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1. Introduction

The perfect numbers, defined by a condition on the sum of the divisors, represented

by a sequence of integers that has been conjectured to have connections with the ideal

characteristics of physical systems. After a geometrical proof by Euclid that an integer

of the form 2p−1(2p − 1), with 2p − 1 being prime, would be perfect number [3], it was

hypothesized later that all perfect numbers were even, every even perfect number equals

2p−1(2p−1) for some prime 2p−1 and there are infinitely many perfect numbers [28]. The

next perfect numbers were discovered in the early thirteenth century [30]. After a series

of perfect numbers verified only until p = 19 [2], a systematic investiagation of the perfect

numbers began with the letter of Fermat to Mersenne [10] and the following theorems:

2n − 1 is composite if n is composite; if n is prime, 2n − 2 is a multiple of 2n; if n is

prime and p is a prime divisor of 2n − 1, then p − 1 is a multiple of n [11]. Further

primes of the kind 2p − 1 were suggested, and it was demonstrated by Euler 230(230 − 1)

[8] was a perfect number and further the uniqueness of 2p−1(2p− 1) for every even perfect

number [9]. No new perfect numbers were found until 260(261 − 1) [31], whereas it had

been shown that 267 − 1 was not a prime [20] and 2127 − 1 was a Mersenne prime [21].

Lucas also proved that every perfect number greater than 6 must end in the digits 16, 28,

36, 56, 76 and 96 [22]. The last result led to the conjecture of Catalan that the sequence
(

2p − 1, 22
p−1 − 1, ...

)

. consists of primes for p = 2 [1]. The infinite sequence of even

perfect numbers then would follow from this conjecture and the infinite Catalan sequence.

While 288(289 − 1) was verified as a perfect number in 1911 [32], the use of computers has

been found to be necessary for the larger of the 51 known Mersenne primes and the extent

of this sequence remained to be established.

Further properties of perfect numbers include the form of the prime index p being

1 + Tn, where Tn is a triangular number [6], the equality of x3 + 1 and a perfect number

only for the integer 28 [25], the integrality of the harmonic mean of the divisors [29] and

the proportionality of the number of divisors of a perfect number N to ln ln N [4].

The Lucas-Lehmer test, together with several characteristics of prime divisors of

Mersenne numbers that are valid for all Lucas sequences, can be used to determine

theoretically whether the integer 2p − 1 is prime. The congruence sp−2 ≡ 0 (mod 2p − 1),

sn = s2n−1 − 2 [19][21], is satisfied by the known Mersenne primes, although the difficulty

of the computation increases for large values of n.

The conjecture of the existence of infinitely many Mersenne primes and the problem of

establishing the infinite extent of the sequence of composite Mersenne numbers with prime

indices [7][9][14][18][26][28][40] may be solved without consideration of specific values of

the exponent. The generality of these statements allows for the proofs to be based on

conditions imposed on integers of the same order as the exponents. It is shown in §2, for
example, that all known Mersenne primes greater than 219−1 are shown to have exponents
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of the form p1+p2−1 where p1 is a Mersenne prime index and p2 is a composite Mersenne

number index.

It was hypothesized by Euler and proven by Lagrange that 2p − 1 is a composite

Mersenne number if the prime p has the form 4k+3 and 2p+1 is a prime. An infinite number

of Sophie Germain primes congruent to 3 modulo 4 would imply the existence of an infinite

number of composte Mersenne numbers with prime exponents. The Mersenne numbers also

have a geometrical representation which may be used to derived congruence relations for

compositeness based on the partition of the array representing 2n−1. The solutions to the

congruence relations yield arithmetical sequences for the exponent. However, the greatest

commom denominator of the initial term and the difference can be equated to ord2m−k(k)

for some m, k, such that none of the integers in the sequence are prime. Nevertheless,

this allows a characterization of the set of exponents greater than 6 of composite Mersenne

numbers. The congrence relations for 2p1+p2−1 − 1 provide a further indication of the

existence of infinitely many composite Mersenne numbers with prime exponents.

Given a set of Mersenne prime indices of the form 4k+3, conditions on the next prime

of this kind are given in §4. A proof of the existence of infinitely many Mersenne primes is

given in §5. The existence of a finite number of prime solutions to af(n)−bf(n) ≡ 0 (mod n)

when f(x) does not have a zero at x = 1, is used to develop an algorithm for locating

the next Mersenne prime based on the intersections of polynomials at prime arguments.

The approximation of 2y − 1 by rational-coefficient polynomials is used to determine the

asymptotic density of Mersenne primes, proving the infinite extent of the sequence of such

primes.

2. The Exponents of Mersenne Numbers and Arithmetical Progressions

There are two infinite sequences, of Mersenne numbers of odd index, and primes, in

the arithmetical progression 6n+ 1, n ∈ Z+, and the coincidences of these two sequences

determine whether the set of even perfect continues indefinitely.

Since 6n+1 can be factorized only if n has the form 6xy± (x+ y) with x, y ∈ Z+ [22],

the Mersenne number 2p− 1 is prime only if it equals 6n+1, n = 6xy± (x+ y)+ z, z 6= 0,

with 6xy ± (x + y) + z 6= 6x′y′ ± (x′ + y′) for any integers x′, y′. Given the condition

2p − 1 = (6x± 1)(6y ± 1), consider two primes p1 and p2 such that

2p1 − (6z1 + 1) = (6x1 ± 1)(6y1 ± 1) = 6h1 + 1 h1 = 6x1y1 ± (x1 + y1)

2p2 − (6z2 + 1) = (6x2 ± 1)(6y2 ± 1) = 6h2 + 1 h2 = 6x2y2 ± (x2 + y2)
(2.1)

Multiplying these two integers gives

2p1+p2−(6z1+1)(6z2+1)−(6z1+1)(6h2+1)−(6z2+1)(6h1+1) = (6h1+1)(6h2+1) (2.2)
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or equivalently

2p1+p2−1 = [3(h1 + z1) + 1][6(h2 + z2) + 2] (2.3)

If z 6 = 0, and 2p1 − 1 is prime, while z2 is set equal to zero, 2p2 − 1 is allowed to be

composite,

2p1+p2−1−[6((1−γ1)z1+(1−γ2)h1+(1−γ3)h2)+1] = 6(3(h1+z1)h2+γ1h1+γ2z1+γ3h2)+1

(2.4)

for some fractions γ1, γ2, γ3 with 3(h1 + z1)h2 + γ1h1 + γ2z1 + γ3h2 = 6x′y′ ± (x′+y
′),

x′, y′ ∈ Z. The Mersenne number 2p1+p2−1 − 1 is prime if there is no solution to Eq.(2.4)

with γ1 = γ2 = γ3 = 1. If p1 is a given Mersenne prime index, it can be conjectured that

p1 − 1 may be expressed as the difference between two primes p and p2, since an even

integer 2N equals p− p2 if 2(N + p2) is given by the sum of the two primes p, p2.

The estimated number of prime pairs (p, p+ 2N) with p ≤ x is conjectured to be

π2N (x) ∼ 2C2
x

(log x)2

∏

p>2
p|N

p− 1

p− 2
(2.5)

where C2 is the twin-prime constant
∏

p>2

(

1− 1
(p−1)2

)

[27][39], and

π2(x) ≤ 6.836C2
x

(log x)2

[

1 +O
(

log log x

log x

)]

(2.6)

Theorem. Every finite even positive integer 2N can be expressed as the difference between

two primes if the Goldbach conjecture is valid.

Proof. For any even integer 2N , N > 2, there exist two primes q1, q2 2N = q1 + q2
when the Goldbach conjecture [9] is correct. This equality implies a relation of the form

2N̄ = q̄1− q̄2, q̄1, q̄2 prime, for some N̄ < N , since 2(N−q2) = q1−q2. It may be assumed

that this property holds for all integers 1 ≤ Ñ ≤ N̄ and that the lesser prime in each of

the differences is bounded above by 2Ñ−2. The existence of a prime pair with a difference

equal to an arbitrary even integer shall be demonstrated by induction on N̄ .

2N̄ + 2 = q̄1 − q̄2 + 2 = 2N + 2− 2q̄2

= q3 + q4 − 2q̄2 = (q3 − q̄2 + k)− (q̄2 − q4 + k)
(2.7)

Since q3 + q4 = q̄1 + q̄2 + 2, the indices can be chosen such that q3 > q̄1 and q4 < q̄2 + 2

or q̄1 > q3 > q̄2, q4 > q̄2 + 2 unless q3 = q̄1, q4 = q̄2 + 2. If the equalities are valid, then

2N̄−2 = q3−q4. Continuing this process with 2N+2 replaced by 2N+2ι, ι ≥ 2, it follows

that the equalities would imply that all even integers less than 2N̄ can be expressed as

differences between pairs of primes even when arbitrarily large values of N̄ are chosen by
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subtracting 2q6 from an arbitrarily large integer N ′ = q5+q6. Consequently, the equalities

would imply that every even integer is equal to the difference between two primes.

Suppose then that the first set of inequalities holds. Then q3−q̄2−1 > 0 and q̄2−q4+1 >

0. Since

2N̄ + 2 = (q3 − q̄2 + k + k′)− (q̄2 − q4 + k + k′) (2.8)

and q̄2 − q4 + k + k′ = q̄2 + k1 + k′ − (q4 − k2), k1 + k2 = k, k1, k2, k
′ can be chosen such

that q4 − k2 = q̄2 + k1 + k′ − p̄2 with q̄2 + k1 + k′ and p̄2 prime, since q4 + k2 < 2N̄ and the

difference between two primes fixes k1+k
′. Then, k′ can be adjusted to fix q3− q̄2+k+k′

to be prime. It follows that 2N̄ + 2 = q3 − q̄2 + k + k′ − p̄2 is a difference between two

primes, with p̄2 < 2N̄ .

If q3 < q̄1, q4 > q̄2 + 2, consider the equality

2N̄ = q̄1 − q̄2 + 2 = (q̄1 + q4 + k + k′ + 2)− (q4 − q̄2 + k + k′) (2.9)

As q4 − q̄2 + k+ k′ = (q4 + k1 + k′)− (q̄2 − k2) and q̄2 − k2 is an even integer less than 2N̄ ,

q̄2 − k2 = q4 + k1 + k′ − p̄3 where p̄3 is prime and k1 + k′ is adjusted to render q4 + k1 = k′

to be prime. Then k′ also can be chosen such that q̄1 + q4 + k + k′ + 2 is prime.

By induction, it follows that any even integer is the difference between two primes.

It follows that the conjecture for primes of the form 4k−1, such that there would exist

a prime 4k′ + 1 with the the difference 2 · (4k′′ + 1) being any given even number [12], is

valid.

Since it can be established for any even number 2n that there are pairs of primes

differing by 2n, the pair (p, p2) can be presumed to exist. Indeed, if p − p1 is set equal

to p2 − p3 for primes p2, p3 ≥ 3, a relation of form Eq.(2.4) cannot be satisfied because

division by additional powers of 2 yields a fractional term, and, if p1, p are odd primes,

p3 6= 2. Therefore, p must have the form p1 + p2 − 1. This property can be verified for the

following pairs of prime indices (p1, p2):

(3, 11); (7, 11); (3, 29); (19, 43); (31, 59); (61, 47); (61, 67); (89, 433); (61, 547);

(607, 673); (607, 1597); (2203, 79); (2281, 937); (2281, 1973); (2203, 2221); (4253, 5447);

(4253, 6961); (2281, 17657); (89, 21613); (2281, 20929); (3217, 41281); (9941, 76303)

(607, 109897); (44497, 87553); (23209, 192883); (132049; 624791); (19937, 839497)

(132049, 1125739); (86243, 1312027); (86243, 2889979); (21701, 3049677);

(3071377, 3901217); (216091, 13250827); (110503; 20885509); (1257787, 22778797);

(110503, 25874449); (3217, 30399241); (3021377, 29561281)
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The prime pairs (p1, p2) with 2p1 − 1, 2p2 − 1 and 2p1+p2−1 − 1 prime, {(2, 2); (3, 3);
(3, 5); (7, 7); (5, 13); (3, 17); (7, 13); (13, 19); (31, 31)} complement the larger set when p1 +

p2 − 1 = 3, 5, 7, 13, 17, 19, 31, 61.

One subset of the composite Mersenne numbers of the form 2p1+p2−1 − 1 can be

constructed from the integer solutions to the following sets of equations

h1 = 6x1y1 + (x1 + y1) h2 = 6x2y2 + (x2 + y2)

w1 + w2 = 3(x1 + y1 + z1)(x2 + y2) + (x1 + y1 + z1) + (x2 + y2)

w1w2 = 18x1y1x2y2 + 3x1y1(x2 + y2) + 3x2y2(x1 + y1 + z1) + (x1y1 + x2y2)

(2.10)

h1 = 6x1y1 − (x1 + y1) h2 = 6x2y2 + (x2 + y2)

w1 + w2 = −3(x1 + y1 − z1)(x2 + y2) + 6(x1y1 + x2y2)− (x1 + y1 − z1) + (x2 = y2)

w1w2 = 18x1y1x2y2 + 3x1y − 1(x2 + y − 2)− 3x2y2(x1 + y1 − z1) + (x1yy1 + x2y2)
(2.11)

h1 = 6x1y1 + (x1 + y1) h2 = 6x2y2 − (x2 + y2)

w1 + w2 = −3(x1 + y1 + z1)(x2 + y2) + 6(x1y1 + x2y2) + (x1 + y1 + z1)− (x2 + y2)

w1w2 = 18x1y1x2y2 − 3x1y1(x2 + y2) + 3x2y2(x1 + y1 + z1) + (x1y1 + x2y2)
(2.12)

h1 = 6x1y1 − (x1 + y1) h2 = 6x2y2 − 9x2 + y2)

w1 + w2 = 3(x1 + y1 − z1)(x2 + y2)− (x1 + y1 + z1)− (x2 + y2)

w1w2 = 18x1y1x2y2 − 3x1y1(x2 + y2)− 3x2y2(x1 + y1 − z1) + (x1y1 + x2y2)

(2.13)

Consider the equations determined by the equations u + v = h1 + z1 + h2 and uv =
1
2 (h− 1 + z1)h2. These two conditions imply

2u2 − 2(h1 + z1 + h2)u+ (h1 + z1)h2 = 0 (2.14)

and

u =
1

2

[

h1 + z1 + h2 ±
√

(h1 + z1 + h2)2 − 2(h− 1 + z1)h2

]

(2.15)

Then u is integer only if (h− 1 + z1)
2 + h22 is the square of an integer. Since Pythagorean

triples are multiples of the triples (3 + 2n, 4+ 6n+2n2, 5+ 6n+2n2), there is no solution

for h1 + z1 and h2 as both integers must be odd.

More generally,
u+ v = κ1(h1 + z1)h2 + κ2(h1 + z1 + h2)

uv = κ3(h1 + z1)h2 + κ4(h1 + z1 + h2)
(2.16)

with
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κ1 + 6κ3 = 3

κ2 + 6κ4 = 1

κ1, κ2, κ3, κ4 ∈ Q

(2.17)

Integrality of u and v requires that κ1(h1+z1)h2+κ2(h1+z1+h2) and
3−κ1

6 (h1+z1)h2+
1−κ1

6 (h1 + z1 + h2) are integer, while [κ1(h1 + z1)h2 + κ2(h1 + z1 + h2)]
2−

4
[

3−κ1

6 h1 + z1)h2 +
1−κ1

6 (h1 + z1 + h2)
]

is the square of an integer.

Additional constraints can be placed on h − 1 + z1, h2 as the equality of 6[3(h1 +

z1)h2 + (h1 + z1) + h2] + 1 and 2p−1+p2−1 − 1 would imply congruence conditions. First,

after division by 2, it follows that either h − 1 + z − 1 ≡ 0 (mod 4), h2 ≡ 5 (mod 8);

h1 + z1 ≡ 5 (mod 8), h2 ≡ 0 (mod 4); h1 + z1 ≡ 1 (mod 4), h2 ≡ 3 (mod 4); h1 + z1 ≡
3 (mod 4), h2 ≡ 1 (mod 4). Since 3(h1 + z1)h2 + (h1 + z1) + h2 ≡ 2n−1

3 (mod 2n), n even

and 3(h− 1 + z1)h2 + (h1 + z1) + h2 ≡ 2n+1−1
3 (mod 2n), n odd.

Based on the pairwise relations between Mersenne prime indices, a sum extended over

a set of such integers can be derived. Since p′n = pkc+p
′
ℓ−1 for some composite Mersenne

number index pkc and ℓ < n and pkc − 1 may be expressed either as the sum of two even

integers that are differences between a Mersenne prime index and a composite Mersenne

index, or the sum of two primes by the Goldbach conjecture, the process can be iterated

until all of the addends are either Mersenne prime indices, with either sign, or twice the

previous index or ±1.

The relations in Appendix A have a form similar to the equations for the sequence or

primes [44][45]

p2n = 1± p1 ± p2 ± ...± p2n−2 + p2n−1

p2n+1 = 1± p1 ± p2 ± ...± p2n−1 + 2p2n.
(2.18)

The equations are also consistent with the estimate of the number of Mersenne primes

with index p between x and 2x [16][47]. It is possible also to extend the sequence of

Mersenne prime indices by forming combinations having the form in Eq.(2.18) and using

any of the various test to verify that 2p − 1 is prime.

3. Congruence Relations for Mersenne Prime Indices of the Form 4k + 3

Let p ≡ 3 (mod 4) be a Mersenne prime index [45] such that

(

1 +
√
5

2

)

p+1
2

+

(

1−
√
5

2

)

p+1
2

≡ 0 (mod p) (3.1)
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or equivalently
(

1 +
√
5

2

)

p+1
2

+

(

1−
√
5

2

)

p+1
2

= k1p (3.2)

for some K1. The congruence

(

1 +
√
5

2

)
p′+1

2

+

(

1−
√
5

2

)
p′+1

2

≡ 0 (mod p′) (3.3)

for some prime p′ > p with p′ ≡ 3 (mod 4) is equivalent to

(

1 +
√
5

2

)

p′+1
2

+

(

1−
√
5

2

)

p′+1
2

=
N̄
∑

n=1

K2np
′n (3.4)

Since
(

1+
√
5

2

)

p+1
2

+
(

1−
√
5

2

)

p+1
2

is integer for odd p,

N̄
∑

n=1

K2np
′n −K1p =

(

1 +
√
5

2

)

p′+1
2

+

(

1−
√
5

2

)

p′+1
2

−
(

1 +
√
5

2

)

p+1
2

−
(

1−
√
5

2

)
p+1
2

= f(p′)

(3.5)

Suppose for arbitrarily large x that the function

f(x) =

(

1 +
√
5

2

)
x+1
2

+

(

1−
√
5

2

)

p+1
2

−
(

1 +
√
5

2

)

p+1
2

−
(

1−
√
5

2

)

p+1
2

> 0 (3.6)

can be approximated by a polynomial of degree N

aNx
N + ...+ a1x+ a0 (3.7)

such that the polynomial takes the same values as f(x) at N + 1 integer points including

prime values less than or equal to p′. The existence of a prime p′ satisfying the congruence

conditions determined by solutions to the equation

K2N̄p
′N̄ + ...+K21p

′ = f(p′) + k1p (3.8)

Since f(x) equals aNx
N + ...+ a1x+ a0 at x = p′, the congruence

a0 +K1p ≡ 0 (mod p′) (3.9)
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is required. The constant term may be adjusted through the choice of the polynomial

aNx
N + ... + a1x + a0 or equivalently the number of points of equality, N + 1. As the

Lagrangian interpolation polynomial is

L(x) =

N
∑

n=0

In(x)f(xn)

In(x) =
P (x)

(x− xn)P ′(xn)

P (x) =

N
∏

n=0

(x− xn)

(3.10)

For the function

(

1 +
√
5

2

)
x+1
2

+

(

1−
√
5

2

)

p+1
2

−
(

1 +
√
5

2

)

p+1
2

−
(

1−
√
5

2

)

p+1
2

(3.11)

the Lagrangian interpolation would be

L(x) =
∑

n

∏

n 6=m

x− xm

xn − xm

[

(

1 +
√
5

2

)
x+1
2

+

(

1−
√
5

2

)
x+1
2

−
(

1 +
√
5

2

)
p+1
2

−
(

1−
√
5

2

)
p+1
2 ]

(3.12)

The congruence condition is now

∑

n

∏

n 6=m

x− xm

xn − xm

[

(

1 +
√
5

2

)
x+1
2

+

(

1−
√
5

2

)
x+1
2

−
(

1 +
√
5

2

)

p+1
2

−
(

1−
√
5

2

)

p+1
2 ]

+K1p ≡ 0 (mod p′)

(3.13)

Given the congruence relation for p′ to be a Mersenne prime index, Eq.(3.13) implies

[

1−
∑

n

∏

n 6=m

(p′ − xm)

(xn − xm)

]

K1p ≡ 0 (mod p′) (3.14)

when
∑

n
(p′−xm)
(xn−xm)p is an integer. However, since {xn} should contain p′ for consistency

with the Mersenne prime index congruence condition for p′, this relation leads to no further
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constraints on p′. It shall be shown nevertheless that a set of interpolating polynomials

may be used to determine the existence of successively larger Mersenne primes.

4. On a Polynomial Algorithm for Generating Mersenne Primes

The solutions to the equation af(n) ≡ bf(n) (mod n) for an integer-valued function f(n)

also must satisfy a(n−1)g(n)+f(1) − b(n−1)g(n)+f(1) ≡ af(1) − bf(1) ≡ 0 (mod n), when n is

prime, gcd(a, n) = gcd(b, n) = 1 and g(n) is an integer defined by f(n) = (n−1)g(n)+f(1).

If f(n) is a polynomial with integer coefficients, f(n) =
∑

k≥0 akn
k, with ak = 0 for k

greater than a finite lower bound,

f(n) = f(1) + (n− 1)

(

f ′(1) +
1

2!
f ′′(1)(n− 1) +

1

3!
f ′′′(1)(n− 1)2 + ...

)

(4.1)

and g(n) is integer since

1

ℓ!
f (ℓ)(1) =

∑

k≥0

1

ℓ!
ak(k + ℓ)(k + ℓ− 1)...(k + 1) (4.2)

Given that f(1) and f(n) are integer, an integer g(n) can be found such that f(n) ≡
f(1) + (n− 1)g(n) (mod n). Then

af(n) − bf(n) ≡ af(1)+(n−1)g(n)+Kn − bf(1)+(n−1)g(n)+Kn ≡ af(1)+K − bf(1)+K (mod n)

(4.3)

With an appropriate choice of g(n), K can be bounded. It follows that the solutions to

the congruence relation af(n) − bf(n) ≡ 0 (mod n) is a bounded set, given by the solutions

to af(1)+K − bf(1)+K ≡ 0 (mod n). A rational-coefficient polynomial f(n) which does not

take integer values at all n, but which is integer at an arbitrarily large number of prime

arguments, is sufficient for the proof. For a given polynomial function f(n) and a non-zero

value of f(1), there are a finite number of prime divisors of af(1)+K − bf(1)+K and primes

such that af(1)+K − bf(1)+K ≡ 0 (mod p). Unless the function f(r) has r = 1 as a zero,

af(n) ≡ bf(n) (mod n) has a finite number of prime solutions when f(r) is a polynomial

with integer coefficients [28][29]. There, there must be an infinite number of primes such

that

af(p) − bf(p) 6≡ (mod p) (4.4)

for any function f(r) which does not have a zero at r = 1. Indeed, af(p)−bf(p) 6≡ 0 (mod p)

if it is prime. Choosing functions fℓ, ℓ = 1, 2, 3, ..., such that fi(pi) = fj(pj) it follows that

afℓ(pℓ) − bfℓ(pℓ) 6≡ 0 (mod pℓ) (4.5)

for pℓ > Nℓ, p
′ 6= afℓ(pℓ) − bfℓ(pℓ). A set of functions {fℓ} with this property exists

since the space of fractional-coefficient polynomials is limn→∞Qn. A bound on fℓ(1)+Kℓ

9



can be obtained since the constraint on the polynomial fixes a single coefficient, and it

implies the existence of an upper limit on the prime divisors of afℓ(1)+Kℓ − bfℓ(1)+Kℓ such

that Nℓ < ∞ for all ℓ. The integers Kℓ are less than pℓ, and moreover, the function fℓ
may be chosen through the method of Lagrangian interpolation to have Kℓ < K, where

K is a fixed upper bound as increasingly large primes pℓ are chosen. As supℓNℓ < ∞,

af(p) − bf(p) 6≡ 0 (mod p′) for all primes p′ > supℓNℓ, f(p) ≡ fℓ(pℓ). Therefore, the primes

satisfying af(p)−bf(p) ≡ 0 (mod p) and the prime divisors of af(p)−bf(p) will have an upper

bouund of supℓNℓ, with the exception of af(p)−bf(p) if it is prime. The function fℓ(x) also

should be selected such that it equals a prime at an arbitrary number of prime values of

the argument. It can be obtained from a mapping of an arbitrary number of prime values

to a subset of the arguments at which an irreducible integer-valued polynomial is prime,

which can be achieved through Lagrangian interpolation (3.10). For example, polynomials

such as ax+ b, gcd(a, b) = 1, take prime values at an infinite number of integer arguments,

whereas there exists a value of t such that the number of prime values of xk + t, k ≥ 2,

is greater than any given finite lower bound [16][46]. An upper bound for the number of

prime values of an irreducible polynomial for arguments less than x has been found [19],

and the derivation can be extended to give a lower bound that tends to infinity as x→ ∞.

Regarding the set of Mersenne primes as a Diophantine set, there exists a representation

of these positive integers by a degree-914 polynomial in seven variables and a degree-26

polynomial in thirteen variables [21][41]. Suppose f(xν) = p′ν , ν = 1, 2, 3, ..., where the

set {pν} is arbitrarily large and perhaps infinite and f(x) =
∑

k≥0 akx
k. If a subset of

the primes {p′ν} does not coincide with the sequence of Mersenne prime indices, it can

be mapped to this set of indices through a Lagrange interpolation function. If the set

{xν} is infinite, there is a function h∞ such that h∞(pν) = xν for an infinite set of primes

{pν}. This function may be approximated by a polynomial of arbitrarily large but finite

degree h(x) =
∑

k≥0 bkx
k with rational coefficients which is bounded at finite values of the

argument, since otherwise it would be discontinuous, and maps pν to xν for a given number

of ν. The polynomial f̃ = f ◦h, such that f̃(pν) = f(h(pν)) = f(xν) = p′ν , als has rational

coefficients ck =
∑k
j=0 ajbk−j and can be selected to belong to the set of functions {fℓ}

which have prime values at an arbitrarily large number of prime arguments. When the set

{xν} is arbitrarily large but finite, the polynomial h and the function h∞ can be chosen

to coincide. The integer fℓ(pℓ) is a Mersenne prime index if the functions can be chosen

such taht fi(pi) = fℓ(pℓ) and {p1, p2, ...} represents the entire set of primes. It follows

that f1 = f ◦ h1 : {2, 3, 5, ...} → {p′1, p′2, p′3, ...}, f2 = f ◦ h2 : {3, 5, 7, ...} → {p′1, p′2, p′3, ...},
f3 = f ◦ h3 : {5, 7, 11, ...} → {p′1, p′2, p′3, ...},... . The range of values of the exponent

for at − bt 6≡ 0 (mod p), p > supℓNℓ, is given by ∩ ℓ,p
p>supℓNℓ

fℓ(p) = ∩ℓfℓ(p) since the

functions must satisfy fi(pi) = fj(pj). It us not allowed to use another set of functions

to determine the congruence relations for an exponent outside of this range because the

theorem is applicable to af(n) − bf(n) for each function f and arbitrary integer values of

f . Specifically, the use of an alternative set of functions {f ′Υ} would shift the value of

supℓNℓ to supΥN
′
Υ, and it would not be necessarily possible to bound the prime divisors
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of aF (p) − bF (p), {F} = {fℓ, f ′Υ, ...}.

Thus, for this set of primes pℓ, but not for every prime, afℓ(pℓ)− bfℓ(pℓ) does not have a
proper divisor larger than a fixed bound supℓNℓ. For Mersenne numbers with prime index,

Mq = 2q − 1, the existence of divisors pj ≤ supℓNℓ is feasible only if 2kq + 1 ≤ supℓNℓ.

Thus, if q > supℓNℓ−1
2 , the functional set {fℓ} exists and fℓ(pℓ) = q ∀pℓ, of an − bn for

all n
∫

Z, n ≥ 2, is consistent with the existence of a prime divisor a − b ≤ Nℓ for all ℓ.

However, if a = 2, b = 1, the divisor is a− b = 1. Since 2q − 1 6≡ 0 (mod n) for all n > 1,

n 6= 2q − 1, the only integer divisors of 2q − 1 are 1 and 2q − 1, and 2q − 1 is prime.

The classification of polynomial and exponential functions may be used to prove the

conjectured density of Mersenne primes. Let

sn : I1 → {0, 1}
sn(x) = χP ([f(n+ x)])

S
ψ
N : I1 → R+

SN (x) =

N
∑

n=1

sn(x)

ψ(n)

D
ψ2

ψ1
(P, f ;N) =

∑

1≤i≤N
χP ([f(x+n)]

ψ1(n)
∑

1≤i≤N
χP (n)
ψ2(n)

(4.6)

where ψ, ψ1, ψ2 are weighting functions and χP is the characteristic function for the set

of prime numbers. It will be seen that the correct choice for ψ is usually

ψ(y) =

{

max{log 2, log y} f ∈ F∗
pol

y f ∈ F∗
exp

(4.7)

where

F∗
pol = {ayk +

m
∑

i=1

aiy
ki ; a > 0, k > k1 > ... > km ≥ 0|f(0) ≥ 0, f ′(0) > 0, f ′′ > 0

f ′′ is monotonically increasing}
F∗
exp = {eky+ℓ + f(y); k > 0, f ∈ F∗

pol ∪ {0}}
(4.8)

This convention has been defined previously [28] except for a change in the lower bounds

for f(0) and f ′(1) in Eq.(4.8). Then, given that 2y − 1 ∈ F∗
exp, switch on editor mode

S
ψ
N =

∑

1≤n≤N

χP ([f(x+ n)])

n
(4.9)
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and

SN = S
ψ
N (0) =

∑

1≤n≤N

χP ([f(n)])

n
(4.10)

If Dlog
har(P, 2

y − 1;N) is defined with the weighting functions ψ1(y) = max{log 2, log y}
and ψ2(y) = y,

D∗
N = (log 2)Dψ2

ψ1
(P, f ;N)(0) = (log 2)





∑

1≤n≤N

χP (n)

n





−1
∑

1≤n≤N

χP ([f(n)])

n

= (log 2)
SN

∑

1≤n≤N
χP (n)
n

(4.11)

Since
∑

p≤N
p prime

1
p
= log log N + o(1) [27], and the probabilistic value of the density of the

Mersenne prime indices [38] would be given by

limN→∞
SN

log N
=

eγ

log 2
(4.12)

D∗
N is approximately eγ log N

log log N
for known large Mersenne prime indices [37].

A proof of

∣

∣

∣

∣

D∗
N log log N

log N
− eγ

∣

∣

∣

∣

< ǫ for arbitrarily large N would provide the actual

approximate value of the density of the Mersenne primes and the existence of arbitrarily

many primes of this kind. If an irreducible rational-coefficient polynomial is chosen to

approximate 2y − 1 over a certain interval, the weighting factor should be changed to

ψ(y) = y, yielding

limN→∞
SN (P, f)

log(N)
=

1

deg f

∏

p

p− ρ(p)

p− 1
(4.13)

where ρ(p) is the number of solutions to f(n) ≡ 0 (mod p) [34]. When p increases, the

number of solutions to f(n) ≡ 0 (mod p), 1 ≤ n ≤ N , decreases rapidly and, as many

of the terms in the product in Eq.(4.13) have the form p
p−1 , approximate equality of

1
deg f

∏

p
p−ρ(p)
p−1 with the coefficient eγ

log 2 may be obtained. The function 2y − 1 may be

approximated by rational-coefficient polynomials of given order only over an inteval which

includes the known Mersenne primes, whereas a method of intersecting polynomials at the

next Mersenne prime described previously would be required for an approximation of the

function throughout that value.

To determine the prime distribution of a function [f(x + n)], the following intervals

shall be defined.
Ip,n = [f−1(p)− n, f−1(p+ 1)− n) p ∈ P
Ia,bp.n = Ip,n ∩ [a, b].

(4.14)
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Since

µt(Ip,n) ∼ |(f−1(p+ 1)− n)− (f−1(p)− n)| = |f−1(p+ 1)− f−1(p)|

=

∣

∣

∣

∣

[

f−1(p) + (f−1)′(p)[(p+ 1)− p] +
1

2!
(f−1)′′(p)[(p+ 1)− p]2 + ...

]

− f−1(p)

∣

∣

∣

∣

=

∣

∣

∣

∣

(f−1)′(p) +
1

2!
(f−1)′′(p) + ...

∣

∣

∣

∣

(4.15)

the Lebesgue measure of Ia,bp,n, which is not empty if Pn(a, b) = {p ∈ P|f(n + a) ≤ p ≤
f(n+ b)− 1} contains a prime, is given by

µ(Ia,bp,n) =
1

f ′(n+Θp)
a ≤ Θp ≤ b p ∈ P∗

n(a, b)

P∗
n(a, b) = {p ∈ P|f(n+ a) ≤ p ≤ f(n+ b)− 1}

(4.16)

Using the natural weighting, with ψ(y) = 1, it has been shown that

∫ 1

0

SnatN (P;x)dx =
N
∑

n=1

∫ 1

0

sn(x)dx =
N
∑

n=1

∑

p∈Pn(0,1)

µ(I0,1p,n)

=
∑

p∈P
f(0)≤p≤f(N)

[(f−1)′(p+Θp)] +O(1) =
∑

p∈P
f(0)≤p≤f(N)

[(f−1)′(p)] +O(1).

(4.17)

Suppose that f(y) = 2y − 1. Then

∑

pn

(f−1)′(pn) =
∑

n≥2

1

f ′(n+Θpn)
=
∑

n≥2

1

f ′(f−1(pn))
=
∑

p

1

ln 2
= oneditormodety

(4.18)

It would appear that the index range of the sum is a presumption of the infinite extent

of the sequence of Mersenne primes. However, the sufficiently fine subdivision of the

unit interval, the infinitude of primes, the existence of a prime between a prime between

between f(n+ a) and f(n+ b)− 1 for a < b and sufficiently large n, given that f(n+1) =

2f(n) + 1, and the overlapping of the subintervals [a, b] with the inverse images under of

f−1 of the primes and Mersenne numbers leads to the conclusion that the infinite sum

(4.18) is direct evidence of the extent of the Mersenne prime sequence. It would follow

that limN→∞D
∗
N → eγ log N

log log N
continuously and monotonically, and this limit would be

verification of the density of Mersenne primes.

This discussion clearly does not extend to integers of the form ay − 1, a ≥ 3, because

these expressions can be trivially factored and the characteristic function sn(x) = χP([f(n

+x)]) then vanishes.
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Appendix. Relations between the Mersenne Prime Indices

It may be verified that each Mersenne prime index can be expressed as a sum containing

other Mersenne prime indices and having a particular choice of signs of the previous indices,

with the possible exception of the previous exponent, which may be multiplied by a factor

of 2. Given that {p′n} is the set of Mersenne prime indices,

p′1 = 2

p′2 = 1 + 2

p′3 = 1− 2 + 6

p′4 = 1− 2 + 3 + 5

p′5 = −1− 2− 3 + 5 + 2 · 7
p′6 = 1− 2 + 3− 5 + 7 + 13

p′7 = 1− 2− 3− 5 + 7− 13 + 2 · 17
p′8 = 1− 2− 3 + 5 + 7− 13 + 17 + 19

p′9 = 1 + 2− 3− 5− 7 + 13 + 17− 19 + 2 · 31
p′10 = 1 + 2 + 3− 5 + 7− 13 + 19 + 31 + 61

p′11 = 1− 2− 3− 5 + 7− 13 + 17 + 19− 31− 61 + 2 · 89
p′12 = −1 + 2 + 3 + 5− 7− 13 + 17 + 19− 31− 61 + 87 + 107

p′13 = 1 + 2− 3− 5 + 7 + 13− 17− 19 + 31 + 61 + 89 + 107 + 2 · 127
p′14 = 1− 2 + 3 + 5 + 7 + 13 + 17 + 19 + 31 + 61− 89− 107 + 127 + 521

p′15 = 1 + 2 + 3− 5 + 7− 13− 17− 19− 31− 61− 89− 107− 127 + 521 + 2 · 607
p′16 = 1 + 2 + 3 + 5− 7− 13 + 17 + 19 + 31 + 61 +−89− 107− 127 + 521 + 606

+ 1279

p′17 = 1 + 2− 3− 5 + 7 + 13 + 17 + 19− 31− 61 + 89 + 107 + 127− 521− 607

− 1279 + 2 · 2203
p′18 = 1 + 2− 3− 5− 7 + 13 + 17− 19− 31 + 61 + 89 + 107− 127 + 521− 607

− 1279 + 2203 + 2281

p′19 = 1− 2− 3− 5 + 7− 13− 17 + 19 + 31 + 61 + 89 + 107− 127− 521− 607

− 1279− 2203 + 2281 + 2 · 3217
p′20 = 1 + 2 + 3− 5− 7 + 13 + 17 + 19 + 31 + 61 + 89− 107 + 127 + 521− 607

+ 1279− 2203− 2281 + 3217 + 4253

p′21 = 1 + 2− 3 + 5− 7− 13 + 17 + 19 + 31 + 61 + 89 + 107 + 127− 521 + 607

+ 1279− 2203 + 2281 + 3217− 4253 + 2 · 4423
p′22 = −1 + 2 + 3− 5− 7 + 13− 17 + 19− 31− 61 + 89 + 107− 127− 521 + 607

+ 1279− 2203− 2281 + 3217− 4253 + 4423 + 9689
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p′23 = 1 + 2 + 3 + 5 + 7− 13 + 17− 19− 31− 61− 89− 107− 127 + 521 + 607

+ 1279 + 2203 + 2281 + 3217− 4253− 4423− 9689 + 2 · 9941
p′24 = 1 + 2− 3 + 5 + 7− 13 + 17 + 19 + 31 + 61 + 89 + 107 + 127− 521− 607 + 1279

+ 2203− 2281 + 3217− 4253 + 4423− 9689 + 9941 + 11213

p′25 = 1 + 2 + 3 + 5− 7− 13 + 17 + 19 + 31− 61 + 89 + 107 + 127 + 521 + 607

+ 1279 + 2203 + 2281− 3217 + 4253 + 4423− 9689− 9942− 11213

+ 2 · 19937
p′26 = 1 + 2 + 3− 5− 7 + 13 + 17 + 19− 31− 61 + 89 + 107− 127 + 521− 607

+ 1279 + 2203− 2281 + 3217 + 4253 + 4423 + 9689 + 9941− 11213− 19937

+ 21701

p′27 = 1 + 2 + 3 + 5 + 7− 13 + 17 + 19 + 31 + 61− 89− 107− 127 + 521− 607

+ 1279 + 2203 + 2281− 3217 + 4253 + 4423 + 9689 + 9941− 11213 + 19937

− 21701 + 23209 + 44497

p′28 = 1 + 2− 3 + 5− 7− 13− 17− 19− 31− 61− 107− 127 + 521 + 607

+ 1279 + 2203 + 2281− 3217 + 4253 + 4423 + 9689 + 9941− 11213 + 19937

− 21701 + 23209 + 44497

p′29 = 1 + 2− 3− 5− 7 + 13 + 17− 19 + 31− 61 + 89 + 107 + 127 + 521 + 607

− 1279 + 2203 + 2281 + 3217 + 4253 + 4423 + 9689 + 9941 + 11213− 19937

− 21701− 23209− 44497− 2 · 86243
p′30 = 1 + 2 + 3− 5 + 7 + 13 + 17 + 19− 31− 61− 89− 107− 127 + 521 + 607

+ 1279− 2203 + 2281 + 3217 + 4253 + 4423 + 9689 + 9941 + 11213 + 19937

+ 21701− 23209 + 44497− 86243 + 110503

p′31 = 1− 2 + 3 + 5− 7− 13 + 17− 19 + 31 + 61− 89− 107 + 127− 521− 607

+ 12179− 2203 + 2281− 3217− 4253− 4423 + 9689− 9941 + 11213 + 19937

− 21701 + 23209− 44497 + 86243 + 110503 + 132049 + 2 · 216091
p′32 = −2− 3− 5 + 7 + 13− 17 + 19 + 31− 61 + 89 + 107 + 127− 521− 607

+ 1279− 2203 + 2281 + 3217− 4253 + 4423− 9689 + 9941 + 11213− 19937

+ 21701 + 23209− 44497 + 86243 + 110503 + 132049 + 2 · 216091
p′33 = −1− 2− 3− 5− 7− 13− 17 + 19− 31 + 61 + 89 + 107 + 127− 521 + 607

− 1279 + 2203− 2281 + 3217 + 4253 + 4423− 9689− 11213− 19937

− 21701− 23209− 44497− 86243− 110503− 132049− 216091

+ 2 · 756839
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p′34 = −2− 3− 5− 7− 13 + 17− 19 + 31 + 61− 89 + 107 + 127− 521− 607

+ 1279− 2203 + 2281− 3217 + 4253 + 4423− 9689 + 9941− 11213 + 19937

− 21701 + 23209− 44497 + 86243− 110503 + 132049 + 216091

− 756839 + 2 · 859433
p′35 = 1− 2− 3 + 5− 7− 13 + 17 + 19− 31 + 61− 89 + 107 + 127− 521 + 607

+ 1279− 2203− 2281 + 3217− 4253− 4423 + 9689− 9941− 11213 + 19937

+ 21701− 23209− 44497 + 86243 + 110503 + 132049 + 216091

− 756839− 859433 + 2 · 1257787
p′36 = −2 + 3− 5 + 7− 13 + 17 + 19 + 31 + 61 + 89 + 107 + 127− 521− 607

− 1279 + 2203− 2281 + 3217− 4253 + 4423− 9689 + 9941 + 11213− 19937

+ 21701 + 23209− 44497 + 86243 + 110503 + 132049 + 216091

− 756839− 859433 + 1257787 + 2 · 1398269
p′37 = −1− 2− 3 + 5 + 7− 13− 17 + 19 + 31− 61− 89− 107− 127 + 521− 607

− 1279 + 2203 + 2281− 3217− 4253− 4423 + 9689− 9941 + 11213− 19937

+ 21701− 23209− 44497 + 86243− 110503 + 132049− 216091

+ 756839− 859433− 1257787− 1398269 + ·2 · 2976221
p′38 = 2 + 3− 5 + 7 + 13− 17− 19− 31 + 61 + 89− 107− 127− 521− 607

+ 1279− 2203 + 2281− 3217 + 4253− 4423 + 9689− 9941− 11213 + 19937

− 21701 + 23209− 44497 + 86243 + 110503 + 132049 + 216091

− 756839 + 859433− 1257787− 1398269 + 2976221− 2 · 3021377
p′39 = 1 + 2 + 3− 5 + 7 + 13− 17 + 19 + 31− 61 + 89− 107 + 127 + 521 + 607

+ 1279− 2203 + 2281− 3217 + 4253− 4423 + 9689− 9941− 11213 + 19937

− 21701− 23209− 44497 + 86243− 110503 + 132049− 216091

+ 756839− 859433 + 1257787− 1398269 + 2976221− 3021277

+ 2 · 6972593
p′40 = −2− 3− 5− 7 + 13 + 17 + 19 + 31− 61− 89 + 107 + 127− 521− 607

− 1279 + 2203− 2281 + 3217− 4253 + 4423− 9689 + 9941− 11213 + 19937

− 21701 + 23209− 44497 + 86243− 110503 + 132049 + 216091

− 756839− 859433 + 1257787 + 1398269− 2976221 + 3021377

6972593 + 2 · 134466917
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p′41 = 1 + 2 + 3− 5− 7 + 13− 17 + 19 + 31− 61− 89 + 107− 127 + 521− 607

− 1279 + 2203− 2281 + 3217− 4253 + 4423− 9689 + 9941 + 11213− 19937

+ 21701 + 23209− 44497 + 86243− 110503 + 132049− 216091

+ 756839− 859433 + 1257787 + 1398269− 2976221 + 3021377

− 6972593− 13466917 + 2 · 20996011
p′42 = 2 + 3 + 5− 7 + 13− 17 + 19− 31− 61 + 89− 107 + 127− 521− 607

+ 1279 + 2203 + 2281 + 3217− 4253 + 4423− 9689 + 9941 + 11213− 19937

+ 21701 + 23209− 44497 + 86243− 110503− 132049− 216091

+ 756839− 859433 + 1257787− 1398269 + 29763221 + 3021377

+ 6972593− 13466917− 20996011 + 2 · 24036583
p′43 = 1− 2− 3− 5 + 7− 13 + 17− 19− 31 + 61− 89 + 107− 127 + 521 + 607

− 1279 + 2203− 2281− 3217 + 4253− 4423 + 9689− 9941 + 11213− 19937

− 21701− 23209− 44497− 86243− 110503− 132049− 216091

+ 756839− 859433 + 1257787 + 1398269− 2976221 + 31021377

− 6972593− 13466917 + 20996011− 24036583 + 2 · 25964951
p′44 = 2− 3 + 5− 7 + 13− 17 + 19 + 31 + 61− 89− 107− 127 + 521 + 607

+ 1279− 2203− 2281 + 3217− 4253− 4423 + 9689− 9941 + 11213− 19937

+ 21701 + 23209− 44497 + 86243− 110503− 132049 + 216091

− 756839 + 859433− 1257787 + 1398269− 2976221− 3021377

− 6972593 + 13466917 + 20996011− 24036583− 2594951

+ 2 · 30402457
(A.1)
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