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1 INTRCDUCTION

The celebrated hypothesis of Riemann[l] is that all the complex
zeros of his function f(z) have real part 1/2, so that the quantities
{Ej} defined by

(L -ig) =0 (1)

are all real. There is evidence supporting the hypothesis: the first
few million Ej have been computed and are all real, and it has been
proved that uncountably many Ej are real. My purpose in this
speculative paper is to extend the old suggestion that the Ej ire real
because they are eigenvalues of some Hermitian operator H. The
extensions are that if H is regarded as the Hamiltonian of a
guantum-mechanical system then

(i) H has a classical limit

{ii} the classical orbits are all chaotic (unstable)

(iii)the classical orbits do not possess time-reversal symmetry.

To make these assertions plausible I will combine two sorts of
evidence. The first (section 2) concerns largely numerical results
connecting iEj} with the spectra of infinite random complex Hermitian
matrices. The second (section 3) concerns analogies between a
{(divergent) representation of the number of Riemann zeros with 0<Ej<E
and an asymptotic formula expressing the number of gquantum energy
levels in any given interval as a sum over classical closed orbits.
Finally (section 4), I will give a semiclassical interpretation of the
Riemann-Siegel formula {the basis of a powerful method for computing
the IEjI[ll) leading to a conjectured generalization that would be a
quantization formula for classically chaotic systems.

The most useful formulae for f(z) will be the familiar ones: as a
product over primes p or a sum of inverse powers of integers n, nhamely
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even though neither representation converges on the line Rez=1/2 where
the zeros are. Of course there are many representations which are
valid for Rez=1/2, such as this resummation of (2b):

1 = . i _z2
’f(z)“l_zj-z é( 1w (Rez>0) (2)

The symmetry [l] relating g(z) and j(l—z) implies that each of the
zeros (1) with real Ej has a counterpart with —Ej, and with this
understanding we henceforth regard EEjI as a set of positive numbers
with E1<EZ<E3... .

2 RIEMANN ZERQS AND RANDOM MATRICES

A useful separation of the {E.}l inte an average part and a
fluctuating part can be achieved by means of the Riemann staircase.
This is defined as

N (E) = > O(E-E) (4)
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where @ denotes the unit step function. N,(E) is simply the number of
zeros with Ej<E. The average <NR(E)> is a smooth approximation to the
staircase, whose form is known [l] to be

{Ng (B = %(ﬁﬂfg;} ‘1) r ;— - (s5)

Fig.la shows just how close an approximation this is, even for small E.
Figs 1lb,c show that it is necessary to include the term 7/8.

Deviations from <NR(E)> constitute the fluctuations in iEj}. The
statistics of these fluctuations can be studied numerically, and it is
found that with high accuracy they coincide with the statistics of the
eigenvalues of a typical member of the 'Gaussian unitary ensemble’
{(GUE)[2] of complex Hermitian matrices whose elements are Gauss
-distributed in a way that is invariant under unitary transformations.

One such statistic 1is the probability distribution of the
normalized spacings {Sj} between adjacent zeros; these are defined by

S, = (Epu-5) /<A (5 +5.0/2)> (6)

where‘(dR(E)> is the average density of zeros, given by (5) as
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Fig.l a) Riemann staircase N_({E), and {dotted) its average <N_(E)>, for
the lowest 25 zeros; b) deViation N (E)-<N (E)> for the Fowest 100
zeros; ¢) N (E)-<N_(E}>» for the 1dW8st IOO&zzeros (N d(E) is N_(E)
made continudfs by reﬁiacing the N'th step by the straigﬂ% line joining
EN’ N-1/2 and EN+1' N+1/2).

£
A (B)> = c%(N,,,(ED = r {niz—r-r} (7
The spacings distribution P(S) is shown in fig.2, together with
PGUE(SJ, for which random-matrix theory [2] gives the <¢lose
approximation

P & S exp §- 4y (8)
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Fig.2 Histogram of distribution P(S) for the first 5000 Riemann zeros,
together with P, (S) dotted.

Far more extensive computations have been performed by Odlyzko;
these are unpublished, but preliminary reports have been given by Dyson
[3] and Bechigas and Giannoni [4]. Odlyzko calculated sequences of up
to 105 Riemann zeros, reaching to the lollth, and studied not only P(S)
but also correlation functions betwen pairs, triplets and quartets of
zeros. Apart from one apparent exception, to which we will return in

section 3, his statistics are in excellent agreement with those of the
GUE.

A& theorem of Montgomery [5] supports the conclusion suggested by
0dlyzko's results, that the statistics of Riemann zeros are precisely
those of the GUE., The theorem concerns the form factor K(?) of the
zeros; this is the PFourier transform of the pair correlation function,
and is defined as

M-m Z exp §2min(x; -8 - s.nMﬂ}

K(z) -
(9)

where !xj) are the Riemann zeros, scaled so as to have unit mean
spacing, that is

x.
J

<N, () (10)

Montgomery proves that for |Tl<l, K{t) coincides with the GUE form factor

[6]
|l (1t1<t) }
1 (1z1>1)

and conjectures that this agreement continues to hold when [T|>1,

Kege (T

{11



Now, GUE statistics are distinctive [4]: they differ sharply, for
example, from the Poisson statistics of numbers generated sequentially
by a random process, and from the Gaussian orthogonal ensemble (GOE)}
statistics of eigenvalues of random real symmetric (as opposed to
complex Hermitian) matrices. It would seem difficult to simulate GUE
statistics by a process not involving eigenvalues of complex Hermitian
matrices, so from now on I will regard the experimental observation
that the Riemann zeros obey GUE statistics as evidence that there is
indeed a nontrivial complex infinite Hermitian matrix A with eigen-
values Ej' {'Nontrivial' means that 8 must not contain the [Ej}

explicitly - as in the diagonal matrix Ei 5'1 or any simple unitary

]
transform thereof.)
A
Among the class of operators H which are quantum Hamiltonians with
classical limits, those with discrete energy spectra obeying GUE

statistics have classical orbits which are chaotiec and without time-

-reversal symmetry. This has been demonstrated numerically by Seligman
and Verbaarschot [7], Berry and Robnik [8], and Robnik and Berry [9].,
and explained theoretically by Berry [10]. Both of the above
conditions are necessary for GUE statistics: for systems whose orbits

are not chaotic but integrable (with or without time-reversal
symmetry), Berry and Tabor ([11] showed the energies to be Poisson-
~distributed; and for systems which are chaotie¢ but which do have
time-reversal symmetry, Bohigas, Giannoni and Schmit ([12] and others
[13,4,10] have shown the energies to be GOE~distributed.

O0f course the observation that GUE statistics are shared by both
the Riemann zeros Ej and the eigenvalues of classically chaotic systems
without time—reversalasymmetry does not imply that the {Ejl come from a
classically chaotic H, but we now turn to analytical evidence which
strongly suggests that they do.

3 QUROBOROLOGY

Qurohoros [l4] was the mythical snake that swallowed its tail, and
serves to symbolize the constructive interference of quantum waves
associated with classical orbits (fig.3). Such interference forms the
basis of a technique for generating the energy spectrum, developed by
Gutzwiller [15~17] and Balian and Bloch [18]; for an elementary
review, see [19]. The technigue has been used to explain why
classically integrable systems have Poisson-distributed energy levels



Fig.3 A gquantum wave (Quroboros) interfering constructively round a
classical closed orbit.

[11] and why chaotic systems have GOE- or GUE- distributed levels [10].

Quroborology is based on representing the spectral density as the
imaginary part of the trace of the Fourier transform of the propagator
(Green function of the time-dependent Schrédinger eguation), which is
expressed semiclassically (i.e. for small Planck's constant h) as a sum
over classical paths. The spectral staircase N(E), defined by (4) with
iEjZ now being the energy levels, is just the integral of the spectral

density, so N(E) can similarly be expressed in terms of closed
classical paths with energy E, the relation being that the fluctuating
part of the staircase is

Nose (E)ENE-<N@> = Tn ) ) B expdi S Bfkr $}

e (12)

In this formula, <N(E)> is the average staircase (cf (5)) and will be
discussed later. The double sum is over all closed orbits, each being

an m-fold traversal of a primitive orbit labelled p. is the action

S
pm
of the orbit m, given in terms of the canonical phase~space variables

Apr Pu bY

SP“CE) ) §T’“d1’“ (zmsfi(E))' (13)

The phases ﬁﬂand amplitudesﬁr.depend on the focusing and stability of a
bundle of {non-closed} orbits centred on the closed one. We require
only the formulae for systems with two freedoms whose closed orbits are
all isolated and unstable (making the dynamics chaotic) and without
focal points., Then ﬁm=0, and [15,16]

-1
B?,\ = [21rm sin‘n{m)r(ﬁ)/lu , (14)



where }r(E)(>0) is the instability exponent of the primitive orbit p at
energy E (i.e. exp{t)\p} are the eigenvalues of the 2x2 matrix M}, of
linearized phase-space deviations transverse to p, and

. _ m 1/2
2sinh fmd, 2} = [-detiMg -13 177
Thus for such systems the semiclassical asymptotic formula for the
spectral fluctuations is

Ny (6)

Sin }:ms 1£E)/f{}
v 2 7_ ;

msioh §m ) (]2} (15)

Next, we note that Nosc(E)' as defined by (4) and the first member of
(12), has unit discontinuities at each eigenvalue. Therefore the
closed-orbit sum (15) can at best be conditionally convergent, with the
discontinuities determined by the very long orbits, For these, mlp/z
is large, and so we can replace the series by

Ncsc(E) ES z z i eng ™ ?(E)/Zl Smim FLCE”{T} {16)

P oma

This replacement will be reconsidered later.

Let us now turn to f(z) with z=%——iE. Just abowve the real E axis,
the phase of decreases by as ReE passes each Riemann E:j. Moreover
{z)-> 1 asIm(E)->+ ®(i.e, as Rez~>+<0)}). Therefore the fluctuating part
of the Riemann staircase is

N (.b) - N (E)> -1 "" Imfn{(l"-(Eﬂ‘]))

K,osc. 4 (17)

Now pretend that the product £formula (2a) can be used when Rez=1/2
{more about this later), substitute into (17} and expand the
logarithms. This gives

o0
.'IHEMEG\P
N (8) = -1 ;Z indfrl (18)

which apart from a sign, to be discussed later, has the same form as
the semiclassical expression (16) if the following identifications are
made: the label p for primitive closed orbits dencotes prime numbers;
the actions of the closed orbits are

S = mEb‘lP 3

™M (19)

Planck's constant h is unity, so that the semiclassical limit is
E»¢2; and the instability exponents (independent of E) are

< by .

{20)



It is worth remarking that it follows from {19} that the periods of the
closed orbits would be

ds""\— LY = "
Ten = I = nlep < (21)

There is thus a formal analogy between fluctuations of the Riemann
staircase and fluctuations of the spectral staircase of a classically
chaotic system. Because of the distinctive GUE statistics ( and for
other reasons [10]) the classical orbits must lack time-reversal
symmetry. Mathematicians have noticed essentially the same analogy as
that between (15) or (16) and (18), in the context of a special case
for which a certain transform of (15) is exact rather than asymptotic.
This is the Selberg trace formula, which equates a sum over eigenvalues
of the Laplace-Beltrami operator (playing the role of ﬁ)on a manifold
of constant negative curvature to a sum over closed geodesics on this
manifold (all unstable, i.e. chaotic). But despite extensive study
{see McKean [20] and Hejhal [21]) this analogy has not led to the
identification of the mysterious 'Riemann’ classical system with the
properties (19-21). The ‘closest approach' has been the discovery by
Pavlov and Faddeev [22] and Gutzwiller [23] of a scattering (rather
than bound) system whose phaseshifts (rather than energy levelg) are
given by {(z) with Rez=) (rather than 1/2).

An apparently anomalous cutcome [3] of Odlyzko's computation of the
form factor K{r)({eq.9) of the Riemann zeros gives further support to
the semiclassical analogy. Although he finds good overall agreement
with the GUE formula (1ll), close examination of the difference K-Koug
reveals a series of spikes for small T . Such spikes are predicted by
the semiclassical theory, because as I have shown elsewhere [10] the
universality of the GUE statistics ceases to hold for large energy
scales, that is short time scales. For K(T) the semiclassicl formula
for I%| <1, expressed in terms of the closed-orbit amplitudes and

periods, is [10]

K(x)=met ) ) B, §(x - Ty [275<)),

(22)
P m=t

Now as B> 0, n<dd~h ‘P71) for a system with D freedoms (D>l), so that
the spike associated with a given orbit slides towards =0 as f-> 0.
Near any finite t, then, spikes are semiclassically thickly clustered
and it is their average [l0] which gives K =|[¥l as in (11). But an
accurate evaluation of K(T) should reveal at least the first few
spikes. In the Riemann case, (21) shows that the spikes should occur



at ¢ -values proportional to logarithms of powers of primes. If the
first of Odlyzko's spikes occurs at =K{fn2, the others occur at
positions which on his picture are indistinguishable from K{n3, Kfng,

K n5 and Kin7, but as expected there is no spike at K{né because 6 is
not a power of a prime.

Four objections may be raised against the chaos analogy for the
Riemann zeros.

Objection 1l: the Riemann closed-orbit formula (18) depends on the

product (2a) which does not converge when Rez=1/2. But the analogous
semiclassical formulae (15) and (16) almost certainly do not converge
either. The physical reason for this is that the number of closed
orbits of a chaotic system proliferates exponentially as their period
(or action) increases, overwhelming the effect of the instability
exponents )f in making the amplitudes decay exponentially. The ma-
thematical reason was explained to me by Dr.A.Voros in the context of
the Selberg trace formula: the fundamental quantum object for which
semiclassical techniques give an expression in terms of clesed orbits
is not N (E) (or its derivative which is the fluctuating part of the

osc
spectral density) but the trace of the resolvent

g(E) = ZEI-EJ- (23)

i

for which the closed-orbit formula makes sense only when anmE exceeds
some finite value. This means that in the formula

Erin
= --.iL. [l"h T:m E‘ (E|
N (&) T 10 ;(d 3 (24)

the limitlrao cannot be taken when using ourolorology for g(E).
Retaining finite 4 has the effect of introducing further factors
exp[—iqTPm(E)/h} into (15) and (l6), making the sums converge but at
the price of giving a staircase whose steps are smoothed byn ., thereby
frustrating attempts to discriminate individual eigenvalues. Objection
l therefore disappears because both the Riemann and semiclassical
closed-orbit formulae share the disadvantage of not converging for real
E. One could argue that this shared disadvantage
strengthens the analogy.

It is interesting to lock numerically at the divergence of the
product (2a), especially in view of earlier computations [10] of the
spectral density (derivative of (18) which with small numbers of pripes
showed pronounced peaks at the lowest few zeros, nicely simulating the
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delta-functions that the exact spectral density must possess. It is
simplest to calculate the truncated product

GG = T -

iz . (25)
aAs fig.4a shows, very few factors suffice to discriminate the lowest
zeros. As M increases, however,]ﬁnloscillates increasingly fast between
the zeros, in contrast to the exactlgl which has only one maximum
between each pair of zeros (cf fig.6 later); and when M=10000 (£fig.4b)
the oscillations are threatening to obscure the first zerc. That such
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Fig.4a Truncated Riemann product 4 (l-iE) as a function of E for M=5

(three factors in (25)), with ticks mafking the exact Riemann zeros E.:
b) as a) but with M=10000

obscuration will eventually occur is illustrated in fig.5, which shows
\£M| as a function of M evaluated at the exact positon of the first
Riemann zero El=14'135"' : at firstlfml decreases, apparently
indicating convergence onto E,, but,when M exceeds about 2000, MM]

begins to oscilalte with increasing amplitude. Rough asymptotics shows
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Fig.s Truncated Riemann productl{M(L—E ﬂ as a function of M,
Svaluated at the lowest Riemann zero E,; £or h) MCL000; D) M<45000.

(b}

that[fhl eventually diverges as
]{M] ~ e_x?{M”ls'm {E&M}/E(nM}. {26)

The fact that (18) relies on evaluating the Riemann product on the
line Rez=1/2, which is displaced by 1/2 from the nearest line on which
it converges (z=1), suggests that E=1/2 is the smallest jinterval over
which the Riemann zeros can be discriminated in this way, and hence
that ocuroborology might fail altogether when the mean separation of
zeros is about 1/2. From (7}, this occurs when Ej~2xexp(4w)~2x106,
i.e. j ﬂ'3x106, and preliminary numerical exploration in this region
indeed suggests the beginning of a failure of (18) to discriminate
individual zeros.

Objection 2: the passage from ({15} to (16), in which sinh{m}/2) was

replaced by exp(m}/Z)/z, was a swindle, implying that for a proper

analogy the Riemann formula (18) ought to invclve not pm/2=exp{mﬁnp/23
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but 2sinhiminp/2}. One answer lies in considering not 4itself but the
product

P(E) Elﬁf gC%+khiE). _ (27)

For real E this converges and has the same zeros as gﬁ--lE), and so can
be employed instead of {(--IE) to approximate the fluctuations of the
Riemann staircase. An easy calculation (cf {17-18)}) gives

- - sinJmEln }
N?,m. (E) = —-—lm L-.fnP(Ew] "' Z - msink fmInp /2] (28)

which obviously is analogous to (15}).

Qhjection 3: the average density o¢f Riemann zeros (7) has a

logarithmic form which is not easy to interpret as the average density
<d> of eigenvalues of an operator B with a classical limit H(qh,p#).
For example, in a finite D-dimensional 'billiard' enclosure,
<d>~E(D/2"1); replacing the enclosure by a binding potential similarly
fails to give a logarithm. However, Simon [24,25] draws attention to a
class of Hamiltonians which are c¢lassically unbound but have discrete
guantal energy spectra. ©Of these, a planar billiard with a channel
reaching to infinity whilst narrowing hyperbolically does have a
logarithmic average level density (and moreover displays intermittent
chaos). This can be seen in an elementary way using the Weyl formula

aréa
{aE) > ~ =

(29)

(defining energy as E Ek? where k is the de Broglie wavenumber),
together with the idea that waves do not penetrate (except with
exponential evanescence) where the channel is narrower than a
wavelength, that is narrower than about kul. 1f the channel boundary

has eguation y=B/xX, the area for waves with energy E is thus

area /\—B ‘S\Bd:{_ = B jdx./x. ’\'B{ﬂBJE "'an (30)

giving <d>~ {nE as claimed. This disposes of objection 3, although
there is of course no suggestion that the Riemann f really is a
billiard of this type (even with magnetic field, to break time-reversal
symmetry).

Objection 4: the semiclassical and Riemann formulae (16) and (18) have
opposite signs. I have no clear answer to this. It is possiple to get

negative signs for some of the Bpm in (14), when the unstable orbits
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have focal points [15,16]: for a primitive orbit with n_ focal points,
the .sign 1is (-1)[mnP+1)/21, where [ ] denotes integef part. But no
choice of np gives negative signs for all tﬁf Bpm' However, this
determination of the sign implicitly assumes an H of the form 'Kinetic
energy + potential energy', acting on scalar states; without these

restrictions it might be possible to get all-negative amplitudes.

4 THE RIEMANN-~-SIEGEL FORMULA: A RULE FOR QUANTIZING CHAOQS?

It follows from the functional equation forg(z) [1] that the
following function Z(E)} is real and even for real E:
Z(E) = exp $-i6(B)} [(5-3E)
(31)
where

n

s £)-5b ~ 45 £ 3

w (<N + 1) 32

{cf.5). The Riemann-Siegel formula is an asymptotic representation of
Z{E} for large E:

e(g)

Q(E)
-] 3 N (E.) "Ef“\
Z(E)=-2) “frfwi 22E0 L R (33)
L

where
QE)= [J(E/2r)] (30)
and R(E) is a series of remainder terms [1] whose main effect is to
cancel the discontinuities of the main sum arising £from the
E-dependence of the limit Q. Fig.6 shows how accurate the formula is,
even for small E.

14(3-8)]

] ' E E 2

Fig.6. Comparison of \f(;-iE)| (£ull line) with Riemann-Siegel formula
plus one correction term” (dotted line). (The number Q(E) of terms in
the sum (33) changes from zero to one at E=2T, indicated by a tick)
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Now I will outline how the Riemann-siegel formula can be obtained
from the series (2b) by an argument with a semiclassical interpretation
suggesting a generalization. First note that in obtaining (2b) by
expanding the products in (2a), use is made of the factorization
theorem that for any integer n we can write

f = m fh
" ; PP (35)

with a unique choice of the set of integers imp=0,1,2...3. On the
semiclassical analogy, the sum index n can thus be Interpreted as
runing over all possible combinations of orbit periods (ecf.21). Each
such combination {nn will be called a pseudoperiod (pseudoperiods where

all mp except one are zero are pericds of actual orbits).

Next, split the sum (2b) into two, with pseudoperiods with n less
than and greater than some initially arbitrary value Q, and apply
Poisson's summation formula to the second sum:

Lo =9 xp 3t nt = exEéEEfnn
4(2 E) S & - £ - Z 3

ne | " n=g+l nif®
w O (38)
- f exBSLEfnr\} . Z fdn expii(Efnﬂ"'Zﬁ'mﬂ)}
= '(\'"' 4 p nuz
mE== K+

where 0<%<I. For large E the integrals may be approximated by the
method of stationary phase. The stationary point of the m’'th integral
is at n=E/2wm, which lies in the integration range only if

limg[E/211'(Q+S)] . The choice Q=Q(E) (equation 34) and$»0 gives the same

limits for the sums over n and m, and then stationary phase leads to
Q8

f(—}:-iE) ~ Z (expniuiffan} - exP{'r.(--“,;—_i-Efn{E!Zn'm}-E)])

n'# {37)

n=i

which gives the Riemann-Siegel sum (33} when combined with the
definitions (31) and (32).

What the Poisson technique has achieved in (37) is a resummation of

the orbits with long pseudopericds, to give a series of the same form

as the sum over the short pseudoperiods, with precisely the correct
phase relation to make f(%~iE) have the required analytic structure
{31). To see what immense advantage this resummation has produced as
compared with the naive ouroborology result (18), consider the
oscillations of the terms in (33). The £first term, with n=1l
{corresponding to the zero pseudoperiod with all mp equal to zero in
35), oscillates fastest. This term alone gives zeros

KN(EY =j-%  (J=t2,3...)

(38}
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with the correct density but which are (asymptotically) uniformly
distributed instead of GUE-distributed. The terms with n>1 (nonzero
pseudoperiods) oscillate more slowly, and the highest term n=Q(E) is
almost constant:

d (rANL(EY-EQ) = 1< de(8)) - h Q(E)
a8 - b flE P} ~ taSCHEDI} = O
(39)
By contrast, the terms given by unresummed ourcborology oscillate ever
faster to give the noise and divergence visible in figs. 4b and 5b.

It is natural to speculate that a similar resummation might be
possible for semiclassical quantum chaos. For the simplest nontrivial
case, embodied in equations (14-16), this speculation generates, by an
argument to be outlined in a moment, a real function W(E) whose zeros
would be the eigenvalues, The pseudoorbits are simpler than in the
Riemann case, in that each primitive orbit contributes at most one
traversal. Thus the actions, pericds and instability exponents may be
written

smm)=§&sn;'ﬁWa=;%d%msjw%a=;¢%
with {{P = Oorll labelled k 1 order of mcreasing TU")

(40)
Then the analogue of the Riemann~Siegel formula (33) would be

hﬂn
WE) =2 1) epfx B 2 cosf v - SM)k} (a1)
k=1

where 9y is the number of terms (nonzero {p's) in the sums (40}, and
kmax is given by the condition that the highest term is non-oscilla-
tory:

T *)(E) = mh <dED

(42)

Because <d> ~ 1 D for a system with D freedoms, the longest pseudo-
period is of order ﬁ“(D"l), so the number of terms in (41} grows
exponentially as h decreases or E increases; nevertheless (41) should
at least give sensible results for individual eigenvalues in the

semiclassical limit, unlike the ouroborology formula {(16).

The conjectured Riemann-Siegel  analogue (41) arises from
considering the function

E
w(E) = ex[)f g‘o\E' (_SCEE) "<S(E‘)>)}, {43)
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where g(E) is the resolvent (23} and <g(E}> its average. For real E
approaching the real axis from above, use of the average of (24) gives

(=]
fm w(Erin) = expi-—jds'fnli‘%J(dCE')}} exp in(N(E))}T,T(l"%) (44)
1>0 = 4 )
Therefore wW(E) has zeros at the eigenvalues Ej' On the other hand, for
sufficiently large Im E the fluctuations g-<g> can be approximated
semiclassically by the analogue of (16} (which replaces the analogue of
(15} by an argument s:l.m:.lar to that centred on (27) and (28)). Thus

w(E) = e {- > Z M exFilmSFj_ hl}

ML

TT (1- st izl fS,oh) (a5

giving w(E) as a product over primitive orbits, analogous to the
product (2a) for f(z) with the difference that the factors do not
appear as reciprocals (this originates in the mysterious sign diffe-
rence described in objection 4 at the end of section 3).

Expanding the product in (45) we obtain an analogue ©f the sum
{(2a), involving the pseudoorbits (40). Then the conjectured
Riemann-Siegel analogue (41), with W(E) 1identified from (44) as
proporticnal to the product'ﬂ'(l - E/E ). would follow, if only (!) one
could resum the high pseudoorblts in a way similar to that which gave
the true Riemann-Siegel formula (33).

Exactly the dynamical zeta function wW(E), in the form (45), has
been written down by Gutzwiller [17]. Ruelle [26,27] introduced
analogous zeta functions to study chaotic dissipative dynamical systems
and these have been further investigated by Parry [28,29] (who
introduced what I here call pseudoorbits) and Parry and Pollicott [30];
in these dissipative =zeta functions, orbit actions and instability
exponents are (by implication) considered as proportional to periods
and entropy. None of these authors appear to have considered the
possibility that a Riemann-Siegel formula might exist for dynamical
zeta functions.
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