On some applications of the Eisenstein serigs $tring Theory. Mathematical connections
with some sectors of iber Theory and with ® and x.

“A mathematician is a person who can see analogies between theorems;
a good mathematician is a person who can see the analogies between the
demonstrations and a very good mathematician can see the analogies
between the theories. We can surmise that the best mathematician
is one who sees analogies between the analogies”.

(Stefan Banach)

MicleeNardelli*?, Christian Lange®

'Dipartimento di Scienze della Terra
Universita degli StudiNapoli Federico Il, Largo S. Marcellino, 10
80138 Napoli, Italy

2 Dipartimento di Matematica ed Applicazioni “R. Caqupoli”
Universita degli Studi di Napoli “Ferito 11" — Polo delle Scienze e delle Tecnologie
Monte S. Angeloa\Cintia (Fuorigrotta), 80126 Napoli, Italy

*Dipartimento di Ingegneria (Ing.Meccanica)
Universita degli Studi di Kassel
34109 Kassel (Germany)

Introduction

Universal music $gm based on Phi (Lange Christian)

Christian Lange has studied with much interest eratitical proportion showed by nature noticing
especially the golden mean relationship Phi=1,63803because it's present everywhere in nature
beginning from the atom going up to the galaxiggesenting the divine proportion of universal
harmony. This relationship represent even the lyeafubatural harmonic geometries. The question
is, why this proportion is not present in the sa#levestern music when we consider that the music
should be the highest artistic expression of nathaemony ? The official answer is, that a stririg o
a music instrument divided by the proportion of Réwver would match with the natural spectrum of
overtones based on fractions of little natural narmsbike 2/1, 3/1 ,3/2, 4/3. Accords or music
intervals according to this fractions would be édased harmonic and graceful by our ears. Under
a physic profile, the Phi-Interval is very far awapm corresponding with numbers based on
fractions of little numbers and because of this,fatio goes to built up a Phi-based music system is
obstacle by the opinion of the “experts” in thddief musical harmonics. It's possible to create a
Phi based music system ? It does make sense frousigal point of view ?

The answer is yes if we are able to jump the obetaof superficial evidence entering the
miraculous connections that the number of goldeamsection offer. The first element to take care
of is, that every music system has to be an expg@ieaystem (on the keyboard of a piano every 12
keys we get music notes with double frequency) beeaur hear- sense is based on a logarithmic
scale.



In a very simple way we can use the powers of lget a series of Phi-based numbers following
an exponential curve

1,618x1,618=PRi2,618;1,618x1,618x1,618=Ph#t,236;1,618x1,618x1,618x1,618=F46,854...

Now we have to fill the spaces between a Phi-pamer the next because under a musical point of
view the Phi-interval is almost large and we sonmarkeys in between to compose music. Under a
mathematician point of view this means that we havelivide the space of a Phi-Interval in a
natural number of parts that we can decide frdeby.example we can divide this space in 9 parts
using 1,618 where n is a natural number, even negative. F8rthe exponent is 9/9=1 getting
Phi'=1,618. For n=13 happens an interesting thing"*x2,003876 a value very near of 2 that is
corresponding to the harmonic music interval thaildes the frequency of a base frequency called
Octave in traditional music.

This little example shows, using Phi as a basamoexponential music system, that we can obtain a
proportion that respects the natural over-or umthed of a vibrating string but we have to go
beyond the single interval of the octave.

If we choose to divide the Phi interval in 7 pavt® obtain optimal connection with the number 3
(3 times the frequency of basic sound) and with bem2 because Pfii’=3,0039 and
Phi'%’=1,9886. In addition we get connections based enctimbination of 2 and 3: 2/3=0,666 e
3/2=1,5 corresponding to natural harmonic musierirdl of the vibrating string. The system with 7
parts in a Phi-interval permits us to get theseicamgervals 2, 3, 1.5, 0.666 in an approximated
manner.

Would it be possible to get the exact numbers afirah harmonic intervals of a vibrating string ?
Observing in an accurate way the powers of Phinatee that it's possible to obtain every natural
number exactly by adding powers of Phi remembetivag the traditional harmonic intervals are
based on fractions of little entire numbers. Montlel are the natural numbers creating the
fraction(1,2,3,4..) , more harmonic sounds the musderval like Y4, Y2, 1/3, 2/3, 3/4,4/3, 3/2, 2/1,
3/1, 4/1.

Here we see how to built the first 4 numbers byirsgl@®hi-Powers:

Phi'+Phi*=Phf=0,61803399+0,38196601=1,00000000
Phi*+Phi?=1,61803399+0,38196601=2,00000000
PhP+Phi*=2,61803399+0,38196601=3,00000000
PhP+Phi?+Phf=2,61803399+0,38196601+1,00000000=4,00000000

We can use the technique of adding Phi-powers to@®ral numbers with absolute precision, no
approximation and we can use these precise nunsgstematically instead of the approximated
values of the curve getting by BH} creating a perfect system of embedding all thenbaic

intervals of music with perfect Phi-based logic é&mery music note of the system. The difference
of the exact frequencies from the original curvéPhis less than 1%.



Obviously we can represent the values of the Pstiesy like a golden mean spiral that would be
like a Nautilus.

In his book 432 Hertz: the music revolution. Golden mean turforgbiological musit, Riccardo
Tristano Tuis writes: If we could hear the music based on the golden mspaal it would be in a
certain manner the music for life, on a biologitevel but even on a perceptive level, because it
would use the same math of Botfuis continues citing LaRouche from the Schillestitute
"There is nothing mysterious or mystic around theogtuction of the golden section as absolute
value of the life procesdn reference to music. Then he writesthe perfect music scalghe
moderated scale is it nag the one with the proportions of the frequenctthe music notes one
from another based exactly on the golden sectidh thie intonation register based also oh Ih

the same book Tuis public a music scale based onof&s per octave but he doesn’t found the
perfect Phi interval for all the music notes. Iregvcase it is appreciable to see his honest dffort
search the truth about universal music. In the\assion of the Phi based music system we have
the natural frequencies indicated by Tuis like 432PB8Hz, 216Hz, 144Hz, 72Hz according to this
choose.

After discussing the harmonic intervals of the Pésed music system, we have to examine the Phi
interval closer. We understand that it's possiblereate the harmonic intervals by adding powers
of Phi but the Phi-interval itself is pleasant ™&idering the harmonic laws of overtones related to
the vibrating string, the Phi-interval should berriide for the hearer but in praxis it isn’t. At
contrary, it's very pleasant e we will try to filmth explanation. For this we will take the seedthef
sunflower like an example. The positions of thedseeere chosen to fill out the whole area of the
circle without leaving empty spaces. Beginningha tenter of the circle, turning around, at which
angles of the whole circle of 360° we have to pasithe seeds to fill out the circle at best ? In
order to avoid empty space, a single seed showeri@ppens exactly behind another one respect
of the center of the circle creating beams lika ibicycle wheel because the space between a beam
an another ones is growing from the center to thrddy. Using angles based on fraction composed
by little numbers we would get beams inevitably.eTheam like distribution of the seeds is
corresponding to a harmonic music interval basea @raction of natural number multiplied with
360°. In this way the “seeds” will match exactlyedmehind another but this kind of distribution is
not indicated to fill out the whole area of thectrwith a maximum number of seeds. To position
the seeds, the sunflower uses the so called galdgie of 360°/PfiE137,5077°. In this way a seed
will never happens exactly behind another one. §fitaming something like this in music intervals
we will expect a horrible sound but it isn’t foretkame reason why the positioning of the sunflower
seeds is not ugly but highly beautiful with his esdted spirals turning clockwise and
counterclockwise and you cannot stick your easoyrfit because the beauty is so fascinating. The
same happens hearing the Phi interval.



Another kind of explanation more technical wouldtbe following: the Phi proportion divides the
time axis in a fractal manner creating infinitely #e powers of Phi itself and the human ear
recognize the perfect repeating of these valuesbddly our brain calculates the sums of the
powers of Phi creating perfectly natural numbensnaic to our ears. To the Phi interval we can
add another note that corresponds to another poftvehi or a natural number or a fraction of
natural numbers pushing the keys on our Phi-inexhptano keyboard (because they are part of the
music system we could do so), our brain recognittexl perfect embedding of this musical
agreement of all these values interpreting it “h@mi” even if this kind of harmonic is fractal like
nature and not like the beams of a bicycle.

The following figure shows how the duration of thki power based oscillations are creating other
durations corresponding to powers of Phi and tleatorg the natural numbers of 1,2 and 3. You
can observe the frequent presence of embedded poivéhi in a fractal manner on time axis. Of
course the same principle is valid for frequenties have the inverse value of oscillation duration
Phi*=0,145898

Phi®=0,236068

Phi?=0,381966

Phi’=0,618034

Phi*+Phi*>=Phf=0,618034+0,381966=1,000000

Phi'=1,618034

Phi*+Phi*=1,618034+0,381966=2,000000

Phf+Phi*=2,618034+0,381966=3,000000
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In the Phi music system we have to follow a remggpattern made of positions. We can occupy a
single position only one times with a frequency.kdy of a music instrument can’t have two
frequencies at the same time. Adding the poweRhofve can create every number and because of
this we have to choice the numbers for the postiblow we can know if we made the right choice
? At this point we get some help from another mathtecal constant present in nature, Pigreco
=3,14159... . In order to this control system, weddtice the concept of half - tone with n=0.5, 1.0,
1.5, 2.0, 2.5. It's possible to connect every tomid a halftone by Pigreco when we did the right
choices of numbers. If not, we wouldn't get corsgence with Pigreco for every note.

This kind of research is limited only on artistector of music? Absolutely no. The writer Alessio
Di Benedetto, says thatwe are dipped into an infinitely oscillating fiellke countless music
harmonies going out from a single basic sound. Ftbis field we recognize only the frequencies
near to us.

In the book tn the beginning was the vibratih@\lessio Di Benedetto said:I$ there a way to
produce energy by frequency devices, connectedsystiems of anti-gravitation and time travelling
? Would it be possible to influence our DNA by reswe with modulated frequencies in order to
correct genetic errors? If we block the new reskabased on the love for the secrets of universe,
we will poor the whole humanity condemn her to picmlenergy with obsolete systems that will
destruct our planet.At this point we have to consider that accordiogthe String Theory the
universe is not empty but full of continuous vilingt dark energy and matter corresponding
together at 96% of all what exist in the univetbe, matter we know is corresponding only to 4% of
all. If we get in resonance with this kind of dakergy, may be in future we can produce energy
from space without pollution for ever.

The alternative medicine takes care about bio-ghysispects in our organism and in front of a
disease speaks about disharmony on an energetit l&vsick liver don’t vibrate at his sane
frequency of 40 Hz. All our organs have specifieginencies but the question is, how they are
connected together ? Today it's possible to “hélag”sound of a DNA sequence. If the patient has
cancer, the sound would be disharmonic and in nreglihis is used for diagnostic. What kind of
music scale use our DNA to generate the soundndssa can make hear ? The DNA molecule is
made of Phi-based geometry and this make us thatktthe DNA music is Phi based.



Probably there is a universal music scale conneatiloour organs, our DNA and in future it would
be possible to heal using these frequencies hamimgnour cells but only future research could
confirm that.

We think that a music corresponding to our biol@nd all what exist could have harmonizing

effects on us. We think about the Mozart effect angic therapy. This kind of music combine the
pleasure that music can give with benefits forleealth. May be in future it would be possible even
to heal cancer by using frequencies. In her bookéWmusic heals” Fabien Maman talk about
experiments made with tumor cells where subjegty music intervals and she found out, that the
most disharmonic interval of the seventh made algtbe tumor cells but not the sane cells.

At this point we have to begin to discuss about3keng Theory. In few words, this theory says
that all what exist, is pure energy that is vibrgtilt depends on the way the energy is vibrating a
certain frequency if there would be a manifestati@e a force or a subatomic particle. In the
moment, the String Theory is the favorite candidatbe able to predict and explain with the same
physical model the 4 forces in universe (electrameéigm, gravity, strong and weak force of
nucleus) and the favorite for the Theory of All. Teach this goal, the String Theory needs
mathematical connections (theory of numbers indgdbrime numbers). The fact, that in this
theory all is vibrating give us the idea of an w@nsal symphony using always the same music scale.
Which one?In the String Theory connections of Phi and Pigreogether with harmonic
relationships are leading to important results. ahematician Michele Nardelli have used (also
in this paper) the numbers of the Phi based omthgic system in the String Theory and we have
already deposited a first scientific paper in 280&NR (ange, Christian and Nardelli, Michele and Bini,
Giuseppe (2008) Sistema Musicale Aureo PhiN(n/7) e connessioni matematiche tra Numeri Primi e “Paesagqio”
della Teoria delle Stringhe.) Where we have discussed the original curve of'Phiogether with the
musician Giuseppe Bini who had care of the musispkcts of the Phi System.

We don’t wonder about that the genius Creator efuhiverse based the creation on a fractal Phi
music system with big sense of beauty and artshdPlyg we found the music scale used by the
Creator to compose his creation like a symphonyilggasaid: "Mathematics is the language with
which God composed the universe."

In this paper Nardelli have examined and descrtbhecharmonic relationships of the exact system
in combination of Phi and Pigreco inside some sesctd String Theory. Furthermore, we want
remember that there exist an fundamental simplebasgc relationship that linkand®. This is the
following:

ﬂDg =® or HGZ—:(GJ)Z

J5+1
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where b=

=1618033989.

Abstract

In this paper in th&ection 1 we have described some equations concerninguhléydand higher
derivative terms in M-theory. In th8ection 2,we have described some equations concerning the
moduli-dependent coefficients of higher derivativeeractions that appear in the low energy
expansion of the four-supergraviton amplitude ofxmmally supersymmetric string theory



compactified on a d-torus. Thence, some equatiegarding the automorphic properties of low
energy string amplitudes in various dimensiongh&Section 3 we have described some equations
concerning the Eisenstein series for higher-randugs, string theory amplitudes and string
perturbation theory. In th&ection 4 we have described some equations concerning Uxdua

invariant modular form for thdd®®* interaction in the effective action of type lIBisg theory

compactified on T2. Furthermore, in theSection 5 we have described various possible
mathematical connections between the argumentseatm@ntioned and some sectors of Number

Theory, principally the Aurea Rati® = (\/E +1)/2, some equations concerning the Ramanujan’s

modular equations that are related to the physidaiations of the bosonic strings and of the
superstrings, some Ramanujan’s identities concgmiand the zeta string& conclusion, in the
Appendix A, we have analyzed some pure numbers concerningugagquations described in the
present paper. Thence, we have obtained some usafbkmatical connections with some sectors
of Number Theory. In théppendix B, we have showed the column “system” concerning the
universal music system based on Plindthe table where we have showed the difference leztwe
the values of Phi®(n/7) and the values of the coltgystem”

1. On some equations concerning the duality and higheaterivative terms in M-theory. [1]

The first term in the derivative expansion beyome Einstein-Hilbert term that contributes to four-
graviton scattering has the form

122 j dox /- ge?2zP%* | (1.1)

2

in string frame. The dilaton facta™®'? is again absent in Einstein frame. The symi#dl denotes
a specific contraction of four Weyl tensors thases from the leading behaviour in the low energy

expansion of the four-graviton amplitude. The fiorct Zg‘,)f)(Q,ﬁ) is a modular form with
holomorphic and anti-holomorphic Weight(s0,0). It is a function of the complex coupling
Q=0Q,+iQ,, whereQ, =e? and Q, =C. The leading term in the low energy limit deteretn
the dilaton dependent functi(mg‘,’g’)(Q,ﬁ) of the

122 j d%x,/- ge”’2z®D*R*  (1.2)
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interaction, is again expressed in string framee @iaton-dependent functiord®? and 29 in
(2.1) and (1.2) are non-holomorphic Eisensteinesdahat are special cases of the series

200 = 2 @3

S —

(m,n)zat%o,o) (m+ nQ)S+W(m + nQ)W'

Interactions havew=-w'=q/2 whereq denotes théJ(l) R-symmetry charge of the interaction.
For example, there is an interaction of the form
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where the dilatinod transforms with weight§- 3/43/4). The serieszﬁo'o) is an eigenfunction of
the Laplace operator on the fundamental domaisig®,Z) with eigenvalues(s—1),

£,Z0 =40%0,0,71°% = 5(s-1)z[°) . (1.4)

This equation is a consequence of supersymmetry.geaeral values ofs Z_has the large-
Q, (weak coupling) expansion

r(s—;j((zs—l)
r(s)
()z,u(k S |k|51[ s(s=1) | j (1.5)

z.(Q,Q)=27(2s)Qs3 + 2/m% +

k#0 477|k| 2

where the last term comes from the asymptotic esipanof a modified Bessel functioq, is the
Riemann’s zeta function anﬂ(k,s): zd‘klldzs‘l. This expression contains precisely two power

behaved terms proportional tQ; and QL °, which should be identified with tree-level and
(s—1/2)-loop term in the IIB string perturbation expansiohthe four graviton amplitude. In
addition, there is an infinite sequence Dfinstanton terms inZ,, which have a characteristic

phase of the forme”?, wherek is the instanton number. Thus, wigtx 3/2 (the R* term) there
are tree-level and one-loop terms, as well asrtfieite series ofD -instanton contributions.
The objective of this section is to extend the wsialof the dilaton dependence of higher derivative

interactions to thD®®R* interaction. This has the form (in string frame)
I:J-dmx\/ ~9€%(3532)D°R*, (1.6)

where the functionf(s,z'g,z)(Q,ﬁ) is a new(0,0) modular form that depends on the complex

coupling, Q. The function¢,,,5, satisfies a Laplace equation on moduli space witource

term,
AQCr(s/z,alz) :12{(3/2,3/2) =62;,Z5,, (1.7)

and determine its solution.
To separate perturbative and non-perturbative irons we writef(3,2,3,2)(§2,§) in terms of a
Fourier expansion of the form

<r(3/23/2)(Q Q) 3/23/2( ) Z 23/2( ) 2 (1.8)

k#

The dependence o, enters through the phase factt™:, that accompanies the non-zero mode.
This is characteristic of & -instanton contribution which comes from the doublsn of D -
instantons with charge&, and k,, where k, +k, =k. There is a corresponding exponentially
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decreasing coefficieng ¥, ,), that should behave ags? sl R: ot weak couplingQ, — ).

The zero modeg?((go,)z,g,z), contains the piece that is a power-behaved fonatf the inverse string

coupling constantQ, which is interpreted as a perturbative string gbation. There will also be
an exponentially decreasing contribution to theozeode piece, which is interpreted as a double
D -instanton contribution in which the instanton ges are equal and opposite in s(gp= —kz).

The zero mode in (1.8) satisfies the equation

(35, ~12)8(.)= —6[(2((3)92+4z(2)9§j2+(8n)292§)kZuZ[k,gjﬂqZ(delﬂz)J,
qL.

where the right-hand side comes from a Fourier esipa of Z7,. The factor
(2¢(3)02'2 + 47 (2);2f comes from the square of the zero mod&gf (defined by the first line

in (1.5) with s=3/2) whereas the term involving the square of Bessettions %’ comes from
the modes with non-zer&, which arise as a sum ov@ -instanton antiD -instanton pairs with
k = -k, and|k] +|k,| = k. The quantityu(k 3/2) = > 447 is the D-instanton measure factor.

Consider first the solution for the perturbativertpaf E(g(’,)m,z), which is a sequence of power-
behaved terms. The general solution for the powhabed terms that satisfy (1.9) is

& =423 Q3 +8¢(3)¢ (2), +4g8((2)29;1+a93+m;3, (1.10)

where the coefficientsr and S are not determined directly by (1.9) because ¢nmg Q; and

Q3® individually satisfy the homogeneous equation.

The coefficientS represents a three-loop contribution in stringyrbation theory. The remaining
coefficients in (1.10) are determined directly By9). These correspond to the tree-level, one-loop
and two-loop contributions to thB°R* interaction. The leadin@®’ term in (1.10) represents the

tree-level contribution and has precisely the etgubcoefficient that matches the string tree-level
calculation.
We have the following Laplace equation:

Agz@t(alz,s/z) :125(3/2,3/2) - 62(3/2,3/2) J (1-11)

where Z 3,42 = 23,25, - Expanding (1.11) in Fourier modes gives an equaftor each mode of
the form

oz, - i) 1Esla,) = ssara, Skl kS oo, e

k; #0,k, 20
Ky +ky =k

— 962z (3027 + 4¢(2)0;7) S ki k. jﬂq(znrklpz), 1.12)

k %0

where § ’;72‘;‘7;(")(92) are the non-perturbative terms.



Using the asymptotic form for the modified Besseidtion Jq(z)z 2z, the largeQ, limit
of the solution is easy to determine. For a genaxlale ofk =k, +k, it has the form

ZF)kl( ) -271{ky |+ k- kl‘)QZGZHKQl , (113)
ky

where the functiond®, = Q,” with positive p,. When k;, and k, (: k—kl) both have the same

sign the action is equal to the chat(bq +|k —ky| = k). There is & =0 contribution t0&(3),5/2) due
to D -instanton — antD -instanton pairs, that has the form

N~ 3V 1 -471KQ,
-641) |k [k,—j —+... . (.14
Zk:‘ LU 2 Q, © (44

We will now determine the three-loop coefficien, of the Q;° term in (1.10). First we should
note that a general solution of the Laplace equogtlo7) can be written as the sum of a particular
solution and a multiple ofZ,, which is the solution of the homogeneous Laplageation,

AZ,=12Z,. Recall also thatZ, = Z(mn)¢(OO)Q‘2‘/|m+ nQ* has the largeR, expansion

5n

z,=2(8)Qs% + . 227707 +... (1.15)

where ... denotes exponentially suppressed terms.ekenythe special solutiog,,,,, that we

obtained from the two-loop supergravity express@known not to have &; piece, so that the
coefficient of Z, in the general solution must be zero. The questamains as to whethef;,, 5,

contains aBQ;° term. To study this we multiply the left-hand aright-hand sides of the
inhomogeneous Laplace equation (1.7) by the EisenseriesZ, and integrate over a fundamental
domain of Q. Since the relevant integrals diverge at the baun@, — o, we will introduce a
cut-off at Q, =L and consider th&. — o limit. Denoting the cut-off fundamental domain Iy,
the resulting equation is

d’Q

2
J'dQ Qz

o =>27.72,. (1.16)

Z Afs/zs/z 12! 45 (3/23/2) 6_[

Integrating the left-hand side by parts and usiegfact thatAZ, =127, , gives

d’Q

d’Q
.f Q2

Qz A2453/23/2 +J- dQ (Z a 53/23/2 a(222453/23/2 XQZ

5 ZiD(a12312) _J-

/2

1
_12j Qz 45(3/2,3/2)"' _1/2dQl(Z4aQZQZ(3/2,3/2)_(69224)5(3/2,3/2))924- (1.17)

Comparing (1.17) with (1.16) we see that

10



dQ (Z dq 53/23/2 (aQZZ )53/23/2 XQZ Low — _6_[. dQQ Z,Z3,. (1.18)
2

1/2

-1/2 %

The left-hand side of this equation is simply date time that is easy to evaluate

1/2

" 00, (Z,00, € 3251 ~ (00, Z W 321 e o= ¢ BB (BF L° + 480 (3 (2)L* + 967 (2L +145)

(119
The right-hand side of (1.18) may be evaluated bfolding the integral onto the strip using
Z,= ZZ(S)Z:VDSI (22) Dm(yEQ) and the fact thak?3,, is modular invariant, which gives

1 d’Q ) _ dQ2 172 , 2 - . ),
%0 )j ot 2= j Q3f do 28, = S4EFL+BR (L + 20 (2P +

+ (@7 szﬂng;)kszkng F2(271KQ,).  (1.20)

Using the integral representation for the Bessettion, we find that

Ig_ﬂj dQ,03> k?4 (|k| j 2(277[k|§22) Z/‘( 3j , (1.21)

k#0 k>1

which gives a non-zero value for the three-loopnteRecalling that,u(n,s) = zm‘nnl‘zs and using

an identity by Ramanujan

> nsulns) _ ¢r)e(r+2s-1¢(r +25-2)(r +25+25-2) () 5y
Z " Z(2r +2s+25-2)

we find that the three-loop coefficient has theueal

_ 16
'8_189

(4). (@.23)

This number is in complete agreement with the datmn of the three-loop coefficient in type 1A

string theory. The one-loop four-graviton amplitudd eleven-dimensional supergravity
compactified on a two-torus gives rise to a sevidsigher-derivative terms in the nine-dimensional
type IlA effective action of the form

AP = (4721507 Kr {2{() =4 +§’r72 +%—8n2rA|s(—ws /2+8n3’2i:(l'(n—%ji(2n—l)

A

2(n-1)p"

(20°) +Var (n-1)7(2n-2)%

r 2(n-1)

(|§fw5)”ﬂ + non-perturbative, (1.24)

where
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(we) =(gs) +(o ) +(gn). @2m)
and
(65.) = [[dea " da, [ dea(sm(e, - ) +t(ay, - )i~ (1.26)

The terms in the third line of (1.24) give higheop contributions to the ten-dimensional effective

action of the type IIA theory. The term with= 2 gives the two-loopD*R* term in the IIA theory
that matches the same term in the type 1IB thedbhe term withn = 3in the third line of (1.24)
contributes to the three-lodp®R* term in the IIA theory and has the value

S, =4 1 )[dx/- g”e* D°R*.  (1.27
bR ™ 4 (06 ({47) 189 C(@)d*x-g"e (1.27)

Including the absolute normalisation this type @#pression and the following type 11B expression

S =1 4[%[64 I”J °e” &312012(Q Q)D°R’, (1.28)

we find a perfect match between the two valuesttier three-loop coefficient for th®°R* in
superstring theory.

2. On some equations regarding the automorphic properts of low energy string
amplitudes. [2]

The simplest non-trivial examples of automorphiediions arise in the ten-dimensional IIB theory,
where the coset i$02)\ SL(2), so there is a single complex modul@=Q, +iQ,, and the

duality group isSL(2,Z). In this case the first two terms in the expangieyond the classical term
are given by particular examples of non-holomoritigenstein series deI(Z,Z)

QS
E(Q)= —2 2.1
0) (rn,r1)z¢;‘o,c>)|m+nQ|2S @1

which satisfies the Laplace equation
8. (@)= 03003, +33 JE(@)=s(s-)E(@). 22)
The Fourier expansion d&,
1
r(s_zj ﬂs

g <lemes IE 2 ik, o

nz0

E.(Q)=2¢(2s)Q5 + v

has a zero mode or “constant term” that consistes@tum of two powers,

12



1
=3)
[ doE, =2¢(2s)0; + 2\/71r—25(2s ~)oks, (2.3)
which correspond to a tree-level and gel(ms-llz) contribution to the interaction in string
perturbation theory.

The minimal parabolic Eisenstein series for a gr@ujs defined by

ES(g)= DM@ (2.3a)
yo6(Q)/B(Q)

We considerH =gy, where y0SL(d,Z) and g is the SL(d) matrix parametrizing the coset
space SO(d)\ SL(d). Letting H, be the bottom rightk xk minor of H the general minimal
parabolic Eisenstein series associated with thénmainparabolic subgrouﬁ’(],...l) :

d-1 Ad-ks /‘d—k—l

Ste) = detH,)” 2 , (2.3b
E[1 dl]s.l d yDSMr;Z)/B( )ﬂ( ) ( )

which is a special case of the general formulaa)2.Bere we have séts, = A,_,,, — A, — for
1<k<d-1, and g, = 1if 5 #0 andg = 0if s, =0. The SL(d) series that are studied in this
paper are:

ES4¢) Es49) EStd)

Efos + Efoorfs + Eprtils

thence

ESL("Z,3_ = ; (2.3c)
foa0*}s i_’\s/lk<(1 (gugkld"d]k)

Now we analyze the following order in the analypart of the momentum expansion of the
amplitude that is encoded into the local effecieéon

i oo/ 24

At this order in the low energy expansion the streee of the equation satisfied by the coefficient
functions changes, as is evident from the followihg 10 SI(Z,Z) case

(8, 12N @)=~ @)F, (@5)

13



which has a source term on the right-hand side

(Bsotapsics) ~12)603 = ‘(ﬁ(é%)))z- (2.6)

The constant term is given by

4
I10

2 o ) lé‘( 27 (3) - 42(2)¢(3) , 82(2) 02+ ¥ (6) 0t + O(e—4n§22)j @)
-1/2 : 3 3 5 27

which has perturbative contributions up to genuedland has contributions from D-instanton/anti-
D-instanton pairs with zero net instanton number.

With regard the nine dimensions case, the effecaedon (2.4), with D =9, contains the
coefficient function that is

-2 27(2) 2 27(2) © 47(2)¢(5) -2 87(2f @
) =vire) + X e, + E e KK, T KO, g

The function 5(%‘3 is the ten-dimensional coefficient that satisftae inhomogeneous Laplace
equation, 2.4. It is readily checked tkz?é@)l) satisfies

90
(A@)_f7)é&%

-(f. @9

The source term is again quadratic in the moduiaction that arises for the coefficient of tt¢

interaction, as it was fob = 1 (2.5).
8 1

The contribution (2.8) can be re-expressed in teredsional units recalling that, :ffor; and
v, = (rB Mlo)_z’ giving

) = zior{f(%?% + 212 [”—] gy + 12 (”—j gty + 412K (r—] +

D3 o, ) 9T a3y, ) T 63 (/g
F (o)

+82 o | L ofen)|. (2.10)
5 Iy

The term proportional t@, gives the ten-dimensional expression in the- c limit. Once again,
there is growing term with the expected powerrdf which contributes a term proportional to

(sr,f)z.‘k4 to the expansion of the ten-dimensiom“log(— ffos) threshold in the limisr; - o.

The perturbative expansion of this coefficient iseg by expanding in powers of the string
coupling,

/s Iildﬂlf(g)l | € ©F , <(KE)(,, L), ¢6KE)
4 39z 9

2 6 2 p2
e, 8),504)as 2,
AN 9 g



576 8

J(?gé(l r_;‘j 75()98(1+f§j+o( 1’98)]. (2.11)

This expression is symmetric under T-duality transfation r, - 1/r, and g, - g,/r,. The

symbol O( = gB) indicates schematically the presence of instaatdiinstanton pairs in the zero
D-instanton sector.

Collecting theL =2 and L =1 modular functions along with the genus-one terinhe following
equation

j_% 40, 0B, (%) = ZZy 3, 2E(T)+E U ))+%”|og(y8/ i), (2.11b)

8

we find the modular invariant expression,

1,6k 1, 404), 5@ <)y
11?%( 12 ‘l% 189 (ée-l- 3 + 378 Eszt 9 VB, |- (212)

This expression sums all the contributions deteechifrom the analysis of the =1 and L =2
loop amplitude on a torus, to which has been adbedcontribution¢ (5)¢(2)/4°, which arises

from a A’ divergence of the. =3 amplitude.
Now we analyze the eight-dimensior®IR* interaction, which has an effective action (21&ttis
invariant under the U-duality groufy, = SL(3)x SL(2). We will show that the modular function

satisfies the differential equation
2
MOy =1268) ‘(5((3)0)) , (213)
where A® is the SL(3)>< SL(Z) Laplacian. The source term appearing in this eguaagain

involves the square of the eight-dimensiofil coefficient. The solution is close to the one loa t
basis of consistency with the higher-dimensiongdriction,

71

5((3,)1 SLSS E[10] 3/2 ( ) E[10]3/2 ( ) (U) 36 E[10](3)/2 él(U)+T’ (2-14)

where the functionf (U) is defined as the solution of the equation

(A, -12)f(U)=-4E2(U), (2.15)

where A, :U22(651+652). It is straightforward to extract the power-berdhvierms in its

expansion. We have also introduoﬁ%ﬁ) satisfying

(ASO(3)\SL(3) ) IS (E[folﬁ/z) . (2.16)

The last three terms in (2.14) arises from the l@ggation of the R*interaction. In the
decompactification limit,/ ¢, — o the SL(3,Z) modular functions in (2.14) have the form

15



1/2 9 1! T
[y, OBreBucB i = 1 o VEEsa(Q)+ ovs" s (217)

-1/2

~

Illz B.rd BNSE[lo]s/z_Vz E3/2(9)+7T|09V2- (2.18)

1/2

Substituting the latter expansion into the souecmtin the following equation

(Aso(s)\SL( 3) 12)ASL (E[lo] 3/2)2

one finds that the interaction coefficient becomes

1/2
2

1 ER
J-l/z Bred ENS<r = 5(13 (%Tvz 2 |Og(V2) +ovs +cl, szs/z(Q) +
Zgz) (5+4log(v,) + 8log?(v,)) + O( RGN Ol ) (2.19)

where ¢,c, are integration constants. We have that ¢(5)/(12771) and ¢, =0. In this case the
zero instanton sector contains instanton/anti-iristapairs consisting of D-instantons and wrapped
(p,q)-string world-sheets as indicated by the last teFire SL(2,Z) modular functions have the
expansions

" dUE,(U)=2¢ (63 + 3”2(5)%2 . (2.20)

-1/2

1/2

duléi(U)ZZZ(z)Jz_mOQ(Uz)’ (2.21)

-1/2

and the expansion of the functidi{U ) is

6f(U)= %(65 207, + 487702 ) + %—ZZ(Z)IOQUZ(MUZ—GOQUZ+1)+O(e‘”2).(2.22)

Therefore, the constant term associated with decotifygag to nine dimensions is

o 2 _ s 7T g0 180(8) g , 167 (6) 1,
b4 Il/ZdBRRdBNSfOl lyr. 2{01 {365(0'0)-'-([-2} 4]73 E 567 Eg *

_ alog( 9][75 ~ 47 (2 4] 0ov7 477(( )Iog(vl) Z( )(2; 26|092U—2j 290|Og(;9]]

_Ls Zz(i) |og(v1)(1+ 4Iog( 9] - 478 Iog(vl)J +0le™). (229)

I

The term linear irr, reproduces the nine-dimensior8kR" interaction, the term independent rf
is proportional to the nine-dimension&* interaction, and the term proportional t9* is

16



proportional to the nine-dimensionaf®* interaction. The term proportional g is needed to
reproduce theD =9 threshold of the forn{- s> R*.

The perturbative expansion of the coefficie’y(ﬂj) in increasing powers oy, = (QgTz)_lis given by
the following equation:

(2.24)

™~
LON
N —

1- o 7z 2
&l = &) + Ve E L)+ B+ 1)+ (. + 4E L))+
The function j,ﬂpﬂ) is the expansion of the integrand of the genusihgsloop diagram to order

olaiR’

2 64. . 21 (3 2 . ,
AL ety = 2 2000 O 109) 2 By ) 2y () 2 220

ﬂ2 . _ —% _T12,,-1/2
Ysl09(¥) + - valog(ys) + 20y21 ({09 + O(e (o) T2 D . (2.29)
The genus-one contribution to this expression hasatm

1210)= 22 e u)+ <8

32n(E1( J+E(U)+logu). (2.26)

Comparing (2.25) with the expansion ‘féﬁ)l) we see that the genus-two contribution is given b

1)< 2EMEQ)+ 2B+ EL)+ 1)+ 10)+ KB @27

The genus-three contribution in (2.25) extractedhftbe expansion o&'((g?l) S

19(i)= -1 (E,(T)+EU)). (2.28)

)= 27¢

The modular function multiplying th@®®* interaction inD = 7is determined by
42 2
[A(” ——jf(%,’l) =& 229

where
E((g,)o) = E[fl(;g?i;alz- (2-30)

The solution can be written as

25
f((g,)l) = Cz(%l,ﬁs) 2 775 E[ooqlé 7120 (2-31)
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where 5(%5) is a particular solution an 353;7,2 is the only solution of the homogeneous equation

that has perturbative terms consistent with stifepry.
In the limitry;/ ¢4 — oo, for the following equation

1
24s 4s r[s_j

( T 2+ 2) o) co
o B =20 closmcloge 715 D e,

» 81T (2s-3
+ (27 r((%_l))z(zs JEH),, (2.32)

after settingr, =r?, we obtain

42 8 12
sus) — s ° i(Z) & ® =si(a) E I ® _si(3)=sL2)
.[P(3,2) E[oolo];% X (6)Z (7)(g8] * 5 r, E[lo];g + 15| ¢, 01;3 B (2.33)

From this expression we recognise the tdE@‘{f;,)Egsqz) that decompactifies to eight dimensions.
The r;*’® term in (2.33) contributes to th2 =8 threshold. Comparing with the eight-dimensional
expression forfo1 and using E[Ol]3 21 /3E[01] 752, fixes the relative coefficient in (2.31), as

follows. In addition, we recognise the terIEf[T;]_5 in (2.33), multiplied byr,®"®, which is part of the
"2

9'R* interaction in eight dimensions. The other part tbé 9*R* interaction is a term
r3‘8’5E[§j;°’2)E§"42), which does not show up in (2.33), but arises frqm5), as follows. The large;

limit of the source term is obtained with the ue o

6 6
ss) [Pz 445 Iy
L(S'Z)E[looo];g (EBJ E(O’O) 4/7(%) log(gs/vhj. (2.34)

In this limit, the constant term of the particusmution E S contains the contributions

Ip(g,z)ﬂséf):(;—zjs(ﬂoﬁ) §E[fL] EWL)+fU)+ (f—:j fﬁ---}- (2.35)

The first three terms reproduce the eight-dimeraiogsult. Since the source term does not contain
the powerr;®®, & solves a homogeneous equation for t8E3)xSL(2) Laplacian with

eigenvalue 10/3 which is the same as the elgeevaqu[lo] %, In (2.33). The term we are
expecting is of the fornh(E[Oj;2 ESY® | where the coefficienk is fixed by comparing with thé*®*
interaction, which givesk = -8772(2)/5

We will now find the constant part of the partiquéolution, f(‘f;,f’), in the parabolic subgroup of

relevance to the limit of perturbative string thedn this limit, the result is expressed in terais
functions invariant unde8Q(33) = SL(4), the T-duality group. We will need the expansions

18



.[P(‘u) ESL(5) 3= 2{( ) 5 + 2y75E[100]1’ (236)

[100(1;E

8 (4) 2
LB, = yspsi (BT cpsi o 39y

oo ? T

Thus the homogeneous solution provides part of dreigrone and genus-three contributions. In
order to study the perturbative string theory limé will also need the decomposition of tBE(S)

Laplace operator into théSL(4) Laplace operator plus the second-order differerg@erator
associated withy,,

5
A7 = Do) — Dsclapsite +§(y70y7 y +5(y.0y,). (2.38)

The coefficients 5/2 and 5 in this equation havenbdetermined by using the knovih= 87R*

and 0*R* interaction coefficients. Th&®* coefficient is given in (2.36), whereas théR* case
can be checked using

sUz) — -2 4
I P(41) E[looq > ( ) a E[loo] 2 (2.39)
sL(s) -1 Si4) 477(( ) si(a)
I P(41) E[ooui y7 [010] 3 001;2 * (2-40)

The constant term of the particular solution assed with the parabolic subgroup of relevance to
the perturbative expansion is a series of the form

3
Mm,l)f(%i%s) = flnzzc‘,)ff”(“)yrl . (2.41)

The coefficient functionsf>4? can be determined by substituting this genus esipaninto the
Laplace equation (2.29) and using (2.31), whiclegiv

21
65844 45(3)2’ (2-42) (ASO(4)\SM4) _Ej ) = ( )E[loo]l’ (2-43)
2 9
(ASO(4)\SL() 10) (E[loo]l) J (2-44) (A8q4)\SL(4) _Ej 3SU(4) =0. (2-45)

Equation (2.42) gives the tree level contributibhe genus-one coefficient is determined by (2.43),
which is solved by

_ L 20
& s aE[loo] A+242 +a E[?)OU(Ji1 1+242 bE[om] 72t 3 E[log])1 . (2.46)
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for any a,a',b. The constants,a rhust be zero to match the genus-one contributidd +8, and
b can be fixed by the decompactification limit. Ejoa (2.44) defines the genus-two function
SU4) which, by construction, in the decompactificatiamit becomes the genus-two contribution

E(MEQU)+f(T.T)+fU,J) of the *R* interaction in eight dimensions. Finally, (2.4%sh
two independent admissible solutioB§a;; and Egays. The first one combines with the solution of
the homogeneous equation. Thus, the complete pative expansion of the modular functigff),

is given by

20(3F 1 (2
z;jp(“)qgg:fg[ fg) , (f &) st +(L+b)ERY), j+y72< + 2y (S + ?ééiﬁé)mp.j,
’ 7 2

(2.47)

where n.p. indicates non-perturbative contributions. By camdion this reproduces (2.25) in the

decompactification limit since, as discussed abavehis limit the differential equation becomes
the eight-dimensional one. The genus-one contribuithostring perturbation theory is given by

19(j(9), i.e

1)

1

(o9) 20, By
(Jl ) 8 E[010] 1677 Look (2.48)

which determines the value db=57/756- . Interestingly, as irD = 8the value of the genus-
three contribution is given by integrating the #wdmensional lattice factor over the Siegel
fundamental domain fo8p(3,2),

ol

1
J-Jspsz W (33) 270 ( 100 3 + E[()Oj_] 3) (249)

3. On some equations concerning the Eisenstein sgifor higher-rank groups, string theory
amplitudes and string perturbation theory. [3

It is useful to translate the terms in the low gyeexpansion of the analytic part of the following
scattering amplitude

AZWE(s t y) = ZQ(EL)(%A/K)UE agR', (3.1)

p.q=0
(where 3sD=10-d< 10 o, :(s”+t” +u“)(£f3 /4)”, and 7/, is the D-dimensional Planck

length) into local terms in an effective action,tbat the first three terms beyond classical Einste
theory in D dimensions are

Su =3P [d°x/=-GPER R, (3.2)
and
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=5 [d°x/-GPIe)o'R? . (3.3)

and

Spre = (570 [dPx/=GPIERN° R . (3.4)
The automorphic coefficients in (3.2) and (3.3) gireen by the simple expressions,
Q(C?C))) = 2Z( )ES 3/12 " = E[lod] 3/2! (3'5)

and

1
<z((ll?o)) Z(5) E(i 512 " = E[lO‘q 52 (36)

for 3<D<5 (or7=>d = 5).
The decompactification frond to D +1, is the limit associated with the parabolic sulogr®

for d =10-D . Consistency under decompactification in thistlir, /7 ,,, >>1 requires

(D) oy e D+1 Iy P
J.p g((O,O)DESD / 5 , (3.7)

w1 D+l Cou

g4’

and

6-D 12-D
qz(D) DngZ:lD r.d E(D+1) + Iy E(D+1) + Iy (3 8)
_[p (LO) 512 D E (LO) (o'o) . .

fan D+l Cpa Cpa

The symbol L means that constant factors multiplying each téwawe been suppressed. For
D =345, i.e. for the duality groupskg, E,and E;, the automorphic coefficients in these

expressions are simply given by the Eisensteireseatown in (3.5) and (3.6).
The perturbative limit is associated with the patabsubgroupP, and is given byy, - 0 with

¢, fixed. In this limit the expansions of the intefans (3.2) and (3.3) are given by the constant
terms,

_ ol 2
ESD DIP E(((?())) DESS D( Z( ) E[f;}ci]dg ] , (39)
a1 D

and

Y, 10¢1] 0¢-210]
D

_ - o
0L, ne D(Z” B, +vDEf°““’J- 319

The semi-classical M-theory is the limit associateth the parabolic subgrouf, . In this limit the

volume?q),,, —» « of the M-theory torus becomes large and the séassical, or Feynman diagram,
approximation to eleven-dimensional supergravityseful. The constant term of the coefficients in
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(3.2) and (3.3) in this parabolic subgroup is gibgn(using the relation/2™* = /3, /4),,, as well as
(9 = (a),,/ 097 P with d =10-D),

3

8-D () O d+1 gg;rl d Si(d+1)
o L Cz(o,o) 4Z() E ., (3.11)

3 Y [10‘“];2

d+1 d+1

1 5 8
() h I si(d+1) ﬁ 41 _si(d+) ﬁ 41 _si(a+)
b, 4o 08 (ﬁiﬁj o)t Sonls Ty, | Fowade | (312

The various contributions in (3.11) agree with th@ressions obtained by evaluating the sum of
one-loop and two-loop Feynman diagram contributitmshe amplitude in eleven-dimensional

supergravity compactified on(ai +1)-torus. The two terms in th@* coefficient (3.11) arise from
the compactified one-loop diagrams together wite tdounterterm diagram, while the terms in

9'R* coefficient (3.12) arise from the sum of the cogtjfid two-loop diagrams and the one-loop
diagram that includes a vertex for the one-loopntererm.
The constant term of thE, Eisenstein series, corresponding to the deconfation from D =5

to D = 6 results in the sum of tw8((55) series in the comblnatlon;E[SO(55 E[ﬁf)’(()gj?s
E
multiplying r?°’*, where the hats indicate the finite part of théeseafter subtraction of aa pole.

Although the individualSO(55) series have poles is, the residues of these poles cancel and the
sum is finite. This is seen by using the relatiéhs /¢ /r, and r = (r5/€6)”2, leading to

6
1- S(XSS) 4 =50(55) i (6) @ i
Jr, € ﬁ 2 Taoog s * 35 ot T 209 7 et ] | 49

where y is a constant scale factor. The term lineamgnis the one that multiplies th® = 6
coefficient, &) so that

) = 1pgsoss) 2 50(55)
E(J.O) _EE[loood +_ 00001;3 * (3-14)
The expression foE[f‘ﬂ(‘i]"s) is expressible by a Siegel-Weil formula relatihg integral over the

moduli space of genus-one Riemann surfaceSId®,Z) Eisenstein series times lattice sums and
Sdd,d) Eisenstein series,

so(d,d) — Vs d2r )
E ]S 2((284‘2 d) ()'[’SLZZ) T22 E5+1_2(T)(r(dyd)(r) Vd)| (315)

where Es(T)ZZ(m,n)¢(o,o)yS/|m+ nz|” is the usualSL(2,Z) Eisenstein series anfl, (r) is
defined in the following expression
22



(m -n r)G,J (mJ n’r)
M. (1) =V, e . (3.16)
(0.0 ’ %

ml ’ni ZZd
It follows from this definition that the seriesiséies the functional equation

Esd) = E(2s-2d +3)é(2s-d +1)  ¢(29) Esdla)
Sho)s = E(2s)f(2s-d+2)  ¢(2d-2-2s) Bhota1-s-

(3.17)

where, in this equatioré(s) is the completed Riemanfi-function &(s) = n‘s’zr(gji(s).

Based on input from string theory the constant termthe parabolic subgrou, ., the

decompactification limit (decompactification to D4, should consist of five components with
distinct powers ofr

’ 14-D " " 14-D " 8-D " 4-D
j ) 4(((51)) D( D+1J d f((OD,lJil) + ( d J + ( d j f((('fo*)l) + ( d J g(r((]l?ogl) +
a1 lp Con Con Con Cpa

+( o j _ +o(efd”v+l)}. (3.18)

€D+1
We now consider the constant term that arises trensolution of the following equation
2
(a9 +108¢f), =~(¢h) . (3.19)

which describes the limit of decompactification @o=4 in the E; case. We are interested in the
limit associated with the parabolic subgroBp . We note that the constant term of the source term
can be expressed as

R e ) f_756((5) E, r_799Z
Lag(f(o,o)) 611[ (E[los]gj +(€J Vs E[loe];g+ l,

The perturbative expansion is given by the constammh associated with the maximal parabolic
subgroup associated with the no&e with Levi subgroquL(l)x Sd?,?). String perturbation

2i +o(ef7”4)} (3.20)

theory (an expansion in powers gf starting aty;") requires this to have the form
3
3, &= flsl[z YEIRSA) 4 ofg )j (3.21)
“ k=0

The coefficientstSO(7'7) can be determined by a procedure analogous toribein the previous
limit, as follows. First the Laplacian® on E8/Sd16) is decomposed in this limit into a sum of
the Laplacian or8(7,7)/(SQ7)x S7)) and a Laplacian along thg, direction
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N9 _, psAraNlsolr)solr) +%(ygay3 F+23y0, . (3.22)

Next, the constant term of the source is obtainesubstituting the expansion 64‘3})), resulting in

Y, 7T

J'Pa (5((3,)0))2 ﬁi[4g ( ) ESO(]737) 2]3;2 (E[so(f;)j +O(e—1/y3 )} (3.23)

The structure of this expression is consistent \(t21), which we may use as an ansatz for the
solution. Substituting (3.21), (3.22) and (3.23)oi§3.19) results in equations that determine the
coefficientsF, (using/, =7.y,),

(Aso(7,7)/so(7)xso(7) _ 6)FOSO(7,7) =-47 (3)2 ' (3.24)

[ Aso(7,7)/so(7)xso(7) + Ej Flso(7,7) —_ 6{ (3) Eso(7,57) , (3.25)
2 T [10‘”’];5

2
(Aso(7,7)/SO(7)XSO(7)+18)|:230(7v7): i( [30(]757)j ,  (3.26)

( SOl S0l7)so(7) +6_23j FS) = . (3.27)

A solution to (3.24) that is compatible with stripgrturbation theory is the constant

FSA77) = 25( ) (3.28)

0 ’

which is precisely the genus zero (tree-level) gbation. A solution to the homogeneous equation
((3.25) with no source term) that is consistenhwsitring theory ISESO(77) resulting in a solution of

[ ]11’
(3.25) given by

1 14c)
Fso(7,7) Eso(7 7) Eso(7 7)' 3.29
1 12 [106] 11 27T [ ] 5 ( )

The function, 5477, satisfies the source-free (homogeneous) equédi@d) since there is ny?

term in the constant term of the source. A solutibnrelevance to string theory is given by the
linear combination of maximal parabolic Eisenst&nies,

F33q7,7) — a,E[ig)I(]:) so(77 }ESO(”) (3_30)

[051(’] [02104];2 ’

where a, and y are constants that are determined from the boynttarditions. We find that
these Eisenstein series satisfy the relations
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E[ﬁ%?)gob E[ooooon}s’ 77 ;= 0. (3.31)

[oomood;E
Therefore the expression (3.30) takes the form
FS977) = (g + ,B)E[Soj”). (3.32)

The normalisation is fixed by comparison with trengs three contribution in string theory in the
limit in which the volume of the 7-torusgj’, is large, resulting in

vol|Z
a+p= o) . 1 (3.33)

27(6) 270
wherevol(%,)) = {(6)/135 is the volume of the Siegel fundamental domain3g{3 ). Thence,
we have determined the constant terms of the soluf equation (3.19) fo:f’((g’?l) in the parabolic
subgroupP, that agree with the results of the explicit evébraof string perturbation theory.

4. On some equations concerning U-duality invariant mdular form for the D°®R*
interaction in the effective action of type 1IB sting theory compactified onT?. [4]

The complete perturbative part of the modular fesmgiven by the following expression:

. + @B T 4 1 T) L e TP+ 1(0.0)s

20
+ D B M B L O + DB, M EL.OTY. @)

pert pert

1
2
In ten dimensions (4.1) without thé(T,'IT)+ f(U,LT) term, gives all the contributions of the
following expression:

s=1[d(=g ¢ 7 + 2 (D) roc(de s 2elele . pr, @1

(i.e. the interaction concerning the low energyetifze action for type IIB superstring theory imte
dimensions, where the ... involve contributions foliinstantons), except the genus two
contribution. We first decompactify to nine dimeorss by defining

rOO
T, =r,ry, Uu,=-=,
r.B

wherer, is the direction that is being decompactified. ¢der and r, are the radii ofT? in the
string frame. Now let us take the limit, - o, so thatT,,U, — «. This leads to the nine
dimensional interaction
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12[d x\/—_g{(r )¢ (3F {?Z(S)Z(a)(rg+%J+zg(2)g(3)(r8 " % J}+

+47 (2P (ree) " + SZ (6)(rBe‘2”’)_2(rB3 + r1‘°’ H D°R*, (4.1b)

B

where we have set Isj'dsx - O, =J‘d9x1/— g, - Taking the limitr, — o, we get the term in
the ten dimensional effective action

Ii[d*x/~g (z(s)ze-w +27(3)7(2) + éz(es)eijng“ . (4.10)

where we have setIsJ'dgx gyl = J'dloxq/— g.

Given the expression (4.1) for the perturbative pathe modular form, it is natural to proposettha
the exact expression for the modular form is gibvgn

Fonay(M)+ D E oM BT + £0.0)+ 2B, (M EL.UPE, @2)

where
Eornorn(M)per = CEP LS + @R TP 4 £ 1. T) e 2] BT, (43)

We now constructf( _), and also obtain the non-perturbative completdr{4.3). Now, the
modular form¢ s, 5,7 ( ) for the D°R* interaction in ten dimensions satisfies a Poisspration

ASL(Z,Z)£(3/23/2)( ) 1253/23/2( T) 6(E3/2(T'T))2 (4-4)

on the fundamental domain 6!1(2,2)T . The source term in (4.4) is the square of tbhdutar form

for the R* interaction, which can be understood based oniderations of supersymmetry.
Because SL(2,7), 0 SL(32),, and theU dependence in the expression (4.2) is alread iiés

natural to propose tha¢f(3,2’3,2)(M) satisfies a Poisson equation on the fundamentalado of
SL(3z), given by

ASL(3,Z)£(3/2,3/2)(M)205(3/2,3/2( )+ﬁ( 3/2( ))2' (4-5)

wherea and 8 are numbers. Again, the source term in (4.5)esstijuare of the modular form for

the R* interaction in eight dimensions. Let us first ddes the perturbative content of (4.5). We
use the relation

erl 02
Aple(ts,z):ASLzz +3’uza/,1 , (4.6)

26



where y =1V, is the eight dimensional dilaton. Now (4.6) canoiained based on symmetries
alone. From (4.3), we see that every term in theugeative part off(g,zys/z)(M) is of the form

#9,(T.T), whereg, (T,T) is SL(2,Z), invariant. Thus\%f, ., must have the form

2
pert

0
susz _51 su2,z); +52/J /J Czs,u /J' (4-7)

where, in this equatior;,¢,, and & are numbers. In order to determine them, we aitt i’;z)
on E,(M)S7:2). such that A%, E (M )& ) = 28(2s/3-1)E,(M)T; ). Using (4.6), (4.3) and

Eyro(M)per =260 (3) + 2E(T. T4, (a.8)
we see that (4.5) gives us the set of equations

a+48=6, a+88=0 %: . (4.9)

wln

and
ASL(z,z)T f (T’T) aof (T T)+ 4/8(E1( ))2 . (4-10)

So (4.9) is solved by
. (4.11)

Q
I
|_\
N
o
I
[
N w

thus (4.10) reduces to
Mg, F(T.T)=12f(T.T)-6(E(T.T)f. @12)

Thus (4.12) gives us the equation fb(T,'T) (and f(U ,LT) as well), while (4.5) reduces to

3
ASL(3,Z)£(3/2,3/2)(M ) = 125(3/2,3/2)('\/I )__(Es/z(M ))2 , (4.13)

N

thus giving us an explicit equation satisfied bg tnodular formqf(g,z,S,z)(M). The structure of
(4.12) is very similar to (4.4), and our analysigiong similar lines. In (4.12) we substitute

F(T,7)=£,(T,)+ 3 £(T, )& . (4.14)

k#0

Substituting the regularized expression E}(T,'T) given by:

1/2
m

E:L(T T)SU(ZZ) %T 7inT, +27T\/_ Kl/z(277Tz|rr'd)ezﬂmT1 :_’Tln(TZ|'7(T)|4)' (4.14b)

m¢0 nz0

we get the equation satisfied Hy(T, )

27



(Tz a‘?; —12] f,(T,) = —6[(2{(2)r2 —7inT,f + 4> 17k ;L)e“"“”ﬂ . (4.15)

Now writing

II
_,.,>

Z f (T,)e*™ ™ (4.16)
k#

where fO(TZ) is the contribution from the zero worldsheet ingta sector, andfk(Tz) is the
contribution from the worldsheet instanton antitémgon sector with vanishing NS-NS charge,
from (4.15) we get differential equations féy(T,) and f,(T,). For f o(T,) we get

(TZZ 6(:2 _12j fo(Tz) = _6(25(2)1-2 - 7T|nT2)2 . (417)

2
which has the solution

f(1,)= %{65— 207, + 487°T2) + 1 |nT{—% +%InT2 —1—12} FATS +% . (4.18)

2

where A, and A, are arbitrary constants.
For f, (T,), we get

Tz

{T ( i 87'1fk|—+(4n[k|) j }f (T,)=—24712(k2), (4.19)
which has the solution

£ (T,)=- [24(477|k|T +1f ((477[k|T 3)2+15+ (a7, ) (2 - 472k(T, ) +

448}k| 7T,
+ (47T, ) €™ Ei(~ 47T, )J . (4.20)

where Ei(x) is the exponential integral function. Using thiatien

—t

Ei(-x)= e‘{—% +[ ot

W:| ) X>O, (421)

we see that the last term in (4.20) has the costegtture to be a worldsheet instanton contrilutio
Thence, we can rewrite the eq. (4.20) also asvi@lio

£ (T,)=- [24(477|k|T +1f ((4n|k|T 3)2+15+ (47T, ) (2 - 47iKT, ) +

443k| Vil
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- 1 ) !
+ (477|k|-|-2)79477“<‘T2 ) 4”1“2(— 47’1rk|T + J-o dt (t N 4?7|k|T )2 J] . (4.21b)
2 2

For the worldsheet instantons with non-vanishingN\&charge, we get the equation

aT;
- 24772 Z,U(k1 ,1),U(k2 ’]_)e_Z’T(‘kl‘Jr‘kz‘)Tz , (422)

K 20,k 20,k, +k, =k

{Tg( 0" _ 4772k2] —12} f(T,) = —247(2¢ (2)T, - 72InT, )k D) 2™ +

which in principle can be solved iteratively by exging in largeT,. Substituting (4.18) and the
corresponding expression f(fg(U 2) into (4.2), we can easily study the decompactificalimit as

before. Only theT,” term in the expression fofO(Tz) contributes in this limit. In nine dimensions,
in addition to (4.1b) it also gives a term

67(4)2 [ d°xy= g, (rBe‘“’)_l(rBz +r—12jD6:’R4 . (4.23)

B

where we have used(4) = 77 /90. Thence, we can rewrite the eq. (4.23) also asvist

6 190)2 [d*x/= g, (rBe"”’)_l(rBz +r—12jD65R4 . (4.23b)

B

However, it also gives a divergent contribution

Al [d*%- g (fse‘z”')_l(rg * r_l‘*jrf DeR*. (4.24)

B

Further decompactifying to ten dimension, this giaa additional contribution to (4.1c) which is
equal to

6¢(4) j d'°x,/- ge*”D°R*. (4.25)
This is a non-trivial consistency check on our msgd modular form. Note that we can send
((r,T) - f(1.T)+ g, ([T, T, (4.26)
for arbitrary A in (4.12) becausE4(T,'T)S”(2’Z) satisfies the homogeneous equation
Do) BT TP =126, (1, T (4.27)

In the zero worldsheet instanton sector, this imeslshifting the coefficient of tHg' term
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A - A=A+2A(8), (4.28)

and theT,® term

A = A=A, +%”)|((7). (4.29)

In the sector with world sheet instanton chakgehe extra terms are automatically solutions ef th
homogeneous equation in (4.22).

Multiplying (4.12) by E4(T,'T)S”(2’Z) and integrating over the restricted fundamentahaio of
S2,z), , we get that

jdzT

= E (T T (r,T)+

(T T )qu Z)Asuz,z)T f (T’-T) =

-6f. ?'FZT EMTPEMT). .30

We have restricted the integral to be oras the integrals diverge and we regulate them, and
finally take L — oo . Integrating by parts, and using (4.27), from @3 &e get that

12 sizz) Of 9ES>?) —_ dT sL(2,.) =\
on{ee i ) —of STRTsT . @

Using (4.18) withA, replaced byﬁz, the left hand side of (4.31) yields

5(8)(—14/12 %E’ 7§L“ 8;72 L+ 2724 InL - 4°L°(In LY +%L3|nLj (4.32)

Using the Poincare series representationEfﬁfz'z), and the Rankin-Selberg formula the right hand
side of (4.31) yields

(8 )( Z( FL° -3 (2)L %L3+12Z( 2)LInL - 4%%(In L)2+%L3InLj+

- 48777 (8 j dT,T2> 1A (k)e ™™, (4.33)

k#0

leading to

00
A

3
2_TZ =

7(3)(5), (4.34)

-l>||—\

using an identity due to Ramanujan.
The analytic part of the amplitude relevant for D& R*interaction is given by
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| (S T) - 277Aq5|(T I do_o_k 14-G 1 1,0/1f 2774 gST jmda-a-k‘5/26‘7ﬁuf|fﬂ121/‘7
TKIR, g, l)(ooo ° K (i I”;(OOO) ’

(4.35)
where

= [ [ dea [* dea(- QS Ti ). (4.36)

The two perturbative contributions are given by

1(S,T):

anal

4772k+5/2|—[g_ka(3 2k)|121k 3,.2(2k-3)p" 13 qkS'T , (437)

and

(ST = 27::5& 3( ATl E WA TAY . (4.38)

This leads to

_ /(1“1R 271 (A SL(zz) 4K *5I2 (E_ j _ 2k-1)¢* || 2kqpyk
A, (277)“|J . (r2) e urT*) 5 k-2t iz, (4.39)

where

=Gt G, t Q5. (4.40)

The expression (4.39) leads to terms in the lIBai¥e action given by

1% d®y= g, {2”( of g, (T2, 707 4 ”zkk!m [— ij(B—2k)(e‘2¢’BTZB)L_k(UzB)k}Dz"fR“.

(4.41)
Given the perturbative equality of the amplitudeha two type Il theories and the Eisenstein series
of ordersfor SL(2,2), defined by

TP S T oo TV e,

(p.a) 00|p+qT| r(s)
2775\/_

s-1/2
( ml¢0 m, 20

K 2 (27T, Jmmy Je?™n % = 2 (28] + NTTT;‘SF(Sr_fsl)/Z)Z (2s-1)+

mz
4775\/_ Z|k|s 12 ( ) . 1/2(27ﬂ' |k|) 27ikT, . (4.41b)

k#0

it is natural to enhance tf(UzB)k factors to Ek(U B,UB)SL(Z'Z), and symmetrize i) ® and T®. Thus
(4.41) gets enhanced to
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1
4F(k+jl‘(k—1)((2k—2)

126 [ 4P /= (2k)! E(eT SL(ZZ)E Ut 5\sU22) 2
s.[ X\/ Os (27T)2k_1||32k|k ( ) ( ) + nzk—3/2|BZk|

( Z“’T)l ( E(re 7o+ g (UPT )SL(”))]DZKW, (4.42)
where we have used the relations

2k—ln2k
Z(2k) =2(2—k)!|sz| . (4.43)

wherek is a positive integerB,, are the Bernoulli numbers, and

r(2x) :sz—_mr(x)r(x%j . (4.44)

Jor

Decompactifying to nine dimensions, we see thaylgives the interaction

2k-1 4773/2 2k-1 1 2k -2 Kk 1 2k 4
12 jd X [— { 7(2k -1) (k j[ + s 1} 4772%@ rB)l (rB +EHD R
48)

which contributes at genus one and at gdnuk also gives the divergent contribution
—Z (2K )12 1jd X - g,r2'D*R*  (4.46)

which leads to the threshold singularities. Furttiecompactifying (4.45) to ten dimensions, this
leads to the interaction

4]7.2( 2k 2 2k ZJ-d:LOX\/_e 1- k¢7 D2ka4 (447)

which contributes at genus, while the genus one contribution vanishes. b glises the divergent
contribution

a'?
k!

Z(2k-1)r [k—%jlj“ j dox /- gr2UD*R*, (4.48)

corresponding to the threshold singularities.

5aliematical connections
Now in this Section, we have described various iptessnathematical connections between the

arguments above mentioned and some sectors of Nufhieery, principally with some equations
concerning the Ramanujan’s modular equations tretrelated to the physical vibrations of the
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bosonic strings and of the superstrings, some Rajaas identities concerning and the zeta
strings.

Now we want to show an interesting equation conngrithe gauge fields as described in the
Jormakka’s paper “Solutions to Yang-Mills equatiorfS] and connected with an Ramanujan’s
identity concerningm in the my recent paper:Oh some equations concerning quantum
electrodynamics coupled to quantum gravity, thevigaional contributions to the gauge couplings
and quantum effects in the theory of gravitatioratimematical connections with some sector of
String Theory and Number Theoryg]

jdzxe—ﬁ (y2+y§)%jdy1 2“’3) no_ J’dzxe—/f’z(y%w%)%\/ﬁ(\/iﬁ)_l =
Z%m(ﬁﬂ)_lf e [ 2 Z% Norl2p) [axe " [aye LD
:% g(zﬂ)(ﬁﬂ) [dxe ™ :%E %(ZH)(\/Eﬂ)_ZIdySE_'B % :i\/g %(277)2 (\/E,B)

2 H 2
=7 j oty V) N L -1 i—3ﬂ+ﬂ2 . (5.1)
0 sinh7x 0 sinh7x 16

This equation can be connected with the eq. (1i2it)we have multiplied fof% as follows:

S67° 3847 de ngkzﬂm jj‘l brikin,) =57 22 5 [ 3)

128 por 128 7772 = K

3 2
:
2477 [dQ, Q3> K4 (|k| jfi{f(277[k|§22)=2n32ﬂ(k—22. (5.2)

kz0

Thence, we obtain the following expression:

jd xa #’ (vz+y2 \/_jdyl — J‘dzxe B (%ﬂé)%\/ﬁ(\/ﬁﬂ)—l =
:%\/2_( ) jdxse B y3jdx2e 2\@?) y2 :% g\/ﬁ(\/}ﬂ)_ljd)%e_ﬁzygjdyZe—z(ﬁﬂ) v2 _
=\ 2 @rl2p) [axe %E ~(ernlvap)” aye %E (e V2p)”



sinh7x sinh7x

= [0 SO e [0 S = e |
0 16 4

3 2
2 K, j
= 2477 j:szngquk@ H2(271KQ,) = 2y~ [ . (53

k=1

With regard the mathematical connections wittand @, thence with theiniversal music system

based on Phjwe have the following value in the eq. (1.2—1%% =0,463182 Now, this number is

17T
very near to the following 0,46440787= M7, where 1,458980337 is a value of the
T
system, that is abouf®)"'” = (®)**'” =1,459501596 We note also th 45975701596 0464573

Thence, we have,46457(C 0,46440L 0,46318, a very good approximation!

With regard the eq. (2.25)

2¢(3)° 64 2 :
ﬂ%fi,zzdﬂldBRRﬁ‘S?l)#i( 258) #2220+ ”Z( 2 0gy,)+ 2 = £ °1’)+5(75’+I52’(Jf°’°))J

ﬂ.z ! _Tl2 ,-1/2
Yalog(ys) + 7 valoa(ys ) + 2051173 °1))+o( (o) s TG D

that we have multiplied fo%, we obtain the following expression:

27n£6J-1/2

-1/2

dQldBRRﬂ(S?l) 5(9”{( ) +144ﬂ2| ( 0,1)) 3772(( )Iog(y8)+9715/8 { (J 1))+£(7_T+|1(2)(j(0,o))j

1/2,,-1/2

yslog(ys)+§yglog(y8) +135721 ({0 )+O( g ) s g T D (5.4)

This equation can be connected with the (5.1) vemadbtain:

jdzxe—ﬂz(y§+y§)%jdyle_;(ﬁﬁ)zylz =J'dzxeﬁ (v3+y2) \/—\/_(\/_,3)
=i?)\/ET(\/E,B’)_ljdxg,e‘/’zygjdxze_;(&ﬁ)zyg =—\/:\/§T \/5,8 _1jd><3e‘/’2y32jdyze_;(ﬁﬁ)2 .
= (enlVan) faxe ™ =32 en2p) faye s = 1 22 eme(Vap)
Ud v 011 L Va2 } LA

:”7300 3cosm dx+ jxg,smm j 1(%_377“72}:

sinh7x sinh7x
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= 20005 60,08l = {9”5() +14471 ({7 )+ 3772(( 3B ogiy, ) ot £ ”)+ﬁ(5+'

4 \ 2

ﬂ3 L
¥s10g(¥e) + - Ysloglye)* +1357;1 (3 )+O( g () g D (5.5)

With regard the mathematical connections wittand @, thence with theiniversal music system
based on Phiwe have the following values in the eq. (2.25):

= 0,34900J0,34830590 g = 0,3655400]0,3647506 &% =67,02064167157.

9

Now, we note that these values, i.e. 0,3483059(B647506; 67,157 are all connected wiithu

and 71. Indeed, we havew:s— 0,348305898 MB_ 0,364750672
Vid

(12,1352549]]T)+(9,241808286]7):38,12402767+ 29,03399702= 67158024 We want to

evidence that the numbefls094235253 1,145898033 12,13525491 and 9,241808286are all
belonging to the column “system”.

With regard the equation (2.33):

12

.[P(32) E> 7 :25(6)Z (7)(k]5 +i(2)(%j5 ES"(35) +§(k]5 ?)Ii](?g)ESSL(z)’

[o01d; lg 5 [ol5  15( /4

if we multiply for 5772 we obtain the following expression:

42

57”.';(3,2) E[ioqf;;; Z%TZZ(G)ZW)(;_ZJS _Z( )( rsj [10](;2 ?ﬂ(_j E[Oﬂ SL(Z)' (5-6)
This equation can be connected with the (5.1),veadbtain:
J-dzxe"gz(ygﬂ’g)%jdyle_;(ﬁﬁ)zy12 :jdzxeﬁ ) \/—\/_(x/_ﬁ)
v \/7\/_\/_,3 jd)ge‘ﬂ y3J'dy2e2 72
- L B onhiz) foxe :%g_@n W28 fayes = 12 ek (2a)°
[Id xe P i+ \/gx/gr(\/fﬂ)_l}z =8§x LI

:>7T°‘(J.O 300577xd J-X35|n77x ] 1(i—3ﬂ+ﬂ2]3

sinh7x sinh7x

\/_( )J'dx3e‘”3jd><2e2
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42 8 12

57 577 r.\5 7 /C 2 r. |5

=7 Jron g =2 2K (7)(73] i (Z)H e +?(fj SES. ()
2 8 3 2 8

With regard the mathematical connections wittand @, thence with theiniversal music system
based on Phiwe have the following values in the eq. (5.6):

2?72 =2,09439510212100899497 5777 =392699081113922506639

; =7,7/515691717,766444154 % =19739208811,96726328

Now, we note that these values, i.e. 2,10089949,922506639; 7,766444154; 1,96726328 are
all connected witil/n, n and 1/1,375 (where 1,375 is the constant reggrttia number of the
partitions). Indeed, we have:

0,66873708 71 = 2100899497 5,393446629]]%75 =3922506639

24721359541 =7, 76644415 6,180339887437]; =196726328

We want to evidence that the numbe®,66873708 5,393446629 2,472135954 and
6,1803398874are all belonging to the column “system”.

With regard the egs (4.19) and (4.21b), we havddh@ving mathematical connections:

{Tj( il 877[k|aiT2 + (477[k|)2] —12} f(T,) = 2412 (k) =

Tz

jw COSTEXW oW iy
0 coshrx \]142

antilog

afw) | i oo
- log[\/[lo+11\/§j+\/(1o+7\/§j] 'Og{\/[loﬂlﬁ}\/(w”ﬁj]' |
4 4 4 4
f(T,)=- 443k| ]ﬂ_g[24(4n[k|T +1f ((4n|k|T 3)2 +15+ (47KIT, ' (2 - 472KT, ) +

7 _anKT, p-ankT,| 1 @ e’
+ (477|k|T2) e (& [ T n|k|T2 + IO dt—(t " 477fk|T2)2 j] =
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jw COS7EXW oW iy

0 coshrx /142
n—zw‘ : tZW

e * @litw) /142

o] ]

i.e. with the Ramanujan’s modular equations regarthe physical vibrations of the bosonic strings

antilog

that are connected also with(thence with® by the simple expressiqu‘nﬁg =0).

With regard the mathematical connections wittand @, thence with theiniversal music system
based on Phiwe have the following values in the eqgs. (4.18) &.23b):

2

B

6 190)2 [d*x/= g, (rBe"”’)_l(rBz +r—12jD65R4 .

% = 0,01370778310,01355123& %}577?472;

]7.4

90 =108232323411,082022746- 0,34441853 17

We want to evidence that the numbeds042572472 and 0,344418537are all belonging to the

column “system”.
Also in the eq. (4.29) we have a value connectel thieuniversal music system based on Phi:

Ao A=A +5§”/1((7).

Indeed, we have that

%’7 = ],963495409]%7: 1967263286

and the numbe,180339887s belonging to the column “system”.
With regard the eqgs. (4.32), (4.33) and (4.34),hage the following values connected with the
universal music system based on Phi:

81’

art L+ 2724 In L - 477°L%(In L)2+TL3In Lj;

~ 5 _i
Z(8)(—14/12 —Tet

2

L4—%
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%—259757576]]8090169943]1 2541601846 or =0,3606797172=259689437,

g : 15,50313834]19,4164078&% =1553312629
% =8 7729816891%6_ 8726913665
87 _ 263180450718224922359_ 55150741

3 Vg

3

14 =0,06820926110,021926027 = 0,068882623
T

We want to evidence that the numbé&r$2192602; 0,36067977; 8,090169943; 19,47840
27,41640786; 82,2492235are all belonging to the column “system”.

With regard the eq. (4.33), if we multiply it f%% we have the following mathematical connection
with the eq. (5.1):

T T, 48 s 37 s s T sy T a2l T L s
3—(()(329 ¢y -5 4%L+32D2Z(2)LInL 8L(|nL)+4%L|nLj+

3 6773 .[ dTTZZIJ (k,l) SanikTy

oL g T < s L ]
( ) J-dxseﬁysj-dxzez \/7\/_\/_,3 jd)geﬁy3jdye2 el

2mi2p) Jaye? =22 en):(28)”

Q‘

15
[

T (271)(x/§,[>’)_2jdx3e’ﬁzy§ =1

J3 22(

_gl 1
\/-\/_(«/_/3)} 8", T2

:>n3(j0 3 COST 4 x+ [ 3 Sin7c J i(;—fﬁzﬂnz) (5.10)
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Furthermore, we have also the mathematical cororecbhetween the eq. (4.33) and the
Ramanujan’s modular equations regarding the phlysibaations of the bosonic strings that are

connected also withz (thence with® by the simple expressiqucﬂﬁg— =)

(8 )( Z( FL° -3 (2)L ﬁ|_3+121( )L InL - 472%(In LY +%L3InLj

- 4877 (8 deTZZy (ke ™™= =

k#0
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0 coshrx \/142
% W

e qiw) ) /142

] ]

Now we want to describe the mathematical connestlmgtween some equations described in the
present paper and the most important equationsecoing the zeta stringg(]
We remember that the equation of motion for tha s&ing¢ is

= el K o)k =—2-
Z( jq) (272 (2P Jiciennns® Z( 2Jw(k)dk p 612

which has an evident solutign=0.

For the case of time dependent spatially homogeneolutions, we have the following equation of
motion

antilog

Z( azjq(t) (1 j\ko\> @ge‘ik‘“i(ﬁ]@(%)dko=1f(2t)- (5.13)

2 27) 2

With regard the open and closed scalar zeta sirthg equations of motion are

Z( jw—( 2P IIXKZ( J (k)dk =36 2_1) . (5.14)

nz1

i

and one can easily see trivial solutiprd= . 0

o1 2ln+ 1)

je‘xkz( J()dk Z[ E 1)9n(nz_l)‘1(¢“+1—1)] (5.15)

We note that the egs. (2.25) and (2.33) can bé&ecklaith the eq. (5.13). We obtain:

2(\3)" A 64 2 .
A 8y = 4 200 O 100) 28 oy ) 2y ) 2 29
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o E25), 2206k U e
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Also the egs. (3.20) and (3.23) can be related thigheq (5.13). We obtain:

5] o2 g (2
= Z('_atzjqﬂ(t) =(ijko> me‘ikt’tz(%jé(ko)dk0 = 1%;()0 . (5.18)
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In conclusion, also the egs. (4.42) and (4.45)bmnonnected with the eq. (5.14). We obtain:
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0
R

Also here, we can observe the mathematical cororectvith 7 and @, thence with theiniversal
music system based on Phindeed, we have the following values in the é<3) and (4.45)

nl)

je'xkz( j()dk o 2 ¢g. (521)

nz1
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% = 1,97392088]%7— 1967263286

47r%'* = 44,54662397114,1202265917 = 44,36000012

We want to evidence that the numbesl80339887and 14,12022659%9are all belonging to the
column “system”.

With regard the mathematical connections with tleenBnujan’s modular equations regarding the
physical vibrations of the bosonic strings that evanected also withr (thence with® by the

simple expressioq/ﬂGZ— =®), we have that also the egs. (1.19) and (2.11)bzarnelated with
them. Indeed, we have that:
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Appendix A (Di Noto Francesco) [8]

antilog

(5.23)

In this Appendix, we have analyzed some pure nughb@ncerning various equations described in

the present paper. We have obtained some usefbilematical connections with some sectors of
Number Theory.



Analysis n first series
2,3,4,56,7,8,9,10, 11, 12, 1415, 16, 18, 2021, 23, 24, 25, 27, 346, 37, 40, 4245, 48.

(the numbers inred are already triangular numbers)

Analysis N’ second series
63, 64, 65, 86, 90, 180, 189, 198, 270, A, 448, 567, 576, 720.

In the second series , onl§78is a triangular number

Analysis first series

List of triangular numbers

A list of some triangular numbers is the following:

325, 351, 378, 406, 435, 465, 496, 528, 561, 536, @6, 703, 741, 780, 820, 861, 903, 946, 990,
1035, 1081, 1128, 1176, 1225, 1275, 1326, 13781, 14835, 1540, 1596, 1653, 1711, 1770, 1830,
1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346,,22485, 2556, 2628, 2701, 2775, 2850, 2926,
3003, 3081, 3160, 3240.

We have: (ired the numbers of the first series)

TABELLA 2T +_6

T 2T-6 2T-5 2T-4 2T-3 2T-2 2T-1 2T 2T +1 2T+2 2T+32T+4 2T+5 2T+6

1 2 3 4 5 6 7 8

3 0 1 2 3 4 5 6 7 8 9 10 11 12
6 6 7 8 9 10 11| 12 13 14 15 16 | 17 18
10 14 15 16 | 17 18 19 20 21 | 22 | 23 24 25| 26
15 24 25 | 26 | 27 28 29 | 30 | 31 32 | 33 34 35| 36
21 36 | 37 38 39 | 40 | 41 | 42 | 43 44 | 45 | 46 47 | 48

We note that aren’t the n prime numbers (13, 17, 1929,31,41,43 e 47, but also 22=2*11,
26=2*13, 28=4*7. 33=3*11, 34= 2*17, 35=7*5, 38=2*14*4*11, 46=2*23). In other words,
among the numbers n of the first series there arensome prime numbers and their small
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multiples, while there are only the prime numbers 57, 11, 23 e 37 with progressive
differences 2, 4, 12 e 14, there are all the Fibooa’s numbers except the smallest 1, and the
numbers 13 and 34 the largest up to 48 (last nurebof the series) thence three Fibonacci’s
numbers of eight.

POSSIBLE CONNECTIONS WITH (p(n) ), THE NUMBERS OF PARTITIONS OF n

5,7,11,15,22,30,42, 56, 77, 101, 135, 176....
45 678 910 11 12 13 14 15

N=234,56,7,8,9,61011, 12, 14,15, 16, 18, 20, 2123 24, 25, 27, 32, 36, 37, 402, 45, 48.

We have that seven of the numbers N analyzed?(Bes,7,11,15, and 42 are also partitions of
numbers p(n) with n 2, 3, 4, 5, 6, 7, 1that are also among the numbiEranalyzed (N now
uppercase for distinguish it from n of p(n) ); ilehithe 22 = p(8) is among the numbers N 21 and
23,and30is among 27 and 32 about a as arithmetic méar32)/2 = 29,530

We know that the number of partitions ofpin) come out in the Nature about with the same
frequency of the Fibonacci’'s numbers, and theyliakefrom the equation p(y F(n)= n"2 +n_+

c’ (see the paper: “L’equazione preferita dalltura’), and, as the Fibonacci’s numbers and the
aurea ratio, they are present also in the striagrih thence, we conclude that there is an impbrtan
and fundamental relationship between the numbetké\partitions p(n) and the string theory.

Now we observe the following Table

n p(n) =N N n=N
2 2 2 2
3 3 3 3
4
4 5 5 4
6
5 7 7 5
8
9
10

N
w



6 11 11 6

12

14

7 15 15 7

16

18

20

8 22= 21

23

24

25

27

9 30= 32

36

37

40

10 42 42 10

45

48

We note that some of p(n) and somp(n) are alsoN = numbers of the series that are come out
from the calculation on the strings.

Now we see with the triangle of the even numb&s) (

0
2 4
6 8 10
12 14 16 18
20 22 24 26 28
30 32 34 36 38 40
42 44 46 48 50 52 54

where the even numbers N are on the top, therotltinskipping one or two even numbers. The
middle column, consisting of squares of odd numbegari — 1, instead, is completé = 1°2-1,
8=3"2-1,24=5"2-1 48=7"2-1 (Q not part of the numbers N, but is of the form 112 0)

Triangle of the odd numbers:

3 5
7 9 11
1315 17 19
21 23 25 27 29
31 33 5337 39 41
4345 47 49 51 53 55
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Also here the numbers N are on the top, then thinskipping some odd numbers; the middle
column consisting of squares of the odd numbers.stims of each row are cubes (1,8,27,64)

Triangle mixgxyen and odd)

1112 13 14 15
16 1718 19 20 21
22 23 2425 26 27 28
2930 313233 34 35 36
37 38 39 404142 43 44 45
46 4748 49 50 51 52 53 54 55
56 ...

The number of partitions p(n) areitalic. They are on the outside, with a few exceptioos (f
example, 42, almost to half of their line).

Also here we note that the external diagonal ditrapnsists of triangular numbers, with six
numberN also triangular numbers T, and other six numbens tRe diagonal left that are of the
form T+1. And since also the internal diagonalstaornng many numbers N, it follows that many
of them are of the form TI+, T+2, as from the following Table

T-2 T-1 T T+1 T+2
1 2 3

1 2 3 4 5

4 5 6 7 8

13 14 15 16 17

19 20 21 22 23

26 27 28 29 30

34 35 36 37 38

43 44 45 46 47

53 54 55 56 57

Only 11 numbers N of 28 beyond to the above folrasthe connection is obvious and evident
(the missing numbers moving away from them, buy tire all included in T3, T+4, ecc. (see
Table 2T6)
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Analysis second series

Now we see with the Table concerning_23+2T+b, the other series of

numbers, that are N’ 63, 64, 65, 86, 90, 180, 189, 198, 270, 315, 348, 867, 576, 720.

We note that the root of the number 576 is 24, T2t = 24 X30, where 24 is connected to the
vibrations of the bosonic strings, 44%6&x 8, where 8 is connected to the vibrations of the
superstrings and is a Fibonacci’'s number and 3Z8x2 x 9 where 21 is a Fibonacci’s number.
We note that30 +1 =31 = Lie’s number (5"2+5+1%1), 56+1 =57 = Lie’s number (7/2+7+1%7),
21 already Lie’s number (4"2*4*1Z1),

and that als®&6 =7*8 is a multiple of 8, and is also a Lie’s number 2"2+2+1 sfurthermore
also 90 +1 91 is a Lie’s number (972+9+191) and 90 is in90=90*1, 180=90*2, 90*3=270,
90*8 =720, all multiples of 90 and numbersN’; and 90 = also number of the form 2T =2*45
and about triangular number (90= 91 triangular number)

TABLE for the numbelN’

2T-a 2T-b 2T 2T+a 2T+b
2T -9 =63 72-8 64 72 -7= |72
65
90 - 4 =86 90
182-2=180 182 182 +7 £89 182+16498
210
272 -2=270 272
306 306 + 9315
380 -2 878 380
462 -14 =448 462
552 552 + 15867 552+24=576
702 702+18%20

Thence, the number of the second series are pra8eut in the columns 2B+and 2THh, with a
and b small numbers, that aren’t >df".

Now we take the two series
2,3,4,56,7,8,910, 11, 12, 1415, 16, 18, 2021, 23, 24, 25, 27, 386, 37, 40, 4245, 48.

63, 64, 65, 86, 90, 180, 189, 198, 270, 3, 448, 567, 576, 720.

46




and the following partitions of numbers
56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792

We observe that:

56=48 +8;77=63 + 14;101=90 + 11;135=90 + 45;176= 90 + 86;
231=189 + 42;297= 270 +27;385= 378 + 7,490= 448 + 42,

627=378 + 180 + 48 + 21792= 378 + 378 + 36.

Thence, partitions of numbers that are sums of reusnbf the two series.

Now we analyze the Lie’s numbers and the Wittenisibers, searching the mathematical
connections with the numbers of the two series.

The Lie’s numbers of the parabolic form n"2 + n + 1 of the projective geometries.

TABLE 1 - LIE’'s NUMBERS SERIES (in green)
(in block are the Fibonacci’'s numbers anddal the Lie’s groups)

n n"2+n+1=L(n F rapporto Ln/Ln-1

O 0 1 1=1-

1 1 1 3=3 3

4 2 1 7-~8 2,333~ 2,61 =1,618"2 (7/3)
7* 2=14= G2 (7= piano di Fano)

9 3 113=13 1,857 (13/7)
13*4 =52=F4,; 13*6 =78 = E6 Lie’s group)

©OCoOo~NOOUA,A™™W—NPEFO

16 4 1 21=21 1,615~1,618(21/13)

25 5 131~ 34 1,476 (31/21)

36 6 1 43=445 1,387 (44,5 34+55)/2

49 7 157~ 55 1,325

64 8 1 73=72 1,280 4@ = 1,272; 72 =(55+89)/2
81 9 1 91=89 1,246

10 100 10 1111~116,5 1,219

11 121 11 1133144 1,198

(7x 19 =133=E7 Lie’s group)

12 144 12 1157=156 1,180 (156 + 132)/2144)

13 169 13 1183 1,165
14 196 14 1211 1,153
15 225 15 1241 1,142

(240 +8=248=31*8 = E8 Lie’s group)
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(Lie’s Groups = L(n)* k with k =2, 4, 6, 19, 8,ift(n) =7,13, 13, 31Indeed, we have:

TABLE 1.1
Lie’'s Groups Factors: L(n)*k
G(n) = L(n)*k

14 =7%2
52 =134

78 =136

133 =719 = 1¥133
248 =31*8 (Rif.2)

While the prime numbers smallest &3, 5, and 7

We take the two series
2,3,4,5,6,7,8,9,10, 11, 12, 1415, 16, 18, 2021, 23, 24, 25, 27, 3386, 37, 40, 4245, 48.
63, 64, 65, 86, 90, 180, 189, 198, 270, R, 448, 567, 576, 720.

Wenotethat 3=3, 7=7, 13=10+3; 21+ 281=21+10; 43=36+7; 57=36+ 2B
=63+10; 91=86+5; 111=90+21; 133=#W6+ 7, 157=90+64+3; 183=180+ 3;
211=198+10+3; 241 = 198+ 40 + 3.

Thence, Lie’'s numbers that are sums of numberseofvto series (or equal to them)

TABLE 2 (concerning 2T +1;in bleu, the numbersp(n))
(underlined and in black, the Witten’s numbers)

T 2T-3 2T-2 2T-1 2T 2T+1 2T+2 2T+3 (2T +4)
1 -1 0o 1
3 3 4 5 7 8
6 9 10 11 12 13 _14 15 16
10 17 18 19 20 _ 2122 23
15 27 28 2930 31 32 33
21 39 40 4142 43 44 45
28 53 54 55 56 57 5859
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Witten’s numbers: 2, 4, 7, 8, 14, 16, 21, 32, 1084, 175, 256, 945, 4096, 8085, 10493, 74247,
363825 : up to 32, lying on the strip numbers fron2T-3 to 2T+3, with the exception of 16 ( of
the form 2T+4).

Thence, also their have a mathematical connectionitl the triangular numbers T and with
the Lie’s numbers 2T+1 ( the Witten’s numbers 7 an®1 are also Lie’'s numbers).

In the paper:* On the physical interpretation of the Riemann zeta function, the Rigid Surface
Operators in Gauge Theory, the adeles and idelesaups applied to various formulae
regarding the Riemann zeta function and the Selbergace formula, padic strings, zeta strings
and p-adic cosmology and mathematical connectionsiti some sectors of String Theory and
Number Theory” there are the Witten’s numbers above mentioned:

2,4,7,8,14,16, 21,32, 105, 154, 175256, 945,4096 8085, 10493, 74247, 363825
with marked in red the powers of 2 (including for squares, underlined; in the Lie’swhers there

aren’'t absolutely squares, since they are alwalywy between a square and the next; and
between the Fibonacci’'s numbers only 1 and 144@ueres).

The exponents of 2 are, in ordéy2, 3, 4,5, 8,12with 1, 2, 3, 5, 8 Fibonacci’'s numbers, and 2
13 another Fibonacci’'s number. So we return to themaleci’'s series and to the symmetries, which
are also patrtially reflected in the partitions ahtbers and in the Witten’s numbers.

Further comparison between Witten’s numbers anttipas

p(n) 1 2
2

3 .
n. Witten 4 7 14 16 32...

We note that, the partitions of numbers and théaiis numbers are very near (2 e 7 coincide), at
least in the beginning, the one that interestatiéd\Nature. For the prime numbers n of the formula
n’+n+1 the Nature has chosen indeed 2, 3, 5, 7,@rttié Fibonacci’'s numbers the Nature stop at

144. We don’'t know natural phenomena where arelwedoFibonacci’'s numbers greater than 144,
number of seeds in a sunflower.

We take the two series
2,3,4,56,7,8,910, 11, 12, 1415, 16, 18, 2021, 23, 24, 25, 27, 386, 37, 40, 4245, 48.
63, 64, 65, 86, 90, 180, 189, 198, 270, JA 448, 567, 576, 720.

With regard the partitions, we note that: 2=23; 5=5; 7=7; 11 =11; 15=15; 2254
7, 30=27+ 3.

With regard the following Witten’s numbers, we nitat
2,4,7,8, 14,16, 21,32, 105, 154, 175256, 945

2=2; 4=4; 7=7; 8=8; 14=14; 166 21=21;, 32=32; 105= 90 +15; 15d0=+
48 +16; 175=90+ 65 +20; 256 =198 + 48 +9@5 = 720 + 180 +45.
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Thence, also here, numbers of partitions and Wétenmbers as sums of the numbers of the two

series (or equal to them)

TABLE 3

Symmetries (Lie’s numbers, Lie’s Groups, Fibonadts Numbers, Partitions of Numbers)

Lie’s Numbers Lie's Groups Numeri di Partizioni di
L(n) G(n) Fibonacci F(n) Numeri
conn primo o p(n)
potenza di primo
Forma Forma Forma Forma
L(n) = n"2+n+1 = G(n) = k*L(n) F(n) = n"2+n+c p(n) =n"2+n+c’
2T+1 (T = numeri con ¢ piccolo conc'= C
triangolari) numero
12+1+1= 3 (c=1)3 (c=1)3
2N2+2+1= 7 7*2=7+7 44 (c=2) 8 (c=1)7
=G2
3N2+3+1 =13 13*4=13+13+13+13 (c=1)13 (c'=-1)11
4M4+4+1= 21 §2=F4 (c=1)21 (c'=2) 22
13*6=13+13+13+13+13+13=
78= E6
5"5+5+1 =31 31*8 = (c=4)34 (c'=1) 30
31+31+31+31+31+31+31+31
248=E8
6"6+6+1 = 43 (c'=0)2
7"2+7+1= 57 (c=-1p65 (c'=0)56
1172+11+1=133 133*1 =133 = E7

(c=12)144

Now we remember that : 2T is tkem of the first n even numbers.

2

2+4=6

2+4+6=12
2+4+6+8= 20
2+4+6+8+10= 30

with the final values obtaining from the formula2#h = n(n+1).
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To obtain the Lie’s numbers juatld them the number 1, and we have:
LnN)=n"2+n+1

from which then the two variants for F(n) and pdnyl their numbers, all present in the Nature:

a) the Lie’s numbers by the Lie’s groups of symmetg(n), in the Standard Model and in the
String Theory;

b) the Fibonacci’s numbers, in various natural pmeena, strings included;

c) the partitions of the numbers, in other phenamen

Finally, similar to how the Lie’s numbers are ghen of the first n even numbers +1, the
Fibonacci’'s numbers are tkem of the two previous numbers, and the partitionswhbers are all
the ways as a number p can be written sisraof smaller numbers.

Theprime numbersn are involved only in the Lie’s numbers (which givee to Lie’s groups only
if n is prime), and only some Fibonacci’'s numbdos éxample 23,5,13, 89) and some patrtitions
of numbers (for example 25,7,11) are prime numbers.

In red all the prime numbers of the forrm).E n*2+n+1, including the Lie’s prime numbers.

TABLE 4
Numeri primi p o Numeri primi di Lie: | Numeri di Fibonacci | Partizioni di numeri
loro potenze L(n) = n"2+n+1 primi (p(n) primi
n
1 3 3 3
2 I 7
3 13 13
4=22 21 21
5 31
7 57 55
Q=32 91 89
11 133

These initial connections between prime numbetse’s prime numbers, Fibonacci’s prime
numbers and prime numbers as partitions of numb&ag,have their role, perhaps not yet known
(but suspected by the fact that are all on thelpamaf the Lie’s numbers), in the theories of phgsi
— mathematics concerning the quantum physics andtting theory.

We remember that the numbé&tsl3, 31 and 133 =*19, with their respective multiples 2, 4 and
6,8 and 1, are the basis of the Lie’s Groups

G2 =14,F4 =52, E6=78, E8=248 and E7 = ¥88.note thab7 is the number of dimensions
of the group E8 = 248, that is very important fog string theories.

Furthermore, we note that the numbers of the dimmasf the five Lie’s groups of symmetry, are
connected to the geometric solids:
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atetrahedron of measure 14
anoctahedron of measure 52
threedodecahedraof measure 78, 133and248

(see TABLE 3)

The Lie’s groups are related to the Fibonacci’s bera and to the Lie’s numbers by the above
geometric solids, and their respective sides.& ,4, 8 and 12 become Fibonacci’'s numbers if
we add 1 to the numbers 4 and 12, obtairirend13 that are Fibonacci’'s numbers (the midalle
is unchanged); but also with their vertices 4, 6 20, subtracting 1 from 4 and 6 and adding 1 to
20, getting3, 5 e?21that are Fibonacci’'s numbers; while adding 1 dthalir edges S 6, 12, and
30 (of the form S = 2T with T triangular number$3nd 15) we obtain the Lie’s numbéfs 13
and31, that are the basis of the Lie’s groups:

14=2*7, 52=4*13, 78=6*13, 133=7*19 and 248=8*31

We take the two series

2,3,4,56,7,8,910, 11, 12, 1415, 16, 18, 2021, 23, 24, 25, 27, 336, 37, 40, 4245, 48.
63, 64, 65, 86, 90, 180, 189, 198, 270, 34 448, 567, 576, 720.

We note that 14 =14; 52=45+7; 78=63%+ 133=90+36+7;

248 =198 + 45 + 5.

Thence, also here mathematical connections betwemibers of the two series (or their sums) and
numbers of the Lie’s Groups G(n).

Now we have insert the scheme of the mathematths from therime numbersat all the
mathematical components connected tosthieg theory(and from here at th€ OE, that are
connected to thkie’s groups speciallyE8, (from “Numeri primi in cerca d’Autore” on thets!
www.gruppoeratostene.cosection “Articoli sulla Teoria dei Numeri”:

“...In the follows we show a short scheme of the miotgresting links that we have noted” (in
Italian language)
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legat genera genera s
£gatg a rimi negativi \
| \

|
o
oe1),
n_—

equazioni f Trial Test Quadrati perfetti
dq fant spirale di /
ofantee Turco basata su e T
: / \ basata su generalizza
\

s | X / - ) < o GRH
egato a
wos Jewgs | (Famonaammone), -

equazioni varie Problem I legataa
(curve, utilizzabile Aol P T TR
eq modulo, etc) per " it

N legato a ’l’ legato a
T ll ‘ = qutadratl
naturali \ crittografia istanza n
e \ s
teoria dei gruppi
(Galois) legata a
Iegato a

legata a A quadrati
legato a \ legato a— distanza 2
legata a Iegato  (C e =~ o (FC
N \*’[numeri primi gemelli]
‘ \ N
ﬁegata d legata a caso particolare di \\\
legata a l TR
legata a \ cnttograﬂa
\fgato a legatoa —» generale |W~__

legato a

gruppi di Lie p-legato a -P[Teoria delle stringhejqi legato a ¢———— Linguaggi formali

legato a
N\

By the prime numbers, through the darts, we wakteto thestring theory connected to theeta
function, to theFibonacci's numbers to theLie’s groups(speciallyE8, linked to theTOE of
Garrett Lisi).

That is why this scheme is just very important.aderclearly the mathematical paths that connect
the prime numbers with the components of the conmpé&ghematical scenery of the strings.
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Many of our works explores in the details theségaGolden Ratio, Zeta Function, Symmetry,
etc...

Appendix B (Christian Lange)

Here, we have showed the column “system” concertinagniversal music system based on Phi

System
0,0131556174964

0,0142348954757
0,0150749962219
0,0162612375116

0,0243918562674

0,0394668524893
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0,2066511224918
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0,2229123600034
0,2360679774998
0,2554348350265

0,2705098312484
0,29179606 75006

0,3099766837377
0,3183050093751
0,3343685400051
0,3444185374863
0,3606797749979
0,3647450843758
0,3819660112501
0,3934466291663
0,4133022449836
0,4179606750063
0,4376941012510
0,4508497187474
0,4721359549996
0,4863267791677
0,5015528100076
0,5150283239582
0,5410196624969
0,5572809000084
0,5835921350013
0,5901699437495
0,6180339887499
0,6366100187502
0,6687370800101
0,6762745781211
0,7082039324994
0,7294901687516
0,7639320225002
0,7868932583326
0,8115294937453
0,8333333333333
0,8753882025019
0,9016994374948
0,9442719099992
0,9549150281253
1,0000000000000
1,0300566479165
1,0820393249937
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1,0942352531274

1,1458980337503

1,1803398874990

1,2360679774998

1,2732200375004

1,3130823037529

1,3483616572916

1,4164078649987

1,4589803375032

1,5278640450004

1,5450849718747

1,6180339887499

1,6666666666667

1,7507764050038

1,7705098312484

1,8541019662497

1,9098300562505

2,0000000000000

2,0601132958330

2,1246117974981

2,1816949906249

2,2917960675006

2,3606797749979

2,4721359549996

2,5000000000000

2,6180339887499

2,6967233145832

2,8328157299975

2,8647450843758

3,0000000000000

3,0901699437495

3,2360679774998

3,3333333333333

3,4376941012510

3,5300566479165

3,7082039324994

3,8196601125011

4,0000000000000

4,0450849718747

4,2360679774998

4,3633899812498

4,5835921350013

4,6352549156242

4,8541019662497

5,0000000000000

5,2360679774998

5,3934466291663

5,5623058987491
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5,7117516385413

6,0000000000000

6,1803398874990

6,4721359549995

6,5450849718747

6,8541019662496

7,0601132958329

7,4164078649987

7,4999999999999

7,8541019662496

8,0901699437494

8,4721359549995

8,7267799624996

9,0000000000000

9,2418082864578

9,7082039324993

10,0000000000000

10,4721359549995

10,5901699437494

11,0901699437493

11,4235032770827

11,9999999999999

12,1352549156240

12,7082039324992

13,0901699437494

13,7082039324992

14,1202265916658

14,5623058987489

14,9535599249990

15,7082039324992

16,1803398874989

16,9442719099990

17,1352549156240

17,9442719099988

18,4836165729155

19,4164078649986

19,6352549156239

20,5623058987487

21,1803398874987

22,1803398874986

22,8470065541653

23,5623058987488

24,1953682114567

25,4164078649984

26,1803398874987

27,4164078649983

27,7254248593732

29,0344418537480
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29,9071198499981

31,4164078649984

31,7705098312478

33,2705098312478

34,2705098312479

35,8885438199976

36,9672331458309

38,1246117974976

39,1489281364556

41,1246117974974

42,3606797749974

44,3606797749971

44,8606797749971

46,9787137637467

48,3907364229134

50,8328157299968

51,4057647468715

53,8328157299963

55,4508497187464

58,0688837074960

59,8142396999959

61,6869176962462

63,3442963479120

66,5410196624956

68,5410196624959

71,7770876399951

72,5861046343700

76,0131556174944

78,2978562729111

82,2492235949949

83,1762745781189

87,1033255612437

89,7213595499940

93,9574275274933

96,7814728458264

99,8115294937434

102,4932244843670

107,6656314599930

110,9016994374930

116,1377674149920

117,4467844093670

122,9918693812410

126,6885926958240

133,0820393249910

134,5820393249900

140,9361412912390

145,1722092687400

152,0263112349890
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156,5957125458220

161,4984471899890

165,8375208322780

174,2066511224870

179,4427190999880

187,9148550549860

190,0328890437360

199,0050249987340

204,9864489687340

215,3312629199850

217,7583139031080

228,0394668524820

234,8935688187330

245,9837387624810

253,3771853916470

261,3099766837310

268,3307453166450

281,8722825824790

290,3444185374800

304,0526224699770

307,4796734531010

321,9968943799730

331,6750416645570

348,4133022449750

352,3403532280960

368,9756081437200

380,0657780874710

398,0100499974680

409,9728979374670

422,8084238737180

434,1682661489210

456,0789337049640

469,7871376374660

491,9674775249610

497,5125624968350

521,0019193787060

536,6614906332890

563,7445651649580

570,0986671312020

597,0150749962000

614,9593469062010

643,9937887599460

663,3500833291110

684,1184005574470

702,4990114655630

737,9512162874400

760,1315561749420

796,0200999949340
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804,9922359499330

In the follow, the table where we have showed tiffer@nce between the values of Phi*(n/7) and

the values of the column “system”

System

1,61803398875

0,3819660113

1,61803398875

0,3934466292

1,61803398875

0,4133022450

1,61803398875

0,4179606750

1,61803398875

0,4376941013

1,61803398875

0,4508497187

1,61803398875

0,4721359550

1,61803398875

0,4863267792

1,61803398875

0,5015528100

1,61803398875

0,5150283240

1,61803398875

0,5410196625

1,61803398875

0,5572809000

1,61803398875

0,5835921350

1,61803398875

0,5901699437

1,61803398875

0,6180339887

1,61803398875

0,6366100188

1,61803398875

0,6687370800

1,61803398875

0,6762745781

1,61803398875

0,7082039325

1,61803398875

0,7294901688

1,61803398875

0,7639320225

1,61803398875

0,7868932583

1,61803398875

0,8115294937

1,61803398875

0,8333333333

1,61803398875

0,8753882025

1,61803398875

0,9016994375

1,61803398875

0,9442719100

1,61803398875

0,9549150281

1,61803398875

1,0000000000

1,61803398875

1,0300566479

1,61803398875

1,0820393250

1,61803398875

1,0942352531

1,61803398875

1,1458980338

1,61803398875

1,1803398875

1,61803398875

-14,50
-14,00
-13,50
-13,00
-12,50
-12,00
-11,50
-11,00
-10,50
-10,00
-9,50
-9,00
-8,50
-8,00
-7,50
-7,00
-6,50
-6,00
-5,50
-5,00
-4,50
-4,00
-3,50
-3,00
-2,50
-2,00
-1,50
-1,00
-0,50
0,00
0,50
1,00
1,50
2,00
2,50

Phir(n/7)

0,3690600455

0,3819660113

0,3953232964

0,4091476835

0,4234555071

0,4382636727

0,4535896773

0,4694516297

0,4858682718

0,5028590010

0,5204438930

0,5386437257

0,5574800034

0,5769749824

0,5971516975

0,6180339887

0,6396465301

0,6620148584

0,6851654032

0,7091255185

0,7339235149

0,7595886929

0,7861513778

0,8136429551

0,8420959081

0,8715438560

0,9020215935

0,9335651322

0,9662117429

1,0000000000

1,0349698266

1,0711625419

1,1086209102

1,1473891912

1,1875131922
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1,2360679775

1,61803398875

1,2732200375

1,61803398875

1,3130823038

1,61803398875

1,3483616573

1,61803398875

1,4164078650

1,61803398875

1,4589803375

1,61803398875

1,5278640450

1,61803398875

1,5450849719

1,61803398875

1,6180339887

1,61803398875

1,6666666667

1,61803398875

1,7507764050

1,61803398875

1,7705098312

1,61803398875

1,8541019662

1,61803398875

1,9098300563

1,61803398875

2,0000000000

1,61803398875

2,0601132958

1,61803398875

2,1246117975

1,61803398875

2,1816949906

1,61803398875

2,2917960675

1,61803398875

2,3606797750

1,61803398875

2,4721359550

1,61803398875

2,5000000000

1,61803398875

2,6180339887

1,61803398875

2,6967233146

1,61803398875

2,8328157300

1,61803398875

2,8647450844

1,61803398875

3,0000000000

1,61803398875

3,0901699437

1,61803398875

3,2360679775

1,61803398875

3,3333333333

1,61803398875

3,4376941013

1,61803398875

3,5300566479

1,61803398875

3,7082039325

1,61803398875

3,8196601125

1,61803398875

4,0000000000

1,61803398875

4,0450849719

1,61803398875

4,2360679775

1,61803398875

4,3633899812

1,61803398875

4,5835921350

1,61803398875

4,6352549156

1,61803398875

4,8541019662

1,61803398875

5,0000000000

1,61803398875

5,2360679775

1,61803398875

5,3934466292

1,61803398875

5,5623058987

1,61803398875

5,7117516385

1,61803398875

6,0000000000

1,61803398875

6,1803398875

1,61803398875

6,4721359550

1,61803398875

6,5450849719

1,61803398875

6,8541019662

1,61803398875

7,0601132958

1,61803398875

7,4164078650

1,61803398875

7,5000000000

1,61803398875

3,00

3,50

4,00

4,50

5,00

5,50

6,00

6,50

7,00

7,50

8,00

8,50

9,00

9,50
10,00
10,50
11,00
11,50
12,00
12,50
13,00
13,50
14,00
14,50
15,00
15,50
16,00
16,50
17,00
17,50
18,00
18,50
19,00
19,50
20,00
20,50
21,00
21,50
22,00
22,50
23,00
23,50
24,00
24,50
25,00
25,50
26,00
26,50
27,00
27,50
28,00
28,50
29,00
29,50

1,2290403226

1,2720196495

1,3165019560

1,3625398011

1,4101875817

1,4595015968

1,5105401145

1,5633634404

1,6180339887

1,6746163567

1,7331774003

1,7937863134

1,8565147097

1,9214367071

1,9886290155

2,0581710273

2,1301449111

2,2046357093

2,2817314377

2,3615231903

2,4441052467

2,5295751833

2,6180339887

2,7095861833

2,8043399422

2,9024072236

3,0039039008

3,1089498993

3,2176693381

3,3301906768

3,4466468672

3,5671755104

3,6919190193

3,8210247871

3,9546453613

4,0929386237

4,2360679775

4,3842025400

4,5375173425

4,6961935370

4,8604186105

5,0303866064

5,2062983536

5,3883617041

5,5767917783

5,7718112196

5,9736504570

6,1825479774

6,3987506080

6,6225138070

6,8541019662

7,0937887233

7,3418572847

7,5986007606
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7,8541019662

1,61803398875

8,0901699437

1,61803398875

8,4721359550

1,61803398875

8,7267799625

1,61803398875

9,0000000000

1,61803398875

9,2418082865

1,61803398875

9,7082039325

1,61803398875

10,0000000000

1,61803398875

10,4721359550

1,61803398875

10,5901699437

1,61803398875

11,0901699437

1,61803398875

11,4235032771

1,61803398875

12,0000000000

1,61803398875

12,1352549156

1,61803398875

12,7082039325

1,61803398875

13,0901699437

1,61803398875

13,7082039325

1,61803398875

14,1202265917

1,61803398875

14,5623058987

1,61803398875

14,9535599250

1,61803398875

15,7082039325

1,61803398875

16,1803398875

1,61803398875

16,9442719100

1,61803398875

17,1352549156

1,61803398875

17,9442719100

1,61803398875

18,4836165729

1,61803398875

19,4164078650

1,61803398875

19,6352549156

1,61803398875

20,5623058987

1,61803398875

21,1803398875

1,61803398875

22,1803398875

1,61803398875

22,8470065542

1,61803398875

23,5623058987

1,61803398875

24,1953682115

1,61803398875

25,4164078650

1,61803398875

26,1803398875

1,61803398875

27,4164078650

1,61803398875

27,7254248594

1,61803398875

29,0344418537

1,61803398875

29,9071198500

1,61803398875

31,4164078650

1,61803398875

31,7705098312

1,61803398875

33,2705098312

1,61803398875

34,2705098312

1,61803398875

35,8885438200

1,61803398875

36,9672331458

1,61803398875

38,1246117975

1,61803398875

39,1489281365

1,61803398875

41,1246117975

1,61803398875

42,3606797750

1,61803398875

44,3606797750

1,61803398875

44,8606797750

1,61803398875

46,9787137637

1,61803398875

30,00
30,50
31,00
31,50
32,00
32,50
33,00
33,50
34,00
34,50
35,00
35,50
36,00
36,50
37,00
37,50
38,00
38,50
39,00
39,50
40,00
40,50
41,00
41,50
42,00
42,50
43,00
43,50
44,00
44,50
45,00
45,50
46,00
46,50
47,00
47,50
48,00
48,50
49,00
49,50
50,00
50,50
51,00
51,50
52,00
52,50
53,00
53,50
54,00
54,50
55,00
55,50
56,00

7,8643225114

8,1393365057

8,4239676916

8,7185523808

9,0234386455

9,3389867300

9,6655694763

10,0035727646

10,3533959692

10,7154524306

11,0901699437

11,4779912633

11,8793746271

12,2947942976

12,7247411219

13,1697231120

13,6302660452

14,1069140849

14,6002304239

15,1107979497

15,6392199333

16,1861207420

16,7521465772

17,3379662376

17,9442719100

18,5717799866

19,2212319118

19,8933950582

20,5890636332

21,3090596177

22,0542337369

22,8254664657

23,6236690694

24,4497846797

25,3047894096

26,1896935066

27,1055425464

28,0534186683

29,0344418537

30,0497712499

31,1006065389

32,1881893558

33,3138047551

34,4787827297

35,6844997821

36,9323805506

38,2238994933

39,5605826293

40,9440093428

42,3758142486

43,8576891235

45,3913849059

46,9787137637
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58,0688837075

1,61803398875

59,00

48,3907364229 | 1,61803398875 56,50 | 48,6215512365
50,8328157300 | 1,61803398875 57,00 | 50,3218384507
51,4057647469 | 1,61803398875 57,50 | 52,0815844139
53,8328157300 | 1,61803398875 58,00 | 53,9028683883
55,4508497187 | 1,61803398875 58,50 | 55,7878423474

57,7387335189
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