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                                                               Introduction 
 

                                Universal music system based on Phi (Lange Christian) 

Christian Lange has studied with much interest mathematical proportion showed by nature noticing 
especially the golden mean relationship Phi=1,6180339... because it’s present everywhere in nature 
beginning from the atom going up to the galaxies representing the divine proportion of universal 
harmony. This relationship represent even the beauty of natural harmonic geometries. The question 
is, why this proportion is not present in the scale of western music when we consider that the music 
should be the highest artistic expression of natural harmony ? The official answer is, that a string of 
a music instrument divided by the proportion of Phi never would match with the natural spectrum of 
overtones based on fractions of little natural numbers like 2/1, 3/1 ,3/2, 4/3. Accords or music 
intervals according to this fractions would be considered harmonic and graceful by our ears. Under 
a physic profile, the Phi-Interval is very far away from corresponding with numbers based on 
fractions of little numbers and because of this fact, who goes to built up a Phi-based music system is 
obstacle by the opinion of the “experts” in the field of musical harmonics. It’s possible to create a 
Phi based music system ? It does make sense from a musical point of view ?  

The answer is yes if we are able to jump the obstacles of superficial evidence entering the 
miraculous connections that the number of golden mean section offer. The first element to take care 
of is, that every music system has to be an exponential system (on the keyboard of a piano every 12 
keys we get music notes with double frequency) because our hear- sense is based on a logarithmic 
scale.  
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In a very simple way we can use the powers of Phi to get a series of Phi-based numbers following 
an exponential curve  

1,618x1,618=Phi2=2,618;1,618x1,618x1,618=Phi3=4,236;1,618x1,618x1,618x1,618=Phi4=6,854… 

Now we have to fill the spaces between a Phi-power and the next because under a musical point of 
view the Phi-interval is almost large and we some more keys in between to compose music. Under a 
mathematician point of view this means that we have to divide the space of a Phi-Interval in a 
natural number of parts that we can decide freely. For example we can divide this space in 9 parts 
using 1,618(n/9) where n is a natural number, even negative. For n=9 the exponent is 9/9=1 getting 
Phi1=1,618. For n=13 happens an interesting thing: Phi13/9=2,003876 a value very near of 2 that is 
corresponding to the harmonic music interval that doubles the frequency of a base frequency called 
Octave in traditional music.  

This little example shows, using Phi as a base for an exponential music system, that we can obtain a 
proportion that respects the natural over-or undertones of a vibrating string but we have to go 
beyond the single interval of the octave.  

If we choose to divide the Phi interval in 7 parts, we obtain optimal connection with the number 3 
(3 times the frequency of basic sound) and with number 2 because Phi16/7=3,0039 and 
Phi10/7=1,9886. In addition we get connections based on the combination of 2 and 3: 2/3=0,666 e 
3/2=1,5 corresponding to natural harmonic music interval of the vibrating string. The system with 7 
parts in a Phi-interval permits us to get these music-intervals 2, 3, 1.5, 0.666 in an approximated 
manner.  

Would it be possible to get the exact numbers of natural harmonic intervals of a vibrating string ? 
Observing in an accurate way the powers of Phi, we notice that it’s possible to obtain every natural 
number exactly by adding powers of Phi remembering that the traditional harmonic intervals are 
based on fractions of little entire numbers. More little are the natural numbers creating the 
fraction(1,2,3,4..) , more harmonic sounds the music interval like ¼, ½, 1/3, 2/3, 3/4,4/3, 3/2, 2/1, 
3/1, 4/1. 

Here we see how to built the first 4 numbers by adding Phi-Powers: 

 

Phi-1+Phi-2=Phi0=0,61803399+0,38196601=1,00000000 

Phi1+Phi-2=1,61803399+0,38196601=2,00000000 

Phi2+Phi-2=2,61803399+0,38196601=3,00000000 

Phi2+Phi-2+Phi0=2,61803399+0,38196601+1,00000000=4,00000000 

We can use the technique of adding Phi-powers to get natural numbers with absolute precision, no 
approximation and we can use these precise numbers systematically instead of the approximated 
values of the curve getting by Phi(n/7) creating a perfect system of embedding all the harmonic 
intervals of music with perfect Phi-based logic for every music note of the system. The difference 
of the exact frequencies from the original curve Phi(n/7) is less than 1%. 
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Obviously we can represent the values of the Phi-system like a golden mean spiral that would be 
like a Nautilus.  

In his book “432 Hertz: the music revolution. Golden mean tuning for biological music”, Riccardo 
Tristano Tuis writes: “If we could hear the music based on the golden mean spiral it would be in a 
certain manner the music for life, on a biological level but even on a perceptive level, because it 
would use the same math of both”. Tuis continues citing LaRouche from the Schiller Institute 
:”There is nothing mysterious or mystic around the introduction of the golden section as absolute 
value of the life process” in reference to music. Then he writes: “The perfect music scale (the 
moderated scale is it not) is the one with the proportions of the frequencies of the music notes one 
from another based exactly on the golden section with the intonation register based also on it”. In 
the same book Tuis public a music scale based on 12 notes per octave but he doesn’t found the 
perfect Phi interval for all the music notes. In every case it is appreciable to see his honest effort to 
search the truth about universal music. In the last version of the Phi based music system we have 
the natural frequencies indicated by Tuis like 432Hz, 288Hz, 216Hz, 144Hz, 72Hz according to this 
choose. 

After discussing the harmonic intervals of the Phi based music system, we have to examine the Phi 
interval closer. We understand that it’s possible to create the harmonic intervals by adding powers 
of Phi but the Phi-interval itself is pleasant ? Considering the harmonic laws of overtones related to 
the vibrating string, the Phi-interval should be horrible for the hearer but in praxis it isn’t. At 
contrary, it’s very pleasant e we will try to find an explanation. For this we will take the seeds of the 
sunflower like an example. The positions of the seeds were chosen to fill out the whole area of the 
circle without leaving empty spaces. Beginning in the center of the circle, turning around, at which 
angles of the whole circle of 360° we have to position the seeds to fill out the circle at best ? In 
order to avoid empty space, a single seed should never happens exactly behind another one respect 
of the center of the circle creating beams like in a bicycle wheel because the space between a beam 
an another ones is growing from the center to the border. Using angles based on fraction composed 
by little numbers we would get beams inevitably. The beam like distribution of the seeds is 
corresponding to a harmonic music interval based on a fraction of natural number multiplied with 
360°. In this way the “seeds” will match exactly one behind another but this kind of distribution is 
not indicated to fill out the whole area of the circle with a maximum number of seeds. To position 
the seeds, the sunflower uses the so called golden angle of 360°/Phi2=137,5077°. In this way a seed 
will never happens exactly behind another one. Transforming something like this in music intervals 
we will expect a horrible sound but it isn’t for the same reason why the positioning of the sunflower 
seeds is not ugly but highly beautiful with his embedded spirals turning clockwise and 
counterclockwise and you cannot stick your easily from it because the beauty is so fascinating. The 
same happens hearing the Phi interval.  
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Another kind of explanation more technical would be the following: the Phi proportion divides the 
time axis in a fractal manner creating infinitely all the powers of Phi itself and the human ear 
recognize the perfect repeating of these values. Probably our brain calculates the sums of the 
powers of Phi creating perfectly natural numbers harmonic to our ears. To the Phi interval we can 
add another note that corresponds to another power of Phi or a natural number or a fraction of 
natural numbers pushing the keys on our Phi-intonated piano keyboard (because they are part of the 
music system we could do so), our brain recognized the perfect embedding of this musical 
agreement of all these values interpreting it “harmonic” even if this kind of harmonic is fractal like 
nature and not like the beams of a bicycle. 

The following figure shows how the duration of the Phi power based oscillations are creating other 
durations corresponding to powers of Phi and the creating the natural numbers of 1,2 and 3. You 
can observe the frequent presence of embedded powers of Phi in a fractal manner on time axis. Of 
course the same principle is valid for frequencies that have the inverse value of oscillation duration. 

Phi-4=0,145898 

Phi-3=0,236068 

Phi-2=0,381966 

Phi-1=0,618034 

Phi-1+Phi-2=Phi0=0,618034+0,381966=1,000000 

Phi1=1,618034 

Phi1+Phi-2=1,618034+0,381966=2,000000 

Phi2+Phi-2=2,618034+0,381966=3,000000 
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In the Phi music system we have to follow a repeating pattern made of positions. We can occupy a 
single position only one times with a frequency. A key of a music instrument can’t have two 
frequencies at the same time. Adding the powers of Phi we can create every number and because of 
this we have to choice the numbers for the positions. How we can know if we made the right choice 
? At this point we get some help from another mathematical constant present in nature, Pigreco 
=3,14159… . In order to this control system, we introduce the concept of half - tone with n=0.5, 1.0, 
1.5, 2.0, 2.5. It’s possible to connect every tone with a halftone by Pigreco when we did the right 
choices of numbers. If not, we wouldn’t get correspondence with Pigreco for every note.  

This kind of research is limited only on artistic sector of music? Absolutely no. The writer Alessio 
Di Benedetto, says that “we are dipped into an infinitely oscillating field, like countless music 
harmonies going out from a single basic sound. From this field we recognize only the frequencies 
near to us”.  

In the book “In the beginning was the vibrating” Alessio Di Benedetto said: “Is there a way to 
produce energy by frequency devices, connected with systems of anti-gravitation and time travelling 
? Would it be possible to influence our DNA by resonance with modulated frequencies in order to 
correct genetic errors? If we block the new research based on the love for the secrets of universe, 
we will poor the whole humanity condemn her to produce energy with obsolete systems that will 
destruct our planet.” At this point we have to consider that according to the String Theory the 
universe is not empty but full of continuous vibrating dark energy and matter corresponding 
together at 96% of all what exist in the universe, the matter we know is corresponding only to 4% of 
all. If we get in resonance with this kind of dark energy, may be in future we can produce energy 
from space without pollution for ever.  

The alternative medicine takes care about bio-physical aspects in our organism and in front of a 
disease speaks about disharmony on an energetic level. A sick liver don’t vibrate at his sane 
frequency of 40 Hz. All our organs have specific frequencies but the question is, how they are 
connected together ? Today it’s possible to “hear” the sound of a DNA sequence. If the patient has 
cancer, the sound would be disharmonic and in medicine this is used for diagnostic. What kind of 
music scale use our DNA to generate the sound researchers can make hear ? The DNA molecule is 
made of Phi-based geometry and this make us think that the DNA music is Phi based. 
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Probably there is a universal music scale connection all our organs, our DNA and in future it would 
be possible to heal using these frequencies harmonizing our cells but only future research could 
confirm that.  

We think that a music corresponding to our biology and all what exist could have harmonizing 
effects on us. We think about the Mozart effect and music therapy. This kind of music combine the 
pleasure that music can give with benefits for our health. May be in future it would be possible even 
to heal cancer by using frequencies. In her book “When music heals” Fabien Maman talk about 
experiments made with tumor cells where subject to vary music intervals and she found out, that the 
most disharmonic interval of the seventh made explode the tumor cells but not the sane cells. 

At this point we have to begin to discuss about the String Theory. In few words, this theory says 
that all what exist, is pure energy that is vibrating. It depends on the way the energy is vibrating at a 
certain frequency if there would be a manifestation like a force or a subatomic particle. In the 
moment, the String Theory is the favorite candidate to be able to predict and explain with the same 
physical model the 4 forces in universe (electromagnetism, gravity, strong and weak force of 
nucleus) and the favorite for the Theory of All. To reach this goal, the String Theory needs 
mathematical connections (theory of numbers including prime numbers). The fact, that in this 
theory all is vibrating give us the idea of an universal symphony using always the same music scale. 
Which one? In the String Theory connections of Phi and Pigreco together with harmonic 
relationships are leading to important results. The mathematician Michele Nardelli have used (also 
in this paper) the numbers of the Phi based on the music system in the String Theory and we have 
already deposited a first scientific paper in 2008 at CNR (Lange, Christian and Nardelli, Michele and Bini, 
Giuseppe (2008) Sistema Musicale Aureo Phi^(n/7) e connessioni matematiche tra Numeri Primi e “Paesaggio” 
della Teoria delle Stringhe.) where we have discussed the original curve of Phi(n/7) together with the 
musician Giuseppe Bini who had care of the musical aspects of the Phi System.  

We don’t wonder about that the genius Creator of the universe based the creation on a fractal Phi 
music system with big sense of beauty and arts. Probably we found the music scale used by the 
Creator to compose his creation like a symphony. Galileo said: "Mathematics is the language with 
which God composed the universe."  

In this paper Nardelli have examined and described the harmonic relationships of the exact system 
in combination of Phi and Pigreco inside some sectors of String Theory. Furthermore, we want 
remember that there exist an fundamental simple algebraic relationship that link π and Ф. This is the 
following: 

                                                   Φ=⋅
6
5π     or    ( )2

6
5 Φ=⋅π  

                   where                      ...618033989,1
2

15 =+=Φ  

 
                                                                     Abstract 
 
In this paper in the Section 1, we have described some equations concerning the duality and higher 
derivative terms in M-theory. In the Section 2, we have described some equations concerning the 
moduli-dependent coefficients of higher derivative interactions that appear in the low energy 
expansion of the four-supergraviton amplitude of maximally supersymmetric string theory 
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compactified on a d-torus. Thence, some equations regarding the automorphic properties of low 
energy string amplitudes in various dimensions. In the Section 3, we have described some equations 
concerning the Eisenstein series for higher-rank groups, string theory amplitudes and string 
perturbation theory. In the Section 4, we have described some equations concerning U-duality 
invariant modular form for the 46RD  interaction in the effective action of type IIB string theory 
compactified on 2T . Furthermore, in the Section 5, we have described various possible 
mathematical connections between the arguments above mentioned and some sectors of Number 

Theory, principally the Aurea Ratio ( ) 2/15 +=Φ , some equations concerning the Ramanujan’s 
modular equations that are related to the physical vibrations of the bosonic strings and of the 
superstrings, some Ramanujan’s identities concerning π and the zeta strings. In conclusion, in the 
Appendix A, we have analyzed some pure numbers concerning various equations described in the 
present paper. Thence, we have obtained some useful mathematical connections with some sectors 
of Number Theory. In the Appendix B, we have showed the column “system” concerning the 
universal music system based on Phi and the table where we have showed the difference between 
the values of Phi^(n/7) and the values of the column “system” 

 
 
 
 

1. On some equations concerning the duality and higher derivative terms in M-theory. [1] 
 
The first term in the derivative expansion beyond the Einstein-Hilbert term that contributes to four-
graviton scattering has the form 
 

                                                    ( )
∫

−− − 40,0

2

3
2/102 RZegxdls

φ ,    (1.1) 

 
in string frame. The dilaton factor 2/φ−e  is again absent in Einstein frame. The symbol 4R  denotes 
a specific contraction of four Weyl tensors that arises from the leading behaviour in the low energy 
expansion of the four-graviton amplitude. The function ( )( )ΩΩ,0,0

2/3Z  is a modular form with 

holomorphic and anti-holomorphic weights ( )0,0 . It is a function of the complex coupling 

21 Ω+Ω=Ω i , where φ−=Ω e2  and ( )0
1 C=Ω . The leading term in the low energy limit determined 

the dilaton dependent function ( )( )ΩΩ,0,0
2/5Z  of the 

 

                                                   ( )
∫ −− 440,0

2

5
2/102 RDZegxdls

φ     (1.2) 

 
interaction, is again expressed in string frame. The dilaton-dependent functions ( )0,0

2/3Z  and ( )0,0
2/5Z  in 

(1.1) and (1.2) are non-holomorphic Eisenstein series that are special cases of the series 
 

                                        ( )

( ) ( )( ) ( )
∑

≠
++ Ω+Ω+

Ω=
0,0,

'
2',

nm
wsws

s
ww

s
nmnm

Z .    (1.3) 

 
Interactions have  2/' qww =−=   where q  denotes the ( )1U  R-symmetry charge of the interaction. 
For example, there is an interaction of the form 
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                                                           ( )
∫

−−− 1612,12
2/3

2/10 λφ Zegxd  

 
where the dilatino λ  transforms with weights ( )4/3,4/3− . The series ( )0,0

sZ  is an eigenfunction of 

the Laplace operator on the fundamental domain of ( )ZSL ,2  with eigenvalue ( )1−ss , 
 
                                          ( ) ( ) ( ) ( )0,00,02

2
0,0 14 sss ZssZZ −=∂∂Ω≡∆ ΩΩΩ .    (1.4) 

 
This equation is a consequence of supersymmetry. For general values of s sZ has the large-

2Ω (weak coupling) expansion 
 

                                 ( ) ( )
( )

( ) +
Γ

−






 −Γ
Ω+Ω=ΩΩ −

s

ss
sZ ss

s

12
2
1

222, 1
22

ζ
πζ  

                                 ( ) ( ) ( ) ( )
∑

≠

−Ω−Ω−











+

Ω
−+

Γ
+

0 2

12 ...
4

1
1,

2
12

k

sikk
s

k

ss
kesk

s π
µπ π ,    (1.5) 

 
where the last term comes from the asymptotic expansion of a modified Bessel function, ζ  is the 

Riemann’s zeta function and ( ) ∑ −=
kd

sdsk 12/1,µ . This expression contains precisely two power 

behaved terms proportional to s2Ω  and s−Ω1
2 , which should be identified with tree-level and 

( )2/1−s -loop term in the IIB string perturbation expansion of the four graviton amplitude. In 

addition, there is an infinite sequence of D -instanton terms in sZ , which have a characteristic 

phase of the form Ωike π2 , where k  is the instanton number. Thus, with 2/3=s  (the 4R  term) there 
are tree-level and one-loop terms, as well as the infinite series of D -instanton contributions. 
The objective of this section is to extend the analysis of the dilaton dependence of higher derivative 
interactions to the 46RD  interaction. This has the form (in string frame) 
 

                                                  ( )∫ − 46
2/3,2/3

104 RDegxdls ξφ ,    (1.6) 

 
where the function ( )( )ΩΩ,2/3,2/3ξ  is a new ( )0,0  modular form that depends on the complex 

coupling, Ω . The function ( )2/3,2/3ξ  satisfies a Laplace equation on moduli space with a source 

term, 
                                             ( ) ( ) 2/32/32/3,2/32/3,2/3 612 ZZ−=∆Ω ξξ ,    (1.7) 

 
and determine its solution. 
To separate perturbative and non-perturbative contributions we write ( )( )ΩΩ,2/3,2/3ξ  in terms of a 

Fourier expansion of the form 
 

                                ( )( ) ( )
( ) ( ) ( )

( ) ( )∑
≠

ΩΩ+Ω=ΩΩ
0

2
22/3,2/32

0
2/3,2/32/3,2/3

1
~~

,
k

ikk e πξξξ .    (1.8) 

 
The dependence on 1Ω enters through the phase factor 12 Ωπike , that accompanies the non-zero mode. 
This is characteristic of a D -instanton contribution which comes from the double sum of D -
instantons with charges 1k  and 2k , where kkk =+ 21 . There is a corresponding exponentially 
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decreasing coefficient ( )
( )k

2/3,2/3

~ξ , that should behave as ( ) 2212 Ω+− kke π  at weak coupling ( )∞→Ω2 . 

The zero mode, ( )
( )0

2/3,2/3

~ξ , contains the piece that is a power-behaved function of the inverse string 

coupling constant, 2Ω  which is interpreted as a perturbative string contribution. There will also be 
an exponentially decreasing contribution to the zero mode piece, which is interpreted as a double 
D -instanton contribution in which the instanton charges are equal and opposite in sign ( )21 kk −= . 
The zero mode in (1.8) satisfies the equation 
 

    ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )














Ω







Ω+









Ω+Ω−=Ω−∂Ω ∑

≠

−

Ω
0

2
2

1
22

2
2

2

2

1

2
2

3

22
0

2/3,2/3
22

2 2
2
3

,824326
~

12
2

k

kkk πµπζζξ K ,   

                                                                                                                                                      (1.9) 
where the right-hand side comes from a Fourier expansion of 2

2/3Z . The factor 

( ) ( )( )22/1
2

2/3
2 2432 −Ω+Ω ζζ  comes from the square of the zero mode of 2/3Z  (defined by the first line 

in (1.5) with 2/3=s ) whereas the term involving the square of Bessel functions 2
1K  comes from 

the modes with non-zero k , which arise as a sum over D -instanton anti D -instanton pairs with 

21 kk −=  and kkk =+ 21 . The quantity ( ) ∑ −=
kd
dk 22/3,µ  is the D-instanton measure factor. 

Consider first the solution for the perturbative part of ( )
( )0

2/3,2/3

~ξ , which is a sequence of power-

behaved terms. The general solution for the power behaved terms that satisfy (1.9) is 
 

                    ( )
( ) ( ) ( ) ( ) ( ) 3

2
4
2

1
2

2
2

3
2

20
2/3,2/3 2

5
48

23834
~ −− Ω+Ω+Ω+Ω+Ω= βαζζζζξ pert ,    (1.10) 

 
where the coefficients α  and β  are not determined directly by (1.9) because the terms 4

2Ω  and 
3

2
−Ω  individually satisfy the homogeneous equation. 

The coefficient β  represents a three-loop contribution in string perturbation theory. The remaining 
coefficients in (1.10) are determined directly by (1.9). These correspond to the tree-level, one-loop 
and two-loop contributions to the 46RD  interaction. The leading 3

2Ω  term in (1.10) represents the 
tree-level contribution and has precisely the expected coefficient that matches the string tree-level 
calculation. 
We have the following Laplace equation: 
 
                                          ( ) ( ) ( )2/3,2/32/3,2/32/3,2/3 612 Z−=∆Ω ξξ ,    (1.11) 

 
where ( ) 2/32/32/3,2/3 ZZ≡Z . Expanding (1.11) in Fourier modes gives an equation for each mode of 

the form 
 

( )[ ] ( )
( )( ) ( ) ( )22121121

0,0
212

2
22/3,2/3

2222
2 22

2
3

,
2
3

,384
~

124

21

21

2
ΩΩ















Ω−=Ω−−∂Ω ∑
=+

≠≠
Ω kkkkkkk

kkk
kk

knonpert ππµµπξπ KK

                           ( ) ( )( ) ( )∑
≠

− Ω






Ω+Ω−
0

21111
2/1

2
2/3

2

1

2
2
3

,243296
k

kkk πµζζπ K ,    (1.12) 

 

where ( )
( )( )22/3,2/3

~ Ωknonpertξ  are the non-perturbative terms.  
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Using the asymptotic form for the modified Bessel function ( ) zezz −≈ 2/1 πK , the large- 2Ω  limit 

of the solution is easy to determine. For a general value of 21 kkk +=  it has the form 
 

                                               ( ) ( )∑ ΩΩ−+−Ω
1

1211

1

22
2

k

ikkkk
k eeP ππ ,    (1.13) 

 
where the functions kp

kP −Ω≈ 2  with positive kp . When 1k  and 2k  ( )1kk −=  both have the same 

sign the action is equal to the charge ( )kkkk =−+ 11 . There is a 0=k  contribution to ( )
( )0

2/3,2/3ξ  due 

toD -instanton – anti D -instanton pairs, that has the form 
 

                                    2
ˆ4

2

2
2 ...

ˆ4

1
2
3

,ˆˆ64
Ω−














+

Ω







− ∑
k

k

e
k

kk
π

π
µπ .    (1.14) 

 
We will now determine the three-loop coefficient, β , of the 3

2
−Ω  term in (1.10). First we should 

note that a general solution of the Laplace equation (1.7) can be written as the sum of a particular 
solution and a multiple of 4Z , which is the solution of the homogeneous Laplace equation, 

44 12ZZ =∆ . Recall also that  ( ) ( )∑ ≠
Ω+Ω=

0,0,

84
24 /

nm
nmZ  has the large- 2Ω expansion 

 

                                               ( ) ( ) ...7
8

5
82 3

2
4
24 +Ω+Ω= −ζπζZ     (1.15) 

 
where … denotes exponentially suppressed terms. However, the special solution ( )2/3,2/3ξ  that we 

obtained from the two-loop supergravity expression is known not to have a 4
2Ω  piece, so that the 

coefficient of 4Z  in the general solution must be zero. The question remains as to whether ( )2/3,2/3ξ  

contains a 3
2
−Ωβ  term. To study this we multiply the left-hand and right-hand sides of the 

inhomogeneous Laplace equation (1.7) by the Eisenstein series 4Z  and integrate over a fundamental 

domain of Ω . Since the relevant integrals diverge at the boundary ∞→Ω2 , we will introduce a 

cut-off at L=Ω2  and consider the ∞→L limit. Denoting the cut-off fundamental domain by LF , 
the resulting equation is 
 

                       ( ) ( )∫ ∫ ∫ Ω
Ω−

Ω
Ω=∆

Ω
Ω

L L L

ZZ
d

Z
d

Z
d

F F F

2
2/342

2

2

2/3,2/342
2

2

2/3,2/342
2

2

612 ξξ .    (1.16) 

 
Integrating the left-hand side by parts and using the fact that 44 12ZZ =∆ , gives 
 

        ( ) ( ) ( ) ( )( )∫ ∫ ∫− =ΩΩΩ =∂−∂Ω+∆
Ω

Ω=∆
Ω

Ω
L L

LZZdZ
d

Z
d

F F

2/1

2/1 2/3,2/342/3,2/3412/3,2/342
2

2

2/3,2/342
2

2

222
ξξξξ  

                 ( ) ( ) ( ) ( )( )∫ ∫− =ΩΩΩ ∂−∂Ω+
Ω

Ω=
L

LZZdZ
d

F

2/1

2/1 2/3,2/342/3,2/3412/3,2/342
2

2

222
12 ξξξ .    (1.17) 

 
Comparing (1.17) with (1.16) we see that 
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                 ( ) ( ) ( )( )∫ ∫− ∞→=ΩΩΩ Ω
Ω−=∂−∂Ω

2/1

2/1

2
2/342

2

2

2/3,2/342/3,2/341 6
222

L

ZZ
d

ZZd L
F

ξξ .    (1.18) 

 
The left-hand side of this equation is simply a surface time that is easy to evaluate 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )∫− ∞→=ΩΩΩ +++−=∂−∂Ω
2/1

2/1

22462
2/3,2/342/3,2/341 142962348388

222
βζζζζζξξ LLLZZd L

                                                                                                                                                    (1.19) 
The right-hand side of (1.18) may be evaluated by unfolding the integral onto the strip using 

( ) ( )( )∑ ∈
Ω⋅ℑ=

ZSl
mZ

,2

4
4 82

γ
γζ  and the fact that 2

2/3Z  is modular invariant, which gives 

 

             ( ) ( ) ( ) ( ) ( )∫ ∫ ∫− +++=ΩΩ
Ω
Ω=

Ω
Ω

L

L
LLLZd

d
ZZ

d
F 0

2/1

2/1

224622
2/31

4
22

2

22
2/344

2

2

22233
3
2

82
1 ζζζζ

ζ
 

                                     ( ) ( )∫ ∑
≠

Ω






ΩΩ+
L

k

kkkd
0

0
2

2
1

2
23

22
2 2

2
3

,8 πµπ K .    (1.20) 

 
Using the integral representation for the Bessel function, we find that 
 

                 ( )∫ ∑ ∑
∞

≠ ≥










=Ω






ΩΩ=
0

0 1
2

2

22
2

1

2
23

22

2 2
3

,

7
32

2
2
3

,
7

384

k k k

k
kkkd

µ

π
πµπβ K ,    (1.21) 

 
which gives a non-zero value for the three-loop term. Recalling that ( ) ∑ −=

nm

snsn 21,µ  and using 

an identity by Ramanujan  
 

                    
( ) ( ) ( ) ( ) ( ) ( )

( )∑
∞

= −++
−++−+−+=

1 2'222
2'221'212',,

n
r ssr

ssrsrsrr

n

snsn

ζ
ζζζζµµ

    (1.22) 

 
we find that the three-loop coefficient has the value 
 

                                                           ( )4
189
16 2ζπβ = .    (1.23) 

 
This number is in complete agreement with the calculation of the three-loop coefficient in type IIA 
string theory. The one-loop four-graviton amplitude of eleven-dimensional supergravity 
compactified on a two-torus gives rise to a series of higher-derivative terms in the nine-dimensional 
type IIA effective action of the form 
 

     ( ) ( ) ( ) ( ) ( )






 −






 −Γ+−−++= ∑
∞

=

−−

2

2/32/12
2

2

2
2115

11
81

4 12
2
1

88
3

2
3
2

32ˆ4
n

s
sA

A
AA nnlr

r
erKrlA

A

ζππππζπ φ W  

              
( )

( ) ( ) ( )
( )

( )












−−Γ+

−−
ns

s

n
ns

s

n
A l

n

e
nnl

n

r
A

WW 2
12

2
12

!
221

!

φ

ζπ + non-perturbative,    (1.24) 

 
where 
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                                            ( ) ( ) ( ) ( )ns
US

ns
TU

ns
ST

ns GGGW ++= ,    (1.25) 

 
and  

                       ( ) ( ) ( )( )( )∫ ∫ ∫ −−+−=
1

0 0 0 312231123

3 2

1
ω ω

ωωωωωωωωω nns
ST tsdddG .    (1.26) 

 
The terms in the third line of (1.24) give higher-loop contributions to the ten-dimensional effective 
action of the type IIA theory. The term with 2=n  gives the two-loop 44RD  term in the IIA theory 
that matches the same term in the type IIB theory. The term with 3=n  in the third line of (1.24) 
contributes to the three-loop 46RD  term in the IIA theory and has the value 
 

                             ( )

( ) ( )∫ −
⋅⋅

= 464102
7

4 4
189
16

4964

1
46 RDegxdlS

AA
s

IIA

RD

φζπ
π

.    (1.27) 

 
Including the absolute normalisation this type IIA expression and the following type IIB expression 
 

                           ( )

( ) ( )( )∫ ΩΩ−
⋅⋅

= 46
2/3,2/3

10
7

6
4 ,

4964
46 RDegxdlS

BB
s

IIB

RD
ξ

π
π φ ,    (1.28) 

 
we find a perfect match between the two values for the three-loop coefficient for the 46RD  in 
superstring theory.  
 
 

2. On some equations regarding the automorphic properties of low energy string 
amplitudes.  [2] 

 
The simplest non-trivial examples of automorphic functions arise in the ten-dimensional IIB theory, 
where the coset is ( ) ( )2\2 SLSO , so there is a single complex modulus, 21 Ω+Ω=Ω i , and the 

duality group is ( )ZSL ,2 . In this case the first two terms in the expansion beyond the classical term 

are given by particular examples of non-holomorphic Eisenstein series for ( )ZSL ,2  
 

                                                 ( )
( ) ( )
∑

≠ Ω+
Ω=Ω

0,0,
2

2

nm
s

s

s
nm

E ,    (2.1) 

 
which satisfies the Laplace equation 
 
                                   ( ) ( ) ( ) ( ) ( )Ω−=Ω∂+∂Ω≡Ω∆ ΩΩΩ sss EssEE 1222

2 21
.    (2.2) 

 
The Fourier expansion of sE  

 

 ( ) ( ) ( ) ( ) ( ) ( )∑ ∑
≠

∈
<

Ω

−−
−− ΩΩ

Γ
+Ω−

Γ








 −Γ
+Ω=Ω

0
/

0

2
2

2

112
2

1
2

1

2
1
22

12
12

122
1

222
n

Ndn
d

ni

ss

s
s

ss
s enK

d
n

s
s

s

s
sE πππζπζ , 

 
has a zero mode or “constant term” that consists of the sum of two powers, 
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                             ( ) ( ) ( )∫−
−Ω−

Γ








 −Γ
+Ω=Ω

2/1

2/1

1
221 12

2
1

222 ss
s s

s

s
sEd ζπζ ,    (2.3) 

 
which correspond to a tree-level and genus-( )2/1−s  contribution to the interaction in string 
perturbation theory. 
 
The minimal parabolic Eisenstein series for a group G  is defined by  
 

                                                  ( ) ( )

( ) ( )
∑

∈

+=
QBQG

gHG egE
/

,

γ

γρλ
λ .    (2.3a) 

 
We consider TgH γγ= , where ( )ZdSL ,∈γ  and g  is the ( )dSL  matrix parametrizing the coset 

space ( ) ( )dSLdSO \ . Letting kH  be the bottom right kk ×  minor of H  the general minimal 

parabolic Eisenstein series associated with the minimal parabolic subgroup ( )1,...,1P , 
 

                               [ ]
( ) ( )

( ) ( )
∑ ∏

∈

−

=

−− −+−

−
=

ZBZnSL

d

k
k

dSL
ss

kdkd

dd
HE

/,

1

1

2

1

,...,;,...,

1

111
det

γ

λλ

εε ,    (2.3b) 

 
which is a special case of the general formula (2.3a). Here we have set 12 1 −−= −+− kdkdks λλ  for 

11 −≤≤ dk , and 1=kε  if 0≠ks  and 0=kε  if 0=ks . The ( )dSL  series that are studied in this 

paper are: 
 
                                                     [ ]

( )dSL

sdE
;0,1 2−  ,   [ ]

( )dSL

sdE
;0,1,0 3−  ,   [ ]

( )dSL

sdE
;1,0 2−  ,     

 
thence 

                 [ ]
( )

( )( ) ( )
∑
∈

=−

0,...,0\,...,
;0,1

1

2

1
dd

d

Zmm
sj

ij
i

dSL

s
mgm

E ;    [ ]
( )

( )( )( ) ( )
∑
∈ −

=−

0,...,0\,...,
1;1,0

1

2

1
d

d

d

Znn
s

j

ij

i

dSL

s
ngn

E ; 

                                              [ ]
( )

( )[ ]
∑

−≤≤

=−

k

d

M
dk

sjkil
klij

dSL

s
ddgg

E

,0

3

11
;0,1,0

1
.    (2.3c)   

          
 
 
 
Now we analyze the following order in the analytic part of the momentum expansion of the 
amplitude that is encoded into the local effective action 
 

                                           ( )
( )
( )

∫ ∂−= −
∂

46
1,0

14
46 RDDDD

DR
GxdlS ξ .    (2.4) 

 
At this order in the low energy expansion the structure of the equation satisfied by the coefficient 
functions changes, as is evident from the following 10=D ( )ZSL ,2  case 
 

                                              ( ) ( )
( ) ( ) ( )

( ) ( )( )210
0,0

10
1,012 Ω−=Ω−∆Ω ξξ ,    (2.5) 
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which has a source term on the right-hand side  
 

                                               ( ) ( )( ) ( )
( )

( )
( )( )210

0,0
10

1,02\2 12 ξξ −=−∆ SLSO .    (2.6) 

 
The constant term is given by 
 

       ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )∫−

Ω−−−










+Ω+Ω++Ω=Ω

2/1

2/1

44
2

2
2

2
2
2

2
410

1,01
4
10

2

27
64

5
28

3
324

3
32 πζζζζζξ eOldl s ,    (2.7) 

 
which has perturbative contributions up to genus three and has contributions from D-instanton/anti-
D-instanton pairs with zero net instanton number.  
With regard the nine dimensions case, the effective action (2.4), with 9=D , contains the 
coefficient function that is 
 

             ( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( ) 7

8

1

2

7

20

12/5
7

15

12/3
7

1

1
10

1,0
7

6

1
9

1,0 5
28

63
524

63
22

3
22 νζνζζνζνζξνξ ++++=

−−
EE .    (2.8) 

 
The function ( )

( )10
1,0ξ  is the ten-dimensional coefficient that satisfies the inhomogeneous Laplace 

equation, 2.4. It is readily checked that ( )
( )9

1,0ξ  satisfies  

 

                                                    ( )
( )
( )

( )
( )( )29

0,0
9

1,0
9

7
90 ξξ −=






 −∆ .    (2.9) 

 
The source term is again quadratic in the modular function that arises for the coefficient of the 4R  
interaction, as it was for 10=D  in (2.5). 

The contribution (2.8) can be re-expressed in ten-dimensional units recalling that 7

1

7

8

109

−
= Brll  and 

( ) 2
101 / −= lBrν , giving 

 

                ( )
( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( ) ( )







+








+








+








+=

4

10

10
0,1

6

1010
0,0

2

1010
1,0

4
10

9
1,0

5
9 63

524
63

24
3

22
l

ll
ll B

BB
B

r

rr
r

ζζξζξζξξ    

                                               
( ) ( )







+








+ − Br

B

eO
r

4

10
2

5
28 lζ

.    (2.10) 

 
The term proportional to Br  gives the ten-dimensional expression in the ∞→Br  limit. Once again, 

there is growing term with the expected power of 5
Br , which contributes a term proportional to 

( ) 422 RBsr  to the expansion of the ten-dimensional  ( )ss 2
10

4 log l−R   threshold in the limit ∞→2
Bsr . 

The perturbative expansion of this coefficient is given by expanding in powers of the string 
coupling, 
 

            ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

∫− 




++








++








++=Ω2

1

2

1 2

22

6

6

4

2

2

2

2

2
59

1,01
5
9 9

45
189

25
1

9
32

3
3

B

sB

B

s

s

B

B

s

B
Bs r

g

r

r

rg
rd

ll

l

l
ll

ζζζζζζξ  
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( ) ( ) ( )




+







++








++ − Bg

B

s
B

B

sB eO
r

g
r

g /1
6

6
4

4

42

1
576

67
1

3
4 ll ζζ

.    (2.11) 

 
This expression is symmetric under T-duality transformation AB rr /1→  and AAB rgg /→ . The 

symbol ( )BgeO /1−  indicates schematically the presence of instanton/anti-instanton pairs in the zero 
D-instanton sector. 
Collecting the 2=L  and 1=L  modular functions along with the genus-one terms of the following 
equation 

                       ( )
( ) ( ) ( ) ( )( ) ( )∫− +++=Ω2

1

2

1 8811
8

8
0,01

~/log
3

2ˆˆ2
32 µπζξ yUETE

y
dBd RR ,    (2.11b) 

 
we find the modular invariant expression, 
 

           ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )











++++= 2/3

2

1

22/5
2

7

26
2

3
2

1,0
2

5
11

9
1,0

5
9

ˆ
9
2

378
2ˆ

3
4

ˆ
1

189
25

ˆ
1

12
ˆ EE VV

V
V

ζζζζζξ
ξ

V
ll .    (2.12) 

 
This expression sums all the contributions determined from the analysis of the 1=L  and 2=L  

loop amplitude on a torus, to which has been added the contribution ( ) ( ) 6
2̂/25 Vζζ , which arises 

from a 3Λ  divergence of the 3=L  amplitude. 
Now we analyze the eight-dimensional 46R∂  interaction, which has an effective action (2.6) that is 
invariant under the U-duality group ( ) ( ) ( )2333 SLSLE ×= . We will show that the modular function 

satisfies the differential equation 

                                                   ( )
( )
( )

( )
( )

( )
( )( )28

0,0
8

1,0
8

1,0
8 12 ξξξ −=∆ ,    (2.13) 

 
where ( )8∆  is the ( ) ( )23 SLSL ×  Laplacian. The source term appearing in this equation again 

involves the square of the eight-dimensional 4R  coefficient. The solution is close to the one on the 
basis of consistency with the higher-dimensional interaction, 
 

   ( )
( )

( )
( )

[ ]
( ) ( ) [ ]

( ) ( ) ( ) [ ]
( ) ( ) ( )

9
2ˆ

9
ˆ

36
ˆˆ

3
1

9
40

1
3

2/3;101
3

2/3;103
3

2/3;10
3

1,0
8

1,0

ζππξξ ++++++= − UEEUfUEEUEE SLSLSLSL ,    (2.14) 

 
where the function ( )Uf  is defined as the solution of the equation 
 

                                                   ( ) ( ) ( )UEUfU
2
1

ˆ412 −=−∆ ,    (2.15) 

 
where ( )222

2 21 UUU U ∂+∂=∆ . It is straightforward to extract the power-behaved terms in its 

expansion. We have also introduced ( )
( )3
1,0

SLξ  satisfying  

 

                                             ( ) ( )( ) ( )
( )

[ ]
( )( )23

2/3;10
3

1,03\3
ˆ12 SLSL

SLSO E−=−∆ ξ .    (2.16) 

 
The last three terms in (2.14) arises from the regularisation of the 4R interaction. In the 
decompactification limit ∞→92 / lr  the ( )ZSL ,3  modular functions in (2.14) have the form 
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                            [ ]
( ) ( )∫−

−
− +Ω=

2/1

2/1

2
22/5

2

1

24
3

2/3;10 31516
9 νπν
π

EEdBdB SL
NSRR ,    (2.17) 

 

                            [ ]
( ) ( )∫−

−
+Ω=

2/1

2/1 22/3
2

1

2
3

2/3;10 logˆ νπν EEdBdB SL
NSRR .              (2.18) 

 
Substituting the latter expansion into the source term in the following equation 
 

                                                   ( ) ( )( ) ( )
[ ]

( )( )23
2/3;10

3
3\3

ˆ12 SLSL
SLSO EA −=−∆ , 

 
one finds that the interaction coefficient becomes 
 

                      ( )
( )

( )
( ) ( ) ( )∫−

−−
+Ω










+++=

2/1

2/1 2/3
2

5

22
2

3

212
2

1

2
10

1,0
2

3
1,0 log

9
21

EccdBdB SL
NSRR ννννπξ

ν
ξ  

                           
( ) ( ) ( )( ) ( )( )2/1

22
2/1

2
2/1

2 ,log8log45
9
2

2
2

2

−− Ω−Ω−++++ ννννζ
eeO ,    (2.19) 

 
where 21,cc  are integration constants. We have that ( ) ( )πζ 12/51 =c  and 02 =c . In this case the 
zero instanton sector contains instanton/anti-instanton pairs consisting of D-instantons and wrapped 
( )qp, -string world-sheets as indicated by the last term. The ( )ZSL ,2  modular functions have the 
expansions 

                                    ( ) ( ) ( )
∫−

−+=
2/1

2/1

2
2

3
231 4

53
62 UUUEdU

πζζ ,    (2.20) 

 

                                    ( ) ( ) ( )∫− −=
2/1

2/1 2211 log22ˆ UUUEdU πζ ,        (2.21) 

 
and the expansion of the function ( )Uf  is 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )21log64log22
53

482065
180

6 2223
2

2
2

2
2

2
UeOUUU

U
UUUf −++−−++−= πζ

π
ζζπππ

. (2.22) 

 
Therefore, the constant term associated with decompactifying to nine dimensions is 
 

            ( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )

∫− +






















+








++=

2/1

2/1

6

9

29
0,13

4

2

99
0,0

6
9

9
1,02

5
9

8
1,0

6
8 567

616
4

515
36 l

l
lll

r

r
rdBdB NSRR

πζξ
π
ζξπξξ  

( )
( ) ( ) ( ) ( ) ( ) +

















−







++−









−








−

9

2

9

22

2

7
9

1
7

4

1
6
9

7

4

1
9

0,0
9

26
9 log

9
20

log
9
86

36
37

2log
21

24
247log

9 ll

l
l

l
l

rr

r

r ζνπζννζξπ

                             
( ) ( ) ( ) ( )2

1
9

2
1

2

7
9 log

7
48

log41log
21
2 reO

r

r
−+









−







+− ννζ

l

l
.    (2.23) 

 
The term linear in 2r  reproduces the nine-dimensional 46R∂  interaction, the term independent of 2r  

is proportional to the nine-dimensional 4R  interaction, and the term proportional to 42
−r  is 
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proportional to the nine-dimensional 46R∂  interaction. The term proportional to 22r  is needed to 

reproduce the 9=D  threshold of the form ( ) 42/1
Rs− . 

The perturbative expansion of the coefficient ( )
( )8

1,0ξ  in increasing powers of ( ) 1

2
2
28

−Ω= Ty is given by 

the following equation: 
 

    ( )
( )

( )
( )

[ ]
( ) ( ) [ ]

( ) ( ) ( ) [ ]
( ) ( )( ) ( )

9
2ˆ4ˆ

36
ˆˆ

3
1

9
40

1
3

2/3;101
3

2/3;103
3

2/3;10
3

1,0
8

1,0

ζπξξ ++++++= − UEEUfUEEUEE SLSLSLSL .    (2.24) 

 
The function ( )qp

hj
,  is the expansion of the integrand of the genus-h string loop diagram to order 

4
32 Rqpσσ  

 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )∫− 












 +++++=Ω
2/1

2/1

0,0
1

2
1

1,0
2

2
288

1,0
1

2
1

8

2
68

1,01
6
8 293

2
log

9
32

3
64

3
32

jIjIyyjI
y

dBd sRR

πππζπζξ ll

                  ( ) ( ) ( ) ( )( ) ( )











+++
−− −− 2/1
8

2/1
22

1

82 ,20log
27

log 1,0
3

2
3

2
8

2
88

2

88
yTyT eeOjIyyyyy

π
.    (2.25) 

 
The genus-one contribution to this expression has the form 
 

                        ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )µ
π

ζ
π

logˆˆ
32

3
32
10

11336
1,0

1
2

1 +++= UETEUETEjI .    (2.26) 

 
Comparing (2.25) with the expansion of ( )

( )8
1,0ξ , we see that the genus-two contribution is given by 

 

                ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
36

211ˆˆ
9

ˆˆ
3
2

1111
1,0

2
2

2

ζπ +++++= UfTfUETEUETEjI .    (2.27) 

 
The genus-three contribution in (2.25) extracted from the expansion of ( )

( )8
1,0ξ  is 

 

                                             ( ) ( )( ) ( ) ( )( )UETEjI 33
1,0

3
2

3 270
1 += .    (2.28) 

 
The modular function multiplying the 46R∂  interaction in 7=D  is determined by 
 

                                                  ( )
( )
( )

( )
( )( )27

0,0
7

1,0
7

5
42 ξξ −=






 −∆ ,    (2.29) 

 
where 
                                                          ( )

( )
[ ]

( )5
2/3;1000

7
0,0

SLE=ξ .    (2.30) 

 
The solution can be written as  

                                                 ( )
( )

( )
( )

[ ]
( )5

2/7;00105
5

1,0
7
1,0 2

25 SLSL E
π

ξξ += ,    (2.31) 
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where ( )
( )5
1,0

SLξ  is a particular solution and [ ]
( )5

2/7;0010
SLE  is the only solution of the homogeneous equation 

that has perturbative terms consistent with string theory. 
In the limit ∞→83 / lr , for the following equation 

 

                    [ ]
( ) ( ) ( ) ( ) [ ]

( )
[ ]

( )
( )∫ +

Γ








 −Γ
+−=

−−

+

2,3

3

2

1
;01

2

2

1
;1

5

4
2

5

24
5

;0010
2
1

2
2122

P

SL

s

SL

s

ss
SL

s EE
s

s
rssrE

πζζ  

                                        ( ) ( )
( ) ( ) [ ]

( )3
1;10

5

16
82 32

12
32

2 SL
s

s

Es
s

s
r −

−
−

−Γ
−Γ+ ζπ ,    (2.32) 

 
after setting 2

3 rr = , we obtain 

 

           
[ ]

( )
( )

( ) ( ) ( )
[ ]

( )
[ ]

( ) ( )2
3

3
3;01

5

12

8

33

2

5
;10

5

8

3

8
25

42

8

3

2,3

5

2

7
;0010 15

8
5

2
762 SLSLSL

P

SL EE
r

E
r

r
E 








+








+








=∫

l

l

l

ζπζζ .    (2.33) 

 
From this expression we recognise the term [ ]

( ) ( )2
3

3
3;01

SLSL EE  that decompactifies to eight dimensions. 

The 5/42
3r  term in (2.33) contributes to the 8=D  threshold. Comparing with the eight-dimensional 

expression for ( )
( )8

1,0ξ  and using [ ]
( )

[ ]
( )3

2/3;01
53

3;01 3/2 SLSL EE −= π , fixes the relative coefficient in (2.31), as 

follows. In addition, we recognise the term 
[ ]

( )3

2

5
;10

SLE  in (2.33), multiplied by 5/8
3
−r , which is part of the 

44R∂  interaction in eight dimensions. The other part of the 44R∂  interaction is a term 

[ ]
( ) ( )2

2
3
2;01

5/8
3

SLSL EEr − , which does not show up in (2.33), but arises from ( )
( )5
1,0

SLξ , as follows. The large-3r  

limit of the source term is obtained with the use of 
 

                              
[ ]

( )
( )
( )

( )∫ 















−








=

2,3
78

3
5

6

8

38
0,0

5

6

8

35

2

3
;1000

log4
P

SL rrr
E

µ
πξ

lll
.    (2.34) 

 
In this limit, the constant term of the particular solution ( )

( )5
1,0

SLξ  contains the contributions 

 

                 ( )
( )

( )
( )

[ ]
( ) ( ) ( )

( )∫ 












+








+++








=

2,3

4

3

8
1

3

2

3
;10

3
1,0

5

12

8

35
1,0 ...ˆˆ

3

1
P h

SLSLSL

r
UfUEE

r ξξξ l

l
.    (2.35) 

 
The first three terms reproduce the eight-dimensional result. Since the source term does not contain 
the power 5/8

3
−r , hξ   solves a homogeneous equation for the ( ) ( )23 SLSL ×  Laplacian with 

eigenvalue 10/3, which is the same as the eigenvalue of [ ]
( )3

2/5;10
SLE  in (2.33). The term we are 

expecting is of the form [ ]
( ) ( )2

2
3
2;01

SLSL EkE , where the coefficient k  is fixed by comparing with the 44R∂  

interaction, which gives  ( ) 5/28 2ζπ−=k . 

We will now find the constant part of the particular solution, ( )
( )5
1,0

SLξ , in the parabolic subgroup of 

relevance to the limit of perturbative string theory. In this limit, the result is expressed in terms of 
functions invariant under ( ) ( )43,3 SLSO ≈ , the T-duality group. We will need the expansions 
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[ ]

( )
( )

( ) [ ]
( )4

1;100
5

1

7
5

6

71,4

5

2

3
;1000

232 SL

P

SL EyyE
−−

+=∫ ζ ,              (2.36) 

 

                                       
[ ]

( )
( ) [ ]

( ) ( )
[ ]

( )4
3;001

5

3

7
4

2

7
;010

5

7

71,4

5

2

7
;0010 15

48 SLSL

P

SL EyEyE
πζ+=

−

∫ .    (2.37) 

 
Thus the homogeneous solution provides part of the genus-one and genus-three contributions. In 
order to study the perturbative string theory limit we will also need the decomposition of the ( )5SL  

Laplace operator into the ( )4SL  Laplace operator plus the second-order differential operator 

associated with 7y , 

 

                            ( )
( ) ( ) ( ) ( ) ( ) ( )77

2
774\45\5

7 5
2
5

yyyySLSOSLSO ∂+∂+∆→∆=∆ .    (2.38) 

 
The coefficients 5/2 and 5 in this equation have been determined by using the known 47,8 R=D  

and 44R∂  interaction coefficients. The 4R  coefficient is given in (2.36), whereas the 44R∂  case 
can be checked using 
 

                                           
[ ]

( ) ( ) [ ]
( )

( )∫ += −

1,4

4
2;100

2
7

5

2

5
;1000 3

4
52

P

SLSL EyE ζ ,              (2.39) 

 

                                           
[ ]

( )
( ) [ ]

( ) ( )
[ ]

( )4
2;001

4

2

5
;010

1
71,4

5

2

5
;0010 3

24 SLSL

P

SL EEyE
πζ+= −

∫ .    (2.40) 

 
The constant term of the particular solution associated with the parabolic subgroup of relevance to 
the perturbative expansion is a series of the form 
 

                                                ( )
( ) ( )

( )∫ ∑
=

−=
1,4

3

0

1
7

475
1,0

7
7 P

n

nSL
ns

SL yξξ ll .    (2.41) 

 
The coefficient functions ( )4SL

nξ  can be determined by substituting this genus expansion into the 

Laplace equation (2.29) and using (2.31), which gives 
 

                 ( ) ( )24
0 346 ζξ =SL ,    (2.42)        ( ) ( )

( ) ( ) [ ]
( )4

1;100
4

14\4 38
2
21 SLSL

SLSO Eζξ −=






 −∆ ,    (2.43) 

 

            ( ) ( )( ) ( )
[ ]

( )( )24
1;100

4
24\4 410 SLSL

SLSO E−=−∆ ξ ,    (2.44)        ( ) ( )
( ) 0

2
9 4

34\4 =






 −∆ SL
SLSO ξ .    (2.45) 

 
Equation (2.42) gives the tree level contribution. The genus-one coefficient is determined by (2.43), 
which is solved by 
 

                        ( )
[ ]

( )
[ ]

( )
[ ]

( ) ( )
[ ]

( )4
1;100

4
2/7;010

4

221;001

4

221;100

4
1 3

32
' SLSLSLSLSL EbEEaaE

ζξ +++= ++  ,    (2.46) 
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for any baa ,', . The constants ',aa  must be zero to match the genus-one contribution in 8=D , and 
b  can be fixed by the decompactification limit. Equation (2.44) defines the genus-two function 

( )4
2
SLξ which, by construction, in the decompactification limit becomes the genus-two contribution  

( ) ( ) ( ) ( )UUfTTfUETE ,,ˆˆ
11 ++   of the 44R∂  interaction in eight dimensions. Finally, (2.45) has 

two independent admissible solutions [ ]
( )4

3;001
SLE  and [ ]

( )4
3;100

SLE . The first one combines with the solution of 

the homogeneous equation. Thus, the complete perturbative expansion of the modular function ( )
( )7

1,0ξ  

is given by 
 

 ( )
( ) ( ) ( )

[ ]
( ) ( )

[ ]
( ) ( )

[ ]
( )

[ ]
( )( )

( )∫ 












++++









+++=

1,4

4
3;100

4
3;001

2
7

4
27

4

2

7
;010

4
1;100

7

2
77

1,0
7
7 ..21

3
321

3
32

P

SLSLSLSLSL
s pnEEyyEbE

y
ξζζξ ll , 

                                                                                                                                                  (2.47)  
 
where ..pn  indicates non-perturbative contributions. By construction this reproduces (2.25) in the 
decompactification limit since, as discussed above, in this limit the differential equation becomes 
the eight-dimensional one. The genus-one contribution in string perturbation theory is given by 

( ) ( )( )1,0
1

3
1 jI , i.e.: 

                                         ( ) ( )( )
[ ]

( ) ( )
[ ]

( )4
1;100

4

2

7
;010

1,0
1

3
1 16

3
!8

25 SLSL EEjI
π

ζ+= ,    (2.48) 

 
which determines the value of  1756/5 −= πb . Interestingly, as in 8=D , the value of the genus-
three contribution is given by integrating the three-dimensional lattice factor over the Siegel 
fundamental domain for ( )ZSp ,3 , 
 

                                    ( ) ( ) [ ]
( )

[ ]
( )( )

( )∫ +=Γ
ℑZSp

SLSL EE
m

d

,3

4
3;001

4
3;1003,35

26

270
1

detF τ
τ

.    (2.49) 

 
 
3. On some equations concerning the Eisenstein series for higher-rank groups, string theory   
     amplitudes and string perturbation theory.  [3] 
 
It is useful to translate the terms in the low energy expansion of the analytic part of the following 
scattering amplitude 
 

                                     ( ) ( )
( ) ( )∑

∞

=
+

=
0,

4
32/, 1

,,
qp

qp
KE

D
qp

analytic
D d

utsA Rσσφξ ,    (3.1) 

 

(where 10103 ≤−=≤ dD ,  ( )( )nD
nnn

n uts 4/2
l++=σ , and Dl  is the D-dimensional Planck 

length) into local terms in an effective action, so that the first three terms beyond classical Einstein 
theory in D  dimensions are 
 

                                             ( )
( )
( )

∫ −= − 4
0,0

8
4 RDDDD

DR
GxdS ξl ,    (3.2) 

 
and 
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                                          ( )
( )
( )

∫ ∂−= −
∂

44
0,1

12
44 RDDDD

DR
GxdS ξl ,    (3.3) 

 
and 

                                          ( )
( )
( )

∫ ∂−= −
∂

46
1,0

14
46 RDDDD

DR
GxdS ξl .    (3.4) 

 
The automorphic coefficients in (3.2) and (3.3) are given by the simple expressions, 
 
                                              ( )

( ) ( ) [ ]11 2/3;102/3;0,0 :32 +== d
d

EGD EEαζξ ,    (3.5) 

 
and 

                                              ( )
( ) ( ) [ ]11 2/5;102/5;0,1 2

1
:5 +== d

d

EGD EEαζξ ,    (3.6) 

 
for 53 ≤≤ D  (or 57 ≥≥ d ).  
The decompactification from D  to 1+D , is the limit associated with the parabolic subgroup 

1+d
Pα , 

for Dd −= 10 . Consistency under decompactification in this limit 1/ 1 >>+Ddr l  requires 
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,    (3.7) 

 
and 
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
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
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D
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D

D
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llll

l
.    (3.8) 

 
The symbol ≅  means that constant factors multiplying each term have been suppressed. For 

5,4,3=D , i.e. for the duality groups 76,EE and 8E , the automorphic coefficients in these 

expressions are simply given by the Eisenstein series shown in (3.5) and (3.6). 
The perturbative limit is associated with the parabolic subgroup 

1αP  and is given by 0→Dy  with 

sl  fixed. In this limit the expansions of the interactions (3.2) and (3.3) are given by the constant 

terms, 

                                      ( )
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and  
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ll .    (3.10) 

 
                                  
The semi-classical M-theory is the limit associated with the parabolic subgroup 

2αP . In this limit the 

volume ∞→+1dV  of the M-theory torus becomes large and the semi-classical, or Feynman diagram, 

approximation to eleven-dimensional supergravity is useful. The constant term of the coefficients in 
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(3.2) and (3.3) in this parabolic subgroup is given by (using the relation  1
9
11

2 / +
− = d

D
D Vll , as well as  

( ) 2/31
111

1 / +
+

+ = d
d

dr lV  with  Dd −= 10 ), 
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The various contributions in (3.11) agree with the expressions obtained by evaluating the sum of 
one-loop and two-loop Feynman diagram contributions to the amplitude in eleven-dimensional 
supergravity compactified on a ( )1+d -torus. The two terms in the 4R  coefficient (3.11) arise from 
the compactified one-loop diagrams together with the counterterm diagram, while the terms in 

44R∂  coefficient (3.12) arise from the sum of the compactified two-loop diagrams and the one-loop 
diagram that includes a vertex for the one-loop counterterm.  
The constant term of the 6E  Eisenstein series, corresponding to the decompactification from D = 5 

to D = 6 results in the sum of two ( )5,5SO  series in the combination  
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5
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multiplying 3/20r , where the hats indicate the finite part of the series after subtraction of an ε  pole. 
Although the individual ( )5,5SO  series have poles in s, the residues of these poles cancel and the 

sum is finite. This is seen by using the relations 5
4
6

3
5 / rll =   and  ( ) 2/1

65 / lrr = , leading to 
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where µ  is a constant scale factor. The term linear in 5r  is the one that multiplies the 6=D  

coefficient, ( )
( )6

0,1ξ  so that 
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The expression for [ ]

( )ddSO

sdE ,

;10 1−  is expressible by a Siegel-Weil formula relating the integral over the 

moduli space of genus-one Riemann surfaces of ( )ZSL ,2  Eisenstein series times lattice sums and 

( )ddSO ,  Eisenstein series, 
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where  ( ) ( ) ( )∑ ≠
+=

0,0,

2
/

nm

ss
s nmyE ττ   is the usual ( )ZSL ,2  Eisenstein series and ( )( )τdd ,Γ  is 

defined in the following expression 
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It follows from this definition that the series satisfies the functional equation 
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where, in this equation, ( )sξ  is the completed Riemann ζ -function ( ) ( )s
s

s s ζπξ 






Γ= −

2
2/ . 

Based on input from string theory the constant term in the parabolic subgroup 
1+d

Pα , the 

decompactification limit (decompactification to D = 4), should consist of five components with 
distinct powers of r  
 

            ( )
( )

( )
( )

( )
( )

( )
( )

∫
+ 






+








+








+








+








≅ +

−

+

+
−

+

−

+

+

+

−

+

1

1
0,1

4

1

1
0,0

8

1

14

1

1
1,0

1

14

1
1,0

d
P

D

D

D

dD

D

D

d

D

D

dD

D

d

D

D

DD rrrr
α

ξξξξ
lllll

l
  

                                            ( )






+








+ +−

−

+

1/

215

1

Ddr

D

D

d eO
r l

l
.    (3.18) 

 
We now consider the constant term that arises from the solution of the following equation 
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3 198 ξξ −=+∆ ,    (3.19) 

 
which describes the limit of decompactification to 4=D  in the 8E  case. We are interested in the 

limit associated with the parabolic subgroup 
8αP . We note that the constant term of the source term 

can be expressed as 
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The perturbative expansion is given by the constant term associated with the maximal parabolic 
subgroup associated with the node 

1αP  with Levi subgroup ( ) ( )7,71 SOGL × . String perturbation 

theory (an expansion in powers of 3y  starting at 1
3
−y ) requires this to have the form 

 

                                      ( )
( ) ( ) ( )∫ ∑ 







 +=
=

−−

1

3

3

0

/17,71
3

113
1,0

11
3

α
ξ

P
k

ySO
k

k
s eOFyll .    (3.21) 

 
The coefficients ( )7,7SO

kF  can be determined by a procedure analogous to the one in the previous 

limit, as follows. First the Laplacian ( )3∆  on ( )16/8 SOE  is decomposed in this limit into a sum of 

the Laplacian on ( ) ( ) ( )( )77/7,7 SOSOSO ×  and a Laplacian along the 3y  direction 
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                                   ( ) ( ) ( ) ( )( ) ( )
33 3
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SOSOSO yy ∂+∂+∆→∆ × .    (3.22) 

 
Next, the constant term of the source is obtained by substituting the expansion of ( )

( )3
0,0ξ , resulting in 
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The structure of this expression is consistent with (3.21), which we may use as an ansatz for the 
solution. Substituting (3.21), (3.22) and (3.23) into (3.19) results in equations that determine the 
coefficients kF  (using 33 ysll = ), 
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                                 ( ) ( ) ( ) ( ) 0
2
63 7,7
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
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 +∆ × SOSOSOSO F .                             (3.27) 

 
A solution to (3.24) that is compatible with string perturbation theory is the constant 
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3

327,7
0

ζ=SOF ,    (3.28) 

 
which is precisely the genus zero (tree-level) contribution. A solution to the homogeneous equation 
((3.25) with no source term) that is consistent with string theory is [ ]

( )7,7

2

11
;106

SOE , resulting in a solution of 

(3.25) given by 
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The function, ( )7,7

3
SOF , satisfies the source-free (homogeneous) equation (3.27) since there is no 23y  

term in the constant term of the source. A solution of relevance to string theory is given by the 
linear combination of maximal parabolic Eisenstein series, 
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where βα ,  and γ  are constants that are determined from the boundary conditions. We find that 
these Eisenstein series satisfy the relations 
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Therefore the expression (3.30) takes the form 
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The normalisation is fixed by comparison with the genus three contribution in string theory in the 
limit in which the volume of the 7-torus, 7T , is large, resulting in  
 

                                                 ( )( )
( ) 270

1
62

,3 ==+
ζ

βα ZSpvol F
,    (3.33) 

 
where ( )( ) ( ) 135/6,3 ζ=ZSpvol F  is the volume of the Siegel fundamental domain for ( )ZSp ,3 . Thence, 

we have determined the constant terms of the solution of equation (3.19) for ( )
( )3

1,0ξ  in the parabolic 

subgroup 
1αP  that agree with the results of the explicit evaluation of string perturbation theory. 

 
 

4. On some equations concerning U-duality invariant modular form for the 46RD  
interaction in the effective action of type IIB string theory compactified on 2T .  [4] 

 
The complete perturbative part of the modular form is given by the following expression: 
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In ten dimensions (4.1) without the ( ) ( )UUfTTf ,, +  term, gives all the contributions of the 
following expression: 
 

             ( ) ( ) ( ) ( ) ( ) 464222104 ...6
9
2

462323 RDeeegxdlS s ∫ 






 ++++−≈ − φφφ ζζζζζ ,    (4.1a) 

 
(i.e. the interaction concerning the low energy effective action for type IIB superstring theory in ten 
dimensions, where the … involve contributions form D-instantons), except the genus two 
contribution. We first decompactify to nine dimensions by defining 
 

                                                          BrrT ∞=2 ,        
Br

r
U ∞=2 , 

 
where ∞r  is the direction that is being decompactified. Here ∞r  and Br  are the radii of 2T  in the 

string frame. Now let us take the limit ∞→∞r , so that ∞→22,UT . This leads to the nine 
dimensional interaction 
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where we have set    ∫∫ −=− ∞ 9
9

8
8 gxdrgxdls .    Taking the limit  ∞→Br , we get the term in 

the ten dimensional effective action 
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where we have set    ∫ ∫ −=− gxdrgxdl Bs
10

9
9 . 

 
Given the expression (4.1) for the perturbative part of the modular form, it is natural to propose that 
the exact expression for the modular form is given by 
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where 
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We now construct ( )TTf , , and also obtain the non-perturbative completion of (4.3). Now, the 

modular form ( )( )ττξ ,2/3,2/3  for the 46RD  interaction in ten dimensions satisfies a Poisson equation 

 

                              ( ) ( )( ) ( )( ) ( )( )2
2/32/3,2/32/3,2/3,2 ,6,12, ττττξττξ EZSL −=∆     (4.4) 

 
on the fundamental domain of ( )τZSL ,2 . The source term in (4.4) is the square of the modular form 

for the 4R  interaction, which can be understood based on considerations of supersymmetry. 
Because  ( ) ( )MZSLZSL ,3,2 ⊂τ , and the U  dependence in the expression (4.2) is already fixed, it is 

natural to propose that ( )( )M2/3,2/3ξ  satisfies a Poisson equation on the fundamental domain of 

( )MZSL ,3  given by 

                                 ( ) ( )( ) ( )( ) ( )( )2
2/32/3,2/32/3,2/3,3 MEMMZSL βαξξ +=∆ ,    (4.5) 

 
where α  and β  are numbers. Again, the source term in (4.5) is the square of the modular form for 

the 4R  interaction in eight dimensions. Let us first consider the perturbative content of (4.5). We 
use the relation 
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where  2
2
2Vτµ =  is the eight dimensional dilaton. Now (4.6) can be obtained based on symmetries 

alone. From (4.3), we see that every term in the perturbative part of ( )( )M2/3,2/3ξ  is of the form 

( )TTgk
k ,µ , where ( )TTgk ,  is ( )TZSL ,2  invariant. Thus ( )

pert
ZSL ,3∆  must have the form 
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where, in this equation, ,, 21 ξξ  and 3ξ  are numbers. In order to determine them, we act with ( )
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ZSL ,3∆  

on ( ) ( )
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ZSLs ME ,3 , such that   ( ) ( ) ( ) ( ) ( ) ( )
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                                         ( ) ( ) ( ) ( )ZSL

pert TTEME
,2

12/3 ,232 += µζ ,    (4.8) 

 
we see that (4.5) gives us the set of equations 
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So (4.9) is solved by 
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thus (4.10) reduces to 
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Thus (4.12) gives us the equation for ( )TTf ,  (and ( )UUf ,  as well), while (4.5) reduces to 
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thus giving us an explicit equation satisfied by the modular form ( )( )M2/3,2/3ξ . The structure of 

(4.12) is very similar to (4.4), and our analysis is along similar lines. In (4.12) we substitute  
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Substituting the regularized expression for ( )TTE ,1  given by: 
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we get the equation satisfied by ( )20 Tf  
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Now writing  
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where ( )20̂ Tf  is the contribution from the zero worldsheet instanton sector, and ( )2
ˆ Tfk  is the 

contribution from the worldsheet instanton anti-instanton sector with vanishing NS-NS charge, 

from (4.15) we get differential equations for ( )20̂ Tf  and ( )2
ˆ Tfk . For ( )20̂ Tf  we get 
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which has the solution 
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where 1λ  and 2λ  are arbitrary constants. 

For ( )2
ˆ Tfk , we get 
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which has the solution 
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where ( )xEi  is the exponential integral function. Using the relation 
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we see that the last term in (4.20) has the correct structure to be a worldsheet instanton contribution. 
Thence, we can rewrite the eq. (4.20) also as follows: 
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For the worldsheet instantons with non-vanishing NS-NS charge, we get the equation  
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which in principle can be solved iteratively by expanding in large 2T . Substituting (4.18) and the 

corresponding expression for ( )20̂ Uf  into (4.2), we can easily study the decompactification limit as 

before. Only the 2
2T  term in the expression for ( )20̂ Tf  contributes in this limit. In nine dimensions, 

in addition to (4.1b) it also gives a term 
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where we have used ( ) 90/4 4πζ = . Thence, we can rewrite the eq. (4.23) also as follows: 
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However, it also gives a divergent contribution 
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Further decompactifying to ten dimension, this gives an additional contribution to (4.1c) which is 
equal to 
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This is a non-trivial consistency check on our proposed modular form. Note that we can send 
 

                                          ( ) ( ) ( ) ( )ZSL
TTETTfTTf

,2

4 ,,, λ+→ ,    (4.26) 
 

for arbitrary λ  in (4.12) because ( ) ( )ZSL
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In the zero worldsheet instanton sector, this involves shifting the coefficient of the 42T  term 
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In the sector with world sheet instanton charge k , the extra terms are automatically solutions of the 
homogeneous equation in (4.22). 
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We have restricted the integral to be over LF  as the integrals diverge and we regulate them, and 
finally take ∞→L . Integrating by parts, and using (4.27), from (4.30) we get that 
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Using (4.18) with 2λ  replaced by 2̂λ , the left hand side of (4.31) yields 
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Using the Poincare series representation for ( )ZSLE ,2

4 , and the Rankin-Selberg formula the right hand 
side of (4.31) yields 
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leading to 
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using an identity due to Ramanujan. 
The analytic part of the amplitude relevant for the 42 RkD interaction is given by 
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The two perturbative contributions are given by 
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This leads to 
 

  ( ) ( ) ( ) ( ) ( ) ( ) kk
s

k
k

ZSLAA
k

kA lekk
k

UUET
kl

K
A

A

W212
2/52

,21

2

4

3
11

11

4
11

4 23
2
3

!
4

,
2

2

ˆ








−







 −Γ+= −
+

− φζππ
π
κ

,    (4.39) 
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The expression (4.39) leads to terms in the IIB effective action given by 
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Given the perturbative equality of the amplitude in the two type II theories and the Eisenstein series 
of order sfor ( )ZSL ,2 , defined by 
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it is natural to enhance the ( )kBU2 factors to ( ) ( )ZSLBB
k UUE

,2
, , and symmetrize in BU  and BT . Thus 

(4.41) gets enhanced to 
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where we have used the relations 
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where k  is a positive integer, kB2  are the Bernoulli numbers, and 
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Decompactifying to nine dimensions, we see that (4.42) gives the interaction 
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which contributes at genus one and at genus k . It also gives the divergent contribution 
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which leads to the threshold singularities. Further decompactifying (4.45) to ten dimensions, this 
leads to the interaction 
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which contributes at genus k , while the genus one contribution vanishes. It also gives the divergent 
contribution 
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corresponding to the threshold singularities. 
 
      

                                               5. Mathematical connections   
 
Now in this Section, we have described various possible mathematical connections between the 
arguments above mentioned and some sectors of Number Theory, principally with some equations 
concerning the Ramanujan’s modular equations that are related to the physical vibrations of the 
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bosonic strings and of the superstrings, some Ramanujan’s identities concerning π and the zeta 
strings. 
Now we want to show an interesting equation concerning the gauge fields as described in the 
Jormakka’s paper “Solutions to Yang-Mills equations [5] and connected with an Ramanujan’s 
identity concerning π in the my recent paper: “On some equations concerning quantum 
electrodynamics coupled to quantum gravity, the gravitational contributions to the gauge couplings 
and quantum effects in the theory of gravitation: mathematical connections with some sector of 
String Theory and Number Theory”. [6] 
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This equation can be connected with the eq. (1.21) that we have multiplied for 
128
56 5π

 as follows:  
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Thence, we obtain  the following expression: 
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With regard the mathematical connections with π  and Φ , thence with the universal music system 

based on Phi, we have the following value in the eq. (1.21) 463182,0
7
32

2 =
π

. Now, this number is 

very near to the following   
π

458980337,1
46440787,0 =  , where 1,458980337 is a value of the 

system, that is about  ( ) ( ) 459501596,17/50.57/ =Φ=Φ n . We note also that 464573,0
459501596,1 =

π
. 

Thence, we have 46318,046440,046457,0 ≅≅ , a very good approximation! 
 
 
With regard the eq. (2.25) 
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 that we have multiplied for 
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, we obtain the following expression: 

 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )∫− 












 +++++=Ω
2/1

2/1

0,0
1

2
1

2
1,0

2
2

288

2
1,0

1
2

1
2

8

2
68

1,01
6
8 24

3
9log

2

33
144

2

39

4

27
jIjIyyjI

y
dBd sRR

πππζπππζξπ
ll

                  ( ) ( ) ( ) ( )( ) ( )











+++
−− −− 2/1
8

2/1
22

1

82 ,135log
4

log 1,0
3

2
3

2
8

2
88

3

88
yTyT eeOjIyyyyy ππ

.    (5.4) 

 
This equation can be connected with the (5.1), and we obtain: 
 

( ) ( )
∫ ∫

−+−
2
1

2
2
3

2
2

2 2
2

1

1
2

3

1 yyy edyxed
ββ ( ) ( ) == ∫

−+− 12 22
3

12
3

2
2

2

βπβ yyxed  

     ( ) ( ) ( ) ( )
=== ∫ ∫ ∫∫

−−−−−− 2
2

2
2
3

2
2
2

2
2
3

2 2
2

1

23

12
2

1

23

1
22

2
3

3

1
22

3

1 yyyy edyedxedxedx
ββββ βπβπ  

        ( )( ) ( )( ) ( ) ( ) 3
2

3

3

2

3

2
22

2
1

2
3

3

1
22

2
1

2
3

3

1
22

2
3

3

1 2
3

22
3

2 −−−−−
=== ∫∫ βπβπβπ ββ yy edyedx   

                                     ( ) ( ) ( ) ⇒×=






= ∫
−+−

6

32
12

2

1
4

822
3

12
3

2
2

2

β
πβπβ yyxed  

                        ⇒







+−=








+⇒ ∫ ∫

∞ ∞ 2
3

0 0

2
3

2
33 3

416
1

sinh
sin

sinh
cos πππ

π
π

π
ππ dx

x

x
xdx

x

x
x  



 35 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )∫− 








 +++++=Ω⇒
2/1

2/1

0,0
1

2
1

2
1,0

2
2

288

2
1,0

1
2

1
2

8

2
68

1,01
6
8 24

3
9log

2

33
144

2

39

4

27
jIjIyyjI

y
dBd sRR

πππζπππζξπ
ll

                  ( ) ( ) ( ) ( )( ) ( )











+++
−− −− 2/1
8

2/1
22

1

82 ,135log
4

log 1,0
3

2
3

2
8

2
88

3

88
yTyT eeOjIyyyyy ππ

.    (5.5) 

 
With regard the mathematical connections with π  and Φ , thence with the universal music system 
based on Phi, we have the following values in the eq. (2.25): 
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3
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Now, we note that these values, i.e. 0,34830590;   0,3647506;   67,157 are all  connected with π/1   

and π . Indeed, we have:  348305898,0
094235253,1 =

π
;   364750672,0

145898033,1 =
π

; 

( ) ( ) 158024,6703399702,2912402767,38241808286,913525491,12 =+=⋅+⋅ ππ . We want to 
evidence that the numbers  1,094235253;   1,145898033;   12,13525491   and   9,241808286 are all 
belonging to the column “system”. 
 
With regard the equation (2.33): 
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if we multiply for 
4

5π
, we obtain the following expression: 
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This equation can be connected with the (5.1), and we obtain: 
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With regard the mathematical connections with π  and Φ , thence with the universal music system 
based on Phi, we have the following values in the eq. (5.6): 
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2 ≅=π
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4
5 ≅=π

;   

 

                        766444154,775156917,7
4

3

≅=π
;   96726328,197392088,1

5

2

≅=π
. 

 
Now, we note that these values, i.e. 2,100899497;   3,922506639;   7,766444154;   1,96726328  are 
all  connected with π/1 , π  and  1/1,375 (where 1,375 is the constant regarding the number of the 
partitions). Indeed, we have: 
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1
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π
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We want to evidence that the numbers  0,66873708;   5,393446629;   2,472135954   and   
6,1803398874  are all belonging to the column “system”. 
 
With regard the eqs (4.19) and (4.21b), we have the following mathematical connections: 
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i.e. with the Ramanujan’s modular equations regarding the physical vibrations of the bosonic strings 

that are connected also with π (thence with Φ  by the simple expression Φ=⋅
6
5π ). 

With regard the mathematical connections with π  and Φ , thence with the universal music system 
based on Phi, we have the following values in the eqs. (4.18) and (4.23b): 
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We want to evidence that the numbers  0,042572472  and  0,344418537 are all belonging to the 
column “system”. 
Also in the eq. (4.29) we have a value connected with the universal music system based on Phi: 
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Indeed, we have that 
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and the number 6,180339887 is belonging to the column “system”. 
With regard the eqs. (4.32), (4.33) and (4.34), we have the following values connected with the 
universal music system based on Phi: 
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We want to evidence that the numbers  0,02192602;   0,36067977;   8,090169943;   19,41640786;   
27,41640786;   82,24922359   are all belonging to the column “system”. 
 

With regard the eq. (4.33), if we multiply it for 
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π

 we have the following mathematical connection 

with the eq. (5.1): 
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Furthermore, we have also the mathematical connection between the eq. (4.33) and the 
Ramanujan’s modular equations regarding the physical vibrations of the bosonic strings that are 

connected also with π (thence with Φ  by the simple expression Φ=⋅
6
5π ): 
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Now we want to describe the mathematical connections between some equations described in the 
present paper and the most important equations concerning the zeta strings. [7] 
We remember that the equation of motion for the zeta string φ  is 
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which has an evident solution 0=φ . 
For the case of time dependent spatially homogeneous solutions, we have the following equation of 
motion 
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With regard  the open and closed scalar zeta strings, the equations of motion are 
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and one can easily see trivial solution 0== θφ . 
 
We note that the eqs. (2.25) and (2.33) can be related with the eq. (5.13). We obtain: 
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Also the eqs. (3.20) and (3.23) can be related with the eq (5.13). We obtain: 
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In conclusion, also the eqs. (4.42) and (4.45) can be connected with the eq. (5.14). We obtain: 
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Also here, we can observe the mathematical connections with π  and Φ , thence with the universal 
music system based on Phi. Indeed, we have the following values in the eqs. (2.33) and (4.45) 
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                                       967263286,1
180339887,6

97392088,1
5

2

=≅=
π

π
; 

 
                                   36000012,4412022659,1454662397,444 2/3 =⋅≅= ππ . 
 
We want to evidence that the numbers  6,180339887  and  14,12022659; are all belonging to the 
column “system”. 
With regard the mathematical connections with the Ramanujan’s modular equations regarding the 
physical vibrations of the bosonic strings that are connected also with π (thence with Φ  by the 

simple expression Φ=⋅
6
5π ), we have that also the eqs. (1.19) and (2.11) can be related with 

them. Indeed, we have that: 
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Appendix A  (Di Noto Francesco)  [8] 
 
In this Appendix, we have analyzed some pure numbers concerning various equations described in 
the present paper. We have obtained some useful mathematical connections with some sectors of 
Number Theory. 
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Analysis   n  first  series 
 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 32, 36, 37, 40, 42, 45, 48. 
 

   (the numbers in red are already triangular numbers) 
 
 

Analysis   N’   second series  
 

63, 64, 65, 86, 90, 180, 189, 198, 270, 315, 378, 448, 567, 576, 720. 
 

In the second series , only 378 is a triangular number  
 
 

Analysis first series 

 

List of triangular numbers  

A list of some triangular numbers is the following: 

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 
325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 
1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 1540, 1596, 1653, 1711, 1770, 1830, 
1891, 1953, 2016, 2080, 2145, 2211, 2278, 2346, 2415, 2485, 2556, 2628, 2701, 2775, 2850, 2926, 
3003, 3081, 3160, 3240. 

 

We have: (in red the numbers n of the first series) 

 
TABELLA 2T +  6 

 
 
 

 T       2T-6      2T-5  2T-4     2T-3   2T-2    2T-1      2T   2T +1  2T+2   2T+3 2T+4   2T+5    2T+6 
1       2 3 4 5 6 7 8 

3 0 1 2 3 4 5 6 7 8 9 10 11 12 
6 6 7 8 9 10 11 12 13 14 15 16 17 18 
10 14 15 16 17 18 19 20 21 22 23 24 25 26 
15 24 25 26 27 28 29 30 31 32 33 34 35 36 
21 36 37 38 39 40 41 42 43 44 45 46 47 48 

 
 

  
We note that aren’t the n prime numbers (13, 17, 19, 29,31,41,43 e 47, but also  22=2*11, 
26=2*13, 28=4*7. 33=3*11, 34= 2*17, 35=7*5, 38=2*19, 44*4*11, 46=2*23). In other words, 
among the numbers n of the first series there aren’t some prime numbers and their small 



 43 

multiples, while there are only the prime numbers 5,  7 , 11,  23  e 37 with progressive 
differences 2, 4, 12 e 14; there are all the Fibonacci’s numbers except the smallest 1, and the 
numbers  13 and  34 the largest up to 48 (last number of the series) thence three Fibonacci’s 
numbers of eight. 

 
 
 
 

POSSIBLE CONNECTIONS WITH (p(n) ), THE NUMBERS OF PARTITIONS OF n 
 
 
 
 
 

p(n) =   1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42,   56,  77,   101,  135, 176.... 
  n   =  0  1  2   3  4   5    6   7   8    9    10    11   12     13     14     15   

 
 N = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 32, 36, 37, 40, 42, 45, 48. 
 
 
 
 
 
We have that seven of the numbers N analyzed (i.e. 2,3,5,7,11,15, and 42 are also partitions of 
numbers p(n) with n = 2, 3, 4, 5, 6, 7, 10 that are also among the numbers N analyzed  (N now 
uppercase for distinguish it from  n of p(n) );  while the  22  = p(8) is among the numbers  N  21 and  
23, and 30 is among 27  and  32  about a as arithmetic mean ( 27+32)/2 = 29,5 ≈30 
 
We know that the number of partitions of n  p(n) come out in the Nature about with the same 
frequency of the Fibonacci’s numbers, and they are link from the equation  p(n) ≈  F(n) ≈ n^2 +n + 
c’  (see the paper: “L’equazione preferita dalla natura”), and, as the Fibonacci’s numbers and the 
aurea ratio, they are present also in the string theory; thence, we conclude that there is an important 
and fundamental relationship between the numbers N, the partitions p(n) and the string theory.  
 
 
Now we observe the following Table   
 
 
 
 
 
n p(n)  = N N  n = N 
2 2 2 2 
3 3 3 3 
  4  
4 5 5 4 
  6  
5 7 7 5 
  8  
  9  
  10  
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6 11 11 6 
  12  
  14  
7 15 15 7 
  16  
  18  
  20  
8 22 ≈ 21  
  23  
  24  
  25  
  27  
9 30 ≈ 32  
  36  
  37  
  40  
10 42 42 10 
  45  
  48  
 
We note that some n of p(n) and some p(n)  are also N = numbers of the series that are come out 
from the calculation on the strings. 
 
Now we see with the triangle of the even numbers  (2T) 
 
 
 
  
                                                            0                                    
                                                       2         4                              
                                                 6         8        10                       
                                         12         14       16         18                                                                           
                                 20           22        24      26          28        
                             30        32         34       36         38          40 
                        42     44         46         48       50         52          54 
 
where the even numbers  N are on the top, then thin out, skipping one or two even numbers. The 
middle column, consisting of squares of odd numbers dispari – 1, instead, is complete : 0 = 1^2-1, 
8=3^2-1, 24= 5^2-1   48 =7^2-1  (0 not part of the numbers N, but is of the form 1^2 -1 = 0) 
 
 
                                 Triangle of the odd numbers: 
 
 
                                                           1 
                                                     3        5 
                                                 7        9        11 
                                             13     15     17         19 
                                       21      23     25      27          29 
                                    31    33      35     37        39         41 
                                43     45    47      49     51         53         55 
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Also here the numbers N are on the top, then thin out, skipping some odd numbers; the middle 
column consisting of squares of the odd numbers. The sums of each row are cubes (1,8,27,64) 
 
                                
 
 
 
 
 
 
             
                                    Triangle mixed (even and odd) 
 
 
                                                           1 
                                                       2       3 
                                                    4     5       6 
                                                 7    8      9      10 
                                             11  12   13     14      15 
                                          16   17  18   19      20     21 
                                       22   23   24  25   26      27      28 
                                    29    30   31 32  33    34      35      36  
                                  37   38   39   40 41  42     43     44       45 
                              46   47    48   49  50  51   52    53     54       55 
                           56 …        …      …        …       …      … ….      … 
 
The number of partitions p(n) are in italic. They are on the outside, with a few exceptions (for 
example, 42, almost to half of their line). 
Also here we note that the external diagonal of right consists of triangular numbers, with six 
number N also triangular numbers T, and other six numbers N in the diagonal left that are of the 
form T+1. And since also the internal diagonals containing many numbers N, it follows that many 
of them are of the form  T +1 ,  T+2, as from the following Table 
 
 

T-2 T-1 T T+1 T+2 
  1 2 3 
 1 2 3 4 5 
4 5 6 7 8 
13 14 15 16 17 
19 20 21 22 23 
26 27 28 29 30 
34 35 36 37 38 
43 44 45 46 47 
53 54 55 56 57 
 
    
 
 Only 11 numbers  N of 28 beyond to the above forms, but the connection is obvious and evident 
(the missing numbers moving away from them, but they are all included in T+3, T+4, ecc. (see 
Table 2T+6 ) 
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Analysis second series 
 

Now we see with  the Table concerning  2T+-a,  2T+ b, the other series of   
numbers, that are N’ = 63, 64, 65, 86, 90, 180, 189, 198, 270, 315, 378, 448, 567, 576, 720. 
We note that the root of the number 576 is 24, that 720 = 24 x 30, where 24 is connected to the 
vibrations of the bosonic strings, 448 = 56 x 8, where 8 is connected to the vibrations of the 
superstrings and is a Fibonacci’s number and 378 = 21 x 2 x 9 where 21 is a Fibonacci’s number. 
We note that  30 +1 =31 = Lie’s number (5^2+5+1=31),  56+1 = 57 = Lie’s number (7^2+7+1=57), 
21 already Lie’s number (4^2*4*1=21), 
and that also 56 =7*8 is a  multiple of 8, and 7 is also a Lie’s number 2^2+2+1 =7; furthermore 
also 90 +1 = 91  is a Lie’s number  (9^2+9+1=91) and 90 is in 90=90*1, 180=90*2, 90*3=270, 
90*8 = 720 , all multiples of 90 and numbers N’; and 90 = also number of the form 2T =2*45  
and about triangular number (90 ≈ 91  triangular number) 
 
 
                                                     TABLE for the number N’  
 
 
2T-a 2T- b 2T 2T+a 2T+b 
2T -9 = 63 72-8 =64  72 -7= 

65 
72   

 90 - 4 = 86 90   
 182-2=180 182 182 +7 =189 182+16=198 
  210   
 272 -2 =270 272   
  306 306 + 9=315  
 380 -2 =378 380   
462 -14 = 448  462   
  552 552 + 15=567 552+24=  576 
  702  702+18=720 
     
     
     
     
 
 
 
Thence, the number of the second series are present about in the columns 2T+a  and  2T+b,  with  a  
and  b small numbers, that aren’t > of  √N’. 
 

Now we take the two series 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 32, 36, 37, 40, 42, 45, 48. 

63, 64, 65, 86, 90, 180, 189, 198, 270, 315, 378, 448, 567, 576, 720. 
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and the following partitions of numbers 

56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792 

We observe that: 

 

56 = 48 + 8;  77 = 63 + 14;  101 = 90 + 11;  135 = 90 + 45;  176 = 90 + 86; 

231 = 189 + 42;  297 = 270 +27;  385 = 378 + 7;  490 = 448 + 42;  

627 = 378 + 180 + 48 + 21;  792 = 378 + 378 + 36. 

  

Thence, partitions of numbers that are sums of numbers of the two series. 

Now we analyze the Lie’s numbers and the Witten’s numbers, searching the mathematical 
connections with the numbers of the two series.  

The Lie’s numbers of the parabolic form n^2 + n + 1, of the projective geometries.  
 
 
TABLE 1 -  LIE’s NUMBERS SERIES (in green) 
 
( in block are the Fibonacci’s numbers and in red the Lie’s groups) 
 
n     n^2 + n + 1 = L(n) ≈ F rapporto Ln/Ln-1 
-------------------------------------------------------- 
0     0       0     1      1 = 1 - 
1     1       1     1      3 = 3             3 
2     4       2     1      7 ~ 8          2,333 ≈ 2,61 = 1,618^2  (7/3) 
( 7* 2 = 14 = G2 (7= piano di Fano) 
3     9        3    1     13 = 13       1,857  (13/7) 
( 13*4 = 52 = F4; 13*6 = 78 = E6 Lie’s group) 
4     16     4     1     21 = 21       1,615 ≈ 1,618  (21/13) 
5     25     5     1     31 ~   34         1,476  (31/21) 
6     36     6     1     43 ≈ 44,5        1,387 (44,5 =(34+55)/2 
7     49     7     1     57 ~   55        1,325 
8     64     8     1     73 ≈ 72           1,280 ~ √Ф = 1,272; 72 =(55+89)/2 
9     81     9     1     91 ≈ 89           1,246 
10   100   10   1   111 ≈ 116,5      1,219 
11   121   11   1   133 ≈ 144         1,198 
(7 x 19 = 133 = E7 Lie’s group) 
12   144   12   1   157 ≈ 156         1,180 (156 + 132)/2 = 144) 
13   169   13   1   183                     1,165 
14   196   14   1   211                     1,153 
15   225   15   1   241                     1,142 
(240 + 8 = 248 = 31*8 = E8 Lie’s group) 
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(Lie’s Groups = L(n)* k with k = 2, 4, 6, 19, 8, for L(n) = 7,13, 13, 31. Indeed, we have: 
 
 
 
 
 
 
TABLE 1.1 
Lie’s Groups Factors: L(n)*k 
G(n) = L(n)*k 
 
 
14 = 7*2 
52 = 13*4 
78 = 13*6 
133 = 7*19 = 1*133 
248 = 31*8 (Rif.2) 
 
While the prime numbers smallest are 2, 3, 5, and 7 
 
We take the two series 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 32, 36, 37, 40, 42, 45, 48. 

63, 64, 65, 86, 90, 180, 189, 198, 270, 315, 378, 448, 567, 576, 720. 

We note that  3 = 3,  7 = 7,  13 = 10 + 3;   21 = 21;   31 = 21 + 10;   43 = 36 + 7;   57 = 36 + 21;  73 
= 63 + 10;  91 = 86 + 5;  111 = 90 + 21;   133 = 90 + 36 + 7;   157 = 90 + 64 + 3;   183 = 180 + 3;   
211 = 198 + 10 + 3;   241 =   198 + 40 + 3. 

Thence, Lie’s numbers that are sums of numbers of the two series (or equal to them) 

 
 
TABLE 2  (concerning 2T +1; in bleu, the numbers p(n)) 
(underlined and in black, the Witten’s numbers) 
 
T   2T-3   2T-2   2T-1   2T   2T+1   2T+2   2T+3  (2T +4) 
----------------------------------------------------------------------- 
1     -1         0         1       2        3          4          5 
3      3         4         5       6        7          8          9 
6      9         10      11     12       13       14        15         16 
10   17        18      19     20       21       22        23 
15   27        28      29     30       31       32        33 
21   39        40      41     42       43       44        45 
28   53        54      55     56       57       58        59 
… … … … … … … … 
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Witten’s numbers: 2, 4, 7, 8, 14, 16, 21, 32, 105, 154, 175, 256, 945, 4096, 8085, 10493, 74247, 
363825 : up to 32, lying on the strip numbers from 2T-3 to 2T+3, with the exception of 16 ( of 
the form 2T+4). 
 
Thence, also their have a mathematical connection with the triangular numbers T and with 
the Lie’s numbers 2T+1 ( the Witten’s numbers 7 and 21 are also Lie’s numbers). 
 
In the paper:“ On the physical interpretation of the Riemann zeta function, the Rigid Surface 
Operators in Gauge Theory, the adeles and ideles groups applied to various formulae 
regarding the Riemann zeta function and the Selberg trace formula, padic strings, zeta strings 
and p-adic cosmology and mathematical connections with some sectors of String Theory and 
Number Theory” there are the Witten’s numbers above mentioned: 
 
2, 4, 7, 8, 14, 16, 21, 32, 105, 154, 175, 256, 945, 4096, 8085, 10493, 74247, 363825 
 
with marked in red the powers of 2  (including for squares, underlined; in the Lie’s numbers there 
aren’t absolutely squares, since they are always halfway between a square and the next; and 
between the Fibonacci’s numbers only 1 and 144 are squares).  
 
The exponents of 2 are, in order: 1, 2, 3, 4, 5, 8 ,12 with 1, 2, 3, 5, 8 Fibonacci’s numbers, and 12 ≈ 
13 another Fibonacci’s number. So we return to the Fibonacci’s series and to the symmetries, which 
are also partially reflected in the partitions of numbers and in the Witten’s numbers.  
 
Further comparison between Witten’s numbers and partitions 
 
p(n)                 1   2   3   5   7   11   15   22   30 … 
n. Witten                2   4      7        14    16            32… 
 
We note that, the partitions of numbers and the Witten’s numbers are very near (2 e 7 coincide), at 
least in the beginning, the one that interested to the Nature. For the prime numbers n of the formula 
n2+n+1 the Nature has chosen indeed 2, 3, 5, 7, and for the Fibonacci’s numbers the Nature stop at 
144. We don’t know natural phenomena where are involved Fibonacci’s numbers greater than 144, 
number of seeds in a sunflower.   
 
 
We take the two series 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 32, 36, 37, 40, 42, 45, 48. 

63, 64, 65, 86, 90, 180, 189, 198, 270, 315, 378, 448, 567, 576, 720. 

With regard the partitions, we note that:  2 = 2; 3 = 3;  5 = 5;  7 = 7;  11 = 11;   15 = 15;   22 = 15 + 
7;   30 = 27 + 3. 
 
With regard the following Witten’s numbers, we note that 
 
2, 4, 7, 8, 14, 16, 21, 32, 105, 154, 175, 256, 945  
 
2 = 2;   4 = 4;   7 = 7;   8 = 8;   14 = 14;   16 = 16;   21 = 21;   32 = 32;   105 =  90 +15;   154 = 90 + 
48 +16;   175 = 90 + 65 +20;   256 = 198 + 48 +10;  945 = 720 + 180 +45. 
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Thence, also here, numbers of partitions and Witten’s numbers as sums of the numbers of the two 
series (or equal to them) 
 
 
 
 
 
 
 
 
                                                                      TABLE   3 
 
 
   Symmetries  (Lie’s numbers, Lie’s Groups, Fibonacci’s Numbers, Partitions of Numbers) 
 
 Lie’s Numbers     

L(n) 
con n primo o  
potenza di primo 

Lie’s Groups 
G(n) 

Numeri di 
Fibonacci F(n) 

Partizioni di 
Numeri 
     p(n) 

Forma      
L(n) =  n^2+n+1 = 
2T+1  (T = numeri 
triangolari) 

Forma 
G(n) = k*L(n) 

Forma 
F(n) = n^2+n+c 
con c  piccolo 
numero 

Forma 
p(n) =n^2+n+c’ 
con c’ ≈  c 

1^2+1+1 =   3           (c=1)   3 (c’=1) 3 
2^2+2+1=    7 7*2=7 + 7 = 14          

                  = G2 
(c=2)  8 (c’=1) 7 

3^2+3+1 = 13 
4^4+4+1=  21 

13*4=13+13+13+13 
                   =52=F4 
13*6=13+13+13+13+13+13= 
                     78= E6 

(c=1) 13 
(c=1) 21 

(c’=-1)11 
(c’=2) 22 

5^5+5+1 = 31 31*8 = 
31+31+31+31+31+31+31+31= 
                    248 =E8 

 

(c=4) 34 (c’=1) 30 

6^6+6+1 = 43   (c’=0)42 
7^2+7+1=  57  (c=-1) 55 (c’=0)56 
…    
11̂ 2+11+1=133      133*1  =  133  =  E7 (c=12) 144  
         …                              …                               …               … 
 
Now we remember that : 2T is the sum of the first n even numbers. 
 
2 
2+4=6 
2+4+6=12 
2+4+6+8= 20  
2+4+6+8+10= 30  
…        …          … 
 
with the final values obtaining from the formula n^2+n =  n(n+1). 
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To obtain the Lie’s numbers just add them the number 1, and we have:  
                              L(n) = n^2 + n + 1 
 
from which then the two variants for F(n) and p(n) and their numbers, all present in the Nature: 
 
a) the Lie’s numbers by the Lie’s groups of symmetry , G(n), in the Standard Model and in the 
String Theory; 
b) the Fibonacci’s numbers, in various natural phenomena, strings included; 
c) the partitions of the numbers, in other phenomena. 
 
Finally, similar to how the Lie’s numbers are the sum of the first n even numbers +1, the 
Fibonacci’s numbers are the sum of the two previous numbers, and the partitions of numbers are all 
the ways as a number p can be written as a sum of smaller numbers.  
The prime numbers  n are involved only in the Lie’s numbers (which give rise to Lie’s groups only 
if n is prime), and only some Fibonacci’s numbers (for example 2,3,5,13, 89)  and some partitions 
of numbers (for example 2,3,5,7,11) are prime numbers. 
In red all the prime numbers of the form L(n) = n^2+n+1, including the Lie’s prime numbers. 
 
 
                                                                 TABLE 4 
 
Numeri primi p o 
loro potenze 
               n 

Numeri primi di Lie:   
L(n) =  n^2+n+1 

Numeri di Fibonacci 
primi 

Partizioni di numeri  
(p(n) primi 

1 3 3 3 
2 7  7 
3 13 13  

4=2^2 21 21  
5 31   
7 57 55  

9 = 3^2 91 89  
11 133   
…                          … … … 

 
 
These initial connections between prime numbers n, Lie’s prime numbers, Fibonacci’s prime 
numbers and prime numbers as partitions of numbers, may have their role, perhaps not yet known 
(but suspected by the fact that are all on the parable of the Lie’s numbers), in the theories of physics 
– mathematics concerning the quantum physics and the string theory.   
 
We remember that the numbers 7, 13, 31 and  133 = 7*19, with their respective multiples 2, 4 and 
6, 8  and 1 , are the basis of the Lie’s Groups 
G2 = 14, F4 = 52,  E6= 78,  E8= 248  and  E7 = 133. We note that 57 is the number of dimensions 
of the group E8 = 248, that is very important for the string theories. 
 
    
Furthermore, we note that the numbers of the dimensions of the five Lie’s groups of symmetry, are 
connected to the geometric solids: 
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a tetrahedron of measure                   14 
an octahedron of measure                  52 
three dodecahedra of measure           78, 133 and 248 
  
(see TABLE 3) 
    
The Lie’s groups are related to the Fibonacci’s numbers and to the Lie’s numbers by the above 
geometric solids, and their respective sides  F , i.e.  4,  8  and  12  become Fibonacci’s numbers if 
we add 1 to the numbers  4  and 12, obtaining  5 and 13  that are Fibonacci’s numbers (the middle 8 
is unchanged); but also with their vertices 4, 6 and 20, subtracting 1 from 4 and 6  and adding 1 to 
20, getting  3,  5 e 21 that are Fibonacci’s numbers; while adding 1 at all their edges  S   6,  12, and 
30 (of the form S = 2T with T triangular numbers 3, 6 and 15) we obtain the Lie’s numbers  7,  13 
and 31, that are the basis of the Lie’s groups: 
 
 14=2*7,    52=4*13,  78= 6*13,   133 =7*19   and    248 = 8*31 
 
 
We take the two series 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 32, 36, 37, 40, 42, 45, 48. 

63, 64, 65, 86, 90, 180, 189, 198, 270, 315, 378, 448, 567, 576, 720. 

We note that  14 = 14;   52 = 45 + 7;   78 = 63 + 15;   133 = 90 + 36 + 7;  

248 = 198 + 45 + 5. 

Thence, also here mathematical connections between numbers of the two series (or their sums) and 
numbers of the Lie’s Groups G(n). 

 
 
 
 
 
 
Now we have insert the scheme of the mathematical paths from the prime numbers at all the 
mathematical components connected to the string theory (and from here at the TOE, that are 
connected to the Lie’s groups, specially E8,  (from “Numeri primi in cerca d’Autore” on the site 
www.gruppoeratostene.com, section “Articoli sulla Teoria dei Numeri”: 
 
 
 
“…In the follows we show a short scheme of the most interesting links that we have noted” (in 
Italian language) 
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By the prime numbers, through the darts, we will reach to the  string theory, connected to the zeta 
function, to the Fibonacci’s numbers , to the Lie’s groups (specially E8, linked to the TOE of 
Garrett Lisi). 
 
 
That is why this scheme is just very important: denote clearly the mathematical paths that connect 
the prime numbers with the components of the complex mathematical scenery of the strings. 
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Many of our works explores in the details these paths: Golden Ratio, Zeta Function, Symmetry, 
etc… 
 
 
Appendix B (Christian Lange) 
 
Here, we have showed the column “system” concerning the universal music system based on Phi 

 

 

 

                System 

0,0131556174964 

0,0135510312596 

0,0142348954757 

0,0143953404412 

0,0150749962219 

0,0155281000757 

0,0162612375116 

0,0167499958021 

0,0172744085295 

0,0177385302102 

0,0186337200909 

0,0191937872550 

0,0200999949626 

0,0203265468895 

0,0212862362522 

0,0219260291607 

0,0230325447060 

0,0232921501136 

0,0243918562674 

0,0251249937032 

0,0263112349929 

0,0271020625193 

0,0279505801363 

0,0287015447905 

0,0301499924438 

0,0310562001514 

0,0325224750231 

0,0328890437411 

0,0344418537486 

0,0354770604203 

0,0372674401817 

0,0376874905548 

0,0394668524893 
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0,0406530937789 

0,0425724725044 

0,0438520583214 

0,0452249886658 

0,0464400750007 

0,0487837125347 

0,0502499874064 

0,0526224699857 

0,0532155906305 

0,0557280900008 

0,0574030895811 

0,0602999848877 

0,0609796406684 

0,0638587087566 

0,0657780874821 

0,0688837074973 

0,0709541208407 

0,0731755688021 

0,0751416197912 

0,0789337049786 

0,0813061875578 

0,0851449450088 

0,0861046343716 

0,0901699437495 

0,0928801500014 

0,0975674250694 

0,0986671312232 

0,1033255612459 

0,1064311812610 

0,1114561800017 

0,1148061791621 

0,1184005574678 

0,1215816947919 

0,1277174175133 

0,1315561749643 

0,1377674149945 

0,1393202250021 

0,1458980337503 

0,1502832395825 

0,1578674099571 

0,1596467718916 

0,1671842700025 

0,1722092687432 

0,1803398874990 

0,1857603000028 

0,1915761262699 

0,1967233145832 

0,2066511224918 
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0,2128623625221 

0,2229123600034 

0,2254248593737 

0,2360679774998 

0,2431633895839 

0,2554348350265 

0,2583139031148 

0,2705098312484 

0,2786404500042 

0,2917960675006 

0,3005664791649 

0,3099766837377 

0,3183050093751 

0,3343685400051 

0,3444185374863 

0,3606797749979 

0,3647450843758 

0,3819660112501 

0,3934466291663 

0,4133022449836 

0,4179606750063 

0,4376941012510 

0,4508497187474 

0,4721359549996 

0,4863267791677 

0,5015528100076 

0,5150283239582 

0,5410196624969 

0,5572809000084 

0,5835921350013 

0,5901699437495 

0,6180339887499 

0,6366100187502 

0,6687370800101 

0,6762745781211 

0,7082039324994 
0,7294901687516 
0,7639320225002 
0,7868932583326 
0,8115294937453 
0,8333333333333 
0,8753882025019 
0,9016994374948 
0,9442719099992 
0,9549150281253 
1,0000000000000 
1,0300566479165 
1,0820393249937 
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1,0942352531274 
1,1458980337503 
1,1803398874990 
1,2360679774998 
1,2732200375004 
1,3130823037529 
1,3483616572916 
1,4164078649987 
1,4589803375032 
1,5278640450004 
1,5450849718747 
1,6180339887499 
1,6666666666667 
1,7507764050038 
1,7705098312484 
1,8541019662497 
1,9098300562505 
2,0000000000000 
2,0601132958330 
2,1246117974981 
2,1816949906249 
2,2917960675006 
2,3606797749979 
2,4721359549996 
2,5000000000000 
2,6180339887499 
2,6967233145832 
2,8328157299975 
2,8647450843758 
3,0000000000000 
3,0901699437495 
3,2360679774998 
3,3333333333333 
3,4376941012510 
3,5300566479165 
3,7082039324994 
3,8196601125011 
4,0000000000000 
4,0450849718747 
4,2360679774998 
4,3633899812498 
4,5835921350013 
4,6352549156242 
4,8541019662497 
5,0000000000000 
5,2360679774998 
5,3934466291663 
5,5623058987491 
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5,7117516385413 
6,0000000000000 
6,1803398874990 
6,4721359549995 
6,5450849718747 
6,8541019662496 
7,0601132958329 
7,4164078649987 
7,4999999999999 
7,8541019662496 
8,0901699437494 
8,4721359549995 
8,7267799624996 
9,0000000000000 
9,2418082864578 
9,7082039324993 

10,0000000000000 
10,4721359549995 
10,5901699437494 
11,0901699437493 
11,4235032770827 
11,9999999999999 
12,1352549156240 
12,7082039324992 
13,0901699437494 
13,7082039324992 
14,1202265916658 
14,5623058987489 
14,9535599249990 
15,7082039324992 
16,1803398874989 
16,9442719099990 
17,1352549156240 
17,9442719099988 
18,4836165729155 
19,4164078649986 
19,6352549156239 
20,5623058987487 
21,1803398874987 
22,1803398874986 
22,8470065541653 
23,5623058987488 
24,1953682114567 
25,4164078649984 
26,1803398874987 
27,4164078649983 
27,7254248593732 
29,0344418537480 
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29,9071198499981 
31,4164078649984 
31,7705098312478 
33,2705098312478 
34,2705098312479 
35,8885438199976 
36,9672331458309 
38,1246117974976 
39,1489281364556 
41,1246117974974 
42,3606797749974 
44,3606797749971 
44,8606797749971 
46,9787137637467 
48,3907364229134 
50,8328157299968 
51,4057647468715 
53,8328157299963 
55,4508497187464 
58,0688837074960 
59,8142396999959 
61,6869176962462 
63,3442963479120 
66,5410196624956 
68,5410196624959 
71,7770876399951 
72,5861046343700 
76,0131556174944 
78,2978562729111 
82,2492235949949 
83,1762745781189 
87,1033255612437 
89,7213595499940 
93,9574275274933 
96,7814728458264 
99,8115294937434 
102,4932244843670 
107,6656314599930 
110,9016994374930 
116,1377674149920 
117,4467844093670 
122,9918693812410 
126,6885926958240 
133,0820393249910 
134,5820393249900 
140,9361412912390 
145,1722092687400 
152,0263112349890 
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156,5957125458220 
161,4984471899890 
165,8375208322780 
174,2066511224870 
179,4427190999880 
187,9148550549860 
190,0328890437360 
199,0050249987340 
204,9864489687340 
215,3312629199850 
217,7583139031080 
228,0394668524820 
234,8935688187330 
245,9837387624810 
253,3771853916470 
261,3099766837310 
268,3307453166450 
281,8722825824790 
290,3444185374800 
304,0526224699770 
307,4796734531010 
321,9968943799730 
331,6750416645570 
348,4133022449750 
352,3403532280960 
368,9756081437200 
380,0657780874710 
398,0100499974680 
409,9728979374670 
422,8084238737180 
434,1682661489210 
456,0789337049640 
469,7871376374660 
491,9674775249610 
497,5125624968350 
521,0019193787060 
536,6614906332890 
563,7445651649580 
570,0986671312020 
597,0150749962000 
614,9593469062010 
643,9937887599460 
663,3500833291110 
684,1184005574470 
702,4990114655630 
737,9512162874400 
760,1315561749420 
796,0200999949340 
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804,9922359499330 
 
                                                    
  
  

 
 
 
 
 
In the follow, the table where we have showed the difference between the values of Phi^(n/7) and 
the values of the column “system” 
 
 
 
 
 
                                                         n          Phi^(n/7) 

System 1,61803398875 -14,50 0,3690600455 
0,3819660113 1,61803398875 -14,00 0,3819660113 
0,3934466292 1,61803398875 -13,50 0,3953232964 
0,4133022450 1,61803398875 -13,00 0,4091476835 
0,4179606750 1,61803398875 -12,50 0,4234555071 
0,4376941013 1,61803398875 -12,00 0,4382636727 
0,4508497187 1,61803398875 -11,50 0,4535896773 
0,4721359550 1,61803398875 -11,00 0,4694516297 
0,4863267792 1,61803398875 -10,50 0,4858682718 
0,5015528100 1,61803398875 -10,00 0,5028590010 
0,5150283240 1,61803398875 -9,50 0,5204438930 
0,5410196625 1,61803398875 -9,00 0,5386437257 
0,5572809000 1,61803398875 -8,50 0,5574800034 
0,5835921350 1,61803398875 -8,00 0,5769749824 
0,5901699437 1,61803398875 -7,50 0,5971516975 
0,6180339887 1,61803398875 -7,00 0,6180339887 
0,6366100188 1,61803398875 -6,50 0,6396465301 
0,6687370800 1,61803398875 -6,00 0,6620148584 
0,6762745781 1,61803398875 -5,50 0,6851654032 
0,7082039325 1,61803398875 -5,00 0,7091255185 
0,7294901688 1,61803398875 -4,50 0,7339235149 
0,7639320225 1,61803398875 -4,00 0,7595886929 
0,7868932583 1,61803398875 -3,50 0,7861513778 
0,8115294937 1,61803398875 -3,00 0,8136429551 
0,8333333333 1,61803398875 -2,50 0,8420959081 
0,8753882025 1,61803398875 -2,00 0,8715438560 
0,9016994375 1,61803398875 -1,50 0,9020215935 
0,9442719100 1,61803398875 -1,00 0,9335651322 
0,9549150281 1,61803398875 -0,50 0,9662117429 
1,0000000000 1,61803398875 0,00 1,0000000000 
1,0300566479 1,61803398875 0,50 1,0349698266 
1,0820393250 1,61803398875 1,00 1,0711625419 
1,0942352531 1,61803398875 1,50 1,1086209102 
1,1458980338 1,61803398875 2,00 1,1473891912 
1,1803398875 1,61803398875 2,50 1,1875131922 
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1,2360679775 1,61803398875 3,00 1,2290403226 
1,2732200375 1,61803398875 3,50 1,2720196495 
1,3130823038 1,61803398875 4,00 1,3165019560 
1,3483616573 1,61803398875 4,50 1,3625398011 
1,4164078650 1,61803398875 5,00 1,4101875817 
1,4589803375 1,61803398875 5,50 1,4595015968 
1,5278640450 1,61803398875 6,00 1,5105401145 
1,5450849719 1,61803398875 6,50 1,5633634404 
1,6180339887 1,61803398875 7,00 1,6180339887 
1,6666666667 1,61803398875 7,50 1,6746163567 
1,7507764050 1,61803398875 8,00 1,7331774003 
1,7705098312 1,61803398875 8,50 1,7937863134 
1,8541019662 1,61803398875 9,00 1,8565147097 
1,9098300563 1,61803398875 9,50 1,9214367071 
2,0000000000 1,61803398875 10,00 1,9886290155 
2,0601132958 1,61803398875 10,50 2,0581710273 
2,1246117975 1,61803398875 11,00 2,1301449111 
2,1816949906 1,61803398875 11,50 2,2046357093 
2,2917960675 1,61803398875 12,00 2,2817314377 
2,3606797750 1,61803398875 12,50 2,3615231903 
2,4721359550 1,61803398875 13,00 2,4441052467 
2,5000000000 1,61803398875 13,50 2,5295751833 
2,6180339887 1,61803398875 14,00 2,6180339887 
2,6967233146 1,61803398875 14,50 2,7095861833 
2,8328157300 1,61803398875 15,00 2,8043399422 
2,8647450844 1,61803398875 15,50 2,9024072236 
3,0000000000 1,61803398875 16,00 3,0039039008 
3,0901699437 1,61803398875 16,50 3,1089498993 
3,2360679775 1,61803398875 17,00 3,2176693381 
3,3333333333 1,61803398875 17,50 3,3301906768 
3,4376941013 1,61803398875 18,00 3,4466468672 
3,5300566479 1,61803398875 18,50 3,5671755104 
3,7082039325 1,61803398875 19,00 3,6919190193 
3,8196601125 1,61803398875 19,50 3,8210247871 
4,0000000000 1,61803398875 20,00 3,9546453613 
4,0450849719 1,61803398875 20,50 4,0929386237 
4,2360679775 1,61803398875 21,00 4,2360679775 
4,3633899812 1,61803398875 21,50 4,3842025400 
4,5835921350 1,61803398875 22,00 4,5375173425 
4,6352549156 1,61803398875 22,50 4,6961935370 
4,8541019662 1,61803398875 23,00 4,8604186105 
5,0000000000 1,61803398875 23,50 5,0303866064 
5,2360679775 1,61803398875 24,00 5,2062983536 
5,3934466292 1,61803398875 24,50 5,3883617041 
5,5623058987 1,61803398875 25,00 5,5767917783 
5,7117516385 1,61803398875 25,50 5,7718112196 
6,0000000000 1,61803398875 26,00 5,9736504570 
6,1803398875 1,61803398875 26,50 6,1825479774 
6,4721359550 1,61803398875 27,00 6,3987506080 
6,5450849719 1,61803398875 27,50 6,6225138070 
6,8541019662 1,61803398875 28,00 6,8541019662 
7,0601132958 1,61803398875 28,50 7,0937887233 
7,4164078650 1,61803398875 29,00 7,3418572847 
7,5000000000 1,61803398875 29,50 7,5986007606 
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7,8541019662 1,61803398875 30,00 7,8643225114 
8,0901699437 1,61803398875 30,50 8,1393365057 
8,4721359550 1,61803398875 31,00 8,4239676916 
8,7267799625 1,61803398875 31,50 8,7185523808 
9,0000000000 1,61803398875 32,00 9,0234386455 
9,2418082865 1,61803398875 32,50 9,3389867300 
9,7082039325 1,61803398875 33,00 9,6655694763 

10,0000000000 1,61803398875 33,50 10,0035727646 
10,4721359550 1,61803398875 34,00 10,3533959692 
10,5901699437 1,61803398875 34,50 10,7154524306 
11,0901699437 1,61803398875 35,00 11,0901699437 
11,4235032771 1,61803398875 35,50 11,4779912633 
12,0000000000 1,61803398875 36,00 11,8793746271 
12,1352549156 1,61803398875 36,50 12,2947942976 
12,7082039325 1,61803398875 37,00 12,7247411219 
13,0901699437 1,61803398875 37,50 13,1697231120 
13,7082039325 1,61803398875 38,00 13,6302660452 
14,1202265917 1,61803398875 38,50 14,1069140849 
14,5623058987 1,61803398875 39,00 14,6002304239 
14,9535599250 1,61803398875 39,50 15,1107979497 
15,7082039325 1,61803398875 40,00 15,6392199333 
16,1803398875 1,61803398875 40,50 16,1861207420 
16,9442719100 1,61803398875 41,00 16,7521465772 
17,1352549156 1,61803398875 41,50 17,3379662376 
17,9442719100 1,61803398875 42,00 17,9442719100 
18,4836165729 1,61803398875 42,50 18,5717799866 
19,4164078650 1,61803398875 43,00 19,2212319118 
19,6352549156 1,61803398875 43,50 19,8933950582 
20,5623058987 1,61803398875 44,00 20,5890636332 
21,1803398875 1,61803398875 44,50 21,3090596177 
22,1803398875 1,61803398875 45,00 22,0542337369 
22,8470065542 1,61803398875 45,50 22,8254664657 
23,5623058987 1,61803398875 46,00 23,6236690694 
24,1953682115 1,61803398875 46,50 24,4497846797 
25,4164078650 1,61803398875 47,00 25,3047894096 
26,1803398875 1,61803398875 47,50 26,1896935066 
27,4164078650 1,61803398875 48,00 27,1055425464 
27,7254248594 1,61803398875 48,50 28,0534186683 
29,0344418537 1,61803398875 49,00 29,0344418537 
29,9071198500 1,61803398875 49,50 30,0497712499 
31,4164078650 1,61803398875 50,00 31,1006065389 
31,7705098312 1,61803398875 50,50 32,1881893558 
33,2705098312 1,61803398875 51,00 33,3138047551 
34,2705098312 1,61803398875 51,50 34,4787827297 
35,8885438200 1,61803398875 52,00 35,6844997821 
36,9672331458 1,61803398875 52,50 36,9323805506 
38,1246117975 1,61803398875 53,00 38,2238994933 
39,1489281365 1,61803398875 53,50 39,5605826293 
41,1246117975 1,61803398875 54,00 40,9440093428 
42,3606797750 1,61803398875 54,50 42,3758142486 
44,3606797750 1,61803398875 55,00 43,8576891235 
44,8606797750 1,61803398875 55,50 45,3913849059 
46,9787137637 1,61803398875 56,00 46,9787137637 
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48,3907364229 1,61803398875 56,50 48,6215512365 
50,8328157300 1,61803398875 57,00 50,3218384507 
51,4057647469 1,61803398875 57,50 52,0815844139 
53,8328157300 1,61803398875 58,00 53,9028683883 
55,4508497187 1,61803398875 58,50 55,7878423474 
58,0688837075 1,61803398875 59,00 57,7387335189 
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