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Abstract. By pretending that the imaginary parts E,, of the Riemann zeros are
eigenvalues of a quantum Hamiltonian whose correspending classical frojecteries are
chaotic and without time-reversal symmetry, it is possible to obtain by asymptotic
arguments a formulo for the mean square difference V(L; x} between the actual and
average number of zeros near the xth zero in an interval where the expected number is
L. This predicts that when L « L, = In(E/2m){2x In 2 {where x = (E/2x)(In{E /2r} —
1)+ %), V is the variance of the Gaussian unitary ensemble {GUE] of random matrices,
while when L >> L., V will have quasirandom oscillofions about the mean value

™ *(In In(E /27) + 1.4009). Comparisons with V(L; x) computed by Odlyzko from 10°
zeros E,, near x = 10" confinm dll details of the semiclassical predictions to within the
limits of graphical precision.

1. Introduction

It was realised long ago [1] that the truth of the Riemann hypothesis would be
established if it could be shown that the imaginary parts E,, of the non-trivial zeros
of {(z) are eigenvalues of a self-adjoint operator. Montgomery [2] suggested that
the statistics of the E,, are those of the eigenvalues of an infinite complex Hermitian
matrix drawn randomly from the Gaussian unitary ensemble (GUE) [3]. In a recent
numerical study, Odlyzko [4] showed that while short-range statistics (such as the
distribution of the spacings E,.,— E, between neighbouring zeros) accurately
conform to GUE predictions, long-range statistics (such as the correlations between
distant spacings) do not, and are better described in terms of primes.

I have argued elsewhere [5, 6] that exactly this behaviour would be expected if
the E,, were eigenvalues not of a random matrix but of the Hamiltonian operator
obtained by quantising some still-unknown dynamical system without time-reversal
symmetry, whose phase-space trajectories are chaotic. The theory is based on
asymptotics of the semiclassical limit, in which Planck’s constant #— 0. Its central
result [7] is that statistics of eigenvalues separated by less than O(#) are universal
(that is independent of the details of the Hamiltonian) and given (in the absence of
time-reversal symmetry) by the GUE, while the statistics of eigenvalues with larger
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separations are non-universal and depend on the details of the closed trajectories of
the corresponding classical system. The connection with {(z) comes from an analogy
between the Von Mangoldt formula [1] for In({(z)) and an expression for the
semiclassical eigenvalue density fluctuations in terms of closed orbits.

My purpose here is to illustrate how the semiclassical theory can give a uniformly
accurate description of both the long-range {non-universal) and short-range (univer-
sal) statistics of the E,,, by studying the number variance of the zeros. This is the
mean square difference between the actual number of E,, and the expected number,
in an interval where the expected number is L. Although the semiclassical analogy
has not led to an identification of the elusive Riemann operator (if indeed there is
one), this illustration does suggest that certain tantalising hints [5] about the
underlying dynamical system deserve to be taken seriously.

2. Number variance

The mean number of zeros with height less than E is [1]

NE)Y=(E/2x){In(E/2m) — 1} + } 1
so that the numbers
X =N(E,) 2)

form a sequence with mean spacing unity. Such a sequence can be regarded as a
singular density

d(r) = mz 8(x = x,) 3)

concentrated at the points x,,, on the x axis. We will employ the notion of asymptotic
averaging, that is averaging over a range Ax satisfying 1 << Ax «<x, and denote the

operation by { ). Obviously (d)=1. The fluctuating part of the level density,
defined as

dx)=d(x)—1 (4)

provides the entry point for the semiclassical theory to be described in §3.
In the range of x — L/2 to x + L/2 the number of zeros is

(L= [ : dxy d(xy) )

Obviously (n(L; x)) = L. The number variance V(L; x) is thus

ven=mn-w=( ol minin) ©

'x—

This is conveniently expressed in terms of the form factor (Fourier transform of the
pair correlation of the density fluctuations)

K(s;x)= [ dE exp(aaige)(d(e - £12) 3x + 8/2)) ™
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because
(@) 80y = | deK(5; (1 + x2)/Dexpl2mine, — )] ®)
Substituting into (6) and setting (x; + x,)/2 equal to x for x >> 1 and L « x gives
V(L;x)= —2'5 j d1:K—(r¥C—2 sin?(zL7). 9)
JI Jg T

3. Long and short orbits

Now pretend that E,, are eigenvalues of a quantum Hamiltonian with a classical
limit that is chaotic in the sense that all closed orbits are isolated and unstable. From
any such set of E,, we can construct the scaled energies x,, from (2) using the
appropriate counting function #'(E). Thence we obtain the level density fluctuations
d(x) from (3) and (4). Gutzwiller {8, 9] and Batian and Bloch [10] have shown that
in the semiclassical limit d(x) can be expressed as a sum over all closed orbits at that
energy E which corresponds to x according to (2). The sum is over all primitive
orbits (labelled p} and their repetitions (labelled » where 1 =< r < o). Each orbit gives
an oscillatory contribution to d(x), with a phase rS,/# where S, is the classical action
of the primitive orbit, and an amplitude A,, that depends on the instability
exponents of the orbit [8].
An important role is played by the periods of the orbits, given by

T,, =r 3S,/3E. (10)
These enter the form factor K(7;x), which can be obtained [5] from (7) as
2z
K(t;x)=— <2 2 A Anp, c08{(r18p, — 1S )1} 8{T — §(T,,,, + T,,pz)}> (11)
e \rg, np
In this formula, p is the mean level density dA(E)/dE, and T is a time variable
related to © by the scaling
T = thp. (12)

For understanding the double sum (11) it is important to note that #p increases
as #i decreases for systems capable of displaying chaos (for example, in a classical
billiard with N freedoms, #p ~#~™~1), This means that the period T, of the
shortest closed orbit corresponds to 7 << 1, while 7 =1 corresponds to an extremely
long orbit.

Choose an intermediate value t* satisfying

Toin/2mhp < 7% K 1. (13)

For T < t*, asymptotic averaging will remove the non-diagonal terms r; #r, p1 #p2
because of incoherence in the trigonometric factors (S, depends on x), leaving

K(t;x)=%§§ E:',IAEP(S(T -T,) (v<7*). (14)

Obviously the positions and strengths of the & spikes in the sum depend on the
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details of the classical dynamics of the particular system being studied: because of
this, K(7; x) is described as non-universal when 7 < 7*.

On the other hand, for 7>7t* only very long orbits are involved; these
proliferate exponentially with increasing 7T for chaotic systems and so contribute as
though distributed continuously. Their contribution can be calculated [5] using a
remarkable sum rule of Hannay and Ozorio de Almeida [11j relating the orbit
amplitudes A,, to their increasing number, and some heuristic semiclassical
arguments. The result is that K(7;x) becomes universal, that is independent of the
detailed dynamics (provided these are chaotic and without time-reversed symmetry).
Moreover, the expression obtained is precisely the form factor of the Gue, namely
[12]

K(t;x)=Kgue(t)=18(1-7)+8(1-1) (t>71%) (15)

where @ denotes the unit step.
Substituting the non-universal and universal formulae (14) and (15) for K(z; x)
into (9) gives the number variance as

Tp<2mfipt™

2 o0
V(L;x)=8 2, A—f sin’(LT,,/2hp) + %J drKLf(T) sin?(xLt).
p r= T,.p T Jye T

(16)

1

This applies to any classically chaotic system, and arguments similar to those given
elsewhere [5] for a related statistic (the spectral rigidity) show that V(L;x) grows
logarithmically according to the universal Gue formula until L ~ L., = #p/ T, and
then oscillates non-universally whilst remaining bounded.

To apply (16) to the Riemann zeros we should of course know the underlying
classical system. Without this knowledge we can only proceed by analogy,
identifying 7,, and A4,, from the Von Mangoldt formula as explained in [5}, ignoring
difficulties [6] with the analogy. The results associate primitive closed orbits with
primes p:

I,=rlnp A, =-Ilnpexp(—rinp/2)/2n. (17

For this system # does not appear explicitly but can be regarded as concealed in E
(as with quantum billiards); the semiclassical limit is E— <. We also require the
mean density of zeros p(E), which from (1) is

p(E)= %r' In(E/2m). (18)

Now we can substitute into (16) and evaluate the integral, to get the number
variance of the zeros:

V(L;x) =% {In(2xL) - Ci2xL) - 2xLSi(27L) + #L — cos(2aL) + 1+ v}

1 [P EZD sin®(xLr In p/In(Ef2x
{2 iz ( p/ln( )

+— +Ci(2xLt*)—-1n(2xLt*) — }
JTZ o r?.pr ( ) ( ) Y

(19)

Here Si and Ci are the sine and cosine integrals [13], ¥ is Euler’s constant
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0.577215. .. and x is related to E by (2). This formula is our main result. As x— o,
the dependence on t* disappears provided 7* satisfies (13), i.e. z* >> In 2/In(E/2x).

The terms in the first set of braces give the GUE number variance, with limiting
behaviour

L if L«1

Vour(L) = 20
cus(L) %[In(ZxL)+1+y] if L>»1. @0)

The second set of braces involves the sum over prime powers. Because of the upper
limit, the largest value of the argument of the sin® function is mLt*. If L << 1/7* the
sum is negligible and so are the remaining terms in these braces. Thus the first set of
braces dominates, and V = Vgyug, if L <<1/7*; this is the universal regime.

If L>>1/7*, asymptotics of Si and Ci give

1 ( P& sin*(wLr np/In(E/2
V(L;x)=— (2 S sinalr np/nE2m) 1) if L>> 1/,
7T p r=1 rp
(21)
This describes asymptotic oscillations with amplitudes (2ar°p”) ! and wavelengths
AL=In(E/27)/rlnp (22)

Because these wavelengths are incommensurable we expect the oscillations to have
a quasirandom character. Obviously the oscillations depend on the detailed
‘dynamics’ (prime-period closed orbits), so that L>>1/t* is the non-universal
regime.

The mean of the asymptotic oscillations is

((m«)"

2 P—1+E Z (e ’)“l—lnr*+1)

r=2 p=2

lz [In In(E/2m) + 1.4009]. (23)

To leading order this is InIn E/x? in exact agreement with the estimate by Selberg
[14,15] that the mean square part of the fluctuating part of the counting function is

<[ :(E) dx Ei(x)]z> ~inln E/2x? (24)
This follows from (6) when written as
v =([[ " emde- [ wmie])

_ 2<[ *(E) @ &(x)] > > <r+uz . 82 J:—uz &, &(x2)>

0 0

—>2<[ e dx a(x)]2> as L— o, Lix <1 (25)

0

if it is assumed that the counting fluctuations at x £ L/2 become uncorrelated as
L—o, Lix<l
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4. Comparison with computation

Using techniques explained elsewhere [4], Odlyzko computed 10° consecutive zeros
E,,, starting with m =10"?+1. Thus x = 10" and, from (1) and (2), E =2.677 X
10'. From these zeros he computed the number variance V(L;x) for 0< L <1000
in steps of 0.1.

Odlyzko’s data are to be compared with the semiclassical values of V(L;x)
computed using (19). This invoives t* which from (13), (17} and (18) must satisfy

In 2/In(E/27) << 7% << 1 ie. 0.028 << 7* << 1. (26)

I chose 7* =1, so that the sum in (19) included prime powers p” < 449, but checked
that the curves of V(L;x) against L were unaffected by reducing * to .15 (i.e.
p'=37). GUE universality should break down near L., =fp/Ty,=
In(E/27)/2nIn2=5.62, and be replaced by the asymptotic oscillations, whose
longest-wavelength component has AL =In(E/2x)/In2 =35.31 (equation 22) and
amplitude 1/27°=0.051. The asymptotic mean (23) is V =0.4659; this differs
slightly from the value V =0.4663 obtained by substituting sin=4 in (21),
indicating residual dependence on t* which, however, does not affect the resolution
of the graphs presented here.

Figures 1-4 show the results. In figure 1 the range is 0= L <2. The exact and
semiclassical V are indistinguishable, and GUE is a good approximation except near
L =2. Note how poor a fit to the data is the variance of the Gaussian orthogonal
ensemble of real symmetric matrices (which would correspond to a dynamical
system with time-reversal symmetry).

Variance

0 1 2

Figure 1. Number variance V(L; x) of the Riemann zeros, for 0< L <2 and x = 10',
Dots: computed from the zeros by Odlyzko; full curve: semiclassical formula {19) with
7* =1; broken curve: number variance of the GUE; chain curve: number variance of the
Guussion orthogonal ensemble (GOE) of real symmetric random matrices.
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Figure 2. As figure 1 but for 0 < L =20 (GOE not shown).
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Figure 3. As figure 2 but for 0L =100 and with stars rather than dots for the
variance computed from the zeros [GUE not shown).
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Figure 4. As figure 2 but for 900 L <1000, with the ‘exact and semiclassical
variances drawn as smooth curves {the ‘exact’ curve is more jugged) {GUE not shown).

In figure 2 the range is 0= L <20. Again ‘theory’ and ‘experiment’ agree. The
GUE variance ceases to be even a rough approximation when L ~ 5, as expected, and
the maximum near L = 13 signals the onset of asymptotic oscillation.

In figure 3 the range is 0 < L <100. The asymptotic oscillations are now obvious,
and quasirandom as expected with the predicted amplitudes, wavelengths and mean
values. (The oscillations come from the double sum in (19), and not from the Ci and
Si functions.) Slight discrepancies are visible: the ‘theoretical’ peaks are noticeably
lower than the ‘experimental’ ones.

In figure 4 the range is 900 < L =< 1000. Again the quasirandom oscillations agree
very well with semiclassical theory. There are, however, some rapid oscillations with
AL =1 which the semiclassical formula cannot reproduce (from (22) this would
require p” ~ E/2x ~4x 10" which is excluded from (19) because it would imply
t*=1 in violation of (13)). The rapid oscillations are probably an artefact of
averaging, because when L = 1000 there are only 100 independent samples.

Over the whole range 0 < L < 1000 the largest difference between the ‘exact’ and
semiclassical variances is 0.003 (over the range 0= L <100 it is 0.002). It therefore
appears that semiclassical theory gives a uniformly accurate description of the
correlations in the heights of the zeros in both the universal and non-universal

ranges—at least for this statistic. It is worth remarking that the tramsition from
universal to non-universal spectral statistics has not yet been seen in any honestly
quantum Hamiltonian with a chaotic classical limit, because not enough eigenvalues
have been computed (the transition has been seen for an integrable system [5]).

To forestall premature optimism it must be explained why zeros near r = 10*?
might not be in the fully asymptotic regime. The whole analysis was based on
pretending that {(} +iE) is described for real E by the Euler product over primes,
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whereas of course this does not converge unless Im E < — 4. This could mean that
pairs of zeros with E, ., — E,, <3 will not be separated by the Euler formula. At
height E the number C(E) of zeros thus confused would be C(E)=(3)p(E)=
In(E/2x)/4x. For these computations, C ~ 2 which is not large. To reach the fully
asymptotic regime of large C it is necessary to go to much greater heights: thus
C =10 when E =2 x 10* (level number 5 X 10°®) and C =100 when E =4 x 10°%
(level number 8 x 10°*®). Note however that C increases in the same way as the limit
L .x of GUE universality, so the asymptotic oscillations in V(L; x) should survive as
x— 0, The best hope is that in spite of being based on the Euler product the
semiclassical formula (19) nevertheless gives the variance correctly, by being the
analytic continuation to real x of some complex-x generalisation of the definition
(6). (Titchmarsh’s theorem 14.21 in [15] might provide the starting point for such a
justification.)
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