QUADRATIC MAPS AS DYNAMICAL SYSTEMS ON THE P-ADIC
NUMBERS

MONICA NEVINS AND THOMAS D. ROGERS

ABSTRACT. We describe the trajectories of the successive iterates of the square map and its per-
turbations on the field of p-adic numbers. We show that the cycles of the square map on @, arise
from cycles of the square map on F,, and that all nonperiodic trajectories in the unit disk densely
define a compact open subset. We find that the maps x — 22 +¢, with € inside the unit circle, have
similar dynamics to « + zZ, but that each fundamental cycle arising from F, can further admit
harmonic cycles, for different choices of p and e. In contrast, the cycles of the maps z — 2 + ¢,
with € on the boundary of the unit circle, are no longer tied to those of the square map itself. In
all cases we give a refined algorithm for computing the finitely many periodic points of the map.

1. INTRODUCTION

We are interested in dynamics over the p-adic fields @, for p a prime. Our starting point in
this study — inspired by the development of the corresponding problem on the real and complex
numbers over the past 30 years — is the analysis of the dynamics of the algebraically simplest of
nonlinear systems, namely, the family of quadratic maps f.(z) = 22 + ¢ for |e|, < 1. In this paper,
we give a complete global description of the trajectories of elements z € (, under the iterates of
fe-

Denote the norm on @, by |- |, (cf. Section 2) and write f¥ = f. o---o f. (k times) for the kth
iterate of f.. Our main result is the following (Theorems 3.4 and 4.3).

Theorem. Let f.: Q, — Q, be given by f.(z) = x* + ¢, with |e|, < 1 (including e = 0). Then
fe admits ezactly two fized points 6, and py, ., with |6pclp = |pe — 1|p = |€lp- If x € Q, satisfies
|z|, > 1, then the trajectory of f¥(z), k =0,1,2,..., diverges to infinity; whereas if |z|, < 1, the
trajectory converges to 0p.. If p = 2, then the trajectory of every x on the unit circle |z|, = 1
converges to i, .. For any other prime p, if |xz|, = 1, then x is either a periodic point, or its
trajectory is eventually quasiperiodic. Further, there are only finitely many periodic points, and we
give an algorithm to compute them (in all but a few “nongeneric” cases).

In particular, one finds that the domains of attraction in QQ, are easily defined. See Definition 3.3
for the notion of quasiperiodicity. When e = 0, the fixed points are evidently d, . = 0 and pp . = 1.

We actually prove a far more precise result about the structure of the orbit space, as encapsulated
in the pseudo-algorithm found in Part F of the proof of Theorem 4.3. In particular, we prove that
each cycle of the square map z + z? on the finite field with p elements [, gives rise to a so-
called fundamental cycle of f = fy on Q, of equal (primitive) period, and that these are the only
finite orbits of the square map on ;. When we consider instead the trajectories of those maps
fe on Q, with |e], < 1 and € # 0, we find, for all but some “exceptional primes” (cf. Table 6.1),
corresponding fundamental cycles; furthermore, when |e|, < 1, these fundamental cycles may (as
p and € vary) admit additional harmonics. Here we define a harmonic cycle to be a finite orbit H
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of f. whose period is a multiple of that of the corresponding fundamental cycle F (and a multiple
of the order of 2 modulo p) and whose elements share leading coefficients with elements of F. We
apply a general theorem of Pezda [Pe] (see Theorem 4.1), to deduce the maximum possible length
of a harmonic cycle of f.. Finally, we use a generalization of a result of Thiran, Verstegen and
Weyers in [TVW] to identify some maps f. and fundamental cycles F which admit no harmonics
at all.

The paper is organized as follows. In Section 2, we set our notation and review basic facts about
the p-adic numbers, including Hensel’s Lemma and the definition of the exponential map in a p-adic
field. In Section 3 we use these ideas to analyse the dynamics of the square map f(z) = z2, with
a view towards the general case. The analysis culminates, in Section 4, with a description of the
trajectories of f.(z) = z2 + ¢, for lelp < 1. In Section 5, we give a brief summary of the possible
dynamics of the “boundary” case f.(z) = 2% +¢, with |¢|, = 1, and describe how our analysis may
be applied to compute cycles of these maps. Finally, in Section 6, we discuss some of the (possibly
open) questions raised by our analysis, including the dynamics of f. on Q, for an exceptional prime
p. We also discuss the existence of the nongeneric cases of our algorithm, which firmly resist the
application of either Hensel’s lemma or the limiting result of [TVW].

There are a number of papers on related questions of dynamics of polynomial maps, and quadratic
maps in particular. In particular, the paper [TVW] of Thiran, Verstegen and Weyers (and, closely
related, the earlier, but unpublished paper [B] of Ben-Menahem) provide significant forays into the
dynamics of quadratic maps on @Q,. In [TVW], they prove that f,, with |a|, > 1, exhibits chaotic
behaviour, and also consider some examples of the dynamics of f,, |e[, < 1. Where our paper
overlaps with theirs, ours is both more general and contains more complete proofs.

In [TVW] it is proven that f. is topologically conjugate to a linear map in a certain neighbour-
hood of an “indifferent” fixed point (and hence that f. is quasiperiodic in that neighbourhood),
and point out that the result can be generalized to a properly defined indifferent (or neutral) cycle.
It is this generalization that we use in our analysis (although we do not include the proof).

Finally, note that [TVW] discusses the quasiperiodicity of f. in general as well, using the argu-
ment in the appendix of [B]. Our proof of quasiperiodicity is quite different, and much simpler,
taking advantage of our restrictions on €.

Other important papers which consider quadratic maps of the form z + z? + a (over number
fields as well as p-adic fields) include [Mo], [Na], [Si], and [WR]. An analysis of techniques which
apply to a broad class of p-adic analytic maps is studied by Lubin in [L]. In particular, he defines
notions of unipotency and instability which bear close relation to the nongeneric cases of our
algorithm. Also, he introduces the “Lie logarithm” as a linearization tool, and as such it suggests
that it might be possible to derive a far more general analysis of linearity near periodic points than
that presented in [TVW].

Last, but certainly not least, is a deep paper of Pezda [Pe], in which he proves an upper bound
for the possible periods of cycles of polynomial maps with coefficients in the unit circle of Q, (or
indeed in the integer ring of any algebraic number field). Pezda’s paper seems fundamental to the
generalization of our results to other polynomial mappings, or to algebraic extensions of the fields
Qp — a topic which the authors hope to return to in a subsequent paper.

2. p-ADIC NUMBERS

Let p be a prime number. If n € Z* is a nonzero integer, then its p-adic valuation, denoted
val(n), is the largest integral power of p dividing n. Extend this valuation to all rational numbers
m/n € Q by setting val(m/n) = val(m) — val(n) if m # 0 and val(0) = co. Then the p-adic norm
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is defined by

|$|p _ p—val(w)

for any x € Q. This norm is nonarchimedean, meaning that we have in place of the triangle
inequality the relation |z + y|, < min{|z|p, |y|p}. Consequently (and in stark contrast to the
euclidean norm), the p-adic norm does not permit the accumulation of error, in the sense that, if
each of k elements {z1,z2,... ,z;} have p-adic norm at most ¢, then |z + 22 + -+ + 24|y < € as
well. This property justifies our extensive use of modular arithmetic in Sections 3 and 4.

Completing the field of rational numbers with respect to this norm yields the field of p-adic
numbers, denoted QQ,. A concrete realization of Q, is as the set of all formal Laurent series in p
with coefficients in the set {0,1,2,... ,p —1}:

o
Q ={z= Zanp"|NEZ, an €{0,1,2,... ,p—1} ,an # 0},
n=N

with addition and multiplication performed by starting at the lowest power of p, and “carrying”
successively higher powers of p. (Thus, for example, —1 = (p—1)+(p—1)p+ (p — )p? +---.)
For z € Q, as above, |z|, = p~N. Two p-adic numbers are thus “close” with respect to the norm
if their coefficients a,, agree for all n < M, for some “large” M. In this sense, the norm on Q, is
equivalent to that conventionally used in symbolic dynamics [D], that is, maps on sequence spaces
(which traditionally carry no algebraic structure).

The field @, is unordered and, since it contains Q as a subfield, has characteristic 0. Moreover,
in this topology, Q is a dense, proper subset of Q,; Q embeds into @, as the set of elements whose
p-adic coefficients are eventually periodic (much in the same way that (Q embeds into R).

The distinguished subring of Q, defined by Z, = {z € Q, | |z|, < 1} is called the integer ring.
It is an integral domain. The set of invertible elements in Z,, called the group of units and denoted
Z, consists of those elements of Zj, for which ag # 0. The ring Z, contains a unique maximal ideal
pZy = {zx € Zy | |z|, < 1}, the set-theoretic complement of Z;. The quotient of Z, by its maximal
ideal gives a field, which we identify with the finite field of p elements F, = Z/pZ in the obvious
way. (Similarly, we can identify Z,/p"Z, ~ Z/p"Z for any positive integer n.) In this context, we
call I, the residue field (or residue class field) of Q.

Topologically, @, is a Cantor set: totally disconnected but not discrete. Moreover, if two
open balls (with respect to the p-adic norm) in Q, intersect, then one must contain the other.
Algebraically, the p-adics are also full of holes: there is no finite field extension of (Q, which is
algebraically closed. Not surprising, therefore, is the sparseness of the set of periodic points under
fe in Qp.

Nevertheless, finding roots of polynomials in Q, is often quite simple, with the help of Hensel’s
Lemma.

Theorem 2.1 (Hensel’s Lemma). Suppose g(z) is a polynomial with coefficients in Z,. If a € Z,,
1§ an approzrimate root of g in the sense that

2m—+1
7

g(a) =0 mod p where m = val(g'(a))

and g'(a) # 0, then there is a unique root b of g near a in the sense that

g(b) =0 and b=a modp™t.

! Another algebraic structure on this set can be imposed via component-wise addition mod p (that is, identifying
it with the field F, ((¢)) of formal Laurent series in an indeterminate t); this has been considered in, for example,
[SR1] and [SR2].
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Remark 2.2. In the special case where ¢'(a) has a constant leading term (so val(g’(a)) = 0),
Hensel’'s Lemma implies that it suffices to solve the polynomial equation in the residue field [, in
order to ensure the existence of a solution in Z,.

Hensel’s Lemma is well-known and true in the more general setting of local rings; see, for example,
[E, Thm.7.3]. We will make use of a slight extension of Hensel’s Lemma, as follows:

Theorem 2.3. Suppose g(z) is a polynomial with coefficients in Zp, p # 2. If a € Zyp is an
approzimate root of g in the sense that

g(a) =0 mod pZrtl where r > val(g' (a))

and g'(a) # 0, then there is a unique root b of g near a in the sense that
g(b) =0 and b=a mod p%,
where R =r + 1 if r = val(¢'(a)) and R = 2r — val(g'(a)) if r > val(¢'(a)).
Proof. The existence and uniqueness of the root b of ¢ is given by Hensel’s Lemma; what remains

in question is the accuracy to which the approximate root a estimates b, when r > val(g'(a)) = m.
Consider Taylor’s expansion of the polynomial g:

9(8) = gla -+ h) = g(a) + hy'(a) + 319" (a) + O(H?).

By Hensel’s Lemma, val(h) > m + 2. Suppose val(h) = k < 2r + 1 —m; then as val(g(a)) > 2r + 1
and val(3h%g”(a)) > 2k (and all other terms have valuation at least 3k — 1, even accounting for
val(;)), we deduce that the only term with valuation less than m + k + 1 is hg'(a). But as
g(a + h) =0, and val(¢'(a)) = m, we must have val(h) > k. O

We remark that the stated existence is not merely abstract — one can explicitly compute the
solution b to any desired precision. As a particular and important example, consider the polynomial
g(z) = 2P~1 — 1. Then ¢'(z) = (p — 1)zP~2, so |¢'(z)|, = [p — 1|, |5~ = |z[5~>. Thus, for any
a € Z;, we have ¢'(a) € Z;. It follows by Remark 2.2 that we should look for roots a of g in
the residue field F,. Since, by Fermat’s Little Theorem, every a € {1,2,3,... ,p — 1} satisfies the
equation g(a) = 0 mod p, we deduce by Hensel’s Lemma that each a gives rise to a unique root

04 € Zy of g with constant term equal to a.

Ezample. Let p = 3, so that g(z) = z? — 1. First let a = 1. As a® =1 in Z3, it is already a root;
so 01 = 1. Now let @ = 2, which is no longer an exact root. By Hensel’s Lemma, we know that o9
takes the form oo = 2 + b'p + b"p? + - - - and satisfies 02 = 1. We compute:

o3—1 = (2+¥p)? -1 mod p?
= 224212)(b'p) + (¥'p) =1 mod p?
= (1+p)+ (1+p)(¥p) +¥°p> -1 mod p?
(1+0b)p mod p.
Setting this last equal to 0 (modulo p?) yields b’ = 2. We continue in this way and eventually find
o2 =2+2p+ 202 + 203 + ... =1,
as expected. O

The roots of the polynomial f(z) = 2P ! — 1 are called the Teichmiiller representatives of
{1,2,...,p—1}. Together with 0, they give another canonical choice of representatives in Zj, of the
conjugacy classes of pZj, in Z,. The advantage of this choice is that the elements {01, 02,... ,0p—1}
form a group under multiplication (isomorphic to F; ) in Q,. We will make use of these in Section 3.
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Another tool we would like to introduce now for use in Section 3 is the p-adic exponential map,
as defined by its Taylor series
2,3

T
Tty

Recall that over the real numbers, exp is everywhere-convergent, and gives a bijection of R with
R, , the positive real line. A moment’s thought reveals that the exponential map cannot be nearly
so well-behaved in Q,: if z = p~1, for example, then each successive partial sum of exp(x) has
strictly increasing norm and hence the series cannot converge in Q,. Moreover, |(n!)"!|, itself
increases with n, so it is not a priori clear that one can choose x small enough to compensate.
Nevertheless, using the fact that in Q,, a series converges if and only if its terms tend to 0, we
have the following well-known theorem, proven, for example, in [K, IV.1.].

exp(z) =1+2z+

Theorem 2.4. The functions exp and log(l + z) = = + %iL‘ + %:1:2 + --- give mutually inverse
isomorphisms (and homeomorphisms) between the multiplicative group 1+ p™Z, and the additive
group p"Zy, for any n > 1 if p is odd, and n > 2 if p = 2.

For more detail on the p-adic numbers — their arithmetic, their algebra, or their topology —
see, for example, [S] or [K].

3. THE SQUARE MAP ON @,

In this section we study the iterates of the square map f(z) = 22 on Q, (or Q). Let us first
treat the special (and simple) case of p = 2 before proceeding to p > 2, which analysis forms the
bulk of this section.

Suppose p = 2. We can construct a group isomorphism

(3.1) ¢: Zx {1} x 22Zy — Q}

given by ¢(n,e,z) = p"eexp(x). Giving Z and the finite group the discrete topology, and 227,
the topology it inherits as a subset of Zs, ¢ becomes a homeomorphism as well. Following the
commutative diagram

@& — @&

K K
7 x {£1} x 227, L2820 7o 111} x 227,
we see that the square map is conjugate to ¢=1o fo ¢ = g, ® go ® g3, where g;: Z — Z and
g3: 2279 — 2275 are given by multiplication by 2, and gs is the trivial map go(e) = 1 for € € {£1}.
Note that none of maps g¢;, i = 1,2, 3 are surjective; in particular, the image of g3 is 23Zy C 227,
and each successive iterate of g3 shrinks this set even more. Thus, regardless of the values of
e € {£1} and z € 2Zy, we have

oo ifn>0,

Jim $(gt (), 65(0),6b(2) = {0 ifn <0,
o0

1 if n=0.

Hence, 0 and 1 are attractive fixed points, with domains of attraction 2Zs and 1+ 2Zs, respectively.
All remaining elements of (J; have p-adic norm greater than 1, and their trajectories diverge to
infinity. There are consequently no dense trajectories of f on (Q», and no periodic points save the
fixed points 0 and 1.



6 MONICA NEVINS AND THOMAS D. ROGERS

The dynamics of f on @Q,, for p > 2, are far more interesting.
Suppose for the remainder of this section that p is odd. We consider the well-known isomorphism
of groups and homeomorphism of topological spaces (cf. 3.1)

(3.2) ¢: Z x Fy x pZyp — @,

given by ¢(n,a,z) = p"o,exp(z), where again o refers to the Teichmiiller representatives in Z,,.
Following the commutative diagram

Q — Q@

K K

Zx@xpzp%Zsz‘;xpzp

we see that the square map f(z) = 22 is conjugate to ¢~ o fop = g1 ® go ® g3, where g1: Z — Z

and g3: pZ, — pZ, are given by multiplication by 2, and g5 is the square map go(z) = z? on Fy.
While the first two maps are linear, and do not give rise to periodic orbits, the map go does admit
a complex orbit structure. The Decomposition Theorem of [R], applied to the cyclic group F,
allows us to deduce the orbit picture of the map go(z) = 22, as follows.

For each odd divisor d of p — 1, let ord42 denote the order of 2 modulo d, and ¢(d) the Euler phi
function at d. (So ¢(d) is the number of numbers less than d relatively prime to d.) Set ord;2 = 1.
Then there are ((d)/ord42 cycles of period ord,2, for each distinct d. Furthermore, for any = € [
which is not itself a periodic point of gy, the iterate g§(z) is periodic, where k is chosen such that
2F is the largest even divisor of p — 1.

Hence, passing back to @, via the isomorphism (3.2), we deduce that all periodic orbits of f on
Qp lie in the finite subgroup of the Teichmiiller representatives, and that further the orbit structure
of f admits an explicit description for all p.

For the remainder of this section, let us give a full account of the quasiperiodic (¢f. Definition 3.3)
behaviour of the doubling map g3. We are motivated in part by practical considerations; in
applications, the inevitable finiteness of storage space requires us to consider the “truncated” p-
adics Q, modulo p"Z,, for various degrees of precision 7. (As mentioned in Section 2, no artifacts
or errors are introduced in doing so.) Thus it is important to understand the dynamics on this set.

To this end, let us consider the action of g3(z) = 2z on the strata of @, that is, on the open
sets of the form p"Z; (or, equally, their images in Q, modulo p"Z, for any n > r).

First, identify the space pZ,/p*Z, with F,, the finite field with p elements. The element 0 is
fixed by multiplication by 2. The orbit of the doubling map through an element a € F, is

O = {a,2a,2%a,2%a,...2"a},

where n is the order of 2 modulo p. It follows that pZ,/p*Z, decomposes under gs into (p — 1)/n
cyclic orbits of period n, and one fixed point. Case-by-case computation for the odd primes p < 100
yields the data in Table 3.1.

We would next like to understand the structure of the orbits of the doubling map g3 on
pZy/p* 17, (which we naturally identify with Z,/p*Z, ~ Z/p*Z via division by p) for k > 2.

Proposition 3.1. Let p be an odd prime, and let n be the order of 2 in Z/pZ. If val(2" — 1) =r,
then the order of 2 in Z/p*Z is n if k < r and np*~" if k > r. Consequently, the possible periods
of cycles of the square map f(x) = x2 on sets of the form Zp/p*Zy (s > 1) are:

{e,lem(n,c)pF " |0<k<s—r, c=1 orc= ordg2 for some odd divisor d of p— 1},
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p |ordy2 | # cycles p |ordy,2 | # cycles p |ordy,2 | # cycles
=n |=(p—1)/n =n |=(@-1)/n =n |=(p—-1)/n
3 2 1 29| 28 1 61| 60 1
5 4 1 31 5 4 67| 66 1
7 3 2 37| 36 1 71| 35 2
11| 10 1 41| 20 2 73 9 8
13| 12 1 43| 14 3 79 39 2
17 8 2 47| 23 2 83| 82 1
19| 18 1 53| 52 1 89| 11 8
23| 11 2 59 | 58 1 97 | 48 2

TABLE 3.1. Primes p, the order of 2 modulo p, and the number of cycles of the
doubling map on Fy.

where lcm(n,c) is the least common integer multiple of n and c.

Proof. The case of k < r is obvious, so let k¥ > r and proceed by induction on k. Suppose we have
proven that the order of 2 in Z /p*~'Z is np*~"~1 and that val(2"pk_T_1— 1) = k—1. Let m denote
the order of 2 in Z/p*Z. Then in particular, 2™ = 1 mod p*~!, so there exists a positive integer
s such that m = s(np*~"~1). Write

27" =1 4 gpF1 mod pF,
with a # 0 by hypothesis. We apply the binomial expansion

(1+apF 1) =1+ saph 1 + @azpﬂkl) 4e--
and note that all but the first two terms have valuation at least k. Hence 2™ = (2"P s =1
mod p¥ if and only if sa =0 mod p. Thus by the minimality of m we deduce that s = p. In other
words, the order of 2 in Z/p*Z is np*~" and the valuation of (2"pk_T —1) in Z, is exactly k.

Now consider the possible periods of cycles of the square map on Z,/p*Z,. We have already
remarked that there are exact cycles of period c in the set of Teichmuller representatives. Further-
more, any approximate cycles of g3 on the stratum pZ,/p*Z, exponentiate to give approximate
cycles (of the same periods) of the square map on 1+ pZ,/p*Z,. Now pZ,/p*Z, contains the strata

P P = T p°* Ty
for each k € {1,2,...s}; g3 preserves these strata, leaving cycles of period equal to the order of 2
modulo p*~*. Reconstructing the full map f(z) = z? via the isomorphism (3.2) yields the desired
result. O

kfrfl)

Remark 3.2. Those primes p for which the value of r in Proposition 3.1 is strictly greater than 1
are called Wieferich primes. To date, extensive search (see [CDP], for example) has revealed only
two Wieferich primes — 1093 and 3511 — and each of these gives only r = 2. Nevertheless, there
is as yet no indication that these are the only such, and in fact it seems possible that there be
infinitely many Wieferich primes!

Let us now proceed to give a “global picture” of the orbit space of the square map on Q,, for p
odd. By this we mean an understanding of the behaviour of the trajectory of any point zo € Q,
under repeated applications of the square map. Use the notation z; = x%, z9 =7, ..., and z; for
the ¢-th iterate of zy under f.
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Definition 3.3. An element z( is quasiperiodic (or recurrent) if it is not periodic and, for every
neighbourhood U of z, there exists a ¢ > 0 such that z; € U.

We can now state our Theorem.

Theorem 3.4. The square map on Q, has two fized points, 0 and 1. If zy satisfies |xo|p > 1, then
its trajectory diverges to infinity; if |zo|, < 1, its trajectory converges to 0.

Let |zo|, = 1; then |z, = 1 for all t. If p = 2, then this trajectory converges to 1; for p > 2,
1 is not attractive. If xg lies in the subgroup of Teichmiller representatives, its trajectory becomes
periodic in finite time; otherwise, its eventually quasiperiodic trajectory is dense in some compact
open subset of Q.

Proof. It remains for us to prove that, for p > 2, 1 is non-attractive, and that the trajectory of an
element zy on the unit circle is dense in a compact open subset of (9. We do this with the help of

the commutative diagram

222z
PLy — DLy

logT Jrexp

uu?

1+pZy —— 1+ pZp,
where the vertical arrows are isomorphisms and homeomorphisms.
Let n be the order of 2 in Fy, and choose r maximal with the property that 2" =1 mod p". For

any z € pZ,, write m = val(z), and define

n

V() = J@e+pm2,),

=0

a union of open sets contained in the stratum p™Z,,.

Lemma 3.5. The trajectory of z € pZ, under the doubling map is dense in V(z).

Proof. This is an application of Proposition 3.1. V(z) evidently contains the full trajectory of z
under the doubling map. Let M be any integer (greater than m + r, say). It suffices to show that
the trajectory of z meets every neighbourhood 2’ + pMZ,, where 2’ € V(z). Now V(z) C p™Zy;
identify p™Z,/pM Z, ~ Z,/p™ ™Z,. By Proposition 3.1, the iterates 2'z take on np™ ™ " distinct
values in this set. Yet this is precisely the number of elements in V(z) mod pM Zyp: each of the n
distinct open sets 2'z + p™*7Z, of V(z) contain pM =™~ elements modulo pMZ,. O

We are now ready to address the trajectories of an element u € 1 + pZ, under the square map.

First define

V(u) = exp(V (log(u)))-
Following the commutative diagram above, we conclude that the trajectory of u under the square
map lies in this set V(u), and further, by Lemma 3.5, that this trajectory is dense. In particular,
this proves that 1 is not an attractive fixed point.

Finally, we turn to the general case of |zg|, = 1. Use the isomorphism (3.2) to write zy =
#(0, a9, 2), with ag € F;, and z € pZ,. By [R], replacing o with some iterate z; if necessary, we
may assume that ag is an element of a cycle of the square map in F). Enumerate this cycle as
S" = {ag,a1,... ,a9-1} C IF,,, where g is the order of 2 modulo d, for some odd divisor d of p — 1
[R]. Then the trajectory of xp lies densely in some subset of the open set S’ x V(z) C F; x pZy,
since the trajectory of z is dense in V(z), and S’ is finite.

More explicitly, set b = ged(g,n) to be the greatest common divisor of the periods of the two
cycles (squares of ag and powers of 2 modulo p). Then S’ x V(z) C F}, x pZ, can be partitioned into
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b open subsets such that each contains a dense trajectory of one of its elements. This completes
the proof. O

Ezample 1. Let p =7, and 2o = 09 exp(p), where o9 is the Teichmiiller representative. Here z = p,
n =3 (and r = 1); and since S’ = {09,04}, ¢ = 2. Hence b =1, and

S'x V(p) = {o2,04} x {p —I—pQZp, 2p —I—p2Zp, 4p —I—p2Zp}.
Given any z' € o,(s + pZyp) in this set and M > 0, we can find a value ¢t > 0 such that z; = 2/

mod pM — simply take the least common multiple of those values which sufficed in each of the
sets S’ and V(1) separately. O

Ezample 2. Let p = 11 and ¢y = o4 exp(p). Then n = 10 (and r = 1); moreover S’ = {04,05,03,09},
s0 ¢ = 4. Hence b = 2, and the set S’ x V (p) splits into 2 distinct open sets, such that the trajectory
of z( is dense only in one:

{o4,03} x {2%%p + p?7,|0 < k < 4} U {05, 00} x {2%F1p + p?Z,|0 < k < 4};

the other open set in S’ x V(p) evidently contains the dense trajectory of o4 exp(2p), for example.
U

4. ITERATES OF f.(z) =12%+e¢, |e|, < 1

In this section we consider the dynamics of the map f-(z) = z? + ¢, where € is “small” in the
sense that |e|, < 1. Let us first recall a theorem of Pezda (noting that f, satisfies the hypothesis).
Denote by x-cycle any primitive cycle of a polynomial contained entirely in an open set of the form
T + pLip, T € L.

Theorem 4.1 ([Pe]). Let f be a polynomial with coefficients in Z,. Suppose first that p > 3. If f
admits a cycle of period n, then

(4.1) n = ab, where a | (p — 1) and b < p.

Furthermore, the period of any *-cycle of f must divide p — 1.

If p = 3, then the possible periods of cycles are {1,2,3,4,6,9}, and *-cycles cannot have period 6
or 9. If p =2 then the possible periods of cycles are just {1,2,4}, and x-cycles cannot have period
4.

Pezda proves this result as a corollary to his more general theorem, which gives an upper bound
on the possible lengths of cycles of polynomial maps on algebraic extensions of Q,. His proof,
which is quite technical and clever, involves first reducing to *-cycles in the prime ideal (eg pZ, in
Qp), and then showing that the periods of such cycles are highly constrained. To show further, for
Zp, which cycle periods are possible, he constructs from any given cycle a series of determinants
whose valuations must be multiples of the period.

We next have the following theorem, which appears in a less general form in [TVW].

Theorem 4.2. Let f.(z) = 22 + ¢, with |e|, < 1. Suppose p > 2, and that f. admits a primitive
cycle O = {ap,a1,... ,ac_1}. Set z = (f£)(ap), and let t be the least positive integer such that
2t =1 mod p. Let B = val(z* — 1), and set a to be the least integer greater than (3/t. Then the
only periodic points in the union of the neighbourhoods a; +p“Zy, 0 < i < c, are those of the cycle
0.

[TVW] prove this for the case of ¢ = 1, by demonstrating that f. is topologically conjugate
to the linear map z — zz (where z = fl(ag)) in such a neighbourhood. It is a straightforward
substitution to replace the map f. in their proof with the iterate f¢, and the derivative f!(ag) with
its more general form z = () (ao).
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Let us now proceed to the main result of this section. Note first that since f. is not a homomor-
phism of multiplicative groups, the isomorphims (3.2) and (3.1) are of no help here. Nevertheless,
we have the following theorem, which shows that f., |¢|, < 1, can be interpreted as a perturbation
of the original square map.

Theorem 4.3. There are two fized points of fe, 6pc and pp e, with |0pclp = |ppe — 1lp = le]p < 1.
If x is a point such that |z|, > 1, then its trajectory diverges to infinity; whereas if |z|, < 1, its
trajectory converges to 0p.

If p = 2, then the trajectory of every = such that |x|, = 1 converges to pp,.. For all other p, if
|z|, = 1, then x is either a periodic point, or its trajectory is eventually quasiperiodic. In many
cases, one can algorithmically determine the finitely many periodic points, and calculate them to
any degree of precision. In the remaining, very special, cases, the algorithm may fail to terminate,
leaving only an approzimate picture of the orbit space.

More precisely, let n denote the order of 2 modulo p. Given a primitive c-cycle O of the square
map in Fp, if n does not divide c, then there exists a unique corresponding fundamental c-cycle of
fe with leading coefficients in O. Any other periodic element of f. with leading coefficient in O is
a harmonic cycle, and must have a period which is a multiple of both ¢ and n.

Proof. A. Existence of fixed points: A fixed point z = f.(x) must satisfy

1T
_f.

T

If p # 2, then val(4e) > 1, and so the square root of 1 — 4¢ exists in , by Hensel’s Lemma, since
1 has a square root in F,. One obtains v/1 —4e = £(1 + eu), for some u € Z;, so the two fixed

points are

EU U
Ope = ) and Ppe =1+ D) (p # 2).

Similarly, if p = 2, then val(4e) > 3, so we may again apply Hensel’s Lemma to deduce the existence
of a square root; here it takes the form 1 + 2eu, for some u € Z;. Hence the two fixed points are

0o = —cu and poe=1+c¢u (p=2).

B. Trajectories for |z|, # 1: It is clear that |z|, > 1 implies |f.(z)|, = |#|2 > |2|p; hence the
trajectory of such an z diverges to infinity. Now suppose that |z|, < 1. It follows that

= |zl if z[; > [elp;
|fe($)|p = |5'22 + 5|p = lelp if |x|12, < lelp;
<lelp if |-T|;27 = |elp.

Since the norm on Q, is discrete, we deduce that |fI(z)|, = |e|, for all n sufficiently large. We
show that from this point on, the trajectory approximates dj .
Let m = val(e) > 1. Then since f*T!(z) = (f?(z))? + ¢, and val(f?(z))? = 2m, we have
ntl(z) = ¢ mod p?™. This last equality holds also for the fixed point z = §,.; hence in fact
it (z) = 6, mod p?™. To prove that f(z) comes arbitrarily close to d, . as n — oo, we have
only to note the following. Given any y € @, such that y =, mod p¥ (and thus y =0 mod p™),
it follows that 92 = 512)75 mod pFt™. Hence f.(y) = 512,,5 + ¢ mod p**t™; but as 0p is a fixed point
of f., we conclude that f.(y) = dp. mod pFt™_ Clearly then, 0p,c is an attractive fixed point, with
basin of attraction equal to pZ,,.
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C. Outline of strategy for the case of |z, =1: In the following sections, we will construct
a (potentially non-terminating) algorithm for determining the existence of a cycle of given period
c. We proceed in three parts.

In Part D, we consider the special case of p = 2, where we find no periodic points besides the
attractive fixed points. Thereafter we consider only odd primes p.

In Part E, we determine the applicability of Hensel’s Lemma to the c-th iterate of f., or rather,
to the function

9(x) = fo(a) - =.

For r > 0 to be determined, choose zy € Z; such that g(z0) =0 mod p
for the iterates of zg under f.. Then by the chain rule,

(4.2) 9'(20) = fi(z0) fo(z1) -+ fi(ze—1) =1 = 22021 - - - 2e—1 — 1.

To conclude by Hensel’s Lemma that there is an exact root of g (generally, a c-cycle of f.) near zp,
r must satisfy r > val(g'(zp)). Predicting this value is the object of much of Part E.
In Part F, we summarize an algorithm which, in most cases, allows one to compute all cycles of

fe on Q.

D. Determination of the orbit space for p =2: If p = 2, then val(¢'(29)) = 0 for all ¢ > 0.
Hensel’s Lemma, implies that for any ¢, there exists a unique x € Zo such that £ = zp = mod 2
and g(z) = 0 mod 2. Since £ = pg. fits this criterion, we deduce that, for p = 2, there are no
periodic points of f, besides the fixed points. Let us prove that us . is also attractive.

Let £ = 1 + s, with s € 2Z9, be an arbitrary element of Z3. If val(s) < val(e), then f.(z) =
1+2s+s?+e=1+s" with val(s’) = val(s) + 1. On the other hand, if val(s) > val(¢), then the
same calculation yields val(s’) = val(e). Hence, replacing z with f7(z) (n > 0) if necessary, we
may assume that val(s) = val(e), and thus that z = 1 + & mod 2™*!. Similarly, we deduce that
p2e =1+ ¢ mod 2m+1 Tt thus suffices to prove that if y € Z, satisfies y = p2, mod 2k then
fe(y) = po, mod 2¥+1. Write y — po . = 2%u, for some u € Z3. Then (y — po)? = 22?2, which
implies

2r+l Write 21, 29, 23, . . .

Y+ 15 = 20,0y + 2°7Fu” = 2ug  (pae + 2°u) + 270 = 25 + 25 g
for some v’ € Z5. Subtract 2,u%,5 to deduce that f.(y) — p2. =0 mod 2¥+1, as required.
E. Prediction of val(g'(z)) when p odd:  For the remainder, suppose p # 2. Then
(4.3) 2021+ 2ot = 2pzert 22T = 2Z71=1 mod p,

where the first of these equivalences uses that ||, < 1, and the last that z is periodic of order
¢ (modulo p) under the map f.. Thus, if 2¢ £1 mod p — i.e. if n does not divide ¢ — then
r = valg'(zp) = 0. By Hensel’s Lemma, there exists a unique = € Z, such that g(z) = 0 and z = 2
mod p. Thus, for such ¢, it is necessary and sufficient to find a primitive c-cycle of the square map
fo on F; to prove the existence of a primitive c-cycle of f. in Z;. Moreover, the uniqueness of
this = implies that, for any ¢’ not divisible by n, there are no cycles of f. of period ¢’ through any
element with leading coefficient equal to zp. Thus, any harmonic cycles of this fundamental c-cycle
(that is, cycles having the same leading coefficients but longer period) must have period divisible
by both ¢ and n.
Next consider those ¢ for which n divides ¢, that is,

(4.4) 2°=14p"v,
for some v € ZNZ;, and r > 0. Expanding the expression (4.2) for g(20) yields

' (20) = 22021 -+ 2e—1 — 1 = 2°(2 ' +eu) — 1,
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for some u € Zj,. By (4.3), zgc_l =1 mod p; apply (4.4) to this exponent to get zgrv =1 mod p.
Since b = b mod p for all b € F,, it follows that already zj = 1 mod p. Writing 2§ =1+ y

for some y € pZ,, and applying the binomial theorem to ng” = (1 +y)P", we deduce that in fact

22X =1 mod pt!. Write 22! = 14 p™+'u/, for some ' € Z,. Then
(4.5) g'(20) =22 "+ eu) — 1= (1+p )1 +eu+p ) — 1.

Thus, for most cases, val(g'(z9)) < r, and is equal to r if val(eu) > r + 1.
Now we compute the trajectories of the map f. on a set of representatives of Z,/ pZT‘HZP. One
such set is

(4.6) Rr={ne€Z|1<n<p* L

If there exists an element zy € Z, whose orbit under f. in R, has period ¢, i.e., such that g(zp) =0
mod p?"*! then Theorem 2.3 ensures that there is an exact root z of g such that z = zg mod p"*1.
We must take care, however, as the primitive period of this root z need not necessarily be c¢: as
a consequence of Theorem 2.3, if y is an element of a cycle of f. of period dividing ¢, then every
element y' in the coset y + p"T1Z, will satisfy g(y’) = 0 as well. Hence we must eliminate all these
as possibilities before we can conclude that we have discovered a c-cycle.

If no zy of period ¢ can be found in R,, then no c-cycle exists.

Note that when val(eu) = r, it is possible that cancellations may produce val(p"v + eu) > r.
Thus, whenever val(e) < r and a potential cycle through an element zj is found, we must evaluate
val(g'(zp)) directly. Should the result be greater than r, we must restart our search for zy with
respect to the new value of r (and potentially arrive at this same juncture, with a slightly different
value of 2y, but with the same problem, ad infinitum). These circumstances define what we term
the nongeneric case of the algorithm.

F. Summary of algorithm (p odd): Let ¢ > 1 be the period of the cycle O = {ag,a1,...ac—1}
in IF,. Thus c is the order of 2 modulo d, for some odd divisor d of p—1. Applying Theorem 4.1 and
the above analysis, we see that the possible periods of cycles of f. in Z, (with leading coefficients
in O) are as follows. Set | = lcm(c,n) to be the least common multiple of ¢ and n = ord,2. The
denotations “first” and “second” harmonic are suggestive of the heirarchy of the generic case only;
they correspond to different values of r in the above analysis. In particular, the existence of a
second harmonic is independent of that of a first harmonic.

o If p =3, then ¢ = 1. We have:
— the fundamental cycle is the fixed point u3;
— the first harmonics (if any) have periods 2 or 4.
otherwise, for p > 3
o If ¢ =1, then:
— there exists a fixed point in Zj, which is a fundamental cycle;
— the periods of the first harmonics, if any, have the form kn, with k£ dividing (p — 1)/n.
eIfc#1,c|(p—1),and 2 #1 mod p:
— there exists a fundamental cycle of period ¢;
— the periods of the first harmonics (if any) have the form ki, for some 1 < k < p;
— the periods of the second harmonics (if any) have the form pki, for 1 < k < p satisfying
k| (p—1).
eIfct(p—1)and 2°#1 mod p:
— there exists a fundamental cycle of period c;
— the periods of the first harmonics (if any) have the form kI, with 1 < k < p, such that ki
admits a factorization of the form (4.1).
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eIfc|(p—1)and 2°=1 mod p:
— there may be a fundamental cycle of period ¢;
— if there is no fundamental cycle, there may be first harmonics of periods kc, for 2 < k < p;
— the periods of the second harmonics, if any, have the form pkc, for some 1 < k < p such
that & divides 2.

e Ifct(p—1)and 2°=1 mod p:
— there may be a fundamental cycle of period c;
— if there is no fundamental cycle, there may be first harmonics of periods k¢, for 2 < k < p
such that kc admits a factorization of the form (4.1).

Those primes for which either of these final two cases arise are the ezceptional primes alluded to
in the introduction and discussed in section 6.

To find a cycle of f. of a given period o from the list above, let r be the estimate of val(g'(z))
given in (4.4), and locate a c-cycle in R,. If none are found we may conclude that no o-cycles
exist. Otherwise, given a candidate zp, we must

(a) verify that val(g'(zp)) < r and
(b) verify that zyp mod p" ™! does not coincide with the leading coefficients of some shorter cycle.

The failure of (a) leads to a new estimate of r (and potential disaster, as remarked above); the
failure of (b) (on all candidates zy) implies that no c-cycle exists.

There are a number of potential optimizations to this procedure, however, that curb the poly-
nomial growth of computations with p and r. They are as follows:

i. Linearity in a Neighbourhood: Let x be an exact periodic point of f. of period ¢. In
practice, only the first few digits of z will be known as a result of the preceding steps.

Let ¢ be the order of 2° modulo p and write 27 = 1+p"v for some v € Zy,. If r = 1, compute
 mod pQZp (and set s = 1 below); otherwise, compute at least the first two nonzero digits
of ; that is, compute either  mod p? or, more generally, z mod p**! where s = val(z — (=
mod p)). Write Z for this approximation to z. Let z be the product

2= (Bf(%)... f£(®))"

Set 8 = val(2¢z — 1); if 8 = min{r, s}, then no cancellations occurred, implying that 3 is
indeed equal to val(g’(z) — 1). Thus we set « to be the least integer greater than [3/t.
Otherwise, the limited precision of our approximation Z allows us to conclude only that
val(g'(z) —1) > ( and that @ > (/t. To obtain a more precise estimate of , we must improve
our estimate % to at least the p? digit, and recalculate z and « (possibly ad infinitum).
Now suppose we have computed a. Then f£ is conjugate to a linear map in the neighbour-
hood z + p®Z,, and consequently, no periodic points of f. intersect the union

(4.7 z+p*Zy, U fe(z)+p*Zyp U---U fsc*l(:v) + p*Zyp.

If « is sufficiently small (and thus the neighbourhood is large), this eliminates the possibility
of any further harmonics, and we are done. Note that this is quite common, as 8 = 1 except
for the nongeneric case, and ¢ > 1 except for the exceptional primes.

Moreover, in any case where o can be computed, we can eliminate the set (4.7) from the
search for harmonic cycles.

ii. Equivalence to the Square Map: Note that f. acts as z — 2 on the set Zp/€Z,. Write
m = val(e); the possible periods of the cycles of z — 22 on the set Z,/p™Z, were determined in
Proposition 3.1. Thus, if m is sufficiently large (and ¢ is sufficiently small), we may eliminate
some of the possible periods of harmonics from the list above (for example, all those with
multiple k& > 1) for any case where 2r +1 < m.
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iii. Elimination of Echoes of Smaller Cycles: Let yg,y1,---9,/—1 be a previously discov-
ered o'-cycle, with o' | o and val(f? (yo)) = s. Then each element of the open set

% +p2r+lstp U n +p2r+lstp U---U Yo1 +p2r+lstp

will be a solution to fZ(z) =z mod p2’"+1Zp, by Theorem 2.3, but the corresponding exact
solutions given by the theorem will be just yg, y1, - .. y,s—1 again. Hence we can eliminate these
sets from consideration as well. Doing this from the outset neatly sidesteps the complication
(b) mentioned above.

G. Quasiperiodicity:  Finally, consider the case where |z|, = 1 and z is not periodic. Replacing
z with some iterate under f. if necessary, we may assume that its constant term ag is an element
of a cycle in the finite field; denote the elements of this cycle by ag, a1, --a._1. We wish to show
that z is a quasiperiodic point. Take a neighbourhood U of z; then U contains a basic open set of
the form z + p"Z,, for some n > 0. Consider the trajectories of f. on the set of all cosets of p"Z,
whose representatives have constant term among ag, a1, ,a. 1. By Hensel’s Lemma, f. ! exists
on this set, and moreover it is unique, since f.(z) = f-(y) mod p” implies 22 = y?> mod p". The
constant terms are nonzero and have by definition unique square roots among the agy, a1, - a1,
so we deduce that £ =y mod p™. Hence, the trajectories of f. on this coset space are cycles, and
in particular there is some N > 0 such that f¥(z) € z + p"Z,.

O

5. ITERATES OF f.(z) =22 +e¢, |e, =1

The orbit space of these maps are drastically different from those of the preceding two sections;
nevertheless, much of the analysis which permitted us a global general picture there carries over
to this boundary case.

As noted in [TVW], if |z[, > 1, then the trajectory of f. through z diverges to infinity. Thus
the question reduces again to a consideration of the trajectories in Z,,.

Consider first the trajectories of f, on the residue field IF,. As f. is not equivalent to the square
map in this case, there is no known general, uniform description of this orbit space. For example,
not all f, admit fixed points, since v/1 — 4¢ may or may not exist in (. However, the finiteness
of I, implies the existence of some cycles. Insofar as concerns us, they fall into two categories.

The first kind of cycle is one which contains the element 0 € F,,. (This is called an attractive cycle
in [TVW].) Denote the elements of this cycle {ag,a1,...,ac—1} (with some a; = 0) and consider
g(z) = f&(z) — z. From (4.2), we deduce that val(g'(ap)) = 0, since the product aga; ---a.—1 is
0 modulo p. Hence there exists a unique c-cycle of f. with these leading coefficients; even more,
this uniqueness (together with the exactness of approximation modulo p) implies that there are no
other cycles (of any period) with these leading coefficients. In the terminology of the preceding
sections: this case gives rise to a single fundamental cycle, with no harmonics.

The second kind of cycle is one which lies entirely in Fy, and is similar to those encountered in
the proof of Theorem 4.3. For |e|, = 1, however, the product agay - - - a.—1 is not necessarily equal
to 1 modulo p, since the analysis of (4.3) does not apply. Hence the valuation of ¢'(ag) depends on
the entire term in (4.2). We have no a priori estimate of val(g'(ag)) in this case.

Nevertheless, a coarser version of the anaylsis of Part E of the proof can be applied. If
val(¢'(ap)) = 0, then the cycle gives rise, via Hensel’s Lemma, to a unique c-cycle in Z,. The
only other possible periods of cycles with leading coefficients in the set {ag,a1,... ,a.-1} are c¢m,
where m is a multiple of the order of 2°aga1 - - - a.—1 modulo p, and where, by Pezda’s Theorem 4.1,
cm admits a factorization of the form (4.1). To find a cycle of period o, one considers the dynamics
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of f. on sets of the form Z /p?**17Z; each time a candidate z is found, we verify that val(g'(zg)) < s.
If this fails to be true, we increase s and try again.

Note that the quasiperiodicity argument in Part G of the proof of Theorem 4.3 goes through
unchanged for |e|, = 1 and hence that under f., all points in Z, are either periodic or eventually
quasiperiodic. Moreover, as suggested by [TVW], the limiting result Theorem 4.2 holds for ||, =1
as well, indicating that in some circumstances one can prove the nonexistence of cycles of longer
period in a neighbourhood of a given cycle.

6. OPEN QUESTIONS

In Section 3 we laid the foundations for the theory of fundamental cycles. One is immediately
struck by some open number-theoretic questions.

For one: how do we determine the order n of 2 in F;? The distribution of these orders is well-
known, up to the Generalized Riemann Hypothesis; but determining the value of n in any given
case remains difficult. Using the Legendre symbol, one knows that 2" =1 mod p if and only if
p==+1 mod 8 [S, Ch.1]; but this is not enough to determine n completely.

For another: whereas a formula (in terms of the order of 2 modulo odd divisors of p — 1) for
the number and period of the orbits of the square map on F, is known, several related questions
remain open. For example, set ¢(p) equal to the number of cycles of the square map on F,. On
what values, if any, is the map c infinite-to-one? It is conjectured that c¢(p) = 2 is such a value
(Artin primes); and but that ¢(p) = 1 is not (Fermat primes) [R]. What effect does it have to
replace ¢ with the number of cycles of f., ¢ € Z, as p varies? Or with the maximum number of
cycles over all €7

Related to this is the following more detailed question. For which exceptional primes p (see
Table 6.1) does there exist a cycle of the square map on F, which fails to induce a corresponding
fundamental cycle of f. on Q,? Is there a choice of ¢ such that there are no cycles (fundamental
or harmonic) in Zj, arising from the problematic ords2-cycle in F,?

For example, the least such prime is p = 251. Under the square map, [F, admits a cycle of period
r125 = 100, but there is no corresponding fundamental cycle of f,(z) = z? +pin Lop.

The consideration of this class of (large, easily characterized) primes is potentially of interest in
its own right. In the context of this paper, it seems that these primes are the ones for which the
dynamics of the square map z — z2 are least stable under perturbations.

Another open question, which seems more analytic than number-theoretic in nature, is the
existence of an nongeneric pair (p, €) for which the algorithm of Part F of the proof fails to terminate
on some zg € Q,. Two sets of circumstances can lead to an infinite recursion, but both arise from

the conjectural existence of a cycle of f. on Q,, say through the elements {z¢,z1,...2.—1}, for
which

(6.1) (f) = 2°mom1 -+ ze—1)" = 1

exactly for some ¢t > 0. If t = 1, the algorithm cannot prove or disprove the existence of this cycle
in finite time, as necessarily the estimate r of the valuation of the derivative 2°zgzi---z. 1 — 1
would never be sufficient to apply Hensel’s Lemma. (In fact, Hensel’s Lemma is empty when the
derivative is identically zero.)

Furthermore, for any ¢, even if the existence of such a cycle is proven or assumed, the algorithm
we describe for isolating a neighbourhood on which f¢ has only one fixed point will never terminate.
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We can understand why this must occur, as follows. Suppose p # 2 and write

fel@o + h) = fo(mo) + h(FS) (@) + SRV (o) + -

for the Taylor expansion of the polynomial at zg. As f(zo) = 0, and (f¢)'(z¢) = pt, a t-th root
of unity, we can rewrite this as f¢(zo + h) = zo + hyt mod h?Z,. Now iterate this expression ¢
times, using the relations f¢(f¢(zo + h)) = f(zo + hpt) = zo + hp} mod h*Z,. We conclude that
for all h,

Nz +h) =x9+h mod h’Z,.

This holds for any h € Zy; in other words, f< behaves approximately as its linearization — the
identity. However, as f. has only finitely many periodic points, achieving a topological conjugacy
between the two maps is not possible.

Unfortunately, neither of these cases can be distinguished from one in which the equation (6.1)
holds only modulo p*Z,, for some large s > 0, except in special circumstances (as below). One
might begin to justify our use of the suggestive term “non-generic” by remarking that these pairs
(p,e) are defined by a condition which is far from stable under perturbations of p or of e.
Ezxample. Let p = 3 and consider the map f., with e = % = 1_%). The fixed point zg = p3, = 1— %p
satisfies (29)% = 1 exactly. Hence this is an example of an “nongeneric” case. O

We are left with many unanswered questions. In what sense does the behaviour of f. around zg
differ from its behaviour in the generic case? Does every prime p admit some choice of € for which
there is a cycle satisfying (6.1)7 How can we find such ¢? Do we dare imagine that they are in
some sense boundary values, such that the behaviour of the quadratic maps fs can be predicted
by the relation of § to €7
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TABLE 6.1.

D d #(d) || n = ord,(2) ordg2

251 125 100 50 100

1459 729 486 486 486
5419 2709 1512 42 42
39367 19683 13122 2187 13122
54001 3375 1800 180 900
110251 55125 25200 350 2100
116381 29095 20240 5060 5060
148997 37249 37056 772 18528
181549 45387 29520 164 7380
213751 106875 54000 1125 4500
246241 7695 3888 108 108
268501 67125 35600 100 8900
446473 55809 33696 351 1404
730021 182505 93104 2116 23276
1299079 649539 393660 6561 | 196830
2010583 | 1005291 571536 1701 47628
3037501 759375 405000 202500 | 202500
3618757 904689 559872 324 1944
4390021 | 1097505 565152 10092 70644
5419387 | 2709693 | 1522152 4374 | 126846
5521693 | 1380423 821280 236 | 102660
5746001 359125 249600 520 7800
5840251 | 2920125 | 1435200 650 89700
6049243 | 3024621 | 2012040 4374 | 1006020
6561001 820125 437400 54675 | 218700
6876901 | 1719225 913680 1620 76140
8039359 | 4019679 | 2629224 8427 | 1314612
9106063 | 4553031 | 2542512 329 45402
10113049 | 1264131 759360 339 47460
13357177 | 1669647 931896 5547 77658
17231831 | 8615915 | 5100480 8855 | 106260
17360407 | 8680203 | 4960116 413343 | 826686
22366891 | 11183445 | 4717440 78 156
26558929 | 1659933 962280 24057 | 240570
27338681 | 3417335 | 2666400 2020 | 333300
28934011 | 14467005 | 6613488 13122 | 551124
29327761 | 1832985 728640 7590 15180
34229539 | 17114769 | 9730224 57918 | 115836
35175001 | 4396875 | 1980000 7500 82500
47904049 | 2994003 | 1942056 26973 | 107892
48912491 | 24456245 | 17012160 110 | 1063260
56337751 | 28168875 | 12700800 3675 44100
74967931 | 37483965 | 19990800 810 | 4997700
96468751 | 48234375 | 22050000 459375 | 1837500

The exceptional primes up to 1 x 108, calculated with the aid of the

software package ARIBAS [A].




