From December 15 2016 up to March 30 2017 I have been reading papers uploaded in Academia.edu by Opeyemi Enoch; I wrote several documents, uploaded in Academia.edu, showing the many and many errors of Opeyemi Enoch. They are many more than those I showed. The last of my documents is given here to show that Enoch Opeyemi Oluwole `Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria does not know` the Basics of Mathematics. There is no hope that Enoch Opeyemi Oluwole `Department of Mathematics` stops publishing rubbish on the Zeta Function... He seems not to realize that it was already proved that there are infinite non-trivial zeros on the Critical Line, but infinite does not mean ""ALL non-trivial zeros are on the Critical Line""............

Enoch Opeyemi Oluwole does not care about scientificness...

Fausto Galetto April 2 2017

===

March 30 2017, time 8.56

NEW MONADE of Enoch on the ZETA Function

COMMENTS by Fausto Galetto

Abstract
Fausto Galetto just downloaded from Academia.edu (March 30 2017) a new set of MONADE of Enoch!!! I got the message Opeyemi Enoch just uploaded a paper: Obtaining the Riemann Zeta Function From its zeros: An Elementary Proof of the Riemann Hypothesis

Opeyemi Enoch Federal University, Oye-Ekiti, Mathematics Science, Faculty Member

On March 31 2017 I GOT THE SAME MESSAGE!!!! WHY????????????????

It is really amazing that Enoch Opeyemi Oluwole `Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria does not know` the Basics of Mathematics and makes the same errors paper after paper. He cannot deal with the series of complex variables and with basic knowledge of Algebra. As usual Enoch Opeyemi Oluwole does not care about scientificness.

COMMENTS by Fausto Galetto on the paper

Obtaining the Riemann Zeta Function From its zeros: An Elementary Proof of the Riemann Hypothesis
Enoch Opeyemi Oluwole Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria

As usual Enoch Opeyemi Oluwole does not care about scientificness

He writes

"It is an established fact that the Riemann Zeta Function has three classes of roots, namely:

\[z = \frac{1}{2} \pm it \text{ and } z = \sum_{n=1}^{\infty} -2n. \]"
Why THREE??????????????

0.5 + it and 0.5 + it are in different classes????????????

\[\sum_{n=1}^{\infty} -2n \text{ is NOT a class!!!!!!!!! IT IS a divergent series!!!} \]

How many NONsenses are in two rows????????????????

"The author (Enoch Opeyemi Oluwole!!) seeks to proof the Riemann Hypothesis by showing that if the Riemann Zeta function can be derived from its zeros then, one can proof that all the non-trivial zeros will always have their real parts 0.5 as since the zeros are unique and that the zeros of the analytic continuation formula will always be real."

REAL??? ONLY -2n, for n=1, 2, ..., \(\infty \) are real.

NOTICE the NONSENSE:

| Theorem: Let \(z = \frac{1}{2} \pm it \) and \(z = \sum_{n=1}^{\infty} -2n \) be the zeros of the Riemann Zeta Function. Then the Riemann Zeta Function is derived from the multiplication of these zeros. |

IF \(z_1 \) and \(z_2 \) are any two of the infinite zeros THEN ""*the multiplication of these zeros*"" is a complex number \(z_1z_2 \)!!! [a basic knowledge of Algebra shows that!!!]

IF \(z_1, z_2, z_3, ..., z_n \) are any n-tuple of the infinite zeros THEN ""*the multiplication of these zeros*"" is a complex number \(z_1z_2z_3...z_n \)!!! [for any n; a basic knowledge of Algebra shows that!!!]

THEREFORE it is FALSE the Enoch Opeyemi Oluwole statement ""*The Riemann Zeta Function is derived from the multiplication of these zeros*""!!!!

The Riemann Zeta Function is a complex FUNCTION NOT a complex number!!!

NOTICE the CONTRADICTION (of Enoch Opeyemi Oluwole):

Proof:

If

\[z = \frac{1}{2} \pm it \text{ and } z = \sum_{n=1}^{\infty} -2n \]

are the zeros of the Riemann Zeta Function, then it follows that:

\[\sigma(z) = \left(z - \frac{1}{2} + it \right) \left(z - \frac{1}{2} - it \right) \sum_{n=1}^{\infty} (z + 2n) \] \hspace{1cm} (1)

THEN Enoch Opeyemi Oluwole goes on writing

\[\sum_{n=1}^{\infty} 2n = \sum_{n=1}^{\infty} 2n^{-z+z+1} = \sum_{n=1}^{\infty} 2n^{-z+(z+1)} \] \hspace{1cm} (9)
At this point Enoch Opeyemi Oluwole proves his ignorance about mathematical series by saying
Elegantly, (10) implies:

$$\sigma(z) = \frac{z}{2} \Gamma\left(\frac{z}{2}\right) \pi^{z/2} \pi^{-z/2} \sum_{n=1}^{\infty} 2n^{-z+(z+1)} z(z-1) \left(1 + \frac{P(t)}{z(z-1)}\right) \left(\sum_{n=1}^{\infty} n^{z+1}\right)$$

(11)

DO YOU SEE in (11) the Enoch Opeyemi Oluwole ignorance about mathematical series???

MATHEMATICS does not allows to write a single series as a product of two series

$$\sum_{n=1}^{\infty} n = \sum_{n=1}^{\infty} n^{-z+(z+1)} = \left[\sum_{n=1}^{\infty} n^{-z}\right] \left[\sum_{n=1}^{\infty} n^{z+1}\right]$$

This is the SAME TYPE of ERROR made by Enoch Opeyemi Oluwole in a previous paper which I commented few days ago!! (see Appendix for details)

The Derivation of The Riemann Zeta Function from Euler’s Quadratic Equation And The Proof of The Riemann Hypothesis
Enoch Opeyemi Oluwole Department of Mathematics, Federal University Oye-Ekiti Ekiti State, Nigeria

FROM

$$\sum_{n=1}^{\infty} \frac{2n + z}{2n} \left\{\frac{2n}{(z-1)}\right\} \left\{\sum_{n=1}^{\infty} [kz^2 - kz - P(n)]\right\}$$

YOU CANNOT derive

$$\left\{\sum_{n=1}^{\infty} \frac{2n + z}{(z-1)} \frac{2n + z}{2n} [kz^2 - kz - P(n)]\right\}$$

From the wrong formula

$$\sum_{n=1}^{\infty} n = \sum_{n=1}^{\infty} n^{-z+(z+1)} = \left[\sum_{n=1}^{\infty} n^{-z}\right] \left[\sum_{n=1}^{\infty} n^{z+1}\right]$$

one can derive that the NONSENSE

$$\sum_{n=1}^{\infty} n = \zeta(z) \zeta(-z-1)$$

ΔΔΔ
\[
\zeta(0)\zeta(-1) = [-0.5] [-1/12] = 1/24
\]
and NOT \(\infty\) [as per \(\Delta\Delta\Delta\)!!!]

It is useless going on with the other errors...

Fausto Galetto

Appendix [March 17 2017, time 16.56]

The Derivation of The Riemann Zeta Function from Euler’s Quadratic Equation
And The Proof of The Riemann Hypothesis
Enoch Opeyemi Oluwole
Department of Mathematics, Federal University Oye-Ekiti
Ekiti State, Nigeria

The Author in his works [15,16]

has shown that the Meromorphic functions that are equivalent to the Riemann zeta function are given as

\[
\zeta_E(z) = \frac{(kz^2 - kz + p(n))(z + 2n)}{(z - 1)}
\]

The Transformation of (4) into the Riemann Zeta Function

Let

\[
\zeta_E(z) = \frac{1}{(z - 1)}(kz^2 - kz + P(n))(z + 2n)
\]

NOTICE the part in between

From [1], Riemann gave

\[
\prod(z/2) \text{ as } \sum_{n\geq1} \left(1 + \frac{z}{2n}\right) \text{ which is the same as } \frac{z}{2} \Gamma(z/2)
\]

Taking \(\prod(z/2) = \frac{z}{2} \Gamma(z/2) = \sum_{n\geq1} \left(\frac{2n+z}{2n}\right)\), we can write (9) as;
There is no need of the boxed part to go from (9) to (10)!!!!!

Enoch Opeyemi Oluwole, Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria

Does not know Mathematics, because he consider equivalent the formulae (11) and (12): the same symbol \(\zeta_E(z) \) cannot be used for different functions!!!!!!!!!!!!

\[
\zeta_E(z) = \frac{2n(z + 2n)}{2n(z - 1)} (kz^2 - kz + P(n))
\] \hspace{1cm} (11)

By the process of discretization (11) becomes:

\[
\zeta_E(z) = \sum_{n \geq 1} \frac{2n}{(z - 1)} \left(\frac{2n(z + 2n)}{2n} \right) (kz^2 - kz + P(n))
\] \hspace{1cm} (12)

Enoch Opeyemi Oluwole, Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria

Does not know Mathematics, because he consider equivalent the formulae (13) and (14)!!!!!!!!!!!!

\[
\sum_{n \geq 1} \left(\frac{z + 2n}{2n} \right) \frac{2n}{(z - 1)} (kz^2 - kz + P(n))
\] \hspace{1cm} (13)

\[
\frac{z}{2} \Gamma\left(\frac{z}{2}\right) \frac{2n}{(z - 1)} \sum_{n \geq 1} (kz^2 - kz + P(n))
\] \hspace{1cm} (14)

As a matter of fact from 14, written as

\[
\left[\frac{z}{2} \Gamma\left(\frac{z}{2}\right) \right] \left(\frac{2n}{(z - 1)} \right) \left\{ \sum_{n=1}^{\infty} [kz^2 - kz - P(n)] \right\} = \\
= \left[\sum_{n=1}^{\infty} \frac{2n + z}{2n} \right] \left(\frac{2n}{(z - 1)} \right) \left\{ \sum_{n=1}^{\infty} [kz^2 - kz - P(n)] \right\} = \\
= \left\{ \frac{2n}{(z - 1)} \right\} \left[\sum_{n=1}^{\infty} \frac{2n + z}{2n} \right] \left\{ \sum_{n=1}^{\infty} [kz^2 - kz - P(n)] \right\} \hspace{1cm} ***
\]
YOU CANNOT derive
\[
\left\{ \sum_{n=1}^{\infty} \left(\frac{2n}{(z-1)} \right) \frac{2n+z}{2n} [kz^2 - kz - P(n)] \right\}
\]
that is
\[
\zeta_E(z) = \sum_{n \geq 1} \frac{2n}{(z-1)} \left(\frac{z+2n}{2n} \right) (kz^2 - kz + P(n)) \quad (12)
\]

IF ONE put z=0 in the formula
\[
\left\{ \frac{2n}{(z-1)} \right\} \left[\sum_{n=1}^{\infty} \frac{2n+z}{2n} \right] \left\{ \sum_{n=1}^{\infty} [kz^2 - kz - P(n)] \right\} \quad ***
\]

HE GETS
\[
\left\{ -2n \right\} \left[\sum_{n=1}^{\infty} 1 \right] \left\{ \sum_{n=1}^{\infty} [P(n)] \right\}
\]

AND NOT -0.5=[\zeta(0)]

I doubt about the statement of Enoch Opeyemi Oluwole, *Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria*

Conclusion and Acknowledgments

My appreciation goes to Dr. Nine Ringo (Austria) and her team from Russia.

Fausto Galetto

Enoch Opeyemi Oluwole,
Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria
NEVER considered what I wrote in Academia.edu

Fausto Galetto