

To understand what follows, it is helpful to consider the following interpretation
of RS. The sum over 2 (the ‘main sum’), which usually dominates Z(t}, follows from
substituting (3) into (1), truncating the resulting divergent series at the term N{¢)
whose phase is stationary, and adding the complex conjugate of this truncated series
as an approximate resummation of the divergence (Titchmarsh 1986, ch. IV; Berry
1986 ; Keating 1992¢, b). As an approximation to Z({}, the main sum suffers from the
defect: of being a discontinuous function of  because of the discontinuous upper limit
N(t). It is the role of the correction terms, in the sum over j, to remedy this by
removing, one by one, the discontinuities in successive derivatives at the truncation
point.

Probably, the sum of all these corrections is an asymptotic expansion of Z(t), but
we know of no proof. And there appear to have been no studies of the high orders of
the expansion, such as would be necessary to estimate the accuracy with which Z(f)
could be computed by choosing k in (4) to be the least term. Bounds do exist,
however, for some of the remainders R‘¥}(¢}, a particularly useful one being (Gabcke
1979) [R@@)| < 0.017/8F (& > 200). (7)
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The representation we derive here (§§2 and 3) superficially resembles RS in being
dominated by a sum over =, similar to the main sum in (4), and possessing a series
of correction terms. It has, however, several advantages over RS. First, all its terms
are analytic functions of {: there are no discontinuities. Second, it is formally exact,
uniike RS whose remainders R™(#) contain an unspecified exponentially small
integral (Edwards 1974). Third, the size of the late terms can be estimated explicitly
(§§4 and 5), showing that they have the ‘factorial divided by power’ form familiar
in asymptotic expansions (Dingle 1973). Fourth, numerical studies (§6) suggest that
term by term the new series is more accurate than RS. And fifth, the derivation
generalizes (§7) directly to the series encountered in the determination of eigenvalues
of wave operators associated with chaotic dynamical systems, an example of which
is the Selberg zeta function (Balazs & Voros 1986). We emphasize this, because such
series also suffer from fundamental convergence problems, and no analogue of RS is
known for them.

Although the new formula looks like RS with its discontinuities smoothed away
term by term, this appearance is misleading. Our formula involves an additional
parameter. Moreover it contains RS in a complicated way ; indeed we show (§4) that
there is a limiting régime in which our dominant series contains not only the main
sum of RS but at least its first correction term as well.

Before embarking on the analysis, we make two remarks. First, according to (2)
the function Z(f) has square-root branch points at the zeros of the gamma functions
in exp{if({)}. These points complicate the analysis slightly, and it might be thought
preferable to work with a different combination of { and I', namely Z(¢) (eq. (2.1.16)
in Titchmarsh 1986), which as well as being real for real ¢, and even, is also an entire
funection. In fact much of the argument to follow can be applied equally to 5(¢), but
the final formulae are numerically far less effective than those for Z(t). The reason is
probably that the asymptotics must also be flexible enough to accommodate the
rapidly decreasing amplitude factor by which the modulus |Z(t)| differs from |{(f)]
when ¢ is real, a factor which is uninteresting in studies of the zeros, and which we
never encounter because |Z{t)| = |{(¢)] when ¢ is real.

The second remark is that for simplicity of exposition we shall restrict ourselves
to writing formulae valid for real £, that is on the critical line. However, continuation
to complex { in the analyticity strip of Z{t) is not difficult.

2. Analytic continuation

By Cauchy’s theorem we have

L & ety 2t 0), (8)

2wl c,+c_ 2

4(t)

where € are the contours shown in figure 1, and ¥ is any function, analytic inside
the integration strip, for which the integral converges and y(0,f) = 1. Choosing
Y(z,t) even in z, and using the fact that Z(f) is even, we obtain

1 dz
Zty=—| — 4 —8].
=51 | G V0 BE++2e—0) ©
Except near the branch point z=—{—%, the Dirichlet series (3) converges
Proc. B. Soc. Lond. A (1992)
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Figure 1. Integration contours ¢, and C_ in the z plane, with cuts (zigzags) connecting the
square-root branch points of Z{t).

everywhere on C_, because Imz < —1 (corresponding to Res > 1). However, the

branch point gives a vanishing contribution. Therefore we can substitute (3), and
obtain

2 = 3 [T+ To(— )], (10)

n=1

where

Y

= &P {i(ﬁit/)n— tin n)}%ﬁj %'y(z, tyexp{i[f{z+t)—8(t)—zln=n]}.  (11)

This analytic continuation gives Z{¢) on the critical line as a manifestly even
function. The fact that #(f) is odd leads (by an argument involving the deformation
of C_ to the real axis plus an infinitesimal semicircle) to the relation

T(—0) = T3(0) (12)
and thence, via (10), to the (necessarily) real even function
Z(ity=2Re X T,it). (13)
n=1

Of course these formulae make sense only if the sums and integrals converge. We
achieve this by making the choice

iz, t) = exp (—2°K%/2[H)), (14)

where K is a constant whose significance will become clear later. Convergence of the
integrals (11) is obvicus. In Appendix A we show that the sum over 7}, converges too:
after an initially rapid decrease as exp[—In®(n/N)], the ultimate decrease of the
terms is very slow, namely as n~!In"#. This slow convergence of the n-sum will now
be hastened by expanding each T, as a series whose terms can be evaluated explicitly.
The form (14} is chosen ad hoc. We have not explored the possibility of choosing y
to optimize convergence.
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3. Series expansion

Henceforth we consider ¢ > (); this leads to no loss of generality because z({t) is even.
In (11) we expand exp{if(z+1)} as

exp {i[f(z+1t) — O(t)]} = exp {i[=0° () + 120" (¢ ]}[1-%- z zmbm(t)] {15)

in which the functions b,,(t} can be calculated recursively from 6(¢) in terms of the
polygamma functions ¥™(z) ((n— 1)st logarithmic derivative of I'(x)),

SJm i (G43 1t)} i
sl '

Z 2"y (f) = EXP{ 12 () (16}

m=3 §=3

In the exponent of the integrand in (11) we now group the terms linear and
quadratic in z by defining

En,t) =lnn—0'(1), QXK= K2—itf"(f). (17)

For each term labelled by m in (15), we can now evaluate the integral in (11} and
substitute into (13). In this way we obtain our main result:

Z(t)y = Zy(t, K)+ Z,(t, KY+ Z,(t, K)+ .. .. {18}

The integral for Z; has a quadratic exponential and a first-order pole, and can be
evaluated in terms of the complementary error function (eq. 7.1.4 of Abramowitz &
Stegun 1964):

Z,(t,K)=2Re ¥ EXP{‘[Bfm “nn]}x%Erfc{g(nT’?) \/(%t)}. (19)
n=1 5

The integrals Z,, (m z 3) have quadratic exponentials multiplied by positive powers,
and can be evaluated in terms of Hermite polynomials {eq. 8.951 of Gradshteyn &
Ryzhik 1980):

— 2 aum (—0)"bny(t) o explild(f)—tinn]}
Zy(tK) = v (3)™* Re O R D El e
— 52(7%3 t) ¢ g(n! t) 1
X exp{ 2@2(}(} t) }H _I{Q(K, t) '\/(Et)} (m 2 3) (20)

(An earlier version of this theory failed to incorporate the quadratic term in the
exponent of (15}, so that the counterpart of the multiplying series began with b,
rather than b,. This led to a slightly different representation for Z(t), involving K
rather than @ (whose first term — the counterpart of Z, - was obtained by Keating
(19928)). The low-order approximations to this representation were numerically
much less accurate and their subsequent analysis proved more complicated than that
of (18)—(20}.)

The representation (18)—(20) gives Z, which is independent of K, as a series of
contributions Z,, ; we call this the m-series. Z; is the main term, and Z,,Z, ... are
corrections. Each Z,. is a K-dependent sum of terms labelled % ; we call these the n-
sums.

Proe. B. Soc. Lond. A (1992)
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Figure 2. Comparison between squares of the functions i, = exp (~x®) H () appearing in (20}
{thick lines) and the squares of the Hermite functions ¢, = exp(—2z®) H_(z) (thin lines), for (a)
m = 20, (b) m = 50.
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The convergence of the n-sums is crucial to the usefulness of our representation,
and depends cn the smallness of

exp{—ff(n,t) t/ZQg(K,t)} (21)

for the following reasons. In (19) the funetion Erfe is approximately proportional to
this factor when £ is large. And the Gauss-Hermite product in the second line of (20}
is also dominated by the gaussian factor. This is not obvious. It follows from the fact
that the ‘width’ of the product can be defined as

— % dp 22l ox0 f e [ 7 e _1 ff4m—1
Wm=J[fo dx 2*[exp (—x*) H,(2)] /L dx [exp ( w)Hm(x)lz]—QJ(—zm_l)
(22)

and is, asymptotically, independent of m and only +/2 greater than W, (equation (22)
can be derived from eq. 7.375.1 of Gradshteyn & Ryzhik (1980)). This behaviour is
quite different from that of the widths of the harmonic oscillator functions, where (cf.
eq. 7.375.2 of Gradshteyn & Ryzhik (1980))

Wese = J[Jw dz x®[exp (_%xe)Hm(x)]z/Jw dx [exp (—%ma)Hm(x)]Z} =4/(m+1).
Q ]
(23)

Here the Gaussian factor is weaker, and the widths increase with m. Figure 2
illustrates this striking difference between the functions appearing in (20) and the
harmonic oscillator functions. The very useful consequence is that the convergence
of the n-sums is the same for all the Z,,.

We now note that for the large f of interest here we may approximate 8{¢) (and the
derived quantities £, ¢ and the b,) with Stirling’s asymptotic expansion for the
gamma funection:

{ ! n, 1 7

In subsequent analysis we shall make extensive use of this formula.
In particular, we find, to lowest order,

E(n,t) & In{n/~/ (t/2m)} ~ In{n/N(t)}, (25)

Proe. B. Soc. Lond. A (1992)



New asymplotic series for zeta functions 157

where N(f) is the RS cut-off (5). Substituting this into (21) now shows that the =
convergence depends on

wp Lm0

and so is faster than any power of n but slower than exponential. Note that this rapid
convergence now holds for all »; there is no drastic slowing-down for very large =,
as with (13). The reason is that there the slowing-down was caused by a branch point
of the integrand in (11) (see Appendix A}, but there is no analogous contribution
associated with the terms in the expansion (15). As we shall see in §5, the price to be
paid for this is that the m-series is a divergent asymptotic expansion, but the least
term is so small that the divergence has no effect on practical computations.

A consequence of (26) is that the upper limit guaranteeing that neglected terms are
smaller than exp{—4) is

e (o 511

~ Nexp{(K/N)+/[(A/m)(1+1/4K*)]}. 27)

_ —[In (n/N)]?*EK®
‘exp{ K1Y } 20

In what follows we shall make frequent use of this estimate. Note that n* has a
minimum value of Nexp{+/(4/r)/N}, when K = 1/+/2.

For our representation to be a serious rival to RS when { is large, we require that
the number of »-terms in each Z_, is not much larger than the number N in the main
sum of RS. Therefore we impose upon K the restriction

K < N(t) ~ . (28)
Note that this is compatible with K » 1, a fact we exploit later. Then
n* m N+ K+/[(A/m)(1+1/4K*)] {29)

revealing the meaning of K as proportional to the number of terms by which RS
truncation has been smoothed, when ¢ is large. Roughly, the leading sum Z; involves
terms » < N K, and the corrections Z,, . ; involve terms N—K < n < N+K,

4. Quadratic phase approximation

In computations (§6), we shall use the series (18)-(20) with no approximations
(except the replacement of #(t) and its derivatives using the early terms of (24)), and
it is these formulae which we shall generalize in §7. For {(s) we can, however, go much
further, by studying the behaviour of the terms near the RS cut-off. By (25), this
corresponds to £ = 0. Therefore we write

n =N +k (30)
and make use of t = 2R[N{) + p(H)]? (31)

(ef. (5)) to expand &(f)—¢Inn in the phases of the summands to second order in &.
Thus for large ¢ we have

[B@)—tInn),oaex = TN+ nk+2np® —In—4npk + O{(p— k)*/N}. (32)
Prac. R, Sac. Lond, A (1992)
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Similarly, E(r, 8) = (k—p)/N+ Of((k—p)/N )2k (33)
We use these approximations differently for Z; and Z,, . ,. In Z, the aim is to
understand the connection with RS. First we write, in (19),
sErfe (x) = @(—x)+1Erfe (|z]) sgn (), (34)

where @ denotes the unit step. To obtain the leading-order behaviour of the second
term it is necessary in (19) to replace the phase by (32), and make the approximation
£ = 0. Then the dependence on K disappears, and we obtain (Keating 1992b)

o o cos{f—tlnn} om\i
g2 3 S (3
x Reexp {2in(p® — L&)} (1 + ;.:%i: sgn (k){—1)¥exp{ -—4'n:ilcp})
_ o S cos{f—tlnn} 2m\a ©
—2517 (—1) (T) P9 (p), (35)

which are precisely the main sum and first correction in RS (equation (4)}). It is
possible that more — perhaps all —terms of RS are contained in Z, and can be
extracted by extending the expansion about » = N, but we have not pursued this.

In Z,, ., the ultimate aim will be to construct (§5} a theory of the high orders
m 3 1 of the m-series. First we replace the phase in {20) by (32) (this is valid
under condition (38) below), but now it is necessary to replace £ by (33) (rather than
£ =0, which would give Z, = 0). Thus after some reduction we find

Z,tK) ~ 2(\_/::)N (i)mm (2_75)i Re (=1)" b, (:‘,}{Cgi211.-i(192 -1y

2 4

X g (_l)kexp{—4nipk}exp{%2—p)2}ﬂm_l{(—ké—m\/n} (m=3). (36)
k=—c0

The sum over % can be transformed by the Poisson summation formula, giving a
series of integrals which can be evaluated exactly (using eq. 7.374.6 of Gradshteyn
& Ryzhik (1980}, and @* =~ K*—}i, which follows from (17) and the leading term of
{24)). All phases cancel, and we obtain

Z, (6, K)~2(—1)Y[1Imb,,] (%)mm_i(%n;)m—l

x 3 (= 1)1+ 3 —2p)" texp{—nK*2p—}—1)7} (m =3). (37)

i=—m

This approximation will be valid if the neglected cubic terms in the expansion (32)
of #—tInn are small compared with =, that is if (cf. (29))

E+/[(A/m)(1+1/4K%)] < @N)} ~ . (38)

Thig condition supersedes (28) and therefore guarantees that the smoothing range of
the n-sums is small compared with the size of the main sum of RS. Like (28), (38) is
also compatible with K » 1 when { is large. A numerical test of this approximation
will be presented in §6.
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5. Late terms of the m-series

We can make use of (87) to estimate high orders (m 3 1) of the expansion (18) if
K is chosen to satisfy
1< K <N, (39)

This choice is a sensible compromise between K small (so that the »-sums are not too
unwieldy} and K large, when as we shall see the corrections are small.
When K and m are large, the sum over { in (37) is dominated by its biggest term,
namely
[ = nearest integer to 2p—31++/[(m—1)/2nK?]. (40)

As m increases, the summand will equal
+a™ lexp{—nK?z% (41)

with z(=1—2p+1) varying irregularly over unit ranges including a* =
+ +/[(m~1)/2nK?]. Therefore we can estimate the sum by the average of its biggest
term, namely

Z (_ 1)£(I+1)/2(l+%_2p)m—1 eXp{—TEKz(?;p—%—l)?‘}

l=—an

pk L 1
~ : - ~ o Em)!
~+ L*—l dxa™ lexp{—nK%® ~ + szm'rtm’z . (42)

We also require the form of the high expansion coefficients b,,(f) defined by (16).
In Appendix B we show that

~ 2_Y(=y~ L9
b, (8) ~ (n3 em"‘t) ESRT exp{li(2t—m)} (m>f). (43)
Substituting (42} and (43) into (37), we obtain the estimate that on average
2 I (Lm)!
—y—= 1p_ 1 \2
Zm(t’K)m__*; i( 1) (tmaﬁa \/e) Sln{&t Sn} Fm ’ (44)
where F=—K+v&). (45)

For large ¢, these terms decrease and then increase in typical ‘factorial/power’
fashion. It therefore appears that the m-series is a divergent asymptotic expansion,
and we can expect (Dingle 1973) that the error is of the same order as the first
omitted term. This is smallest when

n =|F)?, ie. m=m*= K% {46)

Thus the accuracy with which Z{t) could be approximated by our representation
(18)—(20), considered as a bare asymptotic series (that is without resummation), is

|Z (b, K)| ~ (tm*3) Fexp (—Im*) ~ (1/£2K%) exp {— 1K™}, (47)

We have encountered this ‘small exponential’ before. As shown in Appendix A, it is
approximately the size of the term T}, in the series (13) for which the rapid decrease
exp (—In?n) yields to the slow decrease ' In~#x. This slow decrease, and the form
of the divergence responsible for the least term (47), both originate in the branch

Proc. R. Soc. Lond. A (1992)
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Figure 3. Comparison of lowest term Z; (equation (19)) for K = 1/4/2 (dotted lines), the main sum
of RS (dashed lines), and the exact Z (full lines), for different ranges of {. The number of terms used
to compute Z; were (a) ¥ =4, (b) n¥* =4, (c) n* = 8.

point of the integrand in (11). Now we can see that the influence of this branch point
has been transformed: from the slow convergence of (13), via the expansion (16)
whose n-sums (19) and (20) converge much faster, into a divergence of the m-series.

The least term (47) is smallest if K is as large as it can be, consistent with the
restriction (38) implied by the quadratic approximation, so

|2t E) 2 tEexp (— ). (48)

We do not expect to be able to achieve this enormous accuracy in practice, because
the number m* of terms in the m-series that would be required is, from (46),

m* ~ Nit ~ # ~ N§, (49)

i.e. much larger than the number & of terms in the n-sum in Z; (or the main sum of
RS).

We would like to compare (48) with the best accuracy that could be achieved with
RS by summing the j-series in (4) to its least term, bui are frustrated by lack of
knowledge of the late terms &9 (p).

6. Numerical illustrations

First we present (figure 3) pictorial comparisons between Z(f) and the two lowest-
order approximations: Z(t) from our representation (19), and the main sum of RS.
To make the n-sums as short as possible, we chose K = 1/4/2 (ef. (27)), and for the
convergence exponent we chose 4 = 10 (i.e. accuracy exp(—10) = 5x 107, which
was adequate for pictures). The differences between Z; and the RS main sum were
obvious under low magnification, but considerable magnification of small {-ranges
was necessary to visually separate Z, from the exact Z.

Proc. B, Soc. Lond. A (1992)
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Table 1. Computations of Z(t) for t,

t Z{t) NG o @)
i8 2.3367997 1 0.693
Zapprox Z—Za.pprox
RS main sum 1.9934571 3.4x%x1071
+ @O 2.3396565 —28x107%
+ @ 2.3354758 1.3x10
+ @@ 2.3368160 —~1.6x 10
+ P® 2.3367659 3.4x10°®
+ P 2.3367962 —3.5x%x108
K= 0.5, n* =14 Zapprox Z—anprox
Z, 2.3031845 34x10°®
Z,+7, 2.2885406 4.8% 10
Lot Z,+2, 2.3114179 2.5 % 10-2
K=10, n%= 14 oo -7,
Z, 2.3207183 7.1x1072
Lo+ Z, 2,3338470 3.0x1072
Byt Uy + 2, 2.3361610 6.4 x 10-*
K=15,n*=232 b/ Z—2Z, oo
Z, 2335506 1 1 3% 1070
Zy+ 7, 2.3366315 1.7% 1074
Z,+Z,+Z, 2.3367028 9.7x 10-5

We chose three ranges which included Riemann zeros, Even as low as the first zero
(figure 3a), Z, gives an excellent approximation. The superiority of Z, is particularly
striking near the second zero (figure 3b), where the main sum of RS has a
discontinuity. The RS main sum misses two zeros near the 90th (figure 3¢), but these
are captured by Z,, which is barely distinguishable from Z(f).

For a more detailed exploration of the representation (18)—(20}, we chose three
values of £:

§ =18, &, =7005.08186, f, = 2m(200.15) = 251704.54477728.  (50)

For each, we computed Z,; and the first two corrections Z, and Z,, for several values
of K. We used the asymptotic approximation (24} in #{t) and in the quantities
QK. 1), E(n,f), by(t) and b,(f) dependent upon it {cf. (B 4)). For convenience we
show the explicit formulae for Z, and Z,:

2 K) = — 1 (27‘5)’1‘ Re Qs(l E exp {i[0(t)—t]n 1'2]}|i1 _,gz(n, £) t] exp{—g(n, 1) t},

120\ ¢ K0, vn Q%K. 1) 20Q%(K, 1)
_ 1 {2m\: 1 ™ explilf(t)—tlnn]}
2l K) = 811:( t ) R Qb(K,a)El N
xg(n,t)[1—;Q(:?};):)]exp{;éy(}t)t)t}. {51)

Proc. R. Soc. Lond. A (1992)
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Table 2. Computations of Z{t) for t,

¢ Z() Ny o plt)
7005.081 86 0.003967 357277 31 33 0.390
Zapprox Z—Zapprox
RS main sum —0.066003967 68502 7.0x 1072
+ OO 0.00393683499809 3.1x 1078
+ BN 0.003966 552397 02 8.0 x 1077
+ D 0.003967 35603114 1.2 % 10°
+ D@ 0.003967 35721927 5.8 1071
+ B 0.003967 35727731 <44x107
K=1n*=37 Zy v Z—Zp e
Zy 0.003991 24165286 —2.4% 107
Zy+ 7, 0.003 96599955999 1.4 %107
Zy+Zy+ 2, 0.003967 363088 64 —5.8% 107
K = 3: R* = 44 Za.pprox Z_Zapprox
Z, 0.003 96145445096 5.9% 107
Zo+ 2, 0.003967 33343461 2.4x 1078
Zo+ 2.+ 2, 0.003967357 18159 9.6x 1071
K =10, n* =88 Zoporon Lo
Z, 0.003967 47696881 —1.2x 1077
Zo+ 2, 0.003967 35693288 3.4x10°10
Zy+ i+ Z, 0.003967 35728143 —41x 101

The upper limits n* were chosen according to (27) with 4 = 33, thereby ensuring
convergence of the sums to exp(—33) = 5x 107", For ¢, we also evaluated Z,, Z,
and Z, using the exact formula (2) for §(¢), and confirmed that even for this small
value the errors introduced by (24) are small compared with the deviations from the
exact Z(ty of Z, Zy+ 2, and Z,+ Z,+ Z,.

For comparison, we computed Z(f) by RS, including the main sum and five
corrections (that is, @@ through @&? in (4)). The bound (7) ensured that in all cases
the errors of RS were small compared with those of Z,, Z, and Z,, and we confirmed
this with a more accurate evaluation of Z{(t,).

Tables 1-3 show the results of these computations, which we now discuss. The first
value ¢, is very low; it lies between the first two Riemann zeros. As table 1 shows, the
RS improves quite slowly as more terms are included. The same is true of our series,
especially for K = 0.5; this is the only case where we approach the least term of the
m-series as predicted by (46), which gives m* ~ 4.5. For the higher values, X = 1 and
K =1.5,Z, and Z, do improve significantly on Z,, which is itself better than the main
sum of RS in all three cases. There is a price for this improvement : because ¢, is so
small, the number »* of terms in the n-sums of Z,, is always much bigger than the
number of terms in the main sum of RS (here N =1}, i.e. the condition (28) is
violated.

The value of £, is chosen between two close Riemann zeros, where Z is very small
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Table 3. Computations of Z(t) for t,

t Z(2) Ng o pl)
251704.544 7772836 —1.463773120222623 200 0.15
Zapprox Z_Zapprox
BS main sum —1.419501811072478 —4.4x107?
+ o™ —1.463770667 363 168 —2.5x107°
+ @D —~1.463 773114608635 —5.6x107?
+ @@ —1.463773 120222490 —1.3x10™2
+&® —1.463773120222619 —4.6x1071®
+ oW —1.463773120222623 < 24 x 1077
K =1, n* = 203 oo Z—Z,,..
Z, —1.4637669379512 —6.1x10"¢
Zy+7Z, —1.463773 1084894 —1.2x10-
Zy+Z,+ 7, —1.4637731202110 ~12x101
K=3,n%=210 Z porox Z—=Z prox
Zy —1.46377233549791 —7.8x10°7
Z+Z, —1.46377312058350 3.6x 10710
Do+ Zy+ 2, —146377312022183  ~0.9x 107
K =10, n* = 235 B Z—Z,..
Z, —1.46377312411841 3.9x10®
Zy+Z, —1.463773 12022092 —1.7x 1072
Zy+Z,+2, —1.46377312022264 1.7 1071

(this is a near counterexample to the Riemann hypothesis). The main sum of RS
misses both zeros by predicting (table 2) the wrong sign for Z (cf. figure 3¢, which
shows a similar occurrence for a smaller ¢); the first correction @& gives a much
better approximation, and with higher corrections the errors decrease rapidly. For all
three values of K, Z; is much more accurate than the main sum of RS, and Z; and Z,
give much better approximations still. Note that for K = 1 and K = 3 the number of
terms »* is not much larger than the value N(t,) = 33 for RS; both satisfy (28), and
K = [ also satisfies the condition (38) for the validity of the quadratic approximation.

To represent what we expect to happen in the truly asymptotic region, ¢, is chosen
5o that the main sum of RS has N(t,) = 200 terms, The main sum gives an error of
a few percent. For all K in table 3, n* is not much larger than N, yet Z is better than
the main sum of RS by between four and seven orders of magnitude. The
improvements with Z, and Z, are each between two and three orders of magnitude,
which is comparable to the improvement with extra terms of RS. All three K values
satisfy (28), and K = 1 and K = 3 also satisfy the condition (38) for the validity of
the quadratic approximation.

In all cases, except when ¢ = ¢, and K = 0.5, the already accurate approximation
provided by Z, was greatly improved by including Z, and Z,. Consistent with this
rapid convergence, we noticed that each error was very close to the next omitted
term.
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Figure 4. Comparison of §,, (points), defined by the second member of (52), with the quadratic
approximation §2°¢ (full lines), defined by the third member of (52), with N = 200 and K = 2, for
(@) m =3, (b) =4.
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Figure 5. As figure 4, with N =2 and K = 1/+4/2,

The estimates in §5 of late terms in the series Z,, depended on the quadratic phase
approximation of §4. In figures 4 and 5 we illustrate this approximation for Z, and
Z, as p(t) ranges from 0 to 1, that is (31) as ¢ ranges from 2aN? to 2n(N+1)%. From
(37) and (B 4), the quadratic approximation can be written

SV, p,K) = 6(— )Y (m—3) (N+p)" 4 Z,,(20(N + p)*, K)

o

¥ T (1) @p— - exp{—nK*(2p—}~ 1))
Im=—o0
= 89wy K} (m = 3,4). (52)

Figure 4 shows S and 81 for N =200 (¢t~ 250000), and K = 2, which lies
comfortably within the expected range of validity (38) of the quadratic ap-
proximation (for 4 = 33, (37) requires K < 2.6). As expected, the approximation is
excellent over the whole range of p.

More surprising is figure 5, which shows § and §9%#¢ for N = 2 (25.1 < ¢ < 56.5). For
these low values of ¢ there there is no X satisfying (38); nevertheless for X = 1/4/2,
where the left-hand side of (38} is smallest, the quadratic approximation still gives
a good qualitative fit for all p.

7. Generalization to quantum spectral determinants

In the study of the spectra of quantum systems whose classical counterparts have
chaotic trajectories (Berry 1987; Eckhardt 1988; Gutzwiller 1990), divergent or
conditionally convergent series occur which are closely analogous to the Dirichlet
series (3} for {(s). Our purpose in this section is to show that, remarkably, precisely

Proc. R. Soc. Lond. A (1992)



New asymplotic series for zeta functions 165

the resummation method we have used for Z{) can be applied directly, to yield an
asymptotic series of convergent contributions for an analogous function in quantum
mechanies.

This is the quantum spectral delerminant A(E,#), constructed as follows. In
quantum mechanics the energy levels E,(%#) are the (necessarily real) eigenvalues of
a hermitian operator (the quantum hamiltonian}, obtained by quantizing, with
Planck’s constant #, a classical hamiltonian function H(q, p} of phase space variables

q={q1)~--:qu}a P={P1=---1PD}- (53)

Here D is the number of classical freedoms. We confine ourselves to chaotie systems,
where the orbits generated by H(q.p) are all unstable. The spectral determinant of
the hamiltonian operator is

A(E.f) = l;I{A{E, Ej(h)} [E—Ey{R)]}, (54)

where A, whose role is to make the product converge (Voros 1987), is a zero-free
function which is real for real £ and #%. Thus 4(X, #) is real for real K and #, and its
zeros are the quantum energies E,(%). In this context, quantum chaology (Berry 1987)
is the study of the small-#, or semiclassical, asymptotics of the E,, and is obviously
related to the small-# asymptotics of the real quantum spectral determinant A(¥, %}.

For wide classes of system, £ and # are related by scaling, so that 4 depends only
on one variable. Examples are the quantum mechanics of billiards, motion on
compact curved surfaces, and particles in potentials which are homogeneous
funections of g. In such cases, the small-# asymptotics and the large-F asymptotics are
the same. In general, however, there is no scaling relation between £ and #, and the
semiclassical and high-energy limits are not the same. Then we shall regard A(H, )
as a function of complex # with E fixed and real. In the analogy with {(3+1if), the
variable corresponding to £ is 1/#. This choice of variable might seem odd but is in
fact natural, because then we are quantizing a system with fixed classical mechanics,
an important simplification for non-scaling systems, where the dynamiecs depends
non-trivially on £ (the same procedure has been used by Balian & Bloch (1974) and
Berry & Tabor (1977)).

By semiclassical techniques based on the trace formula of Gutzwiller (1971} for
In 4, Berry & Keating (1990) obtained the following semiclassical expression for the
quantum spectral determinant,

0
Ah, By ~ 4%, B) = B(E, #)exp{in ¥ (B, fi)} T C,(E)exp{—i¥(E)/%} (55)
n=0
in which the quantities have the following meanings. The sum is over pseudo-orbits,
that is linear combinations of (primitive and repeated) periodic classical orbits (all
unstable) with energy E; » labels pseudo-orbits in increasing (pseudo) period . &,
is the action of the nth pseudo-orbit, that is the sum of the actions of the periodic
orbits of which it is composed. The coefficients €, involve the stability exponents of
the periodic orbits {which do not depend on %), and the Maslov phases (Maslov &
Fedoriuk 1981; Robbins 1991). The exponent A (E,#) is the smoothed spectral
staircase, counting the mean number of levels with E, < E. Semiclassical ap-
proximation (see Berry 1983) provides an asymptotic series (the analogue of (24)) for
this quantity, whose leading term is

N(E. h) = QE)/(2nk)P, (56)
Proc. B. Soc. Lond. A (1992)
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where £ is the classical phase-space volume with energy less than B, namely

Q) = qu dp OL— Hig.p)). 57)

Finally, B(#,#) is real and non-zero when E and 7 are real. The quantum analogue
of Z(ty is —A(E,%)/B(E, %).

For real #, the representation (55) is divergent (or, at best, only conditionally
convergent (Sieber & Steiner 1991)}. A simplified argument (Eckhardt & Aurell 1988;
Keating 1992d) revealing the nature of the divergence is that the exponential
decrease of the C, for long orbits, namely

ColB) ~ exp{—JA(E) T, (B)} as T, — o0, (58)

where A denotes the metric entropy, is dominated by the exponential proliferation of
periodic (and pseudo) orbits, whose number v(E)dJ between & and F +dJ is

vBY ~exp{+AMEYT (£)} as F - > (59)

(we are here assuming for simplicity that the metric and topological entropies are
equal). Thus the sum diverges like the integral over 4 of

exp{+iA(E) T (E)}. (60)

By making # complex, (55) can be made absolutely convergent, the condition
being that for long orbits
Imi/% < AT j25. (61)

Now, for the long-period orbits and pseudo-orbits of an ergodic system, & and J are
proportional (Hannay & Ozorio de Almeida 1984}, the precise relationship being

P~ TDQRIQ. (62)

(This follows from

§= fp-dq = fdtp-dq/dt—>T(p-dq/dt>,

where {...> denotes ergodic averaging over the energy surface.) Thus the convergence
condition (61) becomes

Im1/% < —ME) 2(E)/2DQ(E). (63)

This is the familiar ‘entropy barrier’, here expressed in terms of complex 1/% rather
than the more usual complex .

For real %, (55} fails, not only by diverging but by being not obviously real as the
exact 4 must be. The analogy between this situation and that for the function Z(t)
defined by (1} has already been employed by Berry (1986) and Berry & Keating
{1990) to conjecture for 4% a manifestly real and finite approximate resummation of
(65}, analogous to the main sum of RS. Keating (1992 ¢) has given a formal argument
supporting this conjecture, as has Bogomolny (1992}, and there is some com-
putational support for the relation {Sieber & Steiner 1991). Now we can go much
further, and give an exact resummation of (565), analogous to the representation of
Z(t) obtained in §3.
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To demonstrate this, we use analytic continuation as in §2, in the variable 1/Z.
This requires an analogue of the functional equation Z(t) = Z{—t). The analogue is

the exact relation
A(EB) = A(E, —§), (64)

which holds because the eigenvalues E; are independent of the sign of 7. This is true
even for a system without time-reversal symmetry: #-reversal changes the hermitian
operator to its conjugate, leaving the eigenvalues unchanged. Cauchy’s theorem can
now be used as in (8) and (9), to yield the analogues of (10) and (11). The contour C_
can be taken to lie outside the entropy barrier (63), so (565} (the analogue of (3)) may
be used as a valid semiclassical approximation to obtain an analytic continuation
to real 1/4.

To obtain the analogue of the manifestly real expression (13) we need the analogue
of (12), This must be

C.(E) exp {ilnA (B, ) — & (E)/#]}

> [C (B)exp{i[nA (B, #)— &L (E)/A])]* ifkh>—h (65)
Mere substitution of —# for 7% is inadequate to demonstrate the truth of this formula.
That it is the correct continuation of terms in the time-independent semiclassical
approximation (including A (E, %) and the Maslov phases incorporated in C,) follows
from the behaviour under #-reversal of the time-dependent Schrédinger equation
from which semiclassical approximations can be derived (see Berry 1991). (For the

Selberg zeta function (Balazs & Voros 1986), (65) follows from standard formulae.)
Thus we find the exact semiclassical resummation for real %

A(E, ) = 2B(E, %) Re 5 U (B, %), (66)
n={

where (cf. (11})
U (B, %) = C,(E) exp ((n A (B, 5)— F (B) /i) — f %y(z,ﬁ)

x exp (A (B, (5 +2)) — RN (B, By —2F (B} (87)

To convert this into a usable formula we again begin by choosing (ad hoc) the

functi £) (cf. (14)):
unction y(z,#) (cf. (14})) v(z, %) = exp (—L2K¥H|). (68)

Next we follow the procedure of §3 by considering 1/% > (0 and expanding the
exponential in powers of z (cf. (15)), as follows:

exp{in[ A (E, (F ' +2)7)— N (E, E)]}
= exp{i‘n:[z./VI(E,ﬁ)+—§-22J72(E,ﬁ)]}[1+ ;: zmﬂm(E,ﬁ)], (69)

m=3

where the subscripts on ./ denote derivatives with respect to 1/%. Now we collect
tugether the terms in z and 2*, defining (cf. (17))

) = Yy — i i~ _ DQ(E)
E(n,k,E) = F(B)— A (E, F) ( P AE) _—2(2nﬁ)9-1)’
. (70)
o D D—-1)E
G B) = K= F (B (N e ))
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Finally, the integrals over z in (67) can be evaluated exactly, giving (cf. (18)—~(20))
the m-series

5B, B = Ay(B, %, K) + 4B, %, K) + 4 (B, 5, K)+ ..., (71)

where

4o(B, 7, K) = 2B(E, 5)Re 3, C,(B)

n=>0

- BB 1
xexp{l[n./V(E,ﬁ)—yn(E)/ﬁ]}%Erfc{%J(ﬁ)} {72)

and

4,.(B, %, Ky = (2B(E, #)/+/m) (1 /25)™?

—iym g (B ) © —_
el BN S ) 158,11 7,80

—E2%(n, ki, E) E(n, A, E) i
<o r 20| oo 1 B )] @39
Previously, the arguments of Keating (1992a) were used in Keating (19925) and
Aurich & Steiner (1992) to obtain an approximation to the first term 4,,
corresponding to replacing @ by X.

We will not comment in detail on these formulae, because their structure is so
similar to (18)—(20) for Z(f), which we have already explored, but we do wish to make
two remarks. The first concerns 4,. This is analogous to the main sum of RS with the
sharp cut-off smoothed away. The smoothing is centred on the pseudo-orbit for
which £, given in (70), is zero. Because of the factor #7”~" in the second term, this
is a long pseudo-orbit, so & can be replaced by its approximation (62). Thus when
g is large

T(EYDS(E) DEAE)

§n. 1, B) ~ QE) 22
= (DQ(E)/ Q' (B)) [T (E)—nhd(E, #)], (74)
where AU, F) ~ @' (E)/(2nk)P (75)

is the semiclassical smoothed level density. The centre of the smoothing is therefore
the pseudo-orbit n* whose period is

T\E) = nhd(B, k). (76)
It is satisfying that this result, here derived by analytic continuation of 1/%, is
exactly that previously guessed (Berry 1986; Berry & Keating 1990), or obtained by
analytic continuation of & (Keating 1992a). Note that the above derivation involves
the non-trivial result (62), which requires the classical motion to be ergodic.
The second remark is that it would be interesting to study the convergence of the
m-series (71) by investigating its late terms (i.e. 4,, for large m).
We emphasize that (71)-(73) is an exact analytic continuation of the semiclassical
formula (55), which completely eliminates the difficulties caused by the lack of
convergence of Gutzwiller’s trace formula. But in general (71)-(73) does not provide
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an exact representation for the quantum spectral determinant 4(¥,#), because (55)
is an approximation, valid to lowest order in fi. In particular, the zeros of (71)-(73)
will be semiclassical approximations to the exact eigenvalues £ (%). To improve the
approximation, it would be necessary to incorporate higher #-corrections into (55).
If this were done, analytie continuation could be carried out as we have done here,
for each successive order of semiclassical approximation.

However, there is at least one case where the Gutzwiller trace formula, and the
semiclassical quantum spectral determinant (55) derived from it, are not semiclassical
approximations but are exact (although of course not absolutely convergent within
the entropy barrier). This is the spectral determinant for the Laplace-Beltrami
operator on compact surfaces of constant negative curvature, for which the
logarithm of (55} is the celebrated Selberg trace formula (Balazs & Voros 1986). For
this system, our formulae (71)—{(73) should provide an exact analytic continuation,
enabling arbitrarily high eigenvalues to be determined from the periodic geodesics
with no approximation (except the exponentially small error resulting from
truncating the series of 4, (cf. (47) and (48)), which can be made arbitrarily small by
increasing K). This procedure should converge much more rapidly than gaussian
smoothing of the spectral density (logarithmic derivative of A(E. %)) as used by
Aurich et al. (1988) (analogous to Delsarte’s (1966) regularization of In {(} + if)), which
requires approximately N®, rather than N, terms.

We do not wish to imply that the exact regularization of the semiclassieal spectral
determinant solves all problems in the quantum chaology of spectra. Several
difficulties remain. First, there is the question of higher-order #-corrections; we
expect this to be crucial in resolving groups of close-lying eigenvalues. Second, there
is the question of whether the regularization guarantees that the approximate
eigenvalues will be real, like the exact ones; we believe it does not. Third, there is the
difficulty caused by the fact that even with the (approximate) cut-off (76) the sums
in the contributions 4,, involve exponentially many pseudo-orbits and so are
cumbersome; here the curvature expansions (Cvitanovic & Eckhardt 1989) and
related ideas for pruning the pseudo-orbits (Bogomolny 1992) could prove important.
Finally, there is the question of the statistics of the zeros of the semiclassical spectral
determinant, and their relation to the universal statistics of random-matrix theory
{Bohigas & Giannoni 1984; Berry 1985, 1988; Keating 19925).

We thank P. Boasman, J. H. Hannay and J. M. Robbins for their careful reading of the typescript,
and several helpful comments. J.P.K. is grateful to the Royal Society for support during the period
of this research.

Appendix A. Convergence of the analytically continued Dirichlet series

Here our aim is to estimate high orders in the n-sum (13), that is T, for » much
larger than the cutoff ¥ in RS (equation (5)), and thereby investigate the convergence
of (13). Thus we must study the integral

_exp{—itlnn} 1 [ dz {_. _K*? )
T.@ty= ~—n  om o exps —izlnn Py exp{if(z+1)i. (A1)

There are two contributions, one of which dominates when N € n € Nexp (K*) and
the other when n » Nexp (K?); they originate respectively from a saddle and a
branch point in the z plane of integration.
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A sufficiently good approximation to the position of the saddle can be found by
including the first exponential in (A 1) and the term of first order in z in the second
exponential, and then using Stirling’s formula (24). With (5) we find

Zsaadre ~ —1 (t/K*)In (n/N(t}). (A2)

Expanding to second order about this saddle and evaluating the resulting gaussian
integral we obtain

K ¢ of 1
alsaaare ~ {737y v/ @ty &P { ~oRED (1'\?)}
x exp {3 Re [(+ 2gpa01e) In (1 + 2gaaa10/) — Zeaaqre)- (A 3)

The first exponential dominates the second.

Ultimately, convergence of (11} is determined not by this saddle contribution but
by the nearest singularity to which the integration contour C'_ can be deformed. This
is the square-root branch point corresponding to one of the zeros of the gamma
function in (2) namely Zoranon = —t~ 4. (A 4)

We write 2 = 20000 — 10, expand the integrand to lowest order in o, and integrate
along both sides of the cut descending from z,.,,.,. Thus we find, afier a little
reduction,
fexp{—(K3/20) (t+3)% ™ . i
= d —all 2 —
gr;wl:'anch n(t+%i)1t\/2 . U\/UBXP T Iln'\/?'t-l-lK 1+2t
_ iexp{—}K%)}
2 v/{(2n}inlnin’

(A 5)
where the approximation requires { » 1. This decrease is very slow, but is sufficient
to make the n-sum in (11) converge, because

@ 1 1
T T T .
nerg N g 20T M

(A 6)

The crossover between the saddle and branch contributions to 7, occurs when
their dominant exponentials are equal, that is when

(t/2K®) In® (n/N) = 1K%, Lle.n = Nexp(K?) (A7)
as asserted earlier. Summarizing, we have, retaining only leading orders,
[T, ~ exp{— (t/2K3) In (o/N)} (N < < Nexp (K),]

|70 ~ exp{—1K?}/nlnin (n > Nexp (K%)). J (A8)

Appendix B. Asymptotics of the expansion coefficients

We seek approximations for the quantities b, (t) defined by (15) and (16), for ¢ large
with m fixed, and also for ¢ large with m » {. Defining

a,(t) = [Tm i @O +1it) /2%! (B 1)
our problem is to solve
z 2™, = exp{i b zsas}—i (B 2)
e =8

for b,,.
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For low m this can easily be achieved by direct expansion of the exponential and
use of the following approximation (Abramowitz & Stegun 1964) for polygamma
functions:

PP (w) 2 (— 1) (m—1)/w"  (|w| large, n fixed). (B3)

4 _ 1
6055 283"

: 1 .
b5=1a5:¢:—m, b = lng—303 (B4)
The direct calculation is much more difficult for large m. For a start, polygamma
functions of high order have an asymptotic approximation different from (B 3) (in
fact (B 3) must be multiplied by nw). And each high b,, is a complicated combination

of many a,,, ranging from approximately

(iaa)m,n'a N (_l_léi)m,f:i
Tyt~ Gyt s (B5)
to ia,, ~ 1/t™ (B 6)

and neither extreme dominates. Therefore we adopt a different strategy, based on
Darboux’s principle of the nearest singularity (Dingle 1973).
To apply this, we first write the solution of (15) as

b, = G™(0)/m!, (B 7)

where the superscript denotes the mth derivative, and (ef. (2))

[T +5(E+2) T .
600 = [F N exp e (B3
with x(2) = = [(t+2) Inn+6(8) + 26 (¢) + 12267 (¢)] (B9

{we do not indicate the ¢ dependence explicitly).

Darboux’s principle asserts that the high derivatives G™?(0) are determined by the
singularities of G(z) (this can be justified by writing &, as a contour integral
surrounding z = 0, and expanding the contour to hit the singularities). In (B 8) the
singularities are square-root branch points at the poles of the gamma functions,

namely
z=—t+4i(2n+}), n=0,1,.... (B 10)

Of these, the dominant contribution comes from
z=—ti+4 (B 11)

(this can be confirmed by repeating for the other branch points the argument which
follows).
Expanding about this point, we find

v 2exp{—in}

T
as z>—f+ii n"l[z —{(—t+ )

G(z) exp {iy(—f+4)}. (B 12)
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Differentiating m times, where m is large, swells the domain of applicability of this
formula. Setting z = 0, using (B 7), and approximating the funetion y for large ¢ with
the aid of (B 9) and (24), then leads to

2 M(—nm ,
bm(t)m—%z(naem%) ((t_!_%i))mexp{%l(%—n)}. (B 13)

We need to know how large m must be in order for this limiting form to be a good
approximation. The answer requires knowledge of any competing contributions to b,
that are eventually dominated by (B 13). The relevant contribution comes from a
saddle of the integrand (cf. Appendix A) of the loop integral representing b,,, namely

b, = — i{;de(Z) (B 14)

T 2mi 2L

where the loop encircles the origin. The relevant saddle is close to z & (t2m)3; it gives
a contribution whose dominant factors differ from those in (B 13) by the replacement
of t™ by (tm) ™% (the contribution is the same as that given by (B 5)). The
crossover, beyond which (B 13} dominates this saddle contribution, is therefore
m ~ t. This is consistent with Darboux’s principle: for m < ¢ the saddle is closer to
z =0 than the branch point z = —¢+3i which generates (B 13), and for m >t the
branch point ig nearer.
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New values for asymptotic

series

Z(18) = 2.3367997

k=05 t =18 A=33
Series Zapproz ‘Error’
Zo 2.3027368 | 3.4 x10~?
Zo + Zs 2.2878103 | 4.9 x10~2
Zo + 73+ Z4 || 2.3106576 | 2.6 x10~2
k=1 t =18 A=233
Series Zapprox ‘Error’ |
Zo 2.3296719 | 7.1 x10~3 |
Zo + Z3 2.3337997 | 3.0 x1073
Zo + 73+ Z4 | 2.336117} | 6.8 x10™4
k=15 t =18 A =233
Series Zopproz ‘Error’
Zo 2.3355196 | 1.3 x10~3
Zo + 73 2.3366467 | 1.5 x10~4
Zo +Zs + Z4 || 2.336718}| 8.2 x10~°




Z(7005.08186) = 0.00396735727731

" k=1 t = 7005.08186 A=233 "
l Series Zapproz ‘Error’ ||
Zo 0.00399124138156 [ -2.4 x10~°
Zo 4+ Z5 0.00396599928855 | 1.4 x10~¢
Zo + Zs + 74 || 0.00396736281721 | -5.5 x10~°
T k=3 [ t=7005.08186 A =33
l Series I Zapprow “‘Error’
Zy 0.00396145443130 { 5.9 x10-®
Zo + Z3 0.00396733341498 | 2.4 x10°2
Zo + Zs + Z4 || 0.00396735716195 | 1.2 x10710
k=10 t = 7005.08186 A=33
Series Zapproz ‘Error’
Zo 0.00396747696468 | -1.2 x10~°
Zo + Za 0.00396735692875 | 3.5 x10~1°
Zo + Z3 + Z4 {| 0.00396735727729 | 1.5 x10714




Z(2m(200.15)2) = —1.463773120222623

k=1 t = 2x(200.15) A=33]
Series Liapprox ‘Error’ "
Zo -1.463766937951765 | -6.2 x107°
Zo + Za -1.463773108489982 | -1.2 x10-%
Zo + Zs + Z4 || -1.463773120211551 | -1.1 x10~%2
k=3 t = 27(200.15)% A =33
Series ZLigpprox ‘Error’
Zo -1.463772335498479 | -7.8 x10~7
Zo + 73 -1.463773120584071 | 3.6 x10~10
Zo + Zs + Z4 || -1.463773120222408 | -2.2 x10713
k=10 t = 27(200.15) A =33
Series Lapprox ‘Error’
Zo -1.463773124118375 | 3.9 x10~*
Zo + 73 -1.463773120220891 | -1.7 x10712
Zo + Z3 + Z4 “ -1.463773120222609 | -1.4 x10~14




