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Abstract. It is sufficient to prove that there is an excess of prime factors in the product

of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k +

1)4m+1
∏ℓ

i=1 q2αi

i to establish that there do not exist any odd integers with equality

between σ(N) and 2N. The existence of distinct prime divisors in the repunits (4k+1)4m+2−1
4k ,

q
2αi+1

i
−1

qi−1 , i = 1, ..., ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas

sequences and the square root of the product of 2(4k + 1), and the sequence of repunits

will not be rational unless the primes are matched. Minimization of the number of prime

divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations

with no integer solutions.
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1. Introduction

While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime,

the universality of this result led to the the problem of characterizing any other possible

types of perfect numbers. It was suggested initially by Descartes that it was not likely that

odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved

that the condition σ(N)
N

= 2, where σ(N) =
∑

d|N
d integer

d is the sum-of-divisors function,

restricted odd integers to have the form (4k + 1)4m+1q2α1
1 ...q2αℓ

ℓ , with 4k + 1, q1, ..., qℓ

prime [18], and further, that there might exist no set of prime bases such that the perfect

number condition was satisfied.

Investigations of the equation for the sum of the reciprocals of the divisors of N has

led to lower bounds on the number of distinct prime divisors. This number has increased

from four to nine [23][38][48] while a minimum of 75 total prime factors [25][26] has been

established. When 3 6 |N , it was shown that there would be a minimum of twelve different

prime divisors [24][33][38]. It was demonstrated also that, if 3, 5, 7 ∤ N , greater than 26

distinct prime factors would be required [8][39]. In decreasing order, the three largest prime

divisors were bounded below by 108 +7 [21][31], 104 +7 [30] and 102 +1 [29] respectively,

while the least prime divisor had to be less than 2n+6
3 for n different prime factors [22].

Moreover, either one of the prime powers, (4k+1)4m+1 or q2αi

i for some index i, was found

to be larger than 1020 [11]. Through the algorithms defined by the sum over reciprocals

of the divisors, it has been demonstrated that odd perfect numbers had to be greater

than 10300 [5], while the lower bound was increased to 101500 through sieve methods for

the abundancy and size of the larges component [5]. An upper bound for an odd perfect

number 24
k

if there are k distinct prime factors and 24
4β2+2β+3

if αi = β, i = 1, ..., ℓ [49].

One of the possible methods of proof of the odd perfect number conjecture is based

on the harmonic mean H(N) = τ(N)
∑

d|N

1
d

, where τ(N) is the number of integer divisors of

N . It has been conjectured that H(N) is not integer when N is odd [43]. This statement

also would imply the nonexistence of odd perfect numbers as the perfect number condition

is
∑

d|N
1
d
= 2 and τ(N) must be even, since N is not a perfect square. The use of the

harmonic mean leads again to the study of the sum of the reciprocals of the divisors, and

the values of this sum have only been approximated. For example, it has been found that

there are odd integer with five different prime factors such that
∣

∣

∣

σ(N)
N

− 2
∣

∣

∣ < 10−12 [32].

The uniqueness of the prime decomposition of an integer allows for the comparison
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between its magnitude and the sum of the divisors. Since the sum of the divisors of an odd

integer N = (4k + 1)4m+1
∏ℓ

i=1 q2αi

i can be represented by the product (4k+1)4m+2−1
4k ·

∏ℓ
i=1

q
2αi+1

i
−1

qi−1 , it is sufficient to determine the properties of the prime factors of the

repunits to establish that there exist no odd perfect numbers. The irrationality of
√

2(4k + 1)

[

σ((4k + 1)4m+1) ·
∏ℓ

i=1 σ(q2αi

i )

]
1
2

would imply that σ(N) cannot equal 2N .

It has been proven for a large class of primes {4k + 1; qi} and exponents {4m + 1; 2αi}

that the rationality condition is not satisfied. The irrationality of the square root of the

product of 2(4k + 1) and the sequence of repunits is not valid for all sets of primes and

exponents, however, and it is verified in §4 that the rationality condition holds for twelve

odd integers. The factorizations of these integers have the property that the repunits have

prime divisors which form interlocking rings, whereas, in general, the sequence of prime

factors does not close. The presence of a sequence of primes of increasing magnitude

prevents any finite odd integer from being a perfect number. To prove that σ(N)
N

6= 2,

it is necessary also to obtain a lower bound for the number of prime divisors in σ(N).

Since the number of distinct prime factors of
qni −1
qi−1 is minimized in the class of repunits

with exponents containing the prime divisor p when n = p, the exponent is presumed to

be prime throughout the discussion. It is demonstrated in Theorem 1 that the minimum

number of prime divisors in the product of repunits that could represent the sum of divisors

σ(N) of an odd perfect number is greater than or equal to the number of prime factors of

N , Then, either σ(N) has an excess of prime divisors or constraints must be imposed on

{4k + 1; qi} and {4m + 1; 2αi} which have no integer solution. The non-existence of odd

perfect numbers also follows from the sequence of prime factors of increasing magnitude in

the factorization of σ(N), when one of three specified relations is satisfied, and constraints

on the basis and exponents otherwise.

2. The Existence of Different Prime Divisors in the Repunit Factors of the

Sum of Divisors

To prove the nonexistence of odd perfect numbers, it shall be demonstrated the product

of repunits in the expression for σ(N) contains an excess of prime divisors of σ(N), such

that the perfect number condition σ(N) = 2N cannot be satisfied. The existence of

distinct prime divisors in the quotients (4k+1)4m+2−1
4k and

q
2αi+1

i
−1

qi−1 , i = 1, ..., ℓ follows from

a theorem on the prime factors of the quotients
q
2αi+1

i
−1

qi−1 where qi and 2αi + 1 are odd

primes. A restriction to the least possible number of distinct prime factors in a product
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q
2αi+1

i
−1

qi−1 ·
q
2αj+1

j
−1

qj−1 yields three equations that complement conditions considered previously

[12].

If the inequality

q2αi+1
i − 1

qi − 1
6=

q
2αj+1
j − 1

qj − 1
(2.1)

holds, then either the sets of primitive divisors of
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 are not identical

or the exponents of the prime power divisors are different, given that
q
2αi+1

i
−1

qi−1 6=
q
2αj+1

j
−1

qj−1 .

Let qi > qj . Since

q2αi+1
i − 1

q
2αj+1
j − 1

=
q2αi+1
i − 1

q
2αj+1
i − 1

q
2αj+1
i − 1

q
2αj+1
j − 1

=
q2αi+1
i − 1

q
2αj+1
i − 1

[(

qi

qj

)2αj+1(

1 +
q2αi+1
i − q

2αj+1
j − 1

q
2αj+1
i q

2αj+1
j

+
1

q
4αj+2
j

−
1

q
2αj+1
i q

4αj+2
j

+ ...

)]

,

(2.2)

this equals

q2αi+1
i − 1

q
2αj+1
i − 1

[

(

qi

qj

)2αj+1

+ ǫ

]

ǫ ≃

(

qi

qj

)2αj+1
(

q
2αj+1
i − q

2αj+1
j − 1

q
2αj+1
i q

2αj+1
j

+
1

q
4αj+2
j

+ ...

)

.

(2.3)

When qj < qi <
[

q
2αj+1
j · (q

2αj+1
j − 1)

]

2αj+1

2αi+1

[

1+
(2αj+1)2

2αi+1

]−1

, ǫ ·
q
2αi+1

i
−1

q
2αj+1

i
−1

< 1. The exact

value of the remainder term is

ǫ ·
q2αi+1
i − 1

q
2αj+1
i − 1

=
q2αi+1
i − 1

q
2αj+1
i − 1

q2αi+1
i − q

2αj+1
j

q
2αj+1
j (q

2αj+1
j − 1)

(2.4)

which yields the alternative conditions qi < 2
− 1

2αi+1−2(2αj+1) q

2αj+1

2αi+1−2(2αj+1)

j and

qi <
1
2q

3
2αi+1

2αj+1

j for the remainder term to be less than 1. Since the entire quotient is

q
2αi+1

i
−1

q
2αj+1

i
−1

[

q
4αj+2

j
(q

2αj+1

j
−1)+q

2αj+1

i
−q

2αj+1

j

q
2αj+1

i
q
2αj+1

j
(q

2αj+1

j
−1)

]

, it can be an integer or a fraction with the

denominator introducing no new divisors other than factors of q2αi−1
i only if q

2αj+1
j −q

2αj+1
j

contains all of the divisors of q
2αj+1
j − 1, presuming that q

2αj+1
j is cancelled. Similarly,
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if qj < qi

[

q
2αj+1
j (q

2αj+1
j − 1)

]

2αj+1

2αi+1

[

1+
(2αj+1)2

2αi+1

]−1

, the remainder term must be fractional

and
q
2αj+1

j
−1

qi−1 must have a higher power of one of the prime divisors or a distinct prime

divisor, unless q
2αj+1
i − 1 has a factor which is different from the divisors of q

2αj+1
j − 1,

which typically occurs if the odd primes qi, qj are sufficiently large and αi, αj ≥ 1.

Example 2.1. Consider the prime divisors of pairs of repunits and the integrality of the

quotients
qni −1
qn
j
−1 when qi, qj and n are odd primes. The first example of an integer ratio for

odd prime bases and exponents is
q
2αi+1

i
−1

q
2αj+1

j
−1

= 293−1
33−1 = 938, but the quotient 293−1

29−1 = 13 ·67

introduces a new prime divisor. For qi, qj ≫ 1, the ratio
q
2αi+1

i
−1

q
2αi+1

j
−1

→
(

qi
qj

)2αi+1

, which

cannot be integer for odd primes qi, qj , implying that one of the repunits, with αi = αj ,

has a new prime divisor or q2αi+1
j − 1 contains a higher power of one of the prime factors.

The latter possibility is excluded because the numerator and denominator are raised to

the same power in the limit of large qi, qj .

Theorem 2.2. There will exists a minimum of n prime divisors of
∏n

i=1
q
2αi+1

i
−1

qi−1 with

odd prime bases and exponents, qi 6= qj for i 6= j and n ∈ Z+, for an odd perfect number

N = (4k + 1)4m+1
∏ℓ

i=1 q
2αi

i , ℓ ≥ n, if

q2αi+1
i − 1

qi − 1
6= (2αi + 1)

q
2αj+1
j − 1

qj − 1

(2αj + 1)
q2αi+1
i − 1

qi − 1
6=

q
2αj+1
j − 1

qi − 1

(2αj + 1)
q2αi+1
i − 1

qi − 1
6= (2αi + 1)

q2αi+1
j − 1

qj − 1

are valid.

Proof.

There are no equalities of the form xm−1
x−1 = yn−1

y−1 that have been established yet for odd

prime bases and exponents. Equality of two quotients in the rationality condition would

yield an integer multiple of the square root of the product of the remaining repunits. It

would not affect, therefore, the rationality of the square root expression for σ(s)
s

, where

N = (4k + 1)4m+1s2 = (4k + 1)4m+1q2α1
1 ... q2αℓ

ℓ .
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The known positive integer solutions to the exponential Diophantine equation xm−1
x−1 =

yn−1
y−1 , m,n > 1, include 23 − 1 = 62−1

6−1 , 31 = 25 − 1 = 53−1
5−1 and 8191 = 213 − 1 = 903−1

90−1

[7][20][40]. The occurrence of the base 2 in one of the repunits is found to be necessary for

the integers given by repunits with cubic powers, which have been proven to be the only

solutions having an exponent equal to 3 [28].

The entire set of solutions to this equation has not been determined. If a = y−1
δ

, b =
x−1
δ

, c = y−x
δ

, δ = gcd(x− 1, y− 1) and s is the least integer such that xs ≡ 1 (mod byn1),

the equation xmi−1
x−1 = yni−1

y−1 can be represented as (y − 1)xmi − (x − 1)yni = y − x,

axmi − byni = c, which may be satisfied trivially for m1 = n1 = 1. It has been proven

that, if (x, y,m1, n1) is a presumed solution of the Diophantine equation, then m2 − m1

is a multiple of s when (x, y,m2, n2) is another solution with the same bases x, y [7].

Additionally, it has been established that there are at most two solutions for fixed x and

y if y ≥ 7 [7].

As x < y, x can be identified with qj , y with with qi and δ with gcd(qj − 1, qi − 1).

Given that the first exponents are 2αi+1 and 2αj+1, the constraint on a second exponent

of qj then would be m2 − (2αj + 1) = ιϕ
((

qj−1
δ

)

q2αi+1
i

)

where ι ∈ Q may be a fraction

with a denominator which is a divisor of ϕ
(

qj−1
δ

)

or qi − 1 or qi, and otherwise, ι ∈ Z

when qj ∤ (qi − 1). Based on the trivial solution to these equations for an arbitrary pair

of odd primes qi, qj , the first non-trivial solution for the exponent of qj would be required

to be greater than or equal to than 1 + ιq2αi

i (qi − 1)ϕ
(

qj−1
δ

)

. This exponent introduces

new prime divisors which are factors of
q
1+ιq

2αi
i

(qi−1)ϕ

((

qj−1

δ

))

j
−1

qj−1 and therefore does not

minimize the number of prime factors in the product of repunits.

There is a proof of the existence of a maximum of one solution for given x and y [27].

It has been demonstrated that another equation, defined by the equality of the abundance

I(n) = σ(n)
n

for the product of two prime powers, may be solved by prime pairs that would

represent sets of solutions to this exponential Diophantine equation [44].

This result may be verified for the repunits with odd prime bases and exponents.

Consider the abundances of products of two prime powers, I(q2αi

i q
2αj

j ) = 1

q
2αi
i

q
2αj

j

q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1 and I(q
2α′

i

i q
2α′

j

j ) = 1

q
2α′

i
i

q
2α′

j

j

q
2α′

i
+1

i
−1

qi−1

q
2α′

j
+1

j
−1

qj−1 , where qi 6= qj . Let 2α′
i > 2αi and
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2αj > 2α′
j and suppose that the abundances are equal or

q
2α′

i−2αi

i

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1
= q

2αj−2α′
j

j

q
2α′

i+1
i − 1

qi − 1

q
2α′

j+1

j − 1

qj − 1
. (2.5)

It would follow that q
2α′

i−2αi

i

∣

∣

∣

∣

q
2α′

j
+1

j
−1

qj−1 and q
2αj−2α′

j

j

∣

∣

∣

∣

q
2αi+1

i
−1

qi−1 . The repunits do not have

imprimitive prime divisors except, possibly, for the exponents that divide qi − 1 or qj − 1.

However, if (2αi +1)

∣

∣

∣

∣

(qi − 1), for example, gcd(2αi +1, qi) = 1, and divisibility conditions

satisfied qi and qj as primitive divisors would not be affected. Then the qi must be

a primitive divisor of
q
2α′

j
+1−1

j

qj−1 and qj would be a primitive divisor of
q
2αi+1

i
−1

qi−1 . Any

imprimitive divisors, such as 2αi + 1, for example, would be matched with divisors of

the corresponding repunit
q
2α′

j
+1

j
−1

qj−1 . Then the prime factors in q
2α′

i−2αi

i

q
2αi+1

i
−1

qi−1 would be

identified with the prime divisors of q
2αj−2α′

j

j

q
2α′

j
+1

j
−1

qj−1 . The exponents also would match

because these primes cannot divide the remaining repunits in the equation. A cancellation

of these factors in Eq.(2.5) would yield an equality between the the larger repunits
q
2α′

i
+1

i
−1

qi−1

and
q
2αj+1

j
−1

qj−1 . With a maximum of one solution to the exponential Diophantine equation
xm−1
x−1 = yn−1

y−1 for each pair of integers (x, y), no other solutions to this equation with the

prime bases qi, qj could exist. A one-to-one correspondence between the equality of the

abundances of products of even positive powers of qi and qj and a solution to the equation

q
2α′

i
+1

i
−1

qi−1 =
q
2αj+1

j
−1

qj−1 is established.

Lemma 2.3. The product of two odd prime powers with a given abundance is unique if

the exponents are even and equal to one less than an odd prime. There are no solutions

to the equation
q
2αi+1

i
−1

qi−1 =
q
2αj+1

j
−1

qj−1 for two different odd primes qi and qj and prime

exponents 2αi + 1 and 2αj + 1.
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Proof.

Let

I(q2αi

i q2αj ) =
q2αi+1
i − 1

q2αi

i (qi − 1)

q
2αj+1
j − 1

q
2αj

j (qj − 1)

I(q
2α′

i

i q
2α′

j

j ) =
q
2α′

i+1
i − 1

q
2α′

i

i (qi − 1)

q
2α′

j+1

j − 1

q
2α′

j

j (qj − 1)

(2.6)

If I(q2αi

i q
2αj

j ) = I(q2αi

i q
2αj

j ), with α′
i ≥ αi and αj ≥ α′

j ,

[

q
2α′

i−2αi

i

q2αi+1
i − 1

qi − 1

]

q
2αj+1
j − 1

qj − 1
=

[

q
2αj−2α′

j

j

q
2α′

j+1

j − 1

q − 1

]

q
2α′

i+1
i − 1

qi − 1
(2.7)

which can be valid only if

q
2αj−2α′

j

j

∣

∣

∣

∣

q2αi+1
i − 1

qi − 1
q
2α′

i−2αi

i

∣

∣

∣

∣

q
2α′

j+1

j − 1

qj − 1
. (2.8)

The primitive divisors of
q
2αj+1

j
−1

q−1 and
q
2α′

i
+1

i
−1

qi−1 must divide the other repunit in this pair

by Eq.(2.7) when αi 6= α′
i and αj 6= α′

j [4]. Similarly, the primitive divisors of
q
2α′

j
+1

j
−1

qj−1

and
q
2αi+1

i
−1

qi−1 are required by this equation to divide only the other repunit in this pair.

An imprimitive divisor of
q
2αj+1

j
−1

qj−1 must divide qj − 1 and 2αj + 1, and an imprimitive

divisor of
q
2α′

i
+1

i
−1

qi−1 must divide qi − 1 and 2α′
i + 1, there exist divisors

qrj−1

q−1 , r|(2αj + 1),

or
qti−1
qi−1 , t|(2α

′
i + 1) or the prime exponent divides one less than the base. Then qi and

qj cannot be imprimitive divisors of the first kind simultaneously of repunits with bases

qj and qi respectively, since the divisibility of qj − 1 by qi and qi − 1 by qi would yield a

contradiction. Proper divisors of the second kind do not exist when the exponents in the

repunits are prime. When 2αi + 1, 2αj + 1, 2α′
i + 1 or 2α′

j + 1 is an imprimitive prime

factor, with α′
i > αi and αj > α′

j , the divisibility condition

(2αi + 1)

∣

∣

∣

∣

[

q
2αj−2α′

j

j

q
2α′

j+1

j − 1

q − 1

]

,

(2αj + 1)

∣

∣

∣

∣

q
2α′

i+1
i − 1

qi − 1
,

(2α′
i + 1)

∣

∣

∣

∣

q
2αj+1
j − 1

qj − 1
or

(2α′
j + 1)

∣

∣

∣

∣

[

q
2α′

i−2αi

i

q2αi+1
i − 1

qi − 1

]

(2.9)
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must be satisfied. Therefore, the matching of the divisors with the repunits will be defined

by the grouping of prime powers and repunits in Eq.(2.7).

A contradiction arises when qi and qj are odd prime primitive divisors of the repunits

with bases qj and qi with odd prime exponents respectively. Let q
2αj−2α′

j

j =
q
2αi+1

i
−1

U(qi−1) and

q
2α′

i−2αi

i

∣

∣

∣

∣

[(

q2αi+1
i − 1

U(qi − 1)

)

2α′
j
+1

2αj−2α′
j

− 1

]

. (2.10)

Since

(q2αi+1
i − 1)

2α′
j
+1

2αj−2α′
j − (U(qi − 1))

2α′
j
+1

2αj−2α′
j

= q
(2αi+1)

(

2α′
j
+1

2αj−2α′
j

)

i

[

1−
2α′

j + 1

2α′
j − 2αj

1

q2αi+1
i

+ ...

]

− U

2α′
j
+1

2αj−2α′
j q

2α′
j
+1

2αj−2α′
j

i

[

1−
2α′

j + 1

2αj − 2α′
j

1

qi
+ ...

]

,

(2.11)

the series would terminate for integer
2α′

j+1

2αj−2α′
j

, which cannot occur since 2α′
j +1 is an odd

prime, or the infinite series introduces fractional terms that are not divisible by qi.

Therefore, Eq.(2.7) is valid only if α′
i−αi = 0 and αj−α′

j = 0 and q2αi

i q
2αj

j = q
2α′

i

i q
2α′

j

j .

It follows that there is only one product of prime powers q2αi+1
i q

2αj+1
j with the value

I(q2αi

i q
2αj

j ), where qi, qj > 2 and αi, αj ≥ 1 such that 2αi + 1 and 2αj + 1 are primes.

Given the one-to-one correspondence with solutions to the equation xm−1
x−1 = yn−1

y−1 , there

will be no examples of an equality of
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 for different odd prime bases

qi and qj and different prime exponents 2αi + 1 and 2αj + 1.

The known solutions to the exponential Diophantine equation are characterized by

x = 2. The prime factor 2 may be an imprimitive divisor of a repunit with another

base, since 2|q − 1 and n if q is an odd prime and the exponent is even. The equality

I(24 · 5) = 1
24·5 (2

5 − 1) 5
2−1
5−1 = 1

2352 (2
4 − 1) 5

3−1
5−1 = I(23 · 52), for example, is equivalent to

5 · (25−1) 5
2−1
5−1 = 2 · (24−1) 5

3−1
5−1 , and it is evident that 2 is an imprimitive divisor of 52−1

5−1 ,

whereas 5 is a primitive divisor of 24 − 1. After cancellation, the equality of the remaining

factors gives 25 − 1 = 53−1
5−1 . Therefore, an exception to the theorem arises when the one

of the bases is two and the product of prime powers includes odd exponents.
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If two repunits satisfied
q
2αi+1

i
−1

qi−1 =
q
2αj+1

j
−1

qj−1 = q′h, the product would yield only a

single prime power q′2h and reduce the total number of prime factors of σ(N). There is

one known solution to qp−1
q−1 = q′h, for prime q, q′, p [6], and there are no known solutions

to the equation xm−1
x−1 = yn−1

y−1 = q′h for x > y ≥ 2. The introduction of only one prime

divisor through the product of two repunits could occur if

q2αi+1
i − 1

qi − 1
= q′hi

q
2αj+1
j − 1

qj − 1
= q′hj .

(2.12)

There are no imprimitive divisors if (2αi + 1) 6 | (qi − 1) and (2αj + 1) 6 | (qj − 1), whereas

the primitive divisors of the two repunits could be equal if these have the form ĉ(2αi +

1)bi(2αj + 1)bj . The existence of primitive divisors of qni − 1 and qnj − 1 for n ≥ 3 implies

that q′ must belong to this category, and q′ 6 |(qi − 1) and q′ 6 |(qj − 1).

All solutions to the equation xn−1
x−1 = ym, except (x, y,m, n) = (18, 7, 3, 3), is

characterized by the existence of a prime p|x such that m|(p− 1) [6]. Then hi must divide

qi − 1 and hj must divide qj − 1 for any integer solution to either relation in Eq.(2.12).

This condition is satisfied when the exponents equal 2 and the bases are odd primes, and

there are no solutions other than 35−1
3−1 = 112 [36][40], while it is nontrivial for hi, hj ≥ 3.

Lemma 2.4. The equations
q2αi+1
i − 1

qi − 1
= q′hi

q
2αj+1
j − 1

qj − 1
= q′hj .

cannot be solved by odd primes qi, qj and q′, 2α′
i + 1 and 2α′

j + 1 with hi, hj ≥ 3.

Proof. Let τihi = τjhj = l.c.m.(qi − 1, qj − 1). Then it follows from the equalities with

the powers of the prime q′ that
(

q2αi+1
i − 1

qi − 1

)τi

=

(

q
2αj+1
j − 1

qj − 1

)τj

(2.13)

and
q2αi+1
i − 1

qi − 1
≡ 1 (mod qi)

(

q
2αj+1
j − 1

qj − 1

)τj

≡ 1 (mod qi).

(2.14)
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It is known that ordq(a) = q − 1 if a 6≡ 1 (mod q) and gcd(a, q − 1) = 1. Since

q
2αi+1

i
−1

qi−1 ≡ 2αi + 1 ≡ 0 (mod 2αi) and gcd

(

q
2αj+1

j
−1

qj−1 , qi − 1

)

= gcd(q′hj , 2αj + 1) = 1 or

a contradiction arises because there must be a primitive divisor of
q
2αi+1

i
−1

qi−1 of the form

ci(2αi+1)+1. Furthermore,
q
2αj+1

j
−1

qj−1 ≡ 1 (mod qi) only if q2αi

j ≡ 1 (mod qi) or 2αj |(qi−1).

Let qi − 1 = ηij(2αj) . Then

q

qi−1

ηij
+1

j − 1

qj − 1
= q

′
qj−1

κj . (2.15)

Consider the integrality of





q

qi−1
ηij

+1

j
−1

qj−1





κj
qj−1

. The factor (qj − 1)
1

qj−1 is irrational for

qj ≥ 3, although (qj − 1)
κj

qj−1 may be rational if (qj − 1)
1

qj−1 = w
1
κj for w ∈ Q. The

expansion of the numerator is

(

q

qi−1

ηij
+1

j − 1

)

κj
qj−1

= q

κj
ηij

qi−1

qj−1+
κj.

qj−1

j











1−
κj

qj − 1

1

q

qi−1

ηij
+1

j

+
1

2

κj

qj − 1

(

1−
κj

qj − 1

)

1
(

q

qi−1

ηij
+1

j

)2 + ...











,

(2.16)

which is a product of an irrational number q

2αj+1

hj

j , if hj 6 |(2αj +1) and a series of rational

terms. Given that 2αj +1 is prime, hj must equal an integer multiple of 2αj +1 for q

2αj+1

hj

j

to be an integer, and then the inequality

q
2αj+1
j − 1

qj − 1
6= q′c(2αj+1) (2.17)

following from

(

q
2αj+1
j − 1

qj − 1

)
1

2αj+1

= q

2αj
2αj+1

j





1− 1

q
2αj+1

j

1− 1
qj





1
2αj+1

< qj (2.18)
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



1− 1

q
2αj+1

j

1− 1
qj



 < q
1

2αj+1

j , yields the contradiction. The product in Eq.(2.16) is irrational

because



1− 1

q

qi−1
ηij

+1

j





κj
qj−1

< 1 and the factor will not compensate for the irrationality

of

q

(2αj+1

hj
−⌊

2αj+1

hj
⌋

j . Then, if 2αi 6= (qi − 1),
q
2αj+1

j
−1

qj−1 6≡ 1 (mod qi) and τj must equal qi − 1.

Similarly, τi must equal qj − 1 and

(

q2αi+1
i − 1

qi − 1

)qj−1

=

(

q
2αj+1
j − 1

qj − 1

)qi−1

. (2.19)

Then

q′(hi−hj) =

(

q2αi+1
i − 1

qi − 1

)

qi−qj
qi−1

=

(

q
2αj+1
j − 1

qj − 1

)

qi−qj
qj−1

, (2.20)

which could be valid only if (qj − 1)|(qi − 1).

With qi − 1 = c′(qj − 1),

q2αi+1
i − 1

qi − 1
=

[c′(qj − 1) + 1]2αi+1 − 1

c′(qj − 1)
≡ 2αi + 1 (mod qj − 1)

q
2αj+1
j − 1

qj − 1
≡ 2αj + 1 (mod qj − 1).

(2.21)

It is evident that

q′hi ≡
[−c′ + 1]2αi+1 − 1

(−c′)
=

[

[c′ − 1]2αi+1 + 1

]

· c′−1 (mod qj)

q′hj ≡ 1 (mod qj)

(2.22)

as 2αi + 1 is odd. If hi is a multiple of hj ,

[c′ − 1]2αi+1 + 1 ≡ c′ (mod qj)

[c′ − 1]2αi+1 ≡ c′ − 1 (mod qj).
(2.23)

The last congruence requires (qi − 1)|2αi.

Then 2αi + 1 = c̃i(qj − 1) + 1 and the primitive prime divisor is

q′ = ĉi[c̃i(qj − 1) + 1] + 1 = ĉic̃i(qj − 1) + ĉi + 1 (2.24)
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for some constant ĉi. Since

q
c̃i(qj−1)+1
i − 1

qi − 1
≡ 1 (mod qj − 1)

[ĉic̃i(qj − 1) + ĉi + 1]hi ≡ (ĉi + 1)hi (mod qj − 1),

(2.25)

it follows that ϕ(qj − 1)|hi, where ϕ is the totient function. Let hi = µiϕ(qj − 1). From

q
c̃i(qj−1)+1
i − 1

qi − 1
= [ĉic̃i(qj − 1) + ĉi + 1]µiϕ(qj−1) (2.26)

the constraint

(1 + qi + ...+ q2αi

i )
1

ϕ(qj−1) = q′µi (2.27)

is derived. However,

q

2αi
ϕ(qj−1)

i

(

1 +
1

qi
+ ...+

1

q2αi

i

)
1

ϕ(qj−1)

= q

2αi
ϕ(qj−1)

i

[

1 +

∞
∑

n=1

∏n
m=1(1− (m− 1)ϕ(qj − 1))(q2αi

i − 1)n

n!q2nαi

i ϕ(qj − 1)n(qi − 1)n

]

.

(2.28)

For sufficiently large qi, this series approximately equals

q

2αi
ϕ(qj−1)

i

[

1 +
(q2αi

i − 1)

q2αi

i ϕ(qj − 1)(qi − 1)
+

∞
∑

n=2

(−1)n+1

nϕ(qj − 1)(qj − 1)n

]

. (2.29)

If 2αi = qj − 1, then ϕ(qj − 1) 6 | 2αi and q
2αi

ϕ(qj−1) is irrational. If ϕ(qj − 1)|2αi, the powers

of qi will not cancel the denominators in the sum while the summation does not yield an

integer and there will be no odd prime solution to Eq.(2.19). It follows that both repunits

cannot be powers of the same odd prime.

The possibility of equating the product of two repunits in σ(N) with a factor q′h is

circumvented.

The primitive prime divisors of
q
2αi+1

i
−1

qi−1 are a(2αi+1)b+1 while the primitive divisors

of
q
2αj+1

j
−1

qj−1 are a′(2αj+1)b
′

+1 [4][47]. Since the exponents in the repunits are primes, this

equality is valid only if a = c(2αj+1)b
′

and a′ = c(2αi+1)b. For the kth common primitive

prime divisor of
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 , the coefficients would be ak = ck(2αj + 1)b
′
k and

12



a′k = ck(2αi+1)bk yielding the corresponding factor ak(2αi+1)bk +1 = ck(2αi+1)bk(2αj+

1)b
′
k + 1. If no new primitive divisors are introduced by each repunit, it would follow that

q2αi+1
i − 1

qi − 1
= (product of imprimitive divisors) ·

∏

k

[ck(2αi + 1)bk(2αj + 1)b
′
k + 1]hk

q
2αj+1
j − 1

qj − 1
= (product of imprimitive divisors) ·

∏

k

[ck(2αi + 1)bk(2αj + 1)b
′
k + 1]h

′
k .

(2.30)

Let qi − 1 = phi1
1 ...phis

s and qj − 1 = p
hj1

1 ...p
hjs
s . Then

(phi1
1 ...phis

s + 1)2αi+1 − 1

ph1s
1 ...phis

s

= 2αi + 1 + αi(2αi + 1)(phi1
1 ...phis

s ) + ...+ (phi1
1 ...phis

s )2αi

(p
hj1

1 ...p
hjs
s + 1)2αj+1 − 1

ph1s
1 ...p

hjs
s

= 2αj + 1 + αj(2αj + 1)(p
hj1

1 ...phis
s ) + ...+ (p

hj1

1 ...phjs
s )2αj .

(2.31)

Let P be a primitive divisor of the q2αi+1
i − 1. Consider the congruence c0 + c1x + ... +

c2αi
x2αi ≡ 0 (mod P ), ct > 0, t = 0, 1, 2, ..., 2αi. There is a unique solution x0 to the

congruence relation f(x) ≡ c0 + c1x+ ...+ cnx
n ≡ 0 (mod P ) within [x0 − ǫ, x0 + ǫ] [35],

where

ǫf ′(x0) +
ǫ2

2!
f ′′(x0) + ... < P. (2.32)

Setting ct =
(

2αi+1
t+1

)

,

f ′(qi − 1) =

(

2αi + 1

2

)

+ 2

(

2αi + 1

3

)

(qi − 1) + ...+ 2αi(qi − 1)2αi−1, (2.33)

the constraint (2.33) implies a bound on ǫ of
(

1− 2
2αi+1

)

qi−1
2αi

. Consequently, if

|qi − qj | <

(

1−
2

2αi + 1

)

qi − 1

2αi

, (2.34)

the prime P is not a common factor of both repunits. The number of repunits with

primitive divisor P will be bounded by the number of integer solutions to the congruence

relation.

If the same powers of the common primitive prime divisors occurred in the repunits
q
2αi+1

i
−1

qi−1 and
q
2αi+1

j
−1

qj−1 , an inequality between the two integers necessarily would imply the

existence of a distinct primitive factor in one of the repunits. Then, the congruences

1 + qi + q2i + ...+ q2αi

i ≡ 0 (mod P r) r ≥ 2

1 + qj + q2j + ...+ q2αi

j ≡ 0 (mod P )
(2.35)
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could be considered. By Hensel’s lemma, solutions to these constraints would satisfy

qi = qj + ĉ1P + ĉ2P
2 + ...+ ĉr−1P

r−1, and therefore, qi − qj must be greater than P .

If P is a prime divisor of
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 , and αi = αj ,

P |(qi − qj)(q
2αi

i + (2αi + 1)q2αi−1
i qj + ...+ (2αi + 1)qiq

2αi−1
j + q2αi

j ). (2.36)

Since gcd(qi−qj , q
2αi

i +(2αi+1)q2αi−1
i qj+...+(2αi+1)qiq

2αi−1
j +q2αi

j ) = 1, either P |(qi−qj)

or P |(q2αi

i + (2αi + 1)q2αi−1
i qj + ...+ (2αi + 1)qiq

2αi−1
j + q2αi

j ). When P |(qi − qj), it may

satisfy the divisibility condition for the congruence relation. However, there also would

be a primitive divisor which is a factor of q2αi

i + q2αi−1
i qj + ...+ q2αi−1

j qi + q2αi

j , and not

qi−qj . While there may exist primes which divide the difference between the repunits and

not each quotient, the common prime factors of
q
2αi+1

i 1

qi−1 and
q
2αj+1

j
−1

qj−1 must be divisors of

qi − qj for the congruences to hold modulo different powers. The common prime factors

{P ′} which do not divide qi − qj must be equal to the primes that exactly divide
q
2αi+1

i
−1

qi−1

and
q
2αj+1

j
−1

qj−1 .

The distinct exponents of the primitive prime divisors dividing
q
2αi+1

j
−1

qj−1 must be less

than those of
q
2αi+1

i
−1

qi−1 since the P-adic expansion for the reverse inequality would produce a

contradiction with qi > qj . A precise coincidence of the set of primitive prime divisors then

would produce the divisibility condition
q
2αi+1

j
−1

qj−1

∣

∣

∣

∣

q
2αi+1

i
−1

qi−1 , which is not valid generically

for arbitrarily large pairs (qi, qj), qi 6= qj . It follows that there should be a prime divisor

of
q
2αi+1

i
−1

qi−1 distinct from the factors of
q
2αi+1

j
−1

qj−1 . Setting qi = 5 and qj = 3, for instance, it

can be proven by induction that one of the repunits 52αi+1−1
4 and 32αj+1−1

2 has a distinct

prime divisor, since 53−1
5−1 = 31, 55−1

4 = 11·71, 33−1
2 = 13, 35−1

2 = 11·11, and only primitive

divisors of the integers occur in these sequences when 2αi + 1 is prime.

Furthermore, there would be a new prime divisor of
q
2αj+1

j
−1

qj−1 if αj > αi. This prime

divisor is congruent to 1 modulo 2αj + 1 and would differ from the other prime factor

distinguishing the two repunits with the exponent 2αi + 1 that is congruent to 1 modulo

2αi+1 unless both equal the same integer having the form a(2αi+1)(2αj +1)+1. Under

the first condition,
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1 has a minimum of one new prime divisor other han

the set of prime factors of each repunit. If the second condition is valid, it remains to be

determined if any new prime divisors arise in the product.
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When the prime exponents are different, the existence of primitive divisors of the

Lucas numbers αn−βn

α−β
for n > 12, when α, β are real, is a consequence of the factorization

into cyclotomic polynomials Fn(α, β) =
∏

1≤k<n
2

gcd(k,n)=1

(

α− 2 cos
(

2πk
n

)

β
)

[4][49]. The Lucas

sequence has different primitive divisors as n changes because it is not possible to match

all of the factors with cos
(

2πk
n

)

.

If αi 6= αj ,

q2αi+1
i − 1 =

2αi
∏

k=0

(qi − ωk
2αi+1)

q
2αj+1
j − 1 =

2αj
∏

k′=0

(qj − ωk′

2αj+1)

ωn = e
2πi
n .

(2.37)

Quotients of products of linear factors in q2αi+1
i −1 and q

2αj+1
j −1 generally will not involve

cancellation of integer divisors because products of powers of the different units of unity

cannot be equal unless the exponents are a multiples of the primes 2αi+1 or 2αj +1. The

sumsets which give rise to equal exponents can be enumerated by determining the integers

s1, ..., st such that the sums are either congruent to 0 modulo 2αi + 1 and 2αj + 1. It is

apparent that the entire integer sets {1, 2, ..., 2αi} and {1, 2, ..., 2αj} cannot be used for

unequal repunits. The number of sequences satisfying the congruence relations for each

repunit must equal
∑

∑

tk=2αi+1(2
tk − 1) and

∑

∑

t′
l
=2αj+1(2

t′l − 1), with sequences of

integers which sum to a non-zero value giving rise to cancellation of complex numbers in

the product being included.

Consider two products
∏tk

m=1(qi − ωsm
2αi+1) and

∏t′k
n=1(qj − ω

s′n
2αj+1). Upper and lower

bounds for these products are

(qi − 1)tk <

tk
∏

m=1

(qi − ωsm
2αi+1) < (qi + 1)tk

(qj − 1)t
′
l <

t′l
∏

n=1

(qj − ω
s′n
2αj+1) < (qj + 1)t

′
l .

(2.38)

Since the minimum difference between primes is 2, one of the inequalities (qi + 1)tk ≤

(qj − 1)t
′
l , (qj + 1)t

′
l ≤ (qi − 1)tk , (qi + 1)tk > (qj − 1)t

′
l or (qj + 1)t

′
l > (qi − 1)t

k

will be

satisfied when t′l 6= tk. The first two inequalities imply that the factors of the repunits

defined by the products
∏tk

m=1(qi − ωsm
2αi+1) and

∏t′k
n=1(qj − ω

s′n
2αj+1) are distinct.
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If either of the next two inequalities hold, the factors possibly could be equal when

(qi − 1)tk = (qj − 1)t
′
i or (qi + 1)tk = (qj + 1)t

′
l . In the first case, t′l = nijtk, qi − 1 =

(qj − 1)nij , nij > 2. This relation holds for all tk and t′l such that
∑

k tk = nij

∑

l t
′
l.

However, 2αi +1 and 2αj +1 are prime, so that this equation is not valid. When qi +1 =

(qj + 1)nij , nij ≥ 2, the relation
∑

k tk = nij

∑

l t
′
l again leads to a contradiction.

The identification of the products in Eq.(2.37) for each corresponding k, l is necessary,

since any additional product would give rise either to a new prime factor after appropriate

rescaling, or a different power of the same number, which would would prevent a cancel-

lation of an extra prime, described later in the proof. The inequalities (qj − 1)t
′
l < (qi −

1)tk < (qj + 1)t
′
l imply that

t′l
ln(qj − 1)

ln(qi − 1)
< tk < t′l

ln(qj + 1)

ln(qi − 1)
. (2.39)

If these inequalities hold for two pairs of exponents (tk1 , t
′
l1
), (tk2 , t

′
l2
), the interval

[

t′l2
ln(qj−1)
ln(qi−1) , t

′
l2

ln(qj+1)
ln(qi−1)

]

contains
t′l2
t′
l1

tk1
. The fractions

tkm

tkn
cannot be equal to

t′lm
t′
ln

for all

m,n as this equality would imply that tk
t′
l

= 2αi+1
2αj+1 , which is not possible since 2αi+1

2αj+1 is an

irreducible prime fraction when αi 6= αj .

Then
∣

∣

∣

∣

∣

tk1

t′l1
−

tk2

t′l2

∣

∣

∣

∣

∣

≥
1

t′l1t
′
l2

. (2.40)

and tk2
6∈
[

t′l2
ln(qj−1)
ln(qi−1) , t

′
l2

ln(qj+1)
ln(qi−1)

]

if

ln

(

qj + 1

qj − 1

)

<
ln(qi − 1)

t′l1t
′
l2

. (2.41)

As t′l ≤ 2αj + 1, this inequality is valid when

qj ln(qi − 1) >
9

4
(2αj + 1)2. (2.42)

Therefore, the products of linear factors with tk < 2αi + 1 and t′ℓ < 2αj + 1 will not be

equal given the Eqs.(2.41) and (2.42), When these products cannot be equated, there does

not exist sets of linear terms in the decomposition of q2αi+1
i − 1 and q

2αj+1
j − 1 that give

the same prime divisor a(2αi + 1)(2αj + 1) + 1 within multiplication by a prime power.

Since the arithmetic primitive factor of qn−1
q−1 , n 6= 6 is Φn(q) =

∏

1≤k≤n

gcd(k,n)=1
(qi − e

2πik
n )

or Φn(q)
p

, where p is the largest prime factor of both n
gcd(n,3) and Φn(q) [1][2][4][47][50], any
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prime, which is a primitive divisor of
q
2αi+1

i
−1

qi−1 , divides Φ2αi+1(qi). It follows that these

primes can be obtained by appropriate multiplication of the products
∏tk

m=1(qi − ωsm
2αi+1)

and
∏t′k

n=1(qj − ω
s′n
2αj+1). Although these products may not be the primitive divisors, they

are real, and multiplication of
∏t1

m=1(qi − ωsm
2αi+1) by κ1 ∈ R can be compensated by

multiplication of
∏t2

m′=1(qi − ω
s′n
2αj+1) by κ−1

1 to obtain the integer factors. By Lemma

2, the occurrence of the minimal set of prime divisors in the two repunits
q
2i+1

i
−1

qi−1 and

q
2αj+1

j
−1

qj−1 introduces two prime factors in the products of the linear terms.

Since the prime divisors of the repunits can be obtained by rescaling of products of

the form (2.38), t′l1 and t′l2 can be set equal, provided that the factor of a power of a

prime is included to match the intervals. Suppose, for example, that t′ℓ1 = t′ℓ2 = 2. Then,

Ph(qj − 1)2 < (qi − 1)tk1 < Ph(qj + 1)2 and tk1
∈
[

2 ln(qj−1)+h ln P

ln(qi−1) ,
2 ln(qj+1)+h ln P

ln(qi−1)

]

.

Again, for some k1, k2,
tk1

t′
l1

6=
tk2

t′
l2

if αi 6= αj , and |tk1 − tk2 | ≥ 1. The inequalities Ph(qj −

1)2 < (qi−1)tk2 < Ph(qj+1)2 arise because each of the terms yl = (qj−e
2πikl
2αj+1 )(qj−e

2πikl
2αj+1 ),

which is matched with a corresponding product of linear factors
∏tk

sm=1 (qi − ωsm
2αi+1),

has the same upper and lower bound. However, tk2
6∈
[

2 ln(qj−1)+h lnP

ln(qi−1) ,
2 ln(qj+1)+h lnP

ln(qi−1)

]

if
2 ln

(

qj+1

qj−1

)

ln(qi−1) < 1 which implies qi > 5. The equality is also valid because tk2
=

2ln(qj+1)+h lnP

ln(qi−1) only if Ph = (qi−1)
tk2

(qj+1)2 and qi−1 = (qj+1)h
′

, h′ ≥ 1. Then t′l = h′tk, and if

h′ > 1, summation over k, l gives 2αj +1 = h′(2αi+1) which is not possible as 2αi+1 and

2αj + 1 are prime. If h′ = 1, tk = t′l and 2αi + 1 must be set equal to 2αj + 1, and a new

prime divisor will occur. When the limits tk and tℓ′ are set equal to 2 or a bounded integer,

which is feasible since there would exist only 4m+2+
∑ℓ

i=1(2αi+1) prime factors for the

odd integer (4k+1)4m+1
∏ℓ

i=1 q
2αi

i to be a perfect number, the products
∏tk

m=1(qi−ωsm
2αi+1)

and
∏t′k

n=1(qj − ω
s′n
2αj+1) would equal a real number that must be rescaled by to give an

integer. The rescaling will be given by a prime power in the following.

A minimum set of prime divisors will be derived for a product of a given set of repunits.

Since
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 are not powers of the same prime by Lemma 2, there will a

minimum of two distinct prime divisors of
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1 . Suppose that

1.
q
2αi+1

i
−1

qi−1 = q′hi

1 xi
q
2αj+1

j
−1

qj−1 = q
′hj

2 xj .
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Now consider a third repunit
q
2αk+1

k
−1

qk−1 . Either

1a.
q
2αk+1

k
−1

qk−1 = q′hk

3 xa

1b.
q
2αk+1

k
−1

qk−1 = q′h1k
1 q′hk

3 xb

1c.
q
2αk+1

k
−1

qk−1 = q
′hjk

2 q′hk

3 xc.

1d.
q
2αk+1

k
−1

qk−1 = q′hik

1 q
′hjk

2 xd

where xi, xj , xa, xb, xc and xd represent additional factors. Under the first three

conditions, there are three distinct prime divisors of the product of the three repunits
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1

q
2αk+1

k
−1

qk−1 .

Given that the prime divisors are primitive divisors in Condition (1d), q′1 must have the

form a(2αi+1)(2αk+1)+1, while q′2 would equal b(2αj+1)(2αk+1)+1. If ln(qi−1) ≥ 9
4

or qi ≥ 11, then Eq.(2.42) will be satisfied if qℓ > (2αℓ +1)2. Provided that the odd prime

bases are greater than or equal to 11, and q′1 is labelled qℓ, the repunit
q
2αℓ+1

ℓ
−1

qℓ−1 will have

a prime divisor that is not a factor of
q
2αi+1

i
−1

qi−1 or
q
2αk+1

k
−1

qk−1 if αℓ ≤ αi, αk, and

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h2ℓ

2 q′h3ℓ
3 xℓ. (2.43)

Therefore, three prime divisors occur in the product

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αℓ+1
ℓ − 1

qℓ − 1
. (2.44)

If αℓ > αi or αℓ > αk, a primitive prime divisor must be introduced that is different from

the repunits with the basis qℓ and exponents less than or equal to αi, αk. It can equal q′2

only if h2ℓ = 0 for an exponent less than or equal to αi, αk. Since the repunits
q
2αj+1

j
−1

qj−1

and
q
2αℓ+1

ℓ
−1

qℓ−1 both cannot be powers of the same prime q′2 by Lemma 2, a third prime

factor must occur. The new factor may be labelled q′3, and again this product of three

repunits is divisible by three distinct primes.

Similarly, if qm is set equal to q′2,

q2αm+1
m − 1

qm − 1
= q′h1m

1 q′h3m
4 xm. (2.44)
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when αm ≤ αj , αk. and the product

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αm+1
m − 1

qm − 1
(2.45)

would have a minimum of three distinct prime divisors. If αm > αj or αk, a new prime

divisor q′4 will arise and there would be a minimum of three different prime factors of this

product.

If q′3 6= q′4, there would be four different primes divisors of

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q
2αj+1
ℓ − 1

qℓ − 1

q2αm+1
m − 1

qm − 1
. (2.46)

When q′3 = q′4. it must have the form c(2αℓ + 1)(2αm + 1) + 1 to be a primitive prime

divisor. Setting qr = q′3 = q′4,
q2αr+1
r −1
qr−1 has a prime divisor distinct from the factors of

q
2αℓ+1

ℓ
−1

qℓ−1 or
q2αm+1
m −1
qm−1 if αr ≤ αℓ, αm. If αr > αℓ or αr > αm, a new primitive prime

divisor is introduced unless it coincides with q′1 or q′2. Then another prime factor must

occur because the pairs of repunits cannot be powers of the same prime. It follows that

q
2αj+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αℓ+1
ℓ − 1

qℓ − 1

q2αr+1
r − 1

qr − 1
(2.47)

or
q
2αj+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αm+1
m − 1

qm − 1

q2αr+1
r − 1

qr − 1
(2.48)

would be divisible by a minimum of four distinct prime factors.

Now consider the condition

2.
q
2αi+1

i
−1

qi−1 = q′hi

1

q
2αj+1

j
−1

qj−1 = q
′h1j

1 q
′h2j

2 .

It follows that that the differentiation between the prime divisors of
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1

depends on a factor of the form a(2αi+1)(2αj +1)+1, given that exponents do not divide

either repunit. Since it must be a prime, it will the basis for a new repunit
q
2αk+1

k
−1

qk−1 , where

qk = a(2αi + 1)(2αj + 1) + 1 for the integer N to be an odd perfect number. The prime

satisfies the inequality Eq.(2.42) with respect to the repunit with the lesser exponent if

αk ≤ αi, αj . Then there will be a prime factor of
q
2αk+1

k
−1

qk−1 that does not divide
q
2αi+1

i
−1

qi−1

or
q
2αj+1

j
−1

qj−1 and there will be a minimum of three different prime divisors of the product
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of the three repunits. When αk > αi or αk > αj , there is a new primitive divisor that is

a third prime factor unless it coincides with q′2, since it cannot be divisible by q′1 = qk.

Given that
q2αk+1
k − 1

qk − 1
= q′h2k

2 xk, (2.49)

q′2 would have the form b(2αj + 1)(2αk + 1) + 1. Labelling this prime to be qℓ,
q
2αℓ+1

ℓ
−1

qℓ−1

would have a new prime factor not dividing
q
2αj+1

j
−1

qj−1 if αℓ ≤ αj , αk. If αℓ > αj or αℓ > αk,

there would be a new primitive prime divisor unless it coincided with q′1. Since the repunits
q
2αi+1

i
−1

qi−1 and
q
2αℓ+1

ℓ
−1

qℓ−1 both cannot be powers of the prime q′1, it would follow then that

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αℓ+1
ℓ − 1

qℓ − 1
(2.50)

is divisible by three distinct prime divisors.

If αk, αℓ ≤ αi, αj , the new prime divisors in
q
2αk+1

k
−1

qk−1 and
q
2αℓ+1

ℓ
−1

qℓ−1 may be labelled

q′3 and q′4 respectively, and there would be a minimum of four different prime divisors of

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αk+1
k − 1

qk − 1

q2αℓ+1
ℓ − 1

qℓ − 1
(2.51)

if q′3 6= q′4. When q′3 = q′4,
q2αk+1
k − 1

qk − 1
= q′h3k

3 xk

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h4ℓ

3 xℓ.

(2.52)

Either xk 6= 1 or xℓ 6= 1 or xk 6= 1, xℓ 6= 1. A fourth prime factor q′5 is introduced, and

the product of the four reupunits is divisible by four different primes when qi, ..., qℓ ≥ 11.

For αk, αℓ > αi or αk, αℓ > αj , it is feasible for the repunits to have the form

q2αk+1
k − 1

qk − 1
= q′h2k

2 xk

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h1ℓ

1 xℓ.

(2.53)

if the one of the primitive divisors coincides with q′2 and q′1 respectively. Then q′1 =

a′(2αi+1)(2αj+1)(2αℓ+1)+1 and q′2 = b(2αj+1)(2αk+1)+1. When 2αi+1, 2αj+1 <

2αk + 1 ≤
√

a′(2αi + 1)(2αj + 1)(2αk + 1) + 1, there is a prime factor q′3 of xk that does
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not divide
q
2αi+1

i
−1

qi−1 ,
q
2αj+1

j
−1

qj−1 or
q
2αℓ+1

ℓ
−1

qℓ−1 . By Lemma 2, there must be a prime factor of

xℓ that does not equal q′1, q′2 or q′3. Then the product
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1

q
2αk+1

k
−1

qk−1

q
2αℓ+1

ℓ
−1

qℓ−1

is divisible by a minimum of four different primes.

If αk > αi or αk > αj and 2αk + 1 >
√

a′(2αi + 1)(2αj + 1)(2αℓ + 1) + 1, there is a

primitive divisor occurring in
q
2αk+1

k
−1

qk−1 , different from q′2 and the prime factors of xk, that

may be labelled q′3. It is possible that h2k = 0 in Eq.(2.53) and the prime q′2 rather than

q′3 is introduced into the factorization of
q
2αk+1

k
−1

qk−1 . Then the proofs of the existence of a

fourth prime divisor will be interchanged and conclusions remain valid. To minimize the

number of primes, suppose that xℓ is divisible only by q′3. Then

q2αk+1
k − 1

qk − 1
= q′h3k

3 x′
k

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h1ℓ

1 q′h3ℓ
3 .

(2.54)

It follows that q′3 = c(2αk + 1)(2αℓ + 1) + 1 ≡ qr. If αr ≤ αk, αℓ, there exists a prime

factor of
q2αr+1
r −1
qr−1 that does not divide

q
2αk+1

k
−1

qk−1 or
q
2αℓ+1

ℓ
−1

qℓ−1 and may be labelled q′4. If

q′4 6= q′2, there is a minimum of four distinct prime divisors of

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αk+1
k − 1

qk − 1

q2αr+1
r − 1

qr − 1
(2.55)

or
q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αℓ+1
ℓ − 1

qℓ − 1

q2αr+1
r − 1

qr − 1
(2.56)

for qi, qj , qk, qℓ, qr ≥ 11.

If q′4 coincides with q′2, the number of primes will be minimized when
q2αr+1
r −1
qr−1 = q′h2r

2 .

Then q′2 = b′(2αj+1)(2αk+1)(2αr+1)+1. A fourth prime factor arises when αℓ < αj , αk,

Given that 2αj + 1, 2αk + 1 <
√

b′(2αj + 1)(2αk + 1)(2αr + 1) + 1,
q
2αℓ+1

ℓ
−1

qℓ−1 will have a

prime divisor not dividing
q
2αj+1

j
−1

qj−1 ,
q
2αℓ+1

ℓ
−1

qℓ−1 or
q2αr+1
r −1
qr−1 . Therefore, the least number of

prime factors would occur when

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h1ℓ

1 q′h3ℓ
3 q′h4ℓ

4 (2.57)

Then the product of the four repunits with bases qi, qj , qk, qℓ ≥ 11 would have a minimum

of four different prime divisors. If 2αℓ + 1 >
√

b′(2αj + 1)(2αk + 1)(2αℓ + 1) + 1,

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h5ℓ

5 x′
ℓ (2.58)
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where q′5 does not equal q′1, q′2 or q′3. Again, there are four primes in the factorization of

the product of the four repunits.

Suppose that

3.
q
2αi+1

i
−1

qi−1 = q′h1i
1 q′h2i

2

q
2αj+1

j
−1

qj−1 = q
′h1jq

′h2j
2 .

1

Let qk = q′1 = a(2αi + 1)(2αj + 1) + 1 and qℓ = q′2 = b(2αi + 1)(2αj + 1) + 1. If

αk ≤ αi, αj , there is a prime factor of
q
2αk+1

k
−1

qk−1 that does not divide
q
2αi+1

i
−1

qi−1 or
q
2αj+1

j
−1

qj−1

and it may be labelled q′3. Similarly, there is prime divisor q′4 that is not a factor of

both repunits in Condition 3. Consequently, given these inequalities for the exponents,
q
2αi+1

i
−1

q−i−1

q
2αj+1

j
−1

qj−1

q
2αk+1

k
−1

qk−1 and
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1

q
2αℓ+1

ℓ
−1

qℓ−1 have a minimum of three different

prime factors. Furthermore, there is a minimum of four distinct prime divisors of

q2αi+1
i − 1

qi − 1

q
2αj+1
j − 1

qj − 1

q2αk+1
k − 1

qk − 1

q2αℓ+1
ℓ − 1

qℓ − 1
(2.59)

when q′3 6= q′4. If q
′
3 = q′4, both

q
2αk+1

k
−1

qk−1 and
q
2αℓ+1

ℓ
−1

qℓ−1 cannot be powers of the same prime

by Lemma 2, and a fourth prime divisor is introduced into the product of the four repunits.

If αk > αi or αk > αj , there would be a new primitive divisor different from q′3 that

could be q′2, but it cannot equal q
′
1. Suppose that

q2αk+1
k − 1

qk − 1
= q′h2k

2 xk. (2.60)

Similarly, if αℓ > αi or αℓ > αj , the primitive divisor could coincide with q′1 such that

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h1ℓ

1 xℓ. (2.61)

Then qk = q′1 = a′(2αi + 1)(2αj + 1)(2αℓ + 1) + 1 and qℓ = q′2 = b′(2αi + 1)(2αj +

1)(2αk + 1) + 1. If 2αi + 1, 2αj + 1 < 2αℓ + 1 <
√

b′(2αi + 1)(2αj + 1)(2αℓ + 1) + 1,

q
2αk+1

k
−1

qk−1 must have a prime factor that does not divide
q
2αi+1

i
−1

qi−1 or
q
2αj+1

j
−1

qj−1 and xk =

q′′3 . When 2αℓ + 1 >
√

b′(2αi + 1)(2αj + 1)(2αℓ + 1) + 1, it follows that there is a new

primitive divisor different from q′2 or q′′3 , which may be labelled q′′5 . Similarly, there

would be a prime factor q′′4 of
q
2αℓ+1

ℓ
−1

qℓ−1 that does not divide
q
2αj+1

i
−1

qj−1 or
q
2αj+1

j
−1

qj−1 if

2αi + 1, 2αj + 1 < 2αℓ + 1 <
√

a′(2αi + 1)(2αj + 1)(2αk + 1) + 1. When 2αℓ + 1 >
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√

a′(2αi + 1)(2αj + 1)(2αk + 1) + 1, the primitive divisor would be different from q′1, q′′4

and may be labelled q′6. Therefore,

q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1

q
2αk+1

k
−1

qk−1 and
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1

q
2αℓ+1

ℓ
−1

qℓ−1 always has a minimum of three

different prime divisors if the odd prime bases are greater than or equal to 11. There is a

minimum of four distinct prime divisors of the product of the four repunits if q′5 6= q′6.

If q′5 = q′6, it is not possible for both
q
2αk+1

k
−1

qk−1 and
q
2αℓ+1

ℓ
−1

qℓ−1 to be powers of this prime.

Therefore,
q2αk+1
k − 1

qk − 1
= q′h1k

5 x′
k

q2αℓ+1
ℓ − 1

qℓ − 1
= q′h5ℓ

5 x′
ℓ

(2.62)

where x′
k 6= 1 or x′

ℓ 6= 1. Both do not equal a power of q′1 or q′2. Then x′
k or x′

ℓ has a

prime factor q′7 that does not equal q′1, q
′
2 or q′5. Consequently, a minimum of four different

primes divides
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1

q
2αk+1

k
−1

qk−1

q2α+1
ℓ

−1

qℓ−1 .

The prime divisors of any remaining repunits with odd prime bases less then 11 may

be listed. It has been proven that no odd perfect number can have 3, 5 and 7 as factors

simultaneously [34]. Consequently, the following sets may occur amongst these three

primes: {3}, {5}, {7}, {3, 5}, {3, 7} and {5, 7}. It is evident that the number of distinct

prime factors will be greater than or equal to the number of repunits for each of these sets

by Lemma 2. There could be a coincidence between these divisors and factors of repunits

with larger odd prime bases. Yet the conclusions reached previously are unaffected, because

these primes would divide remaining factors xa, xb, xc, xd, xi, xj , xk, xℓ, xm and xr in

the repunits.

Suppose that the product of n− 1 repunits with odd prime bases and exponents
∏n−1

r=1

q
2αir

+1

ir
−1

qir−1 has a minimum of n− 1 different prime divisors, which occurs in the sum

of divisors of an odd perfect number. If there is a prime factor of
q
2αin

+1

in
−1

qin−1 that divides

this product, either it is a power of 2αir +1, r = 1, ..., n−1 or it is a primitive prime factor

of the other repunits. The first condition will be considered afterwards. Secondly, it has

the form ar(2αir +1)+1 for any a ∈ Z+ and r = 1, ..., n− 1, a set of n+3 repunits can be

produced with a minimum of n+3 prime divisors by the preceding discussion. Therefore,

a minimum of n distinct prime divisors exist in a product
∏n

r=1

q
2αir

+1

ir
−1

qir−1 , which occurs

in the sum of divisors of an odd perfect number, by induction for n = 4z, 1 + 4z, 2 + 4z,

z ∈ Z+ when the exponents are not prime divisors. It can be demonstrated, however, that
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any odd perfect number with three or four prime factors also must have a minimum of

three or four, and such integers cannot satisfy the condition σ(N)
N

= 2 [12]. It is sufficient

to prove, for a given prime divisor of N , that there are three other prime factors such that

the product of the four repunits with prime exponents is divisible by a minimum of four

prime divisors to extend the result to all primes divisors of N . Consequently, if the prime

exponents are not divisors of the repunits, there would be a minimum of n different prime

divisors in the product of n repunits arising from σ(
∏n

i=1 q
2αi

i ) for all positive integers n,

if N = (4k + 1)4m+1
∏ℓ

i=1 q
2αi

i is an odd perfect number.

For the known solutions to the equation xm−1
x−1 = yn−1

y−1 , one of the prime bases is 2.

Since qj − 1 = 1, the theorem is circumvented because the bounds (2.39) are satisfied for

a larger set of primes qi and exponents tk. Furthermore, the integers sets {1, 2, ..., 2αi}

and {1, 2, ..., 2αj} are used entirely in the products to give the same integer, which must

then be a prime. The existence of solutions to the inequalities 1 < (qi − 1)2αi < 32αi

implies that these bounds do not exclude the equality of 22αj+1−1
qj−1 and

q
2αi+1

i
−1

qi−1 for some

2αj + 1, qi, 2αi + 1.

If the primes, which divide only q2αi+1
i −1, are factors of qi−1 or qj−1, these would be

partially cancelled in a comparison of
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 . Any divisor of qi − 1 which

is a factor of
q
2αi+1

i
−1

qi−1 also must divide 2αi +1. When 2αi +1 and 2αj +1 are prime, this

divisor would have to be 2αi + 1 or 2αj + 1.

An exception to the result concerning the occurrence of a distinct prime factor in one

of the repunits could occur if equations of the form

q2αi+1
i − 1

qi − 1
= (2αi + 1)ν

q
2αj+1
j − 1

qj − 1

(2αj + 1)ν
q2αi+1
i − 1

qi − 1
=

q
2αj+1
j − 1

qj − 1

(2αj + 1)ν1
q2αi+1
i − 1

qi − 1
= (2αi + 1)ν2

q2αi+1
j − 1

qj − 1

(2.63)

are satisfied, as the set of prime divisors of the repunits would be identical if 2αi+1

∣

∣

∣

∣

q
2αj+1

j
−1

qj−1

in the first relation, 2αj + 1

∣

∣

∣

∣

q
2αi+1

i
−1

qi−1 in the second condition and 2αi + 1

∣

∣

∣

∣

q
2αj+1

j
−1

qj−1 ,

2αj + 1

∣

∣

∣

∣

q
2αi+1

i
−1

qi−1 in the third relation. The conditions with ν = ν1 = ν2 = 1 follow if
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different powers of the other primes do not arise. However, qpi − 1 ≡ 0 (mod pν) only if

q
p
i − 1 ≡ 0 (mod p), and since q

p
i − q ≡ 0 (mod p), this is possible when p|(qi − 1). If

p|(qi − 1), then
q
p

i
−1

qi−1 ≡ p and
q
p

i
−1

qi−1 6≡ 0 (mod pν), ν ≥ 2. Setting ν = ν1 = ν2 gives

q2αi+1
i − 1

qi − 1
= (2αi + 1)

q
2αj+1
j − 1

qj − 1

(2αj + 1)
q2αi+1
i − 1

qi − 1
=

q
2αj+1
j − 1

qj − 1

(2αj + 1)
q2αi+1
i − 1

qi − 1
= (2αi + 1)

q2αi+1
j − 1

qj − 1

(2.64)

with 2αi + 1 6 |
q
2αj+1

j
−1

qj−1 and 2αj + 1 6 |
q
2αi+1

i
−1

qi−1 . It follows that either 2αi + 1 or 2αj + 1

is a prime which divides only one of the repunits.

Furthermore, qi − 1 and qj − 1 are integers which are not rescaled, such that distinct

prime divisors arise in the products of the remaining linear factors. If the exponents 2αi+1

and 2αj + 1 are unequal, these factors do not divide both repunits. When the exponents

2αi + 1 and 2αj + 1 are equal, it would be necessary for nij to be equal to one, which is

not feasible since qi 6= qj . It follows also that
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 cannot be equal, and

the original assumption of their inequality is valid. However, by the first two relations in

Eq.(2.55), there exists a prime which is not a divisor of both repunits.

The non-existence of odd integers satisfying σ(N) = 2N is related to the number of

prime divisors in the square root expression
√

2(4k + 1)σ(N). A proof of the excess of

prime divisors of σ(N) would begin with the introduction of a new factor for each repunit.

Example 2.5.

An example of a congruence with more than one solution less than P is

(2αi + 1) + αi(2αi + 1)x+
(2αi + 1)2αi(2αi − 1)

3!
x2 +

(2αi + 1)2αi(2αi − 1)(2αi − 2)

4!
x3

+
(2αi + 1)2αi(2αi − 1)(2αi − 2)(2αi − 3)

5!
x4 = 0 (mod 11)

(2.65)

which is solved by x = 2, 4 when 2αi+1 = 5. This is consistent with the inequality (2.32),

since ǫ = 0.074897796 when x0 = 2. Consequently, 35−1
2 = 11 · 11 and 55−1

4 = 11 · 71 both
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have the divisor 11 and the distinct prime divisor arises in the larger repunit. Indeed, 35−1
2

would not have a different prime factor from a repunit
q
2αk+1

k
−1

qk−1 that has 11 as a divisor.

A set of primes {3, qk, ...} and exponents {5, 2αk, ...} does not represent an exception to

the Theorem 1 if 35−1
2 is chosen to be the first repunit in the product, introducing the

prime divisor 11. Each subsequent repunit then would have a distinct prime factor from

the previous repunit in the sequence.

3. Formulation of Conditions on the Factors of Integers having the Form

of an Odd Perfect Number

Let N = (4k + 1)4m+1
∏ℓ

i=1 q2αi

i [18] and the coefficients {ai} and {bi} be defined by

ai
q2αi+1
i − 1

qi − 1
= bi

(4k + 1)4m+2 − 1

4k
gcd(ai, bi) = 1. (3.1)

Bounds on the number of solutions to these equations for given a, b, qi and qj have been

derived [45]. If σ(N)
N

6= 2,

√

2(4k + 1)

[

q2α1+1
1 − 1

q1 − 1

q2α2+1
2 − 1

q2 − 1
...
q2αℓ+1
ℓ − 1

qℓ − 1

(4k + 1)4m+2 − 1

4k

]
1
2

=
√

2(4k + 1)
(b1...bℓ)

1
2

(a1...aℓ)
1
2

·

(

(4k + 1)4m+2 − 1

4k

)

(ℓ+1)
2

6= 2(4k + 1)2m+1
ℓ
∏

i=1

qαi

i

(3.2)

or

b1...bℓ

a1...aℓ
=

ℓ
∏

i=1

q2αi+1
i − 1

qi − 1
·

(

4k

(4k + 1)4m+2 − 1

)ℓ

6= 2(4k + 1)4m+1

[

4k

(4k + 1)4m+2 − 1

]ℓ+1 ℓ−1
∏

i=1

q2αi

i ·
q2αℓ+1
ℓ − 1

qℓ − 1
.

(3.3)

When ℓ > 5 is odd, there exists an odd integer ℓo and an even integer ℓe such that

ℓ = 3ℓ0 + 2ℓe, so that

b1...bℓ

a1...aℓ
=

(

b13

a13

a2

b2

)(

b46

a46

a5

b5

)

...

(

b3ℓo−2,3ℓo

a3ℓo−2,3ℓo

a3ℓo−1

b3ℓo−1

)(

b3ℓo+1b3ℓo+2

a3ℓo+1a3ℓo+2

)

...

(

bℓ−1bℓ

aℓ−1aℓ

)

·
s2

t2

(3.4)
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with s, t ∈ Z. It has been proven that
b3ī−2,3ī

a3ī−2,3ī

a3ī−1

b3ī−1
6= 2(4k + 1) · s2

t2
for any choice of

a3ī−2, a3ī−1, a3ī and b3ī−2, b3ī−1, b3ī consistent with Eq.(3.1) [12]. Similarly, bℓ
aℓ

6= 2(4k +

1) · s2

t2
so that

b3ī−2,3ī

a3ī−2,3ī

a3ī−1

b3ī−1

≡ 2(4k + 1)
ρ̄3ī−2

χ̄3ī−2

·
s2

t2

b3j̄+1b3j̄+2

a3j̄+1a3j̄+2

= 2(4k + 1)
ρ̂3j̄+2

χ̂3j̄+2

·
s2

t2

(3.5)

where the fractions are square-free and gcd(ρ̄3ī−2, χ̄3ī−2) = 1, gcd(ρ̂3j̄+2, χ̂3j̄+2) = 1. *

Then,
b1...bℓ

a1...aℓ
= 2(4k + 1) ·

ρ̄1

χ̄1
...

ρ̄3ℓo−2

χ̄3ℓo−2

ρ̂ℓ−2ℓe+2,2

χ̂ℓ−2ℓe+2,2
...

ρ̂ℓ2

χ̂ℓ2
·
s2

t2
. (3.6)

When ℓ = 2ℓo + 3ℓe > 4 for odd ℓ0 and even ℓe,

b1...bℓ

a1...aℓ
= 2(4k + 1)

(

4k + 1)4m+2 − 1

4k

)

·
ρ̂22

χ̂22
...

ρ̂2ℓo,2

χ̂2ℓo,2

ρ̄ℓ−3ℓe+1

χ̄ℓ−3ℓe+1
...

ρ̄ℓ−2

χ̄ℓ−2
·
s2

t2
. (3.7)

If the products
ℓo
∏

ī=1

(

ρ̄3ī−2

χ̄3ī−2

) ℓe
∏

j̄=1

(

ρ̂3ℓo+2j̄,2

χ̂3ℓo+2j̄,2

)

(3.8)

for odd ℓ and
ℓo
∏

ī=1

(

ρ̂2ī,2

χ̂2ī,2

) ℓe−1
∏

j=1

(

ρ̄2ℓo+3j̄+1

χ̄2ℓo+3j̄+1

)

(3.9)

for even ℓ are not the squares of rational numbers,

b1...bℓ

a1...aℓ
6= 2(4k + 1) ·

s2

t2
ℓ is odd

b1...bℓ

a1...aℓ
6= 2(4k + 1)

(

4k + 1)4m+2 − 1

4k

)

·
s2

t2
ℓ is even

(3.10)

which would imply the inequality (3.3) and the non-existence of an odd perfect number.

Conditions on the factors of N have been given [19]. A bound for the odd exponent of

the prime 4k + 1 in the product representation of this integer will be derived.

Lemma 3.1. The exponent 4m + 1 in the prime factorization must be greater than or

equal to 5 for the integer N = (4k + 1)4m+1
∏ℓ

i=1 q
2αi

i to be an odd perfect number.

* The notation has been changed from that of reference [12] with a different choice of

index for ρ̄, χ̄.
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Proof. Let I(n) = σ(n)
n

be the abundance of an odd integer. The equality of σ(N) with

2N requires the following limits [14]

I
(

(4k + 1)4m+1
)

=
1

(4k + 1)4m+1

(4k + 1)4m+2 − 1

4k
<

4k + 1

4k

I

(

ℓ
∏

i=1

q2αi

i

)

>
8k

4k + 1

3(4k + 1)2 − 4(4k + 1) + 2

4k(4k + 1)
< I

(

(4k + 1)4m+1
)

+ I

(

ℓ
∏

i=1

q2αi

i

)

≤
3(4k + 1)2 + (4k + 1) + 1

(4k + 1)(4k + 2)
.

(3.11)

and

I
(

(4k + 1)4m+1
)

≤
3(4k + 1)2 + (4k + 1) + 1

(4k + 1)(4k + 2)
−

8k

4k + 1
=

(4k + 1)2 + (4k + 1) + 3

(4k + 1)2 + (4k + 1)
.

(3.12)

Now consider the abundance of the prime factor (4k+1)4m+1 when m = 0. It follows that

I(4k + 1) =
4k + 2

4k + 1
≤

(4k + 1)2 + (4k + 1) + 3

(4k + 1)2 + (4k + 1)
(3.13)

or

(4k + 1)2 − 2(4k + 1) ≤ 0 (3.14)

which has a solution when 0 ≤ 4k+1 ≤ 2. Therefore, 4k+1 can only occur in a square-free

factor of N if k = 0. Then 4m + 1 = 1 may be an exponent only of 1, which yields a

trivial factor. The prime factorization of N would include (4k + 1)4m+1 with 4k + 1 ≥ 5

and 4m+ 1 ≥ 5.

The necessity of exactly one odd power of a prime in the factorization of an odd

perfect number N results from σ(q2αi

i ) being an odd integer for all odd primes qi and

even exponents 2αi and the divisibility of σ(N) by 4 when N is properly divisible by a

minimum of two odd powers of primes. The occurrence of the odd power (4k + 1)4m+1

follows from the divisibility of σ(N) by 4 if the base or the exponent are congruent to

3 mod 4 [18]. A recent proof of the requirement of m = 0 for the existence of an odd

perfect number (4k+1)4m+1
∏ℓ

i=1 q
2αi

i proceeds from the absence of any integer solutions

to σ(prm2) = 2prm2 for any prime p = 4k + 1, with gcd(p,m) = 1, and r > 1 [46]. The

combination of Lemma 3 and this last result would be sufficient to demonstrate that there

exist no odd perfect numbers with this prime decomposition. Therefore, together with the

theorem of Euler, their nonexistence may be deduced.
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4. Examples of Integers satisfying the Rationality Condition

A set of odd integers N = (4k + 1)4m+1
∏ℓ

i=1 q2αi

i with 4m+ 1 ≥ 5, such that

[

2(4k + 1)
q2α1+1
1 − 1

q1 − 1
...
q2αℓ+1
ℓ − 1

qℓ − 1

(4k + 1)4m+2 − 1

4k

]
1
2

(4.1)

is rational, is given in the following list:

3753252292792832137228323132

3753229267279283213722832

3753272112292792832137219122832

37532521121322924727923132

37511229279221123132

3751322924727928321372211228323132

37552721121322924727928321372191221122832

37532112132292472672792

375327213229247279219123132

3757211213229247267279283213721912211228323132

375521122926727922112

3755272132292472792191221123132.

(4.2)

None of these integers satisfy the condition σ(N)
N

= 2. For example, the sum of divisors of

the first integer is

σ(3753252292792832137228323132) = 2·37·34 ·74 ·132 ·192 ·312 ·432 ·672 ·732 ·1812 ·3672 (4.3)

such that new prime factors 7, 13, 19, 31, 43, 67, 73, 181, 367 are introduced. The inclusion

of these prime factors in the integer N leads to yet additional primes, and then the lack of

closure of the set of prime factors renders it impossible for them to be paired to give even

powers in σ(N) with the exception of 2(4k + 1).

It may be noted that the decompositions of repunits with prime bases of comparable

magnitude and exponent 6 include factors that are too large and cannot be matched easily

with factors of other repunits. It also can be established that repunits with prime bases
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and other exponents do not have square-free factors that can be easily matched to provide

a closed sequence of such pairings. This can be ascertained from the partial list

U5(6, 5) =
55 − 1

4
= 781

U6(6, 5) = 3906 = 2 · 7 · 31 · 32

U5(8, 7) = 2801

U5(12, 11) = 16105

U5(14, 13) = 30941

U5(18, 17) = 88741

U7(4, 3) = 1093

U7(6, 5) = 19531

U9(4, 3) = 9841

U3(32, 31) = 993 = 3 · 331.

(4.4)

The entire set of integers satisfying the rationality condition is therefore restricted to a

ring of prime bases and powers and exponents 4m + 1 = 5, 2αi = 1 with a given set of

prime factors occurring in the sum-of-divisors function.

The first prime of the form 4k + 1 which arises as a coefficient D in the equality

q3 − 1

q − 1
= Dy2 q prime (4.5)

is 3541. This prime is too large to be the basis for the factor (4k+1)4m+2−1
4k , since it

would give rise to many other unmatched prime factors in the product of repunits and

the rationality condition would not be satisfied. Amongst the coefficients D which are

composite, the least integer with a prime divisor of the form 4k+ 1 is 183, obtained when

q = 13. However, the repunit with base 61 still gives rise to factors which cannot be

matched since
616 − 1

60
= 858672906 = 2 · 3 · 7 · 13 · 31 · 97 · 523. (4.6)

Therefore, the rationality condition provides confirmation of the nonexistence of odd

perfect numbers, which, however, can be proven with certainty only through the methods

described in this work.
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5. On the Non-Existence of Coefficients of Repunits satisfying the

Perfect Number Condition

Based on Theorem 2.2, it is proven that additional prime divisors arise in the sum-

of-divisors function and a relation equivalent to the perfect number condition cannot be

satisfied by the primes 4k + 1 and qi, i = 1, ..., ℓ.

Theorem 5.1. There does not exist any set of odd primes {4k + 1; q1, ..., qℓ} such that

there are coefficients {ai} and {bi} with

b1...bℓ

a1...aℓ
= 2(4k + 1)

[

4k

(4k + 1)4m+2 − 1

]ℓ+1 ℓ
∏

i=1

q2αi

i

if each pair of repunits in the sum-of-divisors function,
q
2αi+1

i
−1

qi−1 and
q
2αj+1

j
−1

qj−1 , satisfies the

inequalities

q2αi+1
i − 1

qi − 1
6= (2αi + 1)

q
2αj+1
j − 1

qj − 1

(2αj + 1)
q2αi+1
i − 1

qi − 1
6=

q
2αj+1
j − 1

qi − 1

(2αj + 1)
q2αi+1
i − 1

qi − 1
6= (2αi + 1)

q2αi+1
j − 1

qj − 1
.

Proof. It has been observed that b1
a1

6= 2(4k + 1) · s2

t2
by the non-existence of multiply

perfect numbers with less than four prime factors [9][10],

b1b2

a1a2
6= 2(4k + 1)

[

4k

(4k + 1)4m+2 − 1

]3

q2α1
1 q2α2

2 (5.1)

by the non-existence of perfect numbers with three prime divisors [10], and proven that
b1b2b3
a1a2a3

6= 2(4k + 1) · s2

t2
so that the inequality is valid for ℓ = 1, 2, 3 [12].

Suppose that there are no odd integers N of the form (4k + 1)4m+1
∏ℓ−1

i=1 q
2αi

i with
σ(N)
N

= 2 so that

b1...bℓ−1

a1...aℓ−1
6= 2(4k + 1)

[

4k

(4k + 1)4m+2 − 1

]ℓ ℓ−1
∏

i=1

q2αi

i . (5.2)
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If there exists a perfect number with prime factors {4k+1, q1, ..., qℓ}, then
b1...bℓ
a1...aℓ

must have

1+ ℓ+ τ
(

(4k+1)4m+2−1
4k

)

− τ(U4m+2(4k+2, 4k+1),
∏

i=1 qi) distinct prime factors, where

U4m+2(4k+2, 4k+1) is the Lucas number (4k+1)4m+2−1
4k and τ(U4m+2(4k+2, 4k+1),

∏

i=1 qi)

denotes the number of common divisors of the two integers. However, equality σ(N)

and 2N also implies that
∏ℓ

i=1
q
2αi+1

i
−1

qi−1 has at least ℓ + 2 − τ
(

(4k+1)4m+2−1
4k

)

different

prime divisors and a maximum of ℓ+ 1 prime factors. If there is no cancellation between
4k

(4k+1)4m+2−1 and
∏ℓ

i=1 q2αi

i , multiplication of
∏ℓ

i=1 U2αi+1(qi +1, qi) =
∏ℓ

i=1
q
2αi+1

i
−1

qi−1 by

U4m+2(4k+2, 4k+1) =
(

4k
(4k+1)4m+2−1

)ℓ

introduces τ
(

4k
(4k+1)4m+2−1

)

new prime divisors

and b1...bℓ
a1...aℓ

would have ℓ + 2 distinct prime factors. However, if gcd(U4m+2(4k + 2, 4k +

1), U2αi+1(qi + 1, qi)) = 1 for all i, the repunit U4m+2(4k + 2, 4k + 1) must introduce

additional prime divisors. It follows that

(4k + 1)4m+2 − 1

8k
=
∏

ī∈I

q2αi

i (5.3)

would be required for some integer set I. There are no positive integer solutions to

xn − 1

x− 1
= 2y2 x ≡ 1 (mod 4), n ≡ 2 (mod 4), n ≥ 6. (5.4)

Then x2m+1−1
x−1 = y21z and x2m+1+1

2 = y22z
′, where zz′ = y23 and y = y1y2y3. Since y

2
3 = z2 z′

z
,

z′

z
= ẑ2 for an integer ẑ and x2m+1−1

x−1 · 2
x2m+1+1 =

y2
1z

y2
2z

′ =
y2
1

y2
2

1
ẑ2 , Then

y1

y2ẑ
=
(

x2m+1−1
x2m+1+1

)
1
2
(

2
x−1

)
1
2

. The factors of x − 1 do not cancel with all of the prime

divisors of x2m+1 − 1, while x2m+1−1
2 and x2m+1+1

2 have no common divisors and both

cannot be squares of integers for x ≥ 2 and m ≥ 1. Finally,
(

x2m+1−1
x−1

)
1
2

is rational

only for x = 3 and 2m + 1 = 5, while
(

35+1
2

)
1
2

is not rational, and relation for y1, y2

and ẑ has no integer solution for the given values of x and m. There is no odd integer

4k+1 ≥ 5 satisfying the condition in Eq.(5.3) for m ≥ 1. A variant of this proof has been

obtained by demonstrating the irrationality of

[

∏ℓ
i=1

q
2αi+1

i
−1

qi−1 ·
(

8k(4k+1)
(4k+1)4m+2−1

)

]
1
2

when

gcd(U2α+1(qi + 1, qi), U4m+2(4k + 2, 4k + 1)) = 1 [12].

When the number of prime factors of
∏ℓ

i=1
q
2αi+1

i
−1

qi−1 is less than ℓ+ 1, there must be

at least two divisors of U4m+2(4k + 2, 4k + 1) which do not arise in the decomposition of

this product. While one of the factors is 2, 4k + 1 is not a divisor, implying that any

other divisor must be qj̄ for some j̄. It has been assumed that there are no prime sets
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{4k+1; q1, ..., qℓ−1} satisfying the perfect number condition. Either b1...bℓ−1

a1...aℓ−1
does not have

ℓ+ 1 factors, or if it does have ℓ+ 1 factors, then
∏ℓ−1

i=1
q
2αi+1

i
−1

qi−1 has ℓ− 1 factors but

ℓ−1
∏

i=1

q2αi+1
i − 1

qi − 1
6= (4k + 1)4m+1

∏

i 6=ī,j̄

q2αi−ti
i (5.5)

for some prime qī, where qtii ‖ U4m+2(4k + 2, 4k + 1). Multiplication by U2αℓ+1(qℓ + 1, qℓ)

must contain the factor q
2αī

ī
, because (4k+1)4m+2−1

4k only would introduce the two primes

2, qj̄ and not qī, since
∏ℓ−1

i=1 U2αi+1(qi + 1, qi) contains ℓ− 1 primes, including 4k + 1 and

excluding qī. Interchanging the roles of the primes in the set {qi, i = 1, ..., ℓ}, it follows

that the prime equations

q2αi+1
i − 1

qi − 1
= (4k + 1)hiq

2αji

ji

q2αℓ+1
ℓ − 1

qℓ − 1
= (4k + 1)hℓq

2αī

ī

(4k + 1)4m+2 − 1

4k
= 2q

2αj̄

j̄

(5.6)

must hold, where hℓ 6= 0. Since the second equation has no positive integer solution, k ≥ 1

and m ≥ 1 [12], it follows that b1...bℓ−1

a1...aℓ−1
must not have ℓ+ 1 prime factors.

There cannot be less than ℓ + 1 different factors of b1...bℓ−1

a1...aℓ−1
, as each new repunit

q
2αi+1

i
−1

qi−1 introduces at least one distinct prime divisor by Theorem 1 and the factorization of
(4k+1)4m+2−1

4k contains at least two new primes. Consequently, this would imply b1...bℓ−1

a1...aℓ−1
has

at least ℓ+2 prime factors and b1...bℓ
a1...aℓ

has a minimum of ℓ+3 prime divisors, which is larger

than the number necessary for equality between U4m+2(4k+2, 4k+1)
∏ℓ

i=1 U2αi+1(qi+1, qi)

and 2(4k + 1)
∏ℓ

i=1 q
2αi

i .

If the maximum number of prime factors, ℓ+1, is attained for
∏ℓ

i=1 U2αi+1(qi +1, qi),

then the only additional prime divisor arising from multiplication with U4m+2(4k+2, 4k+1)

is 2. However, since both 2 and 2k + 1 divide the repunit with base 4k + 1, this property

does not hold unless 2k + 1 and prime factors of 1
2k+1

(

(4k+1)4m+2−1
4k

)

can be included

in the set {qi, i = 1..., ℓ}. There are then a total of ℓ + 2 prime factors in b1...bℓ
a1...aℓ

only if
[

8k
(4k+1)4m+2−1

]ℓ+1

can be absorbed into
∏ℓ

i=1 q
2αi

i .

The repunit then can be expressed as

(4k + 1)4m+2 − 1

4k
= 2

∏

j∈{K}

q
tj
j (5.7)
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where {K} ⊆ {1, ..., qℓ}. By the non-existence of odd perfect numbers with prime factors

4k + 1, qi, i = 1..., ℓ− 1, either U4m+2(4k + 2, 4k + 1)
∏ℓ−1

i=1 U2αi+1(qi + 1, qi) has less than

ℓ+ 1 factors or

ℓ−1
∏

i=1

q2αi+1
i − 1

qi − 1
6= (4k + 1)4m+1

∏

i∈{K}−{qī}

q2αi

i

∏

{K}−{qī}

q
2αj−tj
j (5.8)

for some ī ∈ {1, ..., ℓ}. If the product of repunits for the prime basis {4k + 1, q1, ..., qℓ−1}

has less than ℓ + 1 factors,
q
2αℓ+1

ℓ
−1

qℓ−1 introduces at least two new prime factors. Even if

one of these divisors is 4k + 1, the other factor must be qī for some ī 6= ℓ. Interchange of

the primes qi, i = 1, ..., ℓ again yields the relations in equation (5.6). If the product (5.8)

includes ℓ primes, and not qī, then q
2αī

ī
must be a factor of

q
2αℓ+1

ℓ
−1

qℓ−1 . Interchanging the

primes, it follows that the product (5.8) includes
∏

i 6=ī q
2αi

i .

The prime divisors in U2αℓ+1(qℓ + 1, qℓ) either can be labelled qjℓ for some jℓ ∈ {1, ...,

ℓ− 1} or equals 4k + 1. While 4k + 1 does not divide U4m+2(4k + 2, 4k + 1), it can occur

in the other repunits
q
2αi+1

i
−1

qi−1 for i = 1, ..., ℓ − 1. The prime qjℓ = qī also may not be a

divisor of (4k+1)4m+2−1
4k .

One choice for qℓ is a prime divisor of 2k + 1. If 2k + 1 is prime, the factors of
(2k+1)2αℓ+1−1

2k and (4k+1)4m+2−1
4k can be compared. Since the latter quotient is equal to

(4k+1)2m+1−1
4k · [(4k+1)2m+1 +1], consider setting m equal to αℓ. By Theorem 1, a divisor

P divides both repunits with different powers if 4k = nP +2k or 2k = nP implying n = 2,

P = k. However, if k

∣

∣

∣

∣

(2k+1)2αℓ+1−1
2k , 1 + (2k+1)+ ...+ (2k+1)2αℓ ≡ 2αℓ +1 ≡ 0 (mod k)

and k = 2αℓ +1 for prime exponents 2αℓ +1, which would imply that P is an imprimitive

divisor. Suppose (2k+1)k−1
2k = k ·

∏

i Pmi

i and (4k+1)k−1
4k = k ·

∏

j P̃
nj

j . If a primitive

divisor rk + 1, r ∈ Z, divides both repunits, (2k + 1)k − 1 = (rk + 1)(x − 1), x ∈ Z,

(4k + 1)k − 1 = (rk + 1)(x′ − 1), x′ ∈ Z, so that

(2k + 1)k − 1

x− 1
=

(4k + 1)k − 1

x′ − 1
. (5.9)

This relation would imply

x′(2k + 1)k − (2k + 1)k − x′ = x(4k + 1)k − (4k + 1)k − x (5.10)

and therefore x− 1 = b(4k + 1)k, x′ − 1 = a(4k + 1)k. However, the equation is then

a(4k + 1)k(2k + 1)k − a(4k + 1)k = b(4k + 1)k(2k + 1)k − b(2k + 1)k (5.11)
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which cannot be satisfied by any integers a, b. Not all primitive divisors of the two repunits

are identical. For the exception, k = 1, 2αℓ + 1 = 5, 4m + 2 = 10n, (2k+1)2αℓ+1−1
2k = 112,

(4k+1)4m+2−1
4k has other prime factors in addition to 11.

If m 6= αℓ, it can be demonstrated that there is a primitive divisor of (2k+1)2αℓ+1−1
2k

which is not a factor of (4k+1)4m+2−1
4k by using the comparison of the linear factors in the

decomposition of each numerator in Theorem 1, since 4k 6= (2k)n, n ≥ 2 and 4k + 2 6=

(2k + 2)n, n ≥ 2 for any k > 1.

In general, either there exists a prime factor of
q
2αℓ+1

ℓ
−1

qℓ−1 which does not divide
(4k+1)4m+2−1

4k or there are more than ℓ + 2 primes in the decomposition of the product

of repunits. The existence of a distinct prime divisor requires a separate demonstration

for composite exponents. Let p1(4m + 2), p2(4m + 2) be two prime divisors of 4m +

2. Then
q
2αℓ+1

ℓ
−1

qℓ−1 has a prime factor different from the divisors of (4k+1)p1(4m+2)−1
4k and

(4k+1)p2(4m+2)−1
4k by Theorem 1. While the union of the sets of prime divisors of the two

repunits is contained in the factorization of (4k+1)p1(4m+2)p2(4m+2)−1
4k , the repunit with the

composite exponent will have a primitive divisor, which does not belong to the union of the

two sets and equals a1p1p2+1. If this prime divides
q
2αℓ+1

ℓ
−1

qℓ−1 , a1p1p2+1 = a2(2αℓ+1)+1.

Either 2αℓ + 1|4m+ 2 or the primitive divisor equals a12(2αℓ + 1)p1p2 + 1. Suppose

(a12(2αℓ + 1) + 1)(x+ 1) =
(4k + 1)p1p2 − 1

4k
≡ p1p2 (mod 4). (5.12)

Since p1, p2 are odd primes, either a12 ≡ 0 (mod 4) or a12 ≡ 2 (mod 4), so that the primitive

divisor equals 4c(2αℓ + 1)p1p2 + 1 when p1p2 ≡ 1 (mod 4) or (4c+ 2)(2αℓ + 1)p1p2 + 1 if

p1p2 ≡ 3 (mod 4). Let the primitive divisor P have the form 4c(2αℓ + 1)p1p2 + 1 so that

(4c(2αℓ + 1)p1p2 + 1)(y + 1) =
q2αℓ+1
ℓ − 1

qℓ − 1
≡ 2αℓ + 1 (mod qℓ − 1) (5.13)

which implies that y + 1 = κ2[2αℓ + χ2(qℓ − 1)] is either the multiple of an imprimitive

divisor, κ′
2(2αℓ + 1) or it is the multiple of a primitive divisor. Consider the equation

(4c(2αℓ + 1)p1p2 + 1)κ2(2αℓ + 1) =
q2αℓ+1
ℓ − 1

qℓ − 1
(5.14)

with 2αℓ|qℓ − 1. If

(4c(2αℓ + 1)p1p2 + 1)κ2(2αℓ + 1) ≡ 2αℓ + 1 (mod qℓ − 1), (5.15)
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qℓ − 1|(4c(2αℓ + 1)p1p2 + 1)κ2 − 1 or (4c(2αℓ + 1)p1p2 + 1)κ2 − 1 ≡ qℓ−1
2αℓ−1 (mod qℓ − 1).

Since 2αℓ + 1|κ2 − 1, κ2 = κ3(2αℓ + 1) + 1. Let

(z(qℓ − 1) + 1)(2αℓ + 1) =
q2αℓ+1
ℓ − 1

qℓ − 1
. (5.16)

Then

z = 2αℓ +
qℓ − 1

2αℓ + 1
(2αℓ − 1 + (2αℓ − 2)(qℓ + 1) + ...+ q2αℓ−2

ℓ + ...+ 1) (5.17)

is integer and z(qℓ−1) = 4c(2αℓ+1)2κ3p1p2+κ3(2αℓ+1)+4c(2αℓ+1)p1p2 and 2αℓ+1|κ2−1

so that κ2 = κ3(2αℓ + 1) + 1. Let

(z(qℓ − 1) + 1)(2αℓ + 1) =
q2αℓ+1
ℓ − 1

qℓ − 1
. (5.18)

Then

z = 2αℓ +
qℓ − 1

2αℓ + 1
(2αℓ − 1 + (2αℓ − 2)(qℓ + 1) + ...+ q2αℓ−2

ℓ + ...+ 1) (5.19)

is integer and z(qℓ − 1) = 4c(2αℓ + 1)2κ3p1p2 + κ3(2αℓ + 1) + 4c(2αℓ + 1)p1p2

In the latter case, the product of the primitive divisors takes the form b(2αℓ+1)+1 so

that κ2[(2αℓ+1)+χ2(qℓ− 1)] = b(2αℓ+1)+1 since 2αℓ+1 is prime. The two congruence

relations
[(b− 1) + (b(2αℓ + 1)4cp1p2](2αℓ + 1) + 1 ≡ 0 (mod qℓ − 1)

(b− κ2)(2αℓ + 1) + 1 ≡ 0 (mod qℓ − 1)
(5.20)

imply

[κ2 − 1 + (b(2αℓ + 1) + 1)4cp1p2](2αℓ + 1) ≡ 0 (mod qℓ − 1). (5.21)

When 2αi + 1 6 | qℓ − 1, it follows that qℓ − 1|κ2 − 1 + (b(2αℓ + 1) + 1)4cp1p2. Since

every primitive divisor is congruent to 1 modulo 2αℓ + 1, κ2 = κ3(2αℓ + 1) + 1 and

qℓ − 1|κ3(2αℓ + 1) + (b(2αℓ + 1) + 1)4cp1p2.

The factorizations

(4k + 1)4m+2 − 1 =
4m+1
∏

k=0

((4k + 1)− ωk
4m+2)

q2αℓ+1
ℓ − 1 =

2αi
∏

k′=0

(qℓ − ωk′

2αi+1)

(5.22)
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yield real factors which can be identified only if ((4k + 1) − 1)tk = (4k)tk = (qℓ − 1)t
′
k or

(4k+ 2)tk = (qℓ + 1)t
′
k . Then, 4k = (qℓ − 1)nℓ , tk = nℓt

′
k or 4k+ 2 = (qℓ + 1)nℓ , tk = nℓt

′
k.

Since
∑

k tk = 4m+ 2,
∑

k t′k = 2αi + 1, 4m+ 2 = nℓ(2αℓ + 1). If 4m+ 2 is the product

of two primes p1p2, 2αℓ + 1 must equal one of the primes, p2.

The congruence (5.15) becomes

[(4c(2αℓ + 1)2p1 + 1)κ2 − 1](2αℓ + 1) ≡ 0 (mod qℓ − 1). (5.23)

If 4k = (qℓ − 1)p1 , then (4k+1)p1p2−1
4k = ((qℓ−1)p1+1)p1p2−1

(qℓ−1)p1 = p1p2 +
(

p1p2

2

)

(qℓ − 1) + ... +

p1p2(qℓ−1)p1(p1p2−2)+(qℓ−1)p1(p1p2−1) When 2αi+1|qℓ−1, 2αi+1|p1p2+
(

p1p2

2

)

(qℓ−1)+

...+ p1p2(qℓ − 1)p1(p1p2−2) + (qℓ − 1)p1(p1p2−1). However,
q
2αℓ+1

ℓ
−1

qℓ−1 ≡ 2αℓ + 1 (mod qℓ − 1),

whereas (4k+1)p1p2−1
4k ≡ p1(2αℓ + 1) (mod qℓ − 1), p1 > 1. The repunits have the same

prime divisors only if p1 ≡ 1 (mod qℓ − 1), which implies that p1 = ρ(qℓ − 1) + 1. Then
((qℓ−1)ρ(qℓ−1)+1)ρ(qℓ−1)(2αℓ+1)−1

(qℓ−1)ρ(qℓ−1) includes at least seven new factors. If 4k + 2 = (qℓ + 1)p1 ,

then (4k+1)p1p2−1
4k ≡ (2p1−1)p1p2−1

2p1−2 (mod qℓ − 1). If 2p1 − 1 ≡ 1 (mod qℓ − 1), 1 + (2p1 −

1) + ... + (2p1 − 1)p1p2−1 ≡ p1p2 ≡ 2αℓ + 1 (mod qℓ − 1) only if p1 ≡ 1 (mod qℓ − 1).

When 2p1 −1 ≡ 2n+1 (mod qℓ−1), (2p1−1)p1p2−1
2p1−2 ≡ (2n+1)p1p2−1

2n which is not divisible by

2αi+1 if p2 6 | 2n. When 2αi+1|n, (2n)p1p2−1
2n ≡ p1p2 (mod 2n) which would be congruent

to 2αi + 1 only if p1 ≡ 1 (mod 2n) so that p1 ≥ 4αi + 3. The exponent is a product

of a minimum of three primes and more than six different divisors are introduced in the

product of repunits. A similar conclusion is obtained if 4m+ 2 = p1...ps, s ≥ 3.

If every prime divisor of (4k+1)4m+2−1
4k is distinct from the factors of

∏ℓ
i=1

q
2αi+1

i
−1

qi−1 ,

the following equations are obtained

q2αi+1
i − 1

qi − 1
= (4k + 1)hiq

2αji

ji

(4k + 1)4m+2 − 1

4k
= 2

ℓ
∑

i=1

hi = 4m+ 1

(5.24)

which only has the solution k = 0.

The number of equal prime divisors in
q
2αi0

+1

i0
−1

qi0−1 and (4k+1)4m+2−1
4k can be chosen to be

greater than 1, but equality of σ(N) and 2N implies that each distinct prime divisor qji of

the repunit
q
2αi+1

i
−1

qi−1 appears in the factorization with the exponent 2αji . Consequently,
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it would be inconsistent with the perfect number condition for divisors of
q
2αi0

+1

i0
−1

qi0−1 other

than qji0 to exist.

If the prime divisor qji0 of
q
2αi0

+1

i0
−1

qi0−1 is a factor of (4k+1)4m+2−1
4k , then one formulation

of the perfect number condition for the integer N = (4k + 1)4m+1q2αi

i is

q2αi+1
i − 1

qi − 1
= (4k + 1)hiq

2αji

ji
i 6= i0

q
2αi0+1
i0

− 1

qi0 − 1
= q

h′
ji0

ji0

(4k + 1)4m+2 − 1

4k
= 2q

2αji0
−h′

ji0
i0

.

(5.25)

The last relation in equation (5.25) has no solutions with k ≥ 1 since (4k+1)4m+2−1
4k has a

minimum o. f four different prime divisors, which include 2, 2k + 1, the primitive divisors

of (4k+1)2m+1−1
4k and the other prime factors of (4k+1)2m+1+1

2 . Furthermore, if the number

of prime divisors of (4k+1)4m+2−1
4k is less than seven,

q
2αi0

+1

i0
−1

qi0−1 also should have a different

prime factor which is contrary to the equation (5.25).

By Theorem 2.2, there exists a primitive divisor which is not a common divisor of two

repunits with different bases qi and qj . The new prime divisor may be denoted qjℓ if it

does not equal 4k + 1, and interchanging qℓ with qī and 4k + 1, it can be deduced that

U4m+2(4k+2, 4k+1)
∏ℓ

i=1
i 6=ī

U2αi+1(qi+1, qi) will not be divisible by jī ∈ 1, ..., ℓ, jī 6= ī, with

the exception of one value i0. The prime qj0 will not be a factor of
∏ℓ

i=1 U2αi+1(qi+1, qi).

Then
q
2αī+1

ī
− 1

qī − 1
= q

hjbari

jī
ī 6= i0

q
2αi0

+1
i0

− 1

qi0 − 1
= (4k + 1)4m+1

(4k + 1)4m+2 − 1

4k
= 2q

hji0
ji0

.

(5.26)

The last equation is equivalent to

(4k + 1)2m+1 − 1

4k
= y21

(4k + 1)2m+1 + 1

2
= y22

y1y2 = q

hji0
2

ji0

(5.27)
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which has no integer solutions for k ≥ 1 and m ≥ 1. There are no prime sets {4k +

1; q1, ..., qℓ} which satisfy these conditions with hjī and hji0
even.

Since k ≥ 1 in the decomposition N = (4k + 1)4m+1
∏ℓ

i=1 q2αi

i , the quotient
(4k+1)2m+1−1

4k , k ≥ 1 has a distinct prime divisor from the factors of
∏ℓ

i=1
q
2αi+1

i
−1

qi−1 because

of its existence in the factorization of (4k+1)p1(2m+1)−1
4k by Theorem 2.2. There would be

then at least ℓ+ 3 prime factors of σ(N) implying that N is not an odd perfect number.

6. An Infinite Sequence of Increasing Prime Factors

Theorem 6.1. There are no odd perfect numbers if there exists a pair of repunits in the

sum-of-divisor function satisfying one of the equations

q2αi+1
i − 1

qi − 1
= (2αi + 1) ·

q
2αj+1
j − 1

qj − 1

(2αj + 1) ·
q2αi+1
i − 1

qi − 1
=

q
2αj+1
j − 1

qi − 1

(2αj + 1) ·
q2αi+1
i − 1

qi − 1
= (2αi + 1) ·

q
2αj+1
j − 1

qj − 1
.

Proof. The conditions on the quotients

{

q
2αi+1

i
−1

qi−1

}

represent the complementary case to

the constraints in Theorem 5.1. The exponents 2αi + 1, i = 1, ..., ℓ can be selected to be

prime, since repunits with composite exponents have a minimum of three prime divisors

[12].

The third constraint cannot be satisfied if αi = αj , with qi 6= qj , and a new prime

divisor occurs in one of the repunits derived from the other two constraints equations or

αi 6= αj in the third condition.

Imprimitive prime divisors can be introduced into equations generically relating the

two unequal repunits and minimizing the number of prime factors in the product
q
2αi+1

i
−1

qi−1

q
2αj+1

j
−1

qj−1 . Given an odd integer N = (4k + 1)4m+1
∏ℓ

i=1 q2αi

i , by Theorem 2.2,
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the least number of unmatched prime divisors in σ(N) will be attained if there are pairs

(qi, qj) satisfying one of the three relations

q2αi+1
i − 1

qi − 1
= (2αi + 1) ·

q
2αj+1
j − 1

qj − 1

(2αj + 1) ·
q2αi+1
i − 1

qi − 1
=

q
2αj+1
j − 1

qj − 1

(2αj + 1) ·
q2αi+1
i − 1

qi − 1
= (2αi + 1) ·

q
2αj+1
j − 1

qj − 1
.

(6.1)

As
q
2αj+1

j
−1

qj−1 would not introduce any additional prime divisors if the first relation in

equation (6.1) is satisfied, the product of two pairs of repunits of this kind, with prime

bases (qi, qj), (qk, qk′), yields a minimum of three distinct prime factors, if two of the

repunits are prime powers. In the second relation, (qi, 2αi + 1) and (qj , 2αj + 1) are

interchanged, whereas in the third relation, an additional prime divisor is introduced when

2αi + 1 6= 2αj + 1. Equality of σ(N) and 2N is possible only when the prime divisors of

the product of repunits also arise in the decomposition of N. If the two repunits
q
2αj+1

j
−1

qj−1

and
q
2α

k′+1

k′ −1

qk′−1 are prime, they will be bases for new repunits

[

q
2αj+1

j
−1

qj−1

]2αn1+1

− 1

q
2αj+1

j
−1

qj−1 − 1

=
qj − 1

qj(q
2αj

j − 1)
·





[

q
2αj+1
j − 1

qj − 1

]2αn1
+1

− 1





[

q
2α

k′+1

k′ −1

qk′−1

]2αn2
+1

− 1

q
2α

k′+1

k′ −1

qk′−1 − 1

=
qk′ − 1

qk′(q
2αk′

k′ − 1)
·





[

q
2αk′+1
k′ − 1

qk′ − 1

]2αn2
+1

− 1



 .

(6.2)

These new quotients are either additional prime powers or satisfy relations of the form

[

q
2αj+1

j
−1

qj−1

]2αn1+1

− 1

q
2αj+1

j
−1

qj−1 − 1

= (2αn1
+ 1)

q
2αt1

+1
t1

− 1

qt1 − 1
(6.3)

to minimize the introduction of new primes. Furthermore, 2αn1 + 1 is the factor of lesser

magnitude,

q2αt+1
t − 1

qt − 1
>

[

qj − 1

qj(q
2αj

j − 1)
·





[

q
2αj+1
j − 1

qj − 1

]2αn1
+1

− 1





]
1
2

. (6.4)
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The number of prime divisors of N is minimized if the repunit
q
2αt+1
t −1

qt−1 is a prime power.

However, if it is prime, it is then the basis of another repunit

[

q
2αt+1
t −1

qt−1

]2αn3
+1

− 1
[

q
2αt+1
t −1

qt−1

]

− 1
>

[

q
2αj+1

j
−1

qj−1

]2αn1
+1

− 1

q
2αj+1

j
−1

qj−1 − 1

(6.5)

since αn3
≥ 1. An infinite sequence of repunits of increasing magnitude is generated,

implying the non-existence of odd integers N with prime factors satisfying one of the

relations in equation (6.1).

If the third relation in equation (6.1) holds,

(2αt + 1)

[

q
2αj+1

j
−1

qj−1

]2αn1
+1

− 1

q
2αj+1

j
−1

qj−1 − 1

= (2αn1
+ 1)

q
2αt1+1
t1

− 1

qt1 − 1
. (6.6)

The inequality (6.4) is still satisfied, and again, repunits of increasing magnitude are

introduced in the sum of divisors.

Suppose that one of the repunits in (6.1) is a prime power, with an exponent greater

than or equal to 2, rather than a prime. When the first of the relations is satisfied,

q2αi+1
i − 1

qi − 1
= (2αi + 1)q′hj

q
2αj+1
j − 1

qj − 1
= q′hj hj ≥ 2.

(6.7)

Then

q′ =

(

1 + ...+ q2αi

i

2αi + 1

)

1
hj

=
(

1 + ...+ q
2αj

j )
1
hj

(6.8)

which yield the approximations

q′ ≈
q

2αi
hj

i

(2αi + 1)
1
hj

[

1 +
(q2αi

i − 1)

q2αi

i · hj(qi − 1)
+

∞
∑

n=2

(−1)n+1

n · hj

1

(qi − 1)n

]

q′ ≈ q

2αj
hj

j

[

1 +
(q

2αj

j − 1)

q
2αj

j hj(qj − 1)
+

∞
∑

n=2

(−1)n+1

n · hj

1

(qj − 1)n

]

.

(6.9)
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Rationality of the two series in Eq.(6.9) cannot be attained because hj does not cancel both

primes qi and qj . Therefore, Eq. (6.7) will not have odd prime solutions for qi, qj , q
′, 2αi+

1 and 2αj + 1. A similar conclusion is found for the other two relations in Eq. (6.1).

If the repunits
q
2αj+1

j
−1

qj−1 and
q
2α

ℓ′
+1

ℓ′
−1

qℓ′−1 are not prime powers, then the product of the

four repunits with bases qi, qj , qk, qk′ would have a minimum of five different prime divisors.

The product of (4k+1)4m+2−1
4k , with at least two distinct prime divisors, and

∏ℓ
i=1

q
2αi+1

i
−1

qi−1

possesses a minimum of ℓ + 3 different prime factors and the perfect number condition

cannot be satisfied.

7. Further Ramifications of the Odd Perfect Number Conjecture

Dividing the constraint σ(N) = 2N by N yields the relation

1 +
1

4k + 1
+

1

q1
+ ...+

1

qℓ
+

1

(4k + 1)2
+

1

q21
+ ...+

1

q2ℓ
+ ...+

1

N
= 2 (7.1)

or equivalently

1

4k + 1
+

1

q1
+ ...+

1

(4k + 1)2
+

1

q1
+ ...+

1

qℓ
+

1

(4k + 1)2
+

1

q21
+ ...+

1

q2ℓ

+ ...+
1

(4k + 1)4m+1q2α1+1
1 q2α2+1

2 ...q2αℓ+1
ℓ

= 1−
1

N
.

(7.2)

Consider a set of distinct integers n1, ... nℓ such that

1

n1
+ ...+

1

nℓ

+
1

n1n2
+ ...+

1

nℓ−1nℓ

+ ...+
1

n1...nℓ−1
+ ...+

1

n2...nℓ

= 1−
1

n1...nℓ

. (7.3)

For distinct primes, nℓ ∼
ℓ

ln ℓ
and

(2ℓ)ln(2ℓ)+ℓ
∑

m=(2ℓ)ln(2ℓ)

1

nm

≈
(ln(2ℓln(2ℓ) + ℓ)2

2
−

(ln((2ℓ)ln(2ℓ))2

2

≈
1

2
+

ln ln(2ℓ)

2 ln(2ℓ)
+

1

8(ln(2ℓ))2
.

(7.4)

When ℓ ≥ 66,

exp

[

1

2
+

ln ln(2ℓ)

2 ln(2ℓ)
+

1

8(ln(2ℓ))2

]

− 1 < 1. (7.5)
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Consequently, Eq.(7.2) cannot be satisfied and there would exist no odd perfect number

with ℓ square-free factors and ℓ ≥ 66, such that the least prime divisor is larger than 2ℓ.

General results based on the method of the sum of fractions tend to have a more

limited range of validity than the conclusions derived from analytic techniques. Large

lower bounds for N , nevertheless, have been attained through an identification of the sets

of primes which could yield a value of σ(N)
N

closest to 2 [11].

Partitions of unity are necessary in the global definition of functions. On a smooth

manifold, there is no evident constraint on the size of the neighbourhoods representing

the support of a function. Instead, it is necessary to replace a smooth manifold with a

metric by a choice of conformal field theory, there are conformal field theories which do

not correspond to manifolds, and the classification of rational conformal field theories can

be related to modular categories. The dimensions of simple objects {Xi, i = 1, ..., n} of

integral categories C [15][16] satisfy

n
∑

i=1

1

xi

= 1 n = rank of C

xi =
dim C

(di)2
=

∑

i(di)
2

(di)2
.

(7.6)

When the dimensions of the simple objects are products of prime powers, the conditions

on the sum of fractions can be identified with the condition for the existence of an

odd perfect number, if the set of prime powers is spanned by a set of primes. When

two simple objects of an integral category have coprime dimension, each is a projective

centralizer of the other. Consequently, the fusion category corresponding to the set of prime

power dimensions would be weakly group-theoretical and given by a sequence of categories

containing extensions of preceding categories by groups of prime power order [17]. The

non-existence of odd integers satisfying the rationality condition would be equivalent to

the absence of integral categories with simple objects of odd prime power dimension.

8. Conclusion

The equivalence of the relation σ(N) = 2N with a rationality condition containing a

product of repunits is sufficient to establish the non-existence of odd perfect numbers from

the prime divisors of the quotients. In the proof of the first theorem, it is shown that

each repunit
q
2αi+1

i
−1

qi−1 , with qi and 2αi + 1 being primes, introduces a new prime factor
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provided that three inequalities are satisfied by any pair of repunits. It is necessary to

establish that there are no solutions to the exponential Diophantine equation
q
2αi+1

i
−1

qi−1 =

q
2αj+1

j
−1

qj−1 with odd prime bases and exponents is required. This result is proven in the first

lemma by establishing a correspondence with the solutions to I(q2αi

i q
2αj

j ) = I(q
2α′

i

i q
2α′

j

j ),

where I(n) = σ(n)
n

and then proving that there are no primes qi, qj ≥ 3 satisfying the

latter equation. The nonexistence of two quotients with unequal odd prime bases and

exponents represented by different powers of one prime is proven in the second lemma, and

therefore, the product of two repunits must consist of a minimum of two prime divisors.

A linear factorization of q2αi+1
i − 1 and q

2αj+1
j − 1 for different primes qi and qj requires

the introduction of a new primitive divisor in the cancellation resulting from selected

combinations of the terms. The quotients by qi − 1 and qj − 1 respectively allow for

potential equalities between the products of the two repunits and imprimitive divisors

2αi + 1 and 2αj + 1. The proof, therefore, is given for those primes and exponents which

do not satisfy any of these three conditions.

The existence of new prime factors in different repunits with odd prime bases and

exponents is used in the second theorem to demonstrate that an excess of prime divisors

will occur in σ(N) under the conditions of the first theorem. The nonexistence of a positive

integer solutions to the equation xn−1
x−1 = 2y2, x ≡ 1 (mod 4), n ≡ 2 (mod 4), n ≥ 6 is

derived. The lower bound for the exponent n is equivalent to the condition m ≥ 1 in the

prime factorization N = (4k+1)4m+1q2α1
1 ...q2αℓ

ℓ . The latter inequality is derived from a set

of inequalities for I
(

(4k + 1)4m+1
)

and I(
∏ℓ

i=1 q
2αi

i ) in the third lemma. When the three

inequalities are replaced by equalities, of which one must be valid for a pair of repunits, it is

proven in the third theorem that the special constraints either require an infinite sequence

of increasingly large repunits, prime power relations that do not have odd prime solutions

or additional prime factors in the sum-of-divisors function.
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