The Riemann—Siegel expansion for the zeta
function: high orders and remainders

By M. V. BERRY
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 ITL, UK

On the critical line s = ; + it (¢ real), Riemann’s zeta function can be calculated
with high accuracy by the Riemann-Siegel expansion. This is derived here by ele-
mentary formal manipulations of the Dirichlet series. It is shown that the expansion
is divergent, with the high orders r having the familiar ‘factorial divided by power’
dependence, decorated with an unfamiliar slowly varying multiplier function which
is calculated explicitly. Terms of the series decrease until » = 7* =~ 2nt and then
increase. The form of the remainder when the expansion is truncated near r* is de-
termined; it is of order exp(—mt), indicating that the critical line is a Stokes line for
the Riemann-Siegel expansion. These conclusions are supported by computations
of the first 50 coeflicients in the expansion, and of the remainders as a function of
truncation for several values of ¢.

1. Introduction

The Riemann—Siegel series, deciphered by Siegel in the 1920s from Riemann’s manu-
scripts of the 1850s, is a very accurate and widely used method of calculating Rie-
mann’s function {{s) on the critical line (Edwards 1974). My aim here is to un-
derstand the structure of the series. By ‘understanding’ I mean three things; first,
devising a transparent formalism for obtaining the terms in the expansion, enabling
high orders to be calculated; second, establishing the dominant behaviour of the high
orders; and third, estimating the dependence of the truncation error on the order of
truncation when this is large, and thence the ultimate accuracy that can be obtained
with the method. The latter is particularly interesting in view of the recent devel-
opment of alternative methods for calculating ¢ to high accuracy (Berry & Keating
1992; Paris 1994). :

On the critical line s =  + it (¢ real), {(s) is complex. However, it follows from
the functional equation for ((s) that the function

Z(t) = exp(if(£))¢ (5 + it), (1)

where
8(t) = argI'(5 + 1it) — 3tlogm (2)
is real for real ¢ (and also even). The Riemann-Siegel series is an expansion of Z(t)

for large £, whose starting-point is the separation of this function into a ‘main sum’
plus a remainder. It is convenient first to define

a=+/(t/2r), N=Int{a), a-N=3(1-2). (3)
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Then the separation is

N
2 = 22 cos(8(t) — tlogn) +R(). (@)

1/2
n=1 n

The remainder R(t) can be written as a formal power series in 1/¢, namely

_ 1\l @ P
R(t)=( DT ZC’”( ), (5)

al/? a’

r=0

This is the Riemann—Siegel expansion, whose coefficients C,(2z) will be our principal
concern. In correcting the main sum, the expansion removes the discontinuities where
the upper limit jumps, that is at ¢ = 20 N2 (N integer), and interpolates between
these points: as  increases from 27 N? to 2m(N +1)2, 2z decreases from 1 to —1, with
z = 0 corresponding to points 2r(N + 1)%.

Riemann’s technique for obtaining the coeflicients C,.(z) (explained for example
by Edwards {1974) and Titchmarsh (1986)) is an intricate application of the saddle-
point method to an integral representation of Z(t), with the subtlety that the saddle
lies on a line containing a string of poles. By contrast, the formalism I use in §2 is
wholly elementary and based on the Dirichlet series ((s) = 3> .. n™* (Res > 1).
Since this series does not converge on the critical line, the method is formal and so
cannot be regarded as a substitute for the customary derivation which gives the same
results. However, the method has the advantages of exposing the essential algebra of
the expansion, in a way that enables new results to be found later, and of generating a
series for Z(t) that is automatically real in spite of not explicitly using the functional
equation. The coeflicient C,(z) involves derivatives {up to the 3rth} of the function

_cos(pm(22 + 3))

Flz) = cos(mz) (6)

In §3 the elementary formalism is used to calculate high orders of the expansion,
that is C,-(z) for large . The main result is
T'(37)

Cr(z) = Wf(n’?:)’ (7)

where [ is bounded and given by the rapidly convergent series

flr2) = Yy (1™ 02 exp{—(m + §)°}

m=0

. {sin{(?m +1)y/rreos{(m+ 3)mz} (r even)

cos{(2m + 1}y/r}sin{(m + H)wz} (r odd) } when r > 1. (8)

These formulae show that the Riemann—Siegel expansion (5) diverges, with the di-
vergence dominated by the ‘factorial divided by a power’ typical of asymptotic series.
For large ¢ the terms in (5) get smaller before they increase, with the minimum near
r =r* = Int(27t). This familiar divergence is multiplied by the factor f(r, z), whose
oscillations are slow in comparison with the growth of I'(3 z). Therefore the expansion
falls in the class of ‘decorated factorial series’ now beginning to be encountered in
asymptotics; another example is saddle-point expansions whose divergence is dom-
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inated by coalescing distant saddles (Berry & Howls 1993). In the Riemann-Siegel
case, however, the decoration f has an unfamiliar form.

These results are used in §4 to estimate the remainder when the Riemann—Siegel
series is truncated at some large order R. The remainder is Sg(t), where

1 R
Ry =0T > Gl2) | sat). (9)

al/? a®

=0

I give two heuristic arguments leading to the expectation that Sg(t) is of order
exp(—nt). Then a direct calculation, using a variant of Borel summation, gives

(_1)Ne—m‘,

Sg(t) =~ W{ [—ierf(icr) + a/(lw—R)-(ﬁlcr2 + %)e"z] [f(R+2,2})+ f(R+1,2)]
1 e
+ 2\/(1rR)e [f(R+2,2) - f(R—l-l,z)]}, (10)
where o= (3R -mt)/\/R. (11)

Optimal truncation, that is truncation of the Riemann—Siegel series near R = r*
{where ¢ = 0), thus yields an error of the expected order exp(—nt). This shows that
the Riemann—Siegel expansion is less accurate than that of Berry & Keating (1992),
whose error is bounded by exp(—£*/3) (now we conjecture that this can be reduced
to exp(~)).

The arguments leading to the asymptotic formulae (7) and (10) are formal and
non-rigorous, so it is desirable to test them by comparison with direct calculations of
the C,(z) and the remainders Sg(¢). This requires high derivatives of F'(z) {equation
(6)), which are difficult to evaluate. In §5 methods are given for evaluating these
derivatives exactly for the special cases z = 0, z = :i:% and z = £1 (§5a), and
asymptotically for any z (§5b).

In §6a numerical comparisons are given between the first 50 ‘experimental’ Rie-
mann—Siegel coefficients C,.(z) and the ‘theoretical’ prediction (7) and {8) for a range
of z values. The theory works very well, with the decoration f(r,z)} reproducing
fine details of the coefficients, even for r as small as 5. In §6.2 comparisons are
given between the ‘experimental’ and ‘theoretical’ remainders Sg(t) as functions of
truncation R, for several values of . The theoretical formula (10) passes this highly
discriminating test very well, It shows that the Riemann-Siegel formula is capable
of astonishing accuracy, even for £ < 2x, when there are no terms in the main sum
(i.e. N = 0 in (4)). For example, when ¢ = 7 the Riemann-Siegel series (5) starts
to diverge when 7 =~ 20 and can generate Z(t} to one part in 10°. All computations
were carried out using MATHEMATICA (Wolfram 1991).

In previous numerical applications (e.g. computations of the zeros by Brent (1979),
van de Lune et al. (1986), Odlyzko (1987, 1990), Odlyzko & Schonhage (1988)), only
a few terms of the Riemann—Siegel series were needed, and the questions addressed
here, of the asymptotics for large r, did not arise. The most extensive theoretical
study of the Riemann—Siegel formula was by Gabcke (1979). He gave explicit for-
mulae for the C,.(z) for r < 12, and derived strict (and realistic) error bounds for
the Sp{t) for R < 10 {e.g. |S10(t)| < 25 966¢~23/%). He speculated that the series di-
verges, and proved this for the special case of the coeflicients Cs,,,(1), using a direct
method (Appendix B) that sidesteps the complications of the general formalism. We
explore this further in Appendix D by determining the explicit form of these partic-
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ular coefficients for 2/m large (using a result about asymptotic series established in
Appendix C). As it turns out, this special case is misleading, in the sense that the
divergence of the C,, (1) is weaker than in the general case and is not captured by
the leading-order theory (indeed (8) predicts zero for Ca,(1))-

2. Derivation of the series

In the function defined by (1) we can formally substitute the Dirichlet series for
¢(s), and obtain
exp(—it logn)

Z(t) = exp(i6(t)) Y ——g (12)
n=1

The sum does not converge and its terms are not real. However, we note that the
main sum in {4) comprises the first N terms of the Dirichlet series, together with
their complex conjugates. (These complex conjugate terms can be obtained (Berry
1986; Titchmarsh 1986) from the resummation of the divergent tail of (12).) Thus
the remainder in (4) can be written as

R(t) = i exp{i[@(t) ~ t logn]} Z exp{—i[{(t) — ¢ logn]} (13)

/2 nl/2

n=N+1

The Riemann-Siegel expansion (5) will be obtained by expanding the terms in the
two sums about the limits N+1 and N. This ingenious procedure, devised by Keating
(1993) to calculate the lowest coefficient Cy(z), will be the basis of all that follows.

To obtain the expansion, it is necessary to make use of the asymptotic expansion
of #(t). Gabcke (1979) shows from (2) that

6(t) = §t(log(t/m) — 1) — 57 + x(¥), (14)
where x(t) has the formal expansion

o 0]

bm (2%771 —1)| Bam|
x(t) = Z m-1’ where  bn, = Pmtlm(2m — 1)

m=1

(15)

in which Bs,, are the Bernoulli numbers. For the first sum in (13}, we define the new
variable K by

n=N+1+K=a(l+Q(K,z2)/a), 0K <o, (16)
where a and z are defined in (3) and
QK,2)=3(1+2)+ K. 17
The analogous definition for the second sum is
n=N-K=a(l-Q(K,—-2)/a), 0SKN-L (18)

Now the phase in the first sum in (13) is expanded using (14) and (16). A short
calculation gives

[8(t) — tlogn](modamy = (N + 14+ K)r + %'n' + x(2ma®) — %ﬂ'zz
S - l _Q(K1 z) "
+ 2mzQ(K, 2} + 27u m2=3 — ( . (19)

a
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With these substitutions, the first sum in (13) becomes

1N+
%T(a, z), (20)

where
T(a,z) = exp{in(Z — 32°) + ix(2ma®)}

= exp{inQ(K, z}(2z + 2a — Q(K, 2))}
Pl (1+ Q(K, z)a)1/2+2mie? '

(21)

K=0
The second sum in (13) is given by a similar expression with the upper limit replaced
by K = N — 1. This upper limit plays no part in the Riemann-Siegel expansion, and
will henceforth be replaced by X = oc (this amounts to including terms with negative
n in the second sum in (13), a point to which we will return). Thus we find

(_1)N+1

R(t) = al/2

T(a,z) + T (—a, —2)]. (22)

To generate the Riemann-Siegel expansion (5), it is necessary to expand T in
powers of 1/a, i.e.

=0

(23)

Then the Riemann-Siegel coeflicients are
Cr(2) =T (2) + (-1)"T7(=2). (24)
We shall find that T.(—z) = (—1)"T.(z); thus the C,(z) are real, as they must be,
and satisly the symmetry relation
Cr(=2) = (1) Ci(2). (25)
The lowest coefficient is obtained directly from (21) (Keating 1993) as

Co(z) = QRe{exp{iﬂ'(% - 124} Z (-1)¥ exp{2i7rQ(K,z)z}}

= cos{in(z® + 3)}/ cos(wz) = F(z). (26)

To get the general term in the expansion, it is convenient to use the operator
notation

=0
T Oz
to bring (21) to a symbolic form where the K sum is the same as that in (26), namely

T(a, z) = exp{in(} — 32°) + ix(2ma’ )}

exp{aD +iD?/4n} Z
(1 + D/2mia)l/2+2mia?

(27)

¥ exp{2irQz}. (28)

Thus
T(a, 2} = exp{in(% + 2°)}

exp{ix(2ma?) + aD +iD?/4r} | exp(inz()
x exp(~inz® [{ 1 + D/2miq)l/2+2wia? 2 cos(z)

Lﬁ . (29)
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The operator in braces has an expansion in 1/ and D. It is easier to find this if
the function is real, which we achieve with new variables = and y defined by

a=(1/2y)/(i/2%), D= %x\/(Qﬂ'/i). (30)
Then

exp{ix{2ma?) + aD +iD%/4x}) _
(1 + D/2mig)t/2+2nia® = gz, y)

= 1 . i T 3:2
= iy e (i) Vit

=exp{ Z( 1Y™bm(4y2)*™- l—l-z zy) (Qm m)} (31)

=1

This has an expansion in powers of z and y, with the term in y™ multiplied by z°"
2372 ete.:

oo Int(3r/2)

gzy) =3 > gmz Iy (32)

=0 m=0
Obviously, goo = 1. In Appendix A it is shown that the coefficients satisfy the
recurrence relation,

-'Cl ’.“ m kz (r,m)

1 (k1)
g'r+1,m— +1 Z Jr—km-1-k — ir+ 1) ; (k+3)gr—k.m—k
1 Pl(m)
+ r+1 Z (—1YP2%%2(4p + 2)bp1 Gr—sp—1.m—3(2p+1) (33)
p=0

where the limits of the sums are

iy (r,m) = m-1 (m < r+1),
WO 7 3r—2m+2 (m2r+1),

bm = {5 o (ST &2

pr(m) = Int(lm - —)

With the expansion (32), after replacing x and y by D and a from (30), we find,
for the coefficient of 1/a" in (29),

Int{3r/2)

1
_ 2 r i—myl m
T.(z) = exp{in(2 — L2} (-1) e mzﬂ Gemi™ ™ (L)
X D31‘— 2m exp (iﬂ-zg) (35)
2cos(mz) [,
To evaluate the derivatives, we define
&(z) = exp{3in(2® + 3)}/2 cos(nz) (36)
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and use Leibniz’s rule for differentiating a product. Thus

explpin(s - ) | T2

2 cos(wz)

= exp(—3im2?)[D™ exp{in(z¢ — 327} (2)|;--

k13

= Z W?:I_'.._) Hln—s (z)[Ds exp{—-—l?'r(z - 2}]c~.z, (37)

5=0

where @(™)(z) denotes the mth derivative. The derivatives D® are zero unless s is
even. A little calculation now leads to

» Int(3r/2)

> 4 gy O y8r=2ml,

= {g—m)!

(

T.(2) =

To get the Riemann—Siegel coefficients C,(z), this must be combined with T (—z)
according to (24). The fact that even and odd derivatives are, respectively, even and
odd functions of z (cf. (36)) guarantees that the C, are real. In (38) the terms with
even ¢ combine to give derivatives of

2Re @(2) = F(z), (39)
where @ is defined by (6), and the terms with odd ¢ combine to give derivatives of

2Im $(z) = sin{37(2* + 3)}}/ cos(mz). (40)

Now, Im ¢(z) has poles at 2z = %3, whereas Re &(2) is finite at these points (zeros
of the numerator and denominator cancel). But Z(¢) is a smooth function, so that
the poles cannot contribute to the Riemann-Siegel coeflicients. Therefore the sum
over m in (38) must vanish if g is odd. Extensive computations confirm that this is
so, but I have not succeeded in finding a general proof.

Incorporating this observation, we obtain the Riemann-Siegel coefficients in their
final form:

Int(3r/4) _
e 4p)(z)
Cr(z) = Zo s, e (41)
where
(=) (3r - 2m)!
2%(3r — dp)! = (2p—m)] O

drp = (42)

The multipliers d,, are rational numbers, defined in terms of the g, which are
calculated from the recurrence relation (33).

Table 1 shows some of the d,,, extending the list of Gabcke (1979) which showed
these multipliers for r < 12. For small m and p it is possible to calculate g,,, and
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d,p for all r; the results are

(=1 _(=1yH1Ee(3r—1) )
90 = oy 91T 12771 :
27 (=1)7(15r° — 38r2 + 297 — 6)
2= 16 127(r — 1)! ’ (43)
o1 9 (3r—1)
T 1ot T BIov(r — o) )

3. High orders

The coefficients T;.(z) in (23) can be written as

Tz} = = jtg —a ' T(a, z), (44)

in which the contour is a loop at 1nﬁn1ty enclosing the origin. For T' we substitute
the series (21}, treating each term separately. Thus we obtain

T(2) = Y Uke(2), (45)
K=0

where Uk (2) = exp{i:rr(§ - lz2 +22Q — Q)}
( DX [da ,exp{i(®ma@ + x(27a®})}
% ]_ + Q/a)1/2+27:1a2 )

The aim is to find the asymptotic form of this integral for large r, and then perform
the summation over K.

Three preliminaries will enable the integral to be cast in a form suitable for asymp-
totic evaluation. First, the exponent iy will be neglected; this seems drastic, but is
justified by a calculation (Appendix D) of the asymptotic series {in 1/a) for the
corresponding exponential. This reveals that although the high orders diverge facto-
rially, the divergence of the terms from the rest of (46) is exponentially larger and so
dominates. It now follows froin a result on the combination of asymptotic series (Ap-
pendix C) that the contribution of y to the high-order Riemann-Siegel coeflicients
is negligible.

Second, we rearrange the exponent in (46) using

("WQZ + ZTFZQ —1TZ )mod 2 = ‘+‘7TQ2 - ‘71' (47)

This is easily proved from the definition (17) of Q.

Third, we note that without x the only singularities of the integrand in (46) are
branch points at @ = 0 and @ = — @ These can be connected with a cut, onto which
the contour can be shrunk (figure 1). On the upper (lower) lip, the phase of (1+Q/a)
is —m (+x). With the natural change of variable a = —Q}u, (46) now becomes

1) +r

(46)

Ukr(2) = explin(—4 + @)} —L—
1

QT‘
duu”

o vull —u)
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a plane

Figure 1. Contours in the a plane for the integral (46).

This integral will be evaluated by the method of steepest descent. The main con-
tribution comes from the part of the cosh function with the negative exponent. The
corresponding exponent of the integrand has a stationary point between u = 0 and
% = 1. The value of the exponent at this point depends on @ which is proportional
to K. Since it will be necessary to sum over K, the most effective procedure is to
determine the stationary point of the whole exponent in {48) with respect to both u
and ¢}. This exponent is

E(u,Q;7) = rlog{Qu) — 2w Q%[ru? + i(—% +u+uflog(u~t - 1))]. (49)
The stationary point (denoted by a superseript ‘s’) is at
u’ = %, Q= r/m. (50}

{Note that at this point ¢ = 2ma? = r/2m, so that y(2ma?) ~ 1/r, further justifying -
neglect of this quantity in (46).) The stationary values of £ and its second derivatives
{denoted by subscripts) are

Es = Irlog(ir) — 3r — rlog(my/2),
Es, = —8r(1—2in), Eig=—dm/r, Epg=—2r2

U

(51)

Thus we can write

Bu,Q7) = B* + 1B}, (u—3)° + Eglu— g} (Q — vr/m) + § E5(Q — vr/m)* + ... .

(52)
Evaluating the u integral, and noting that
1 T
exp(E®) = ey 2exp(—Lr)m — ¥ T(ir 53
(F) = g ) exp(— ) » o T4 (53)

leads, on reinstating X, to

lfr _1\K+r T 2
Ugr(2) = (i(\;Q)}T exp(%iw)4[’”_(\/%%T exp{— 2’”2_'1_'_1({(—{-%(1-{-2)— %) } (54)

This has a maximum near K = /r/m, so for large r the lower limit K = 0 of the
sum in (45) can be replaced by —oo with an error that is exponentially small. Then
the sum 7,.(z) is a theta-function series, which by the Poisson summation formula
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can be transformed into another theta-function series that converges rapidly, namely

Tr(Z) ( 1)TF(1T‘) Z m(m—l)/2 exp{__(m_{_%)Z}

4(11-\/2 ’”+1 e
x exp{i[(m + §)mz — (2m + 1)/7]}. (55)
Because of the symmetry about m = —=z, the terms with negative and positive m

can be combined, thus giving 7. as the real expression:

Tr(z) = ~ flr)\;g T+1 Z;B Ly exp{~(m + 3)°}

x sin{(2m + 1)y/r — (m + 3)7wz}. (56)

Finally, adding T,.(~2) according to (24) gives high-order Riemann-Siegel coefficients
as

1
Cule) = B 1,2), (57)
where
Flr,z) = 3 (1) D2 exp{—(m + §)°}
m=0

" sin{(2m + 1)y/r}cos{(m + 3)mrz}  (r even),
cos{(2m + 1}y/r}sin{(m + Dmz}  (r odd),

} when r > 1 (58)

as claimed in §1.
Reinstating a, we see that the terms C,./a” in the Riemann-Siegel series (5) behave
like

an 2y~ )

For fixed large ¢, the terms decrease rapidly and then increase, in the manner familiar
in an asymptotic series (Dingle 1973). The least term is near r* = 2.

The particular coefficients Ca,,,(1) can be determined solely from the requirement
that the discontinuities in the main sum in (4) are removed by the Riemann-Siegel
expansion (5}, leaving Z(t) continuous as it must be. This argument, by Gabcke
(1979), is elaborated in Appendix B, and extended in Appendix D to determine the
high-order behaviour of these coefficients. The result is

T(3r)  T(r)

(59)

Com (1) ~

I'(m) 3 {—cos( m)/48m  (m even)

form » 1. 60
(2mr)2m sm(sﬂ)Qﬂ' (m odd) } (60)
The powers in the denominator contain the factor 2, rather than /2 as in the general
case (57). Therefore these special coefficients are smaller by a factor 27 than the
even coefficients for z # =1, consistent with (58) predicting zero for the high-order
behaviour in this case.
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4. Remainders

We seek the form of the remainders Sr(¢) of the Riemann—Siegel expansion, trun-
cated at terms r = R close to optimal, that is close to the least term r =~ r*. The
remainders are defined by (9). Before proceeding to a direct calculation, I give two
heuristic arguments suggesting that they will be of order exp(—mt). The arguments
are based on the observation that the divergence of an asymptotic series often origi-
nates in terms omitted in its derivation, so the size of these terms limits the accuracy
that can be obtained with the expansion.

First, recall that in deriving the Riemann-Siegel expansion we included the terms
with negative n in the second sum in (13) (see the remarks following equation (21)).
These have the form

exp{itlog(—n)} = exp(—nt) exp(itlogn) (61)

and indeed invoive the claimed exponential.

Second, the formal expansion (15} for the quantity x(t) defined in (14) fails to
capture the Stokes phenomenon for the gamma function (Berry 1991) that appears
in the definition (2) of 6(¢). Using the reflection and duplication formulae for the
gamma function, Gabcke (1979) showed that 8(f) can be written in terms of I'(if)
and I'(2it} through the identity

8(t) = st(log(t/2m) — 1) — 37 + 3 Im[u(2it) — u(it)] + jarctan{exp(—nt)}, (62)
where p(z) is defined by

I'(z) = m;:z_% exp{—z -+ p(z)}. (63)

The formal expansion (15), which contributes to the Riemann-Siegel expansion, is
obtained by applying Stirling’s series to u(it} and u(2it) in (62). The term involving
exp(—mt) in (62) is beyond all orders of the expansion and so does not contribute
to the calculation of its terms, although it is of course part of the function Z(t)
being approximated exp(—nt} is the first in a string of small exponentials in the
asymptotics of ¢ ( + it); elsewhere I will pursue the idea that these correspond to
complex periodic orb1ts {*instantons’) in the conjectured associated dynamics.

With this expectation that the remainders will be of order exp{—nt}, we now
proceed to a direct calculation. Sg(t) can be written formally as the divergent tail of
the series (5). If R is large, the asymptotic formulae (57) and (58) can be substituted
for the terms, giving (cf. (59))

(=1)¥+ & TGr)
~ 724 Z(ﬂ-tirﬂ

Because this is divergent, it must be interpreted. This will be achieved using a variant
of Borel summation (Dingle 1973). If the terms with r even and r odd are separated,
the functions f(r, z) are slowly varying and can be replaced by their values at the
lower limit of the sums. Thus

(=D [ f(R+1,2) — I‘(%(R+1)+m)
7!'\/-2_& {(Wt)(R+1)/2 Z (?’l’f)m

f(R+2 P i R+1+m)}'

(mt)RI2HT

Sg(t) (64)

SR(t) =

(65)

m=0
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Replacing the gamma functions by their integral representations, and then evaluating
the sums, gives, after an elementary change of variable, the convergent representation

(=1

SR(t) -~ \/—

——{f(R+1,2)I(R-1,nt)+ f(R+2,2z) I(R, nt}}, (66)

where
oo _ R/2
I(R,w) = ][ SR W (67)
0 1—u
The principal value is chosen to ensure that Si(t) is real for real t. We seek to evaluate
this when R is large and close to the least term 27t = 2w. Then the integrand has a

saddle close to the pole at w = 1, and it is natural to expand about « = 1. To third
order, we obtain

I(R,w) = —e‘"’J[ % exp{—{Rs° + (JR— w)sH{1+ }Rs* +..))
e w [ dv 2 4 3
= —e ]{m-;)—exp{ v +2av}(l+§—\-/—év +...), (68)
where
o(R,w)=(3R—-w)/VR. (69)
The first integral in (68) can be transformed into an error function
][ %e_”z sinh{20v) = 2\/71'] doe” = —in erf(io) (70)
—oo 0

(which of course is real} and the second integral is elementary.
Incorporating the difference between I(R,w) and /{R—1,w) in (66) into the term
of order 1/4/R, we finally obtain

Sr(t) = (_I)N\j;%(—ﬂ) {(—i erf(io) + 33%) (4o® + 1))

X (f(R+1,2) + fF(R+2,2) + ex\I;(J_)(f(R+2z) f(R+1,z))}. (71)

This is the result (10) claimed in § 1. It indeed has the expected leading-order depen-
dence exp(—t). Moreover it is easily confirmed from (57) that Sg(t) is of the same
order as the first term omitted in the truncated Riemann-Siegel series, consistent
with Gabhcke’s rigorous bounds for the first few terms, and asymptotics folklore,
Finally, we consider briefly the case where ¢ is complex, that is when the zeta
function is being calculated off the critical line. For optimal truncation, that is
R = Int(27 Ret), the remainder (71) consists, to leading order, of exp(—t) times a

mutiplier involving
Im it Im wt
—lerf| — | = —ief | —— | . 72
(%) (%) "

This is precisely the universal multiplier describing the smooth switching of the sign
of a subdominant exponential across a Stokes line (Berry 1989). Here the subdomi-
nant exponential is exp(—nt) (the dominant exponential being unity), and the Stokes
line is the critical line £ real. An interesting fact is that the ‘half-width’ of the Stokes
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line, that is the range over which the argument of the error function increases by
unity, is Im¢ ~ +/(2t/), which is larger that the half-width Im¢ = ; of the critical
strip.

5. Calculation of derivatives contributing to the coefficients

According to (41), the coefficient C,.(z) involves the nth derivatives F™)(2) of
the function F(z) (defined by (6)), for n < 3r. These derivatives are nonsingular
functions of z, because the zeros of the numerator and denominator cancel. Direct
evaluation is very inefficient, because it gives each high F((z) in terms of powerful
singularities that must cancel when summed. In this section I describe two effective
methods for evaluating the derivatives, as alternatives, applicable for large r, to the
Taylor expansions commonly used for small » (Edwards 1974).

(a) Special values of z
For z = 0, Leibniz’s formula for the derivative of a product gives, for the even
derivatives (the odd ones being zero)

FE™(0) = (2m)! Re exp(Zir)

n

]. 3 . T —4L8
m(SecTrz)iit))(exp(%”ff))gio 2 (73)
Use of
np (m2)*"
secvrz—Z( )" By K (74)
where Fs, are the Euler numbers, leads to
m 1 _ 3
F(Zm)(o) — (2']’?‘?,)!(%7‘[’)7” Z (_zw)sEzsCOS{g’n’T(m s+ 4)} (75)

poard (28)1(m — s}!

For z = 1, we note that
F(14¢) =sin{3n(¢® + %)} + cos{2m(¢* + 2)} tan (. (76)

The first {second) term is even (odd) in {, and so gives the even (odd) derivatives.
Use of

tana =3 (=) Bon(rgyt o2~ ) (77)
Lt 2n (Qn)! 3
where B», are the Bernoulli numbers, leads to
F@m(1) = 7 V2(m — IH27%)™ sin{in(m + 2)},
FOm+U(1) = 47(2m + IN(LIm)™
i i (22542 — 1) cos{in(m — s + )} (78)
X (—87)°Basi2 2 -,
paard (2s + 2}(m — s)!
For z = , we note that
F(3 +¢) = Leos(3n(?)sec(3w¢) + & sin(3m¢?) cosee(3m(). {(79)
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- saddles

u plane

D\

Figure 2. Contours in the u plane for the integral (82).

Again, the first (second) term is even (odd) in ¢, and so gives the even (odd) deriva-
tives. Use of (74) and

2n—1 (2271_1 - 1)

cosec(17¢) = 2;(_1)%182”(%#0 @n)! (80)
leads to
am) ¢l m E4s( 1 )S ‘
FOm() = §(-1(am)\(3n)? Zm
m 1 m+1 1_32m Bys(=1)°(zm)> (241 — 1)
FUm+D 1y = (_1)+ (4m + 1)) ; : (43)!(2;3— 2s+ 1)1 7
E4.5+2 )3(1 )2s >
F(‘l"‘*z)(%) _ %( )m+1(4m+2)l(1 y2me+2 Z (4s+2)1(2m2 281"
o 1 5 Bussal 1 (o2~
FUm*3)(3) = (-1)"™(4m + 3)(37)* *22 (Zw '2m—-2s+ 1)1 |
(81)

(b) Asymptotics of high derivatives

A familiar dogma of asymptotics is the invocation of Darboux’s theorem (Dingle
1973} to infer that high derivatives of a function at a regular point are determined by
the nearest singularity. This fails for F'{z), which has no finite singularities. Therefore
it is necessary to use a different method. From {6), Cauchy’s theorem gives

% du  exp{limu?)
(

w— z)* 1 cos(mu)

|
F(z) = ;—ﬂ Re exp(—3zim) (82)
where the contour is a small loop surrounding v = z.

The poles at the zeros of the cosine do not contribute: they are cancelled when the
real part is taken. Instead, the integral is dominated by saddles. Their contributions
can be extracted by expanding the contour into lines Cy and C_ connecting infinity
in the first and third quadrants (figure 2), where the exponential converges. Sad-
dles lie in the second (fourth) quadrants on Cy (C-), where the negative (positive)
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exponential in the cosine dominates, Therefore we can write

1
cos(mu

=2 Z —1)P exp{tiru(2p+ 1)} (83)

==

(upper sign: on Cy, in upper half-plane; lower sign: on C_, in lower half-plane) and
express the derivatives as

F (== Re exp(—tir) Z (2) + I, (2))- (84)

Here pr(z) = du exp{—¢35,(u, 2)}, (85)
Cy

where To(u,2) = (n+ 1) log(u — z) — dimu® Finu(2p + 1). (86)

Each integral is dommated by a single saddle, at
w=u,(2)3 {Fe ™4 /[(4/m)n+ 1) +i(z+ (2p+ D)) ]+2F 20+ 1)} (87)

Then the saddle-point method, including the first correction term, gives the approx-

imations
(BBL)>  Bigt
pr(z)z\/angi exp(~4, ){H [ 3(629%,)° (azqs;t:?]} &

in which all quantities are evaluated at ufp. Substitution into (84) gives the deriva-
tives. For large n, the contributions from higher p in (84) and from the saddle-point
correction (in square brackets in (88)) diminish rapidly, making this an effective
method for computing the high derivatives.

6. Numerical tests of the formulae

(a) Riemann-Siegel coefficients

Here we compare the ‘experimental’ C,.(z) computed from the exact formulae (41)
and (42), using coefficients g,,, obtained from the recurrence relation (33), with the
‘theory’ represented by the asymptotic formulae (57) and (58). The coefficients were
computed for 0 < r £ 50.

For the ‘experiment’ it is necessary to evaluate the derivatives F*}(z) up to n =
150. This was done using the saddle-point approximations of §5b with 0 < p < 3. It
is convenient to present the data by factoring out the dominant dependence in (57).
Therefore the ‘experimental’ graphs show f(r, z) defined by (57), that is

_ (my2)
flrz) = T Ci(2) (89)
and the ‘theoretical’ curves show the large-r approximation (58).

Figures 3 and 4 are synoptic comparisons for a range of z values between 0 and
1, for r even and r odd. Evidently the theory works well, even for r as small as 5.
Figure 5 shows comparisons for some individual = values.

It is necessary to check the unlikely possibility that the good agreement in figures
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(a) (&)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
f_0_2 50 o0 40 50 -
-0.4 -04
0.6 -0.6
-0.8 -0.8

Figure 3. Decoration function f(r,z) (defined by (90)) multiplying factorials in the Rie-
mann-Siegel coefficients, for even r. The curves show z = @ [0.1] 1. (a) ‘Experimental’ coef-
ficients {41) and (42) with derivatives approximated by the saddle-point method of §5b; (b)
‘theory’ (58).

(a)

(&)

0.8
o8 0.6
0.4 0.4
0.2 0.2
P2 30 40 50 g, 30 40 50
04 0.4 "
-0. 0.6
-0.8 08
Figure 4. As figure 3, with r odd.
(a) (b)
0.6 0.6
0.4 0.4
0.2 0.2
f
-0.2 -0.2 T
-0.4 -0.4
0.6 -0.6
{¢) {d)
0.75} = 0.6
0.5 . 0‘4
0.25 0.2
f
-0.25 -0.2 N r
_0 5 ‘0.4‘ * g
) '0-6 -
-0.75 e

Figure 5. As figure 3, for () z = 0.5, even r; (b) 2 =0.5, odd r; (¢} z = 0, even r; (d) z =1,

odd r. Dots, ‘experiment’; full lines ‘theory’.
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{a) (b
0%(2)2 0.001
0.02 -0.001 50
Af0015 -0.002
0.01 _0.003
0.005 -0.004
! -0.005

() (d)
0.04

0.004
0.03 0.003
0.002
Ay 002 0.001 i /\
0.01 i

0,001 \/\/\/\/V ""30 40 50 )

10~ 20 30 40 so 0002

Figure 6. Test of saddle-point approximation of §5b with 0 < p X 3, for derivatives of F(z),
with Af(r, 2) = fexact(r, z) — fsaaawe(r, z), for (a} z = 0.5, even r; (b) z = 0.5, odd 7; {c} z =0,
evenr; (d) z=1, odd 7.

(a) (9)

20 40 60 80 160

-1 0.03
) 0.02
= .00
% -3 ':; .L_- . r
E & 40 50
& -4 001
= -0.02 f

-5 0.03

Figure 7. Coeflicients C'(1) against r for r even. (a) log;y(error) in the high-order approximation
{(60), where error = (approximate C'/exact (') — 1; (b) coefficients calculated exactly {dots), and
via saddle-point approximation for the derivatives (full line).

3-5 is a fortuitous consequernice of the saddle-point approximation for the F' deriva-
tives. That this is not the case is clear from figure 6, which shows the difference
between the coefficients computed with the exact and approximate derivatives, for
the particular cases (§5 ) where the derivatives can be computed exactly. The errors
never exceed 4% and would barely be perceptible in figures 3-5. It is interesting to
note that the errors are smaller when r has the form 4m than for r = 4m + 2, and
much smaller still when r is odd.

Figure 7 concerns the particular cocfficients (g, (1), which can easily be computed
exactly (Appendix B). Figure 7a confirms that the formula (60) for the high orders
is better for larger r, and also shows that the relative error is much smaller for
r = 4m + 2 than for r = 4m. Figure 7b shows that for these coefficients (which are
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(a) {b)
.« . 0.5 . e

-0.005 = ) 20 -No R

Sk o1 . 3 0.5 N
0015 ° = ko |
002 -1.5

(¢}

=
[
E w | 25 30 35 40 e
A

42 44 46 48

Figure 8. Riemann-Siegel remainders Sg(t), computed exactly from (9) (dots), and from the
theory (71) (full lines), for the following values of ¢ (table 2): (a) t = in (least term near
R =10); {b) t = 2 (least term near R = 22); (¢) t = 2r (least term near R = 40); (d) ¢t = L7
(least term near R = 62).

exponentially smaller than in the general case) large errors result from using the
saddle-point approximation to calculate the derivatives.

(b) Fzact and approzimate remainders

To test the theory (71} it is necessary to calculate the remainders Sg(t) defined by
(9), by subtracting from Z(¢) the first R+ 1 terms of the Riemann—Siegel expansion.
As explained by Edwards (1974), Z(¢) can be computed with arbitrary accuracy,
albeit not very efficiently, by a method based on the Euler-Maclaurin sum formula.
When calculating the remainders, the Riemann—Siegel coefficients must be evaluated
with an accuracy exp(--t). This cannot be achieved by calculating the F' derivatives
with the saddle-point approximation of § 5 &. Therefore I restricted the tests to z = 0,
z= % and z = 1, for which the derivatives can be calculated exactly as explained in
§54a.

Even so, the comparison was necessarily restricted to low values of £; otherwise, the
fact that the optimal truncation is near R = 2wt would have required the evaluation
of very high derivatives. For these, the methods of § 5 @, although exact, are inefficient
and require very high numerical accuracy. For example, R = 50 requires the Euler
and Bernoulli numbers up to order 150, and F15 is an integer of order 10?33 and
Bigo is a ratio of integers with numerator of order 10!*°. Table 2 shows the values of
t for which the theory of the remainders was tested.

Figure 8 shows the ‘experimental’ and ‘theoretical’ remainders as functions of
truncation R. Evidently the theory (71) works well for a large range of near-optimal
truncations (including, it seems, figure 8d, where R = r* = 62 is out of range of the
computations).
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Table 2. Special values of ¢

t N oz rta2rt TArt)/(Er)T 0
iz 0 0 10 3.7x107%
= 0 -3 22 3.4x107°
2 0 -1 39 3.4x1071°
Br 1 +1 62 3.3x1071®

It should be noted that although these ¢ values are large in the sense that the
optimum order r* of Riemann-Siegel truncation is large, they are all smaller than
the lowest Riemann zero (near ¢t = 14.1), and for all except one (¢t = 257/8 = 9.8)
the main sum is empty. For the lowest Riemann zero, r* = 89, which is out of reach
of our computations.

The extraordinary accuracy of the Riemann—Siegel expansion is achieved at a high
computational cost. To attain the optimal accuracy exp(—=t), the number of terms
that must be included is 27t; this is 472N? and so increases faster than the number
of terms in the main sum in (4). Nevertheless, it is interesting to speculate that it
might be possible to attain still higher accuracy, by extending ‘hyperasymptotics’
(Berry & Howls 1991) to the Riemann—Siegel expansion.

I thank Dr Jonathan Keating and Professor Michael Morgan for very helpful conversations, and
useful comments based on their careful reading of the manuscript.

Appendix A. Recurrence relation for g.,

This is the derivation of (33). The first step is to expand g(z,y), defined by (31),
in terms of . Thus we write

g(z,y) = exp (Z %(ﬂr)y’") =Y o=y (A1)
r=0

r=1

with go(z) = 1. Differentiating the second equation with respect to y and identifying
terms in y gives

gr+1(z) =

r+1 77;) (m + 1)7m+1(x)g'r—m($)- (A 2)

Now we note that, from (31),
" ;L.T'+2

(@) =5 - 19 [(—1)ir+/4g

b(’”+2)/4]when (r +2)/4 is integer* (A3)

The next step is to expand g,(z) in powers of z (cf. (32)):

Int(3r/2)
gr(z) = E s 2. (Ad)
s=0
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Substitution into (A 2) and identifying terms now gives, ignoring for the moment the
upper limits of the sums,

k1 (r,m)

1
(r+1) 9r+1m= Z Gr—km—1-k — 1 g‘r—k:,m—k
k=0

ko (r,m)

+ [Z 2P (1) *DA K o+ Dbiera)/adr—kim—arr1) 2 (AS5)

k ] (k+3}/4 integer
In the last sum we change the variable to k = 4p - 1 and thereby obtain (33).
The upper limits (34) of the sums are determined by the requirement that in each
grm the indices must satisfy 0 < m < Int(3r/2). Thus in the first sum, k;(r,m)
follows from

0<m—1—k<Int(3(r —k)) (A6)
and similarly for ky. For the third sum, the same principle gives
0L m—-32p+ l)SInt(%(r—élp—l)) (AT)

and p(m) follows from the first inequality.

Appendix B. Cs,(1) from discontinuities in the main sum
{Gabcke 1979)

Continuity of Z(¢) at t = 2wr N2, in spite of the discontinuity of the main sum in
(4), implies that the Riemann—Siegel coefficients in (5) must satisfy

0 = lim [Z(2nN? +€) — Z(2aN? — ¢}

(=yr i Cr(+1) + Cr (1)

_ —1/2 2y _ 2
=9N cos{f(2nN*) — 27 N°log N} + Ni/2 N

. (B1)

r=0
The symmetry relation (25), together with (14}, gives
= Com(+1)
> _z;\n_,gm_ = (-1)" cos{#(2aN?) — 27 N%log N}
m=0
= cos(3m} cos{x(2rN?)} + sin(}m) sin{x(2n N?)}. (B2)
Noting the expaunsion (15) for x, and defining
T = i/NZ, dm = (_l)nabm/(zﬂJZTrb—l (B3)

we see that the desired Cb,, (1} depend on the real coefficients e; (with ey = 1) in the
expansion

exp{ix(2nN%)} = exp ( Z dpz®™ ) = Ze;x‘. (B4)
=0
From (B 2}, the coefficients are
Cu(1) = (—1) cos(im)en, Cusa(1) = (—1)'sin{im)es1. (B5)
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The e; can be found from the following recurrence relation, which follows from dii-
ferentiating (B 4):

. Int{/2)
el41] = —l—|-—]_ ; (28 + 1)d5+1€1_23. (B 6)

Gabcke’s argument can be extended by requiring that derivatives of Z(¢) are con-
tinuous at ¢ = 2w N2, This leads to (rather cumbersome) equations determining the
nth derivatives of the Riemann-Siegel coeflicients C, at z = 1, where n + r is even.

Appéﬁdix C. Two results on late terms in asymptotic series

These results {which are probably ‘well known to those who know well’, and are
given here for completeness) will be used in Appendix D. The first concerns the
exponential of an asymptotic series. If

= i SpT" (C1)
n=1

is a factorially divergent formal asymptotic series, we seek the high-order coefficients
e, defined by

exp (2_21 sna:") = Zen:c”. (C2)

n=0
Clearly, eq = 1.
Differentiating (C 2) gives

Z (1 + m)sm+len—m

m=0

en+1=n+1

+1 n+1

For n 3 1 the assumed factorial divergence of the s,, implies that the terms in this
series diminish as powers of 1/n. We include the first two terms, to allow for the
circumstance (which will occur in Appendix D) that the first might vanish because
of symmetry. Thus

= Sp4l + ———5n€1 + ——Sp_1€2 . (C3)

€nil R 8o41 + 8,51 forn > 1. (C4)
The second result concerns the product of two asymptotic series. If
oo o0
s{z) = Z s,z" and t{z)= Z thz" (C5)
n=0 n=0

are factorially divergent formal asymptotic series with sp = 1 and {g = 1, we seek
the high-order coefficients p,, defined by

s{z)t(z) = Z 8n T Ztn:c” = ana: (C6)

Clearly, pp = 1.
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Collecting terms with the same power of x gives

n
Pn=zsktn—k=fn+31tn—1+---+Sn+t13n—1+~- (C7)
k=0

For n > 1 the assumed factorial divergence of the s, and ¢, implies that the terms
in the two series following ¢, and s, in (C7)} diminish as powers of 1/n. Therefore

Drn &2 max(s,,t,) forn>» 1. (CR)

In words, the high orders in the product series are simply the high orders of the
dominant of the two component asymptotic series.

Appendix D. Two results for the gamma series exp(iy)

The first result is the derivation of the formula (60) for the high coefficients Ca,,(1).
This is an application of the ‘exponential’ formula (C4} to the high orders of the
series (B 4) generating Cap,,(1). Identification of the middle member of (B 4) with the
first member of {C 2) gives

Som = 07 Sam4+1 = _dm+1- (D 1)

For the high d,,, we use the definitions (B 3) and (15), together with asymptotics of
the Bernoulli numbers, to obtain

(=1)™(2* ! — D)|Bom| _ (~1)"(2m — 2)!

dym = (271-)2mr-122m2m(2m _ 1) ~ (271_)4"1_1 for m > 1. (D 2)
Equation (C4) now gives
B _1 m+1 2m _ 2 !
fam ¥ Somof = _%d’” ~! Qzaar(27(r)4m_1 )
(=1)m(2m)! for m > 1. (D3)

€2mt1 & S2mal = —dm41 R W

Substitution into (B 5} gives the claimed formulae (60).

The second result is the justification, promised in the second paragraph of §3, for
ignoring terms generated by the factor exp(ix) when calculating the high orders of
the Riemann—Siegel series. From (B 3) and (B4) we find

o0 .l
exp {ix(2ma®)} = Z Z—Izlz‘ (D4)
1=0

From (D 4) we have the high-order behaviour
€y F(l)

a2~ (2m)2a2 (D3)
so the coefficient of 1/a” in the expansion of exp(ix) is proportional to
T(3r)
: D6
(2m)" (D6)

This is smaller by 2-7/2 than the leading dependence found for the C. in (57} and
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so, by the result (C8), the factor exp(ix) does not contribute to the asymptotics of
the Riemann-Siegel coefficients. Another way to see this is to reinstate ¢ and note
that the terms in the expansion of exp(iy) diverge as
I'(ir

Llgr) (D7)

(2mt)"/
which is smaller than (59) and by Borel summation generates a remainder of order
exp({—2mt), rather than the exp(—=t) found in §4.

References
Berry, M. V. 1986 In Quantum cheos and stotistical nuclear physics (ed. T. H. Seligman & H.
Nishioka), pp. 1-17. Springer Lecture Notes in Physics No. 263.
Berry. M. V. 1989 Proc. R. Soc. Lond. A422, 7-21.
Berry, M. V. 1891 Proc. R. Soc. Lond. A 434, 465-472.
Berry, M. V. & Howls, C. J. 1991 Proc. R. Soc. Lond. A 434, 657-675.
Berry, M. V. & Howls, C. J. 1993 Proc. R. Soc. Lond. A 443, 107-126.
Berry, M. V. & Keating, J. P. 1992 Proc. R. Soc. Lond. A 437, 151-173.
Brent, R. P. 1979 Math. Comp. 33, 1361-1372.

Dingle, R. B. 1973 Asymptotic expansions: their derivation and interpretation. New York and
London: Academic Press.

Edwards, H. M. 1974 Riemann’s zete function. New York and London: Academic Press.

Gabcke, W. 1979 Neue Herleitung und Explizite Restabschitzung der Riemann—Siegel-Formel.
Ph.D. thesis, Gottingen.

Keating, J. P. 1993 In Quantum chaos (ed. G. Casati, I. Guarneri & U. Smilansky), pp. 145-185.
Amsterdam: North-Holland.

Odlyzko, A. M. 1987 Math. Comp. 48, 273-308.

Odlyzko, A. M. 1990 The 10*°th zero of the Riemann zeta function and 175 million of its
neighbours. AT&T Bell Laboratory preprint.

Odlyzko, A. M. & Schénhage, A. 1988 Trans. Am. math. Soc. 309, T97-809.
Paris, R. B. 1994 Proc. R. Soc. Lond. A 446, 565-587.

Titchmarsh, E. C. 1886 The theory of the Riemann zeta-function, 2nd edn. Oxford: Clarendon
Press.

van de Lune, J., te Riele, H. J. J. & Winter, D. T. 1986 Math. Comp. 46, 667-681.
Wolfram, S. 1991 Mathematica. Addison-Wesley.

Received 16 November 1994; accepted 4 January 1995

Proc. R. Soc. Lond. A (1995)



