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Bounded or driven classical systems often exhibit chaos (exponential
instability that persists), but their quantum counterparts do not. Never-
theless, there are new régimes of quantum behaviour that emerge in
the semiclassical limit and depend on whether the classical orbits are
regular or chaotic, and this motivates the following definition.

Definition. Quantum chaology is the study of semiclassical, but non-
classical, behaviour characteristic of systems whose classical motion ex-
hibits chaos.

This is illustrated by the statistics of energy levels. On scales
comparable with the mean level spacing (of order 2~ for .V freedoms),
these fall into universality classes: for classically chaotic systems, the
statistics are those of random matrices (real symmetric or complex
hermitian, depending on the presence or absence of time-reversal
symmetry); for classically regular ones, the statistics are Poisson. On
larger scales (of order 4, i.e. classically small but semiclassically large),
universality breaks down. These phenomena are being explained by
representing spectra in terms of classical closed orbits: universal spectral
behaviour has its origin in very long orbits; non-universal behaviour
depends only on short ones.

In Henry Baker’s day, ‘chaology ' meant ‘The history or description of the chaos’
(O.E.D. 1893). The chaos was the state of the world before creation {*without
form, and void’) so that chaology was a theological term. That area of theology
has not been very active for the past two centuries (unless we extend its scope to
include some recent speculations in cosmology) and so we are justified in reviving
the term chaology, which will now refer to the study of unpredictable motion in
systems with causal dynamics, as exemplified by the contributions at the meeting
on ‘dynamical chaos’ of which this lecture is a part.

But what is ‘quantum chaology’? One obstacle to a definition is the growing
understanding that quantum systems are not chaotic in the way that classical
systems are. (I am speaking of unpredictability in the evolution of the expectation
values of observable quantities, and not of the quite different randomness un-
avoidably encoded in the wavefunction.)

As an example, consider ionizing a hydrogen atom by shining microwaves on it.
This is well modelled by the quantum mechanics of an electron in two electric
fields: Coulomb, from the nucleus, and oscillatory, from the radiation. If the atom

[ 183 )



184 | M. V. Berry

is highly excited to begin with, we might be justified, on the basis of the corre-
spondence principle, in thinking of the electron as moving classically. If in
addition the illuminating microwaves are intense, the classical progress towards
jonization is not a smooth outward spiralling but an erratic diffusion: the fields
make the electron orbits chaotic {Leopold & Percival 1979; Jensen 1985). Exactly
this behaviour (or rather the ionization probabilities that follow from it) has been
observed in experiments (Bayfield ef al. 1977). (We are here very far from the
perturbation régime of one-photon ionization, the photoelectric effect, that was so
important at the birth of quantum mechanics.) Surely these experiments illustrate
‘quantum chaos’? They do not, because chaos is unpredictability that persisis
(strictly for infinite times) and in these experiments the atoms traverse only a
short stretch of microwave field and so diffuse for only a short time.

The surprise comes in quantum calculations for longer times. These show that
although initially the highly excited quantum electron absorbs energy in the
classical way (that is, diffusively), after a long time there is a transition to a new
régime in which the quantum electron absorbs energy more slowly. The first
caleulations (Casati ef al. 1979) were for a model system, in which a particle on
a ting (a rotator) is kicked periodically with an impulse that depends on where it
is. For strong kicks the classical rotator momentum diffuses (energy grows
linearly). But the quantum energy almost always eventually stops growing
(usually it oscillates quasiperiodically). The analogous régime for the ionization
problem (Casati et al. 1984 ; Casati ef al. 1986; Bliimel & Smilansky 1987) has not
yet been probed experimentally, although I understand that it soon will be.

These calculations are important because they illustrate a general phenomenon:
the quantum suppression of classical chaos (Chirikov ef al. 1981 ; Fishman ef al.
1982 ; Grempel et al. 1984). To see eagily that this suppression must occur, observe
first that classical chaos can be regarded as the emergence of complexity on
infinitely fine scales in classical phase space: smooth curves representing families
of orbits develop elaborate convolutions, like cream spreading on coffee. But
quantum mechanics involves Planck’s constant %, which is an area in phase space
(momentum times distance) below which structure is smoothed away (for an
illustration see Korsch & Berry 1981).

Although we do not have chaotic quantum evolution, we do have here a new
quantum phenomenon that emerges in the semiclassical limit in systems that
classically are chaotic, and this motivates the following definition.

Definition. Quantum chaology is the study of semiclassical, but non-classical,
behaviour characteristic of systems whose classical motion exhibits chaos.

‘Semiclassical’ here means ‘as h—0’. (Of course Planck’s constant is not
dimensionless and so can take any value, depending on the choice of units; what is
meant is that the ratio of & to some classical quantity with the same dimensions
- action — tends to zero.) _

Here I will concentrate not on time evolution but on the quantum chaology of
gpectra, that is eigenvalues of the energy operator for systems whose classical
counterparts are chaotic. This is important because these eigenvalues are the
energies of stationary states, which are the quantum mechanical way of describing
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things, that is persisting objects like atoms and molecules, whose properties do not
depend on when we measure them. We will be concerned not with the ground state
but with the description of many highly excited states; this is the semiclassical
limit.

My main aim is to bring to your attention a remarkable quantum chaotic
property of spectra, and describe the first step towards explaining it. Before doing
so, I must point out that these semiclassical quantum problems are but one
example of the asymptotics of eigenvalues. Essentially the same mathematics
describes the modes of vibration of elastic membranes, or sound waves (in a
lecture hall my voice excites modes near the 20000th, which is surely ‘asymp-
totic’), and much else. The ‘classical limits’ of these non-quantum problems
involve the ‘rays’ of elasticity or sound; geometrically the rays are geodesics:
straight line trajectories reflected specularly, like billiard balls, at the boundaries
of the domain. The two-dimensional billiard domain of figure 1a has chaotie
geodesics: it is the stadium of Bunimovich. The domain of figure 15, the circle,
does not. In mechanical terminology, the stadium orbits are ergodic (they possess
no constants of motion other than the energy) while the circle orbits are integrable
(because of symmetry, their angular momentum is conserved as well). For a
guantum particle of mass m in a billiard domain D, eigenvalues £ are determined
by

Vi + (2mE/H%y = 0 in D, } "

¥ = 0 on the boundary of D.

The remarkable quantum chaotic property is that the distribution of the
eigenvalues displays universality. This is the slightly pretentious way in which
physicists denote identical behaviour in different systems. The most familiar
example is thermodynamies near eritical points (of, say, fluids and magnets).

To see the universality we need to magnify the spectrum so that the mean
spacing of the levels is unity. The required magnification is the mean level density
{d>. What is {(d>? The answer comes from the roughest eigenvalue asymptotics,
initiated by Pockels in 1891, developed by Rayleigh and Jeans who needed to
count cavity modes for the theory of black-body radiation, and given a firm
mathematical foundation by Herman Weyl in 1913 (for a review see Baltes & Hilf
1976). Their result was that if the classical system has NV freedoms (e.g. ¥ = 2 for
billiards) then
dQ(E)/dE

B~ =0

ag h—0, (2)
where (E) is the volume of that part of classical phase space whose points have
energies less than K. (These ideas have been refined and extended in several
directions: see for example Kae 1966; Simon 1983a,b; Berry 1987.)

The level spacing is thus of order 2¥, so that we need a microscope with power
k=Y. What do we see with it ? Of course we see the individual scaled levels, call
them z;, instead of the original levels E,. Ideally we would have an asymptotic
theory to predict these levels with an error that gets semiclassically small in
comparison with the mean spacing A”. For integrable (non-chaotic) classical
motion we do have such a theory, in the form of the W.K.B. method and its
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Fiaure 1. Classical orbits (bouncing geodesics) in billiards: () stadium of Bunimovich (chaotie),
(b} cirele (regular). For more details see, for example, Berry 1981a.

refinements and descendants (see, for example, Berry & Mount 1972; Percival
1977 Berry 1983). And these methods can be extended far into the chaotic régime
if there is some residual order in phase space (‘vague tori’) and under not too
semiclassical conditions (Reinhardt & Dana, this symposium). But for fully
chaotic systems no fully asymptotic eigenvalue theory exists: we must make do
with statistics of levels, and it is these that exhibit universality.

One such statistic, a short-range one, is the level spacings probability distribution
P(S), that is, the distribution of §; = x,,—z;. Figure 2 shows P(8) computed from
several hundred levels of the stadium, superimposed on P(S) for another
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FieurE 2. Level spacing histograms P(S) for eigenvalues of the stadium billiard (full lines, after
Bohigas 1984 a) and the Sinai billiard (dashed lines, after Bohigas ef al. 19845), and the level
spacings distribution for random real symmetric matrices (smooth curve), closely ap-
proximated by P(S) = (jn exp{—inS?}.
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classically chaotic billiard system: the billiard of Sinai, which is a square with a
circular obstacle at its centre. These are two different systems, but the
distributions are evidently the same; this is universality.

Another statistic ~ a long-range one — is the spectral rigidity A(L). This measures
the fluctuations of the spectral staircase A4 (x), whose treads are at the eigenvalues
x, and whose risers have unit height (.4"(z) counts the number of levels below x).
The rigidity (Dyson & Mehta 1963) is the mean-square deviation of the staircase
from the straight line that best fits it over a range L, that is

AL) = <min % J'IL L dz [.zV(m)—A:c—B]2> . (3)
A,B ~3L ‘

Figure 3 shows the rigidities for the same two chaotic billiards; again they are the
same, iilustrating universality.
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Fioure 3. Spectral rigidity A(L) for eigenvalues of the stadium billiard (filled circles, after

Bohigas ef al. 1984a) and the Sinai billiard (open circles, after Bohigas ef al. 19845), and

" the rigidity for random real symmetric matrices (smooth curve), whose asymptote is
ALy {1/7* In L+ const. as L—00. .

Now, it is clear from figures 2 and 3 that these data are accurately fitted by
smooth curves representing the eigenvalue statistics of infinite real symmetric
matrices whose elements are random numbers. Random-matrix theory (Porter 1965)
wag developed in the 1960s to model the complicated many-body energy operators
for atomic nuclei (whose observed spectra they describe very well (Hag et al. 1982)).
Ten years ago we (Berry & Tabor 1977) began to suspect it might also describe
systems which although simple (like billiards) have chaotic classical orbits, and
this has turned out to be so (Bohigas & Giannoni 1984).

Contrast this universality class with the spectral statistics of systems whose
clagsical motion is not chaotic. Figure 4a shows the spacings distribution, and
figure 45 the rigidity, for that most humble of regular systems, the particle in a
two-dimensional rectangular box. It was surprising (ten years ago) to predict
(Berry & Tabor 1977) and then find the statistics to be those of 2 set of random
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FicurE 4. Level spacings distribution P(S) {histogram in {a) and spectral rigidity A(L) {circles
in (b)) for eigenvalues of the rectangular billiard. The full curves are the statistics for
Poisson-distributed eigenvalues (P(S) = exp {—8) and A(L) = L) and the dashed curves
are the statisties for random real symmetric matrices.

numbers (that is, poissonian). These behave very differently from the eigenvalues
of random matrices, which are more well ordered in that they repel each other: for
example, P(S) vanishes linearly as § -0 instead of tending to a constant, and the
asymptote of 4(L) rise only logarithmically rather than linearly.

So far we have two universality classes, one for classically chaotic systems and
one for classically regular systems, with spectra generated by random real sym-
metric matrices and Poisson processes respectively. Now, the matrices of quantum
mechanics need not be real symmetric. The most general case is achieved for
systems which, unlike billiards (or, more generally, particles in scalar potentials),
do not possess time-reversal symmetry (T'). For these, the energy operators are
represented by complex hermitian, rather than real symmetric, matrices. The
spectra of such random matrices, and also of the corresponding quantized chaotic
gystems, fall into a third universality class.

To illustrate it we break T’ by applying an external magnetic field to a charged
particle moving chaotically. It is very instructive to concentrate the field into a
single line of magnetic flux @. This is the chaotic equivalent of the effect discovered
nearly thirty years ago in Bristol by Aharonov & Bohm (1959): the flux line does
not alter the classical trajectories but does affect the quantum mechanics, in this
case by changing the eigenvalues (Berry & Robnik 1986a). These are determined
not by (1) but by

(V—igA(r)/A) + @mE/#)f = 0 in D,}

i =0 on the boundary of D, (4)

where A(r) is any vector potential satisfying V x 4 = &dd(r).
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Figure 5 shows the spectral statistics of an Aharonov-Bohm billiard (‘ Africa’)
with chaotic trajectories (Africa is a cubic eonformal image of the unit dise,
illustrated in figure 6). Evidently P(S) now vanishes quadratically as § -0, rather
than linearly. The rigidity is different too: its logarithmic asymptote is only half
that for chaotic systems with 7. Thus T-breaking induces a spectral phase tran-
sition, to the third universality class. (Additional symmetries can mimic the effect
of T, as explained by Robnik & Berry 1986). The Aharonov-Bohm chaotic billiard

- might appear contrived, but might be capable of realization with a tiny solenoid
and the essentially two-dimensional electrons in certain semiconductor interfaces
(M. Pepper, personal communication). Exact sum rules for Aharonov-Bohm
eigenvalues are given by Berry (1986a).

It is instructive to digress and look at the wavefunctions of these systems without
T, and particularly at their zeros (Berry & Robnik 1986 6). With T, wavefunctions
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Fioure 5. Level spacings distribution P(S8) (histogram in (a)), cumulative level spacings
distribution [§dxP(z) (histogram in (b)), and spectral rigidity A(L) (circles in (¢)) for
eigenvalues of the Aharonov-Bohm ‘Africa’ billiard with flux ¢@/k =1(+/5—1). The
full curves are the statistics for random complex hermitian matrices, for which P(S) =
{32/n*) exp ( —48%/ny and A(L) - (1/2n% In L+ const. as L — ¢0. The dashed curves are the
statistics for random real symmetric matrices and the dotted curves are Poisson statistics.
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(a}

FieURE 6. 50th eigenstate i of ‘ Africa’ Aharonov-Bohm billiard with flux ¢@/k = §{(+/5~1).
{a) Nodal lines of Re ¢, which are very similar to the nodal lines of ¥ with zero flux; {b)
wavefronts (contours of phase of ) at intervals of in.

arereal and so in two dimensions their zeros are the familiar nodal lines (Yr(x.y) = 0),
which in quantum chaotic systems wander irregularly (figure 6a) with average
spacing equal to the de Broglie wavelength A = %#/+/2mE (McDonald & Kaufman
1979; Berry 1983; see also Heller 1984, 1986). Without T', wavefunctions are
inescapably complex and so their zeros are points (Re yr(z,y) = 0, Im yr(z, ) = 0).
Each of these points is a singularity of the wavefronts {contours of the phase of i)
(figure 6b), which radiate from it like spokes from an axle (Nye & Berry 1974;
Berry 1981b). Classical waves, like those on the surface of the sea, are of course
real, but share the properties of ‘inescapably complex’ ones if their patterns are
stationary but not standing, that is Rey, where

Y(r, t) = Flrye ™ (5)

with F(r) complex ; thus the nodal lines of Re {y move. The tide waves are like this,
because of the symmetry-breaking caused by the Earth’s rotation (relative to the
Moon), and the phase singularities are the amphidromic points where the cotidal
lines (wavefronts) meet (figure 7), as described by Whewell (1833, 1836) (see also
Defant 1961).

Back now to eigenvalues. There is a set of numbers of great mathematical
importance whose statistics precisely mimic the energy levels of a quantum chaotic
system without 7', namely the imaginary parts of the zeros of Riemann's zeta
function. This function is defined (Edwards 1974) by analytically continuing to the
whole complex z-plane Euler’s product over primes p:

1
0 =Tl

Riemann showed that the zeros of {(z) determine the fluctuations in the density
of primes (that is their importance) and conjectured that they all have real part
1. thus

2

(6)

g(%+iEj) =0, (7)
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Fieure 7. Cotidal lines in the oceans. These are wavefronts of the 12h tide wave, a forced
vibration of the water of the whole earth; each line connects points where the tide is high
at a given time. The singularities are amphidromic points, where there is no tide. (From
Defant 1961.)

where {£,} are real. This conjecture has been verified by computation for the first
1.5 % 10? zeros (Van de Lune et al. 1986). It is an old idea (going back at least to
Hilbert & Polya) that the Riemann conjecture would be confirmed if it could be
shown that {E,} are the eigenvalues of some hermitian operator, but this has not
been found.

Recently Odlyzko (1987) has computed some statistics for spectacularly high
E,. Figure 8a shows the spacings distribution for 10° zeros near the 10**th ; agreeing
very closely with P(S) for random complex hermitian matrices and so with that of
some unknown quantum system without 7' whose unknown classical limit is
chaotic. He also computed the number variance (fizure 8b), a quantity closely
related to the rigidity, and discovered that the three- and four-zero correlations
{figure 8¢, d) agrees perfectly with the corresponding complex random-matrix
statistics. Riemann’s conjecture thus acquires, in addition to its number-theoretic
importance, a further significance (Berry 19865): when (if) the operator with
eigenvalues E; is found, it will surely be simple, and will provide a paradigm for
quantum chaology comparable with the harmonic oscillator for quantum non-
chaology.

Here is a way of breaking 7' without magnetic fields, in relativistic quantum
chaology. Take a massless particle (‘neutrino’) moving in the plane and described
by the equation of Dirac (who gave this lecture in the year of my birth), but with
a four-sealar potential ¥ (x,y) rather than the usual electric potential. For such a
particle, the wave is a two-component spinor satisfying (Berry & Mondragon

—ihe(d,+i8,) —Vi.y) /\¥s U2
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Fioure 8. Statistics of imaginary parts of Riemann zeros, computed by A. M. Odlyzko. (g) P(S)
(from Odiyzko 1987); (b) number variance Z{L) = {(r— L)*), where n is the actual number
of zeros in an interval where the average number is L {the interval is 2xL/In (E/2me)} (from
data kindly supplied by A.M. Odlyzko); (¢} Skewness y,(L} = {(n—L)*>/{{n—L)}*)?
(kindly supplied by O. Bohigas); (d) excess y,{L) = {(n—L)*)/{(n—L)*)*—3 (kindly
supplied by O. Bohigas). Full curves, random complex hermitian matrices; dashed curves,
random real symmetric matrices.

This equation does not possess time-reversal invariance. Figure 9 shows the
spectral statistics when V(z, y) represents a hard wall (neutrino billiards), showing
once again the statistics of complex hermitian random matrices if the billiard is
classically chaotic, and Poisson statistics if it is regular.

Originally I hoped, following a suggestion of Professor Atiyah, that this kind of
relativistic quantum chaology might help in the search for the elusive Riemann
operator, but this has not yet proved to be so. However, Volkov & Pankratov
(1985) and Pankratov et al. (1987) have recently discovered that an equation very
similar to (7) appears to describe peculiar electron states localized in the interface
between certain pairs of semiconductors (e.g. PbTe and SnTe, and HgTe and
CdTe).

There is a fourth universality class, associated with chaotic systems that have
time-reversal symmetry and also half-integer total spin (Porter 1965), but I will
not speak about it.

Bo far we have seen that on fine scales the statistics of spectra fall into uni-
versality classes that depend on whether the classical motion is regular or chaotic,
and on the symmetry of the energy operator. Now I have to explain how this
universality is compromised in two ways.
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TFreues 9. (2) Cumulative level spacings distribution [§dzP(z) and (b) spectrel rigidity 4{L), for
neutrino ‘Africa’ and neutrino circle billiards. Full curves, random complex hermitian
matrices; dotted curves, random real symmetrie matrices; dashed and chain curves, Poisson
statistics. :
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First, some very important systems are partly regular and partly chaotic in
their classical motion; vibrating molecules, for example. Their spectral statistics
can be understood as those of a superposition of spectra from different universality
clagses, each spectrum being associated with a different chaotic or regular region
in classical phase space (Berry & Robnik 1984). Figure 10 shows some recent
caleulations by Wunner e al. (1986), of the spacings distribution of the zero-
angular-momentum, even-parity electron levels of 2 hydrogen atom in a very
strong magnetic field (67}, in three different energy ranges. The point is that the

\ (a)
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Fieurse 10. Level spacings distributions P(S) for even-parity, zero-angular momentum energy
levels of a hydrogen atom in & 6T uniform magnetic field, for three different energy ranges
with different phase-space fractions ¢ of regular orbits: (g} —130 em™ < E < —100 cm™!
(g=0.71, 47 levels); (b) —100em™? < E < -70 em™? (g =0.32, 71 levels); {¢) —70 cm™?
< E <—40 em™! (g = 0.16, 116 levels); the smooth curves are P(S) for superpositions of
Poisson and random real symmetric matrix spectra. (From Wunner et al. 1986.)
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corresponding classical motion gets more chaotic as the energy increases. These
régimes are now within the reach of experiment (and are of course far removed
from the familiar low-field ‘perturbation’ domain of the Zeeman effect).

The second compromise, of deep theoretical significance, is that universality is
only local: for correlations involving very many levels, it breaks down. Recall the
k=% microscope that magnified the energies E; to the numbers z; with mean
spacing unity, and note that N, the number of classical freedoms, is at least two
for non-trivial cases. Now reduce the microscope’s power to A~ (These
gedankenmagnifications are strongly reminiscent of the ‘non-standard analysis’
used nowadays to describe infinitesimals (Harnik 1986).) We will see energy ranges
that are still classically small (of order %) but semiclassically large in that they
include many levels (a number of order 2~¥~1), At these magnifications, energy-
level statistics are not universal: they depend on classical details.

To illustrate the breakdown of universality at long range, figure 11a shows the
rigidity for the (classically regular) particle in a rectangular box, computed by
Casati et al. (1985). When L is not too large we see the straight line of the
‘universal’ Poisson statistics (this was figure 45), but when L approaches the
square root of the number of the highest level included in the calculation (which
for this case corresponds to an energy range of order %), 4(L) oscillates and then
saturates at a value that depends on this number and also on the aspect ratio of
the rectangle; that is, non-universally. Figure 115 shows the number variance for
the Riemann zeros (underlying which there appears to be a chaotic classical
system). When L ig not too large we see the logarithmic curve of the ‘universal’
statistic for random complex matrices (this was figure 8b), but for larger L the
variance oscillates about a value which depends on the number of zeros, that is,
non-upiversally.
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Freurs 11. (z) Spectral rigidity A{L) for rectangular billiard, continning figure 45 to larger L.
The circles were computed from the eigenvalues near the 20000th Casati ef al. 1985); the
smooth curve was obtained from the sum over closed orbits by Berry (1985); the arrow is
the L corresponding to an energy range b/T . . where T’ is the period of the shortest
closed orbit. (b} Number variance Z(L) for 10° Riemann zeros near the 10'%th, continuing
figure 85 to larger L; the circles are plotted from data kindly supplied by A. M. Odlyzko;
the smooth curve is the ‘semiclassical’ theory (adapted from Berry 1985), which predicts
oscillation about the horizontal line Z(co0) == 0.4518 (= [Inln (E/2r)+ 1.2615]/%%, where
(E/2m) In (E/2xre) = 10'%); the dashed curve ig for random complex matrices.
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Until now I have spoken of spectral universality as an unexplained observation
based on numerical experiments inspired by guesses. And so it was until recently,
but now we have the beginnings of a theory (Berry 198s5). Because of the
h-magnifications involved, the theory has to be semiclassical: we must ‘sew the
quantum flesh on the classical bones’.

What are these bones ? According to a beautiful picture developed by Gutzwiller
{1971, 1978) and by Balian & Bloch (1972}, they are the classical closed orbits, in
terms of which an asymptotic formula can be given for the density of quantum
eigenvalues (for a review, see Berry 1983 ; for the application to integrable systems,
see Berry & Tabor 1976). These ideas can be traced back to de Broglie who in
1923 conceived of quantization as the constructive self-inteference of waves ac-
companying orbiting particles (think of Ouroboros, the mythical self-swallowing
snake). For some mathematical systems (the Laplace—Beltrami operator on
gurfaces of constant negative curvature), the relation between spectra and closed
geodesics is exact rather than asymptotic, and is called the Seiberg trace formula
(McKean 19vz; Hejhal 1976; Balazs & Yoros 1986; Series, this symposium.)

With the exception of some simple cases, the quantum levels are not in one-to-
one correspondence with closed orbits (for an illustration, see Keating & Berry
1988 ; if they were, we would have a general formula for semiclassical quantization.
Instead, each classical orbit describes an osciflatory clustering of the levels on a
scale AE determined by its period T',: this scale is just what would be expected
from the uncertainty principle:

AE = 1T, )

Thus longer orbits give speetral information on finer scales, and it is this
observation that gives the key to understanding the universality of the statisties
(Berry 1985). With the A=Y microscope, we are concerned with the finest scales of
spectral structure, of the order of the mean level spacing, so AE ~ A%. These scales
depend on classical orbits with periods 7', ~ A/AE ~ L/AY¥-D that is, on extremely
long orbits. Now, the distribution of these long orbits in phase space is very different
for integrable and chaotic systems. For integrable systems, the orbits form con-
tinuous families whose number grows with period as TV. For chaotic systems, the
orbits are isolated and unstable and their number proliferates exponentially (as
exp (HT}/HT where H is the Kolmogorov entropy - instability exponent of the
orbit). In an important paper, Hannay & Ozorio de Almeida (1984) have shown
that the way these long orbits contribute to one form of the asymptotic spectral
formula is universal: it depends only on whether the orbits are chaotic or not, and
on no other feature of the classical motion. It is this classical universality that
begets the guantum universality, for it is possible to employ it as one ingredient in
a derivation (Berry 1985) of the spectral rigidity A(L) (but not, so far, the spacings
distribution), yielding precisely the Poisson and random-matrix formulae that so
accurately fit the numerical computations.

The same arguments explain why universality breaks down at the larger energy
scales AE ~ &: the spectral fluctuations in this range are determined by orbits
with period T' ~ h/AE ~ h®, which are not long and so differ from system to
system. The quantitative theory of this breakdown of universality (Berry 1985)
works rather well, as figure 11 shows.
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In summary, the vigorous development of quantum chaology during the last
decade has been stimulated by the interplay of two factors: the realization that
chaotic motion is ubiquitous in classieal mechanics, and the discovery of associated
new régimes of quantum behaviour. But the mathematical difficulties in under-
standing these régimes are severe, fundamentally because the semiclassical limit
h—0 is highly singular. At the risk of sounding slightly paradoxical, I would say
that we are discovering the connections between classical mechanies and quantum
mechanies to be richer and more subtle than either mechanics is when considered
on its own.
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