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Abstract

Two strongly chaotic systems are investigated with respect to quantization rules based on
Selberg’s trace formula. One of them results from the action of a particular strictly hyperbolic
Fuchsian group on the Poincaré disk, leading to a compact Riemann surface of genus g =
2. This Fuchsian group is denoted as Gutzwiller’s group. The other one is a billiard inside
a hyperbolic triangle, which is generated by the operation of a reflection group denoted as
T*(2,3,8). Since both groups belong to the class of arithmetical groups, their elements can
be characterized explicitly as 2 x 2 matrices containing entries, which are algebraic numbers
subject to a particular set of restrictions. In the case of Gutzwiller’s group this property can be
used to determine the geodesic length spectrum of the associated dynamical system completely
up to some cutoff length. For the triangular billiard 7%(2, 3, 8) the geodesic length spectrum is
calculated by building group elements as products of a suitable set of generators and separating
a unique representative for each conjugacy class.

The presence of reflections in 7*(2,3,8) introduces additional classes of group elements
besides the hyperbolic ones, which correspond to periodic orbits of the dynamical system.
Due to different choices of boundary conditions along the edges of the fundamental domain
of T*(2,3,8), several quantum mechanical systems are associated to one classical system. It
has been observed, that these quantum mechanical systems can be divided into two classes
according to the behavior of their spectral statistics. This peculiarity is examined from the
point of view of classical quantities entering quantization rules. It can be traced back to a
subtle influence of the boundary conditions, which introduces contributions from non-periodic
orbits for one of the two classes.
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1 Introduction

Since the development of Gutzwiller’s periodic-orbit theory [30], investigating the relation be-
tween periodic orbits of a classical dynamical system and the energy spectrum of the associated
quantum mechanical system has gained some attention. In this context, the diversity of dy-
namical systems can be classified on a scale between two extreme cases.

Considering Hamiltonian systems with a finite number n of degrees of freedom, one end of
the scale is given by integrable systems. For this kind of dynamical systems there exist n inde-
pendent constants of motion, restricting the time evolution in phase space to a n-dimensional
torus. The equations of motion can be integrated, and the motion is characterized by the
property, that initially neighboring trajectories diverge at most like a power t* of the time.

On the other end of the scale ergodic systems can be found, which share the property, that
almost all of their trajectories fill the (2n — 1)-dimensional hypersurface of constant energy
in phase space densely. Since for ergodic systems a trajectory will visit all regions of phase
space with uniform probability, the motion can be viewed to be very irregular. Ergodicity
is the weakest property of a hierarchy of increasing irregularity: mixing, Anosov property,
and Bernoulli property. The common definition of “chaoticity” refers to the Anosov property,
stating, that initially neighbored trajectories exponentially diverge according to e* under the
evolution of time.

Turning to quantum mechanical systems, however, an exponential sensibility on initial con-
ditions, as observed for classical chaotic systems, cannot occur. This can be understood as
follows. Due to the exponential divergence of neighbored trajectories in classical chaotic sys-
tems, calculating a trajectory within a given accuracy requires the knowledge of the initial
conditions up to an exponentially small error. Whereas for classical systems the differences in
the initial conditions of neighboring trajectories can be chosen to be arbitrarily small, quantum
mechanical systems are subject to the uncertainty principle. Therefore Planck’s constant h sets
a lower bound on differences in initial conditions, which can be of significance for the quantum
mechanical time evolution. Mathematically speaking, this behavior is a consequence of the
fact, that generally the semiclassical limit # — 0 and the time limit ¢ — oo do not commute.

Nevertheless, since classical mechanics is contained in quantum mechanics as the limit of
vanishing Planck’s constant & — 0, the question may arise, how the irregularity of a classical
chaotic system is reflected in the associated quantum mechanical system. One of that finger-
prints of classical chaoticity is the behavior of the quantum mechanical energy spectrum. For
generic chaotic systems the statistics of energy eigenvalues can be described by investigating the
eigenvalues of large random matrices [27, 46, 23], leading to so-called level repulsion. Classical
integrable systems, on the other hand, result in a different statistics, yielding level clustering
[21]. A particular class of chaotic systems, so-called arithmetical systems, were later shown to
possess quantum spectral statistics, which are comparable to those of integrable systems [24].

Another difference between the extremes of integrable and ergodic systems is a consequence
of the phase space structure described above. The latter has a profound influence on the
construction of semiclassical quantization rules, which may offer an analytical tool to investigate
the semiclassical limit o — 0. In the case of integrable systems, these rules are the WKB
method, or its generalization to multi-dimensional systems, the EBK method. Both methods,
however, rely upon the existence of n independent constants of motion and, thus cannot be
applied to chaotic systems.

However, Gutzwiller’s periodic-orbit theory establishes a semiclassical quantization rule by



expressing the trace of the Green function, which has poles at the quantal energy eigenvalues,
as a sum over an infinite number of periodic orbits of the classical dynamical system. As
compared to the EBK method describing the integrable case, the relation between quantum
mechanical side and classical side of Gutzwiller’s trace formula is much more involved. Each
energy eigenvalue is based on a subtle interference of terms depending on the periodic orbits.
Thus a large number of periodic orbits is needed to unravel the fine structure of the quantal
energy spectrum. Unfortunately chaotic systems share the property that the number of periodic
orbits proliferates exponentially with their lengths. Thus in order to calculate higher and higher
energy levels within a given accuracy, the computational effort rapidly increases, as opposed to
the integrable case, where it is independent of the energy.

For practical considerations, the trace formula for the Green function has to be smoothed
appropriately, rising the question of the actual accuracy of the semiclassical approximations
for the quantal energies. Errors may arise for two reasons. On the one hand, Gutzwiller’s
trace formula can be considered as a first order expansion in Planck’s constant #. Not much
is known so far about the higher order corrections. On the other hand, using a finite number
of periodic orbits as input data may strongly affect the oscillating terms on the classical side
of Gutzwiller’s trace formula. It seems, however, difficult to give analytical estimates for the
accuracy, which has been reached.

One of these sources of inaccuracy can be eliminated by specializing to a particular class
of systems. Due to Gutzwiller [31], his trace formula becomes an exact identity for the free
motion of a particle on a surface of constant negative curvature. This identity has been derived
long before by Selberg [50] in order to investigate the Riemann hypothesis.

In this work quantization rules based on Selberg’s trace formula will be examined by con-
sidering two particular hyperbolic surfaces. Both of them result from the action of a discrete
group on the complex upper half-plane, leading to the possibility to reduce the determination
of periodic orbits to a group-theoretical problem. The first system is a particular compact Rie-
mann surface of genus ¢ = 2, which is generated by an arithmetical Fuchsian group, denoted as
Gutzwiller’s group. Due to the arithmeticity the geodesic length spectrum can be determined
up to some cutoff-length completely. This has been accomplished only for two hyperbolic sur-
faces before [6, 49]. One of them is the (unique) compact Riemann surface of genus g = 2 with
highest possible degree of symmetry [17, 11, 5], being generated by the operation of the regular
octagon group. The other system is known as Artin’s billiard [3], defined as the free motion
inside the (non-compact) fundamental domain of SL(2,Z).

The second dynamical system treated in this work is the free motion inside a hyperbolic
triangle with angles 7, %, and Z, which results from the operation of the reflection group
T*(2,3,8) on the complex upper half-plane. In contrast to a compact Riemann surface, the
domain of motion then possesses a boundary and vertices, which introduce additional contribu-
tions to Selberg’s trace formula. According to different boundary conditions, several quantum
mechanical systems may arise from the classical dynamical system under consideration. Since
the fundamental domain of 7%(2,3,8) can be viewed as resulting from a desymmetrization of
the compact Riemann surface of genus ¢ = 2 with highest possible degree of symmetry, the
quantal energy spectra of these systems have been studied before in the context of the reg-
ular octagon group by numerically solving Schrodinger’s equation [5]. There the observation
has been made, that the quantized systems associated to 7%(2,3,8) can be divided into two
classes according to the spectral statistics of their energy eigenvalues. One class, showing level
clustering, yields energy spectra, which are subspectra of the dynamical system associated to



the regular octagon group. Although the hyperbolic triangle group 7%(2,3,8) turns out to
be arithmetical, the quantal energy spectra of the other class show level repulsion, i.e., their
behavior agree with the behavior expected for generic chaotic systems.

In detail the outline of this paper is as follows. Chapter 2 reviews the basic ideas of
hyperbolic geometry and discrete groups acting on the pseudosphere. The latter give rise to
hyperbolic surfaces, which will be used as models for chaotic systems in the main body of this
work. Subsequently, the relation between the geodesic length spectrum of a given hyperbolic
surface and its generating group will be discussed. After mentioning some properties used to
classify chaotic dynamical systems in general, a few remarks about quantized systems associated
to hyperbolic surfaces will be given.

Chapter 3 then deals with the Riemann surface of genus ¢ = 2, which is generated by
Gutzwiller’s group I'gw. Taking advantage of arithmetical properties of Gutzwiller’s group, an
explicit representation of the group elements will be derived. The latter turns out to be useful
in order to determine the spectrum of geodesic lengths up to a cutoff length £ completely.
Due to the exponential proliferation of periodic orbits, a typical property of chaotic systems,
a cutoff length of £ ~ 18 is chosen for numerical purposes, which amounts to the calculation
of more than 4 million periodic orbits. Using the geodesic length spectrum as input data,
two quantization rules derived from Selberg’s trace formula will be studied. The first relies
on investigating the spectral staircase N(E), whereas the second is based on Selberg’s zeta
function, whose zeroes on the so-called critical line correspond to the energy eigenvalues of the
dynamical system under consideration. Chapter 3 closes by using Selberg’s trace formula in
“reverse” direction, i.e., the energy spectrum will be used to extract information about the
geodesic length spectrum. This usage is often referred to as “inverse quantum chaology”.

Chapter 4 is devoted to the study of the dynamical system associated to the hyperbolic
triangle group 7%(2,3,8). Since T7(2,3,8) also belongs to the class of arithmetical groups, the
group elements can be characterized explicitly in analogy to the case of I'qw. The geodesic
length spectrum will then be determined by building group elements as products of a conve-
nient set of generators. Subsequently, Selberg’s trace formula is extended to apply to polygonal
hyperbolic billiards with mixed boundary conditions along the edges. It will be found, how-
ever, that only those billiards, whose boundary conditions are compatible with one-dimensional
unitary representations of their generating group, are subject to Selberg’s trace formula. For
the special case of the triangular group 7%(2,3,8) these turn out to be those systems, whose
quantal energy spectra are subspectra of the the dynamical system generated by the regular
octagon group. These will be referred to as “arithmetical” triangles, whereas the remaining
ones will be denoted as “pseudoarithmetical” ones. Numerically, geodesic lengths covering the
range 0 < [ < 18 will be used for the arithmetical case to study quantization rules based
on Selberg’s trace formula along the same lines as for Gutzwiller’s group. Finally the pseu-
doarithmetical case will be investigated, by interpreting Selberg’s trace formula as part of a
more general Gutzwiller trace formula. Whereas the boundary and corner contributions of the
fundamental domain of 7*(2,3,8) can be properly adjusted in Selberg’s trace formula to apply
for pseudoarithmetical triangles, too, a further contribution arising from non-periodic orbits
will be studied mainly by using the trace of the cosine-modulated heat kernel.

Chapter 5 summarizes the results of this paper.



2 Dynamical Systems Associated to Hyperbolic Surfaces

Both dynamical systems to be considered in this work result from the free motion of a point-
particle on a surface of constant negative Gaussian curvature. Therefore the first section of this
chapter reviews the main results of hyperbolic geometry on the complex upper half-plane, or
equivalently the Poincaré disk. In this setting chaotic properties arise from imposing particular
boundary conditions on the domain of motion, which can be related to the action of some
discrete group on the upper half-plane. Having introduced the necessary notions in the second
section, it will be shown, that the classical dynamics of a given system can be reduced to a
group-theoretical problem. This fact turns out to be a powerful means for the examination of
geodesic length spectra of hyperbolic surfaces, which are discussed in the third section of this
chapter. Geodesic length spectra however are of major importance in the context of quantum
chaos, since they provide the input to the classical side of periodic-orbit sum rules. After
mentioning some notions useful for classifying chaoticity in classical dynamics, the chapter
closes by introducing the Laplace-Beltrami operator, which will be used for the quantization
procedure on hyperbolic surfaces. A more extensive review of the topics discussed in this
chapter can be found in [17] and [19].

2.1 Hyperbolic Geometry

The classical motion of a point-particle of mass m sliding freely on a two-dimensional curved
manifold M is governed by the Lagrangian

ij=1,2. (2.1)

Obviously the classical trajectories in this setting are given by the geodesics in the metric
ds? = g;;dg'dg’. The corresponding classical Hamiltonian can be determined to be

- = 1 27 dq]
H(p,q) = 5o P9 P P =M g (2.2)

where g% denotes the inverse of the metric tensor g;;.

The simplest M of constant negative Gaussian curvature, which is simply connected, is called
the pseudosphere. Two conformally equivalent models of the pseudosphere will be discussed in
the following, each of which having its own virtues depending on the problem to be described.

The first model is the complex upper half-plane
H:={z==x+1iy; y > 0}. (2.3)

A metric is introduced on ‘H by choosing the metric tensor to be

%ii =7 bij; (2.4)

K=——. (2.5)



It is convenient to measure all distances on H in units of R, i.e., making all coordinates dimen-
sionless. Therefore usually the choice R = 1 is made, resulting in a constant negative Gaussian
curvature K = —1 everywhere on the complex upper half-plane. The metric constructed in
this way is called Poincaré metric (or hyperbolic metric) and its line element is given by

ds* = % (d:z;2 + dyQ) . (2.6)

The hyperbolic distance d(z,w) between two points z,w € H is the infimum of lengths
of curves connecting z and w, measured with the Poincaré metric ds?. Tt is attained for the
geodesic segment connecting z and w and turns out to be

2 — wl?

coshd(z,w) =1+ (2.7)

2ImzImw’

The holomorphic automorphisms of the complex upper half-plane can be represented by the
operation of the projective special linear group PSL(2,R) = SL(2,R)/{£1} on H . Elements
v:=(215) €SL(2,R) act as fractional linear transformations on points z € H

az + b

= (2.8)

Since both matrices v and —~v in SL(2,R) map a z € H to identical image points, the holomor-
phic automorphisms of H are actually described by equivalence classes [y] € PSL(2,R) in the
projective group. It is however convenient to deal with matrices v € SL(2,R) and choose the
trace to be try > 0. The identification of v and —v yielding equivalence classes [y] € PSL(2,R)
will be furtheron understood implicitly.

The Poincaré metric (2.6) is invariant under the operation of PSL(2,R) on H , therefore
the holomorphic automorphisms are, spoken in geometrical terms, the orientation-preserving
isomelries of (H,ds?).

Transformations v € PSL(2,R), v # 1 can be classified in three different cases according to
their traces:

(i) Elliptic elements v are characterized by the condition 0 < try < 2. They are conjugate
within SL(2,R) to a rotation and have one fixed point in the interior of H .

(ii) Parabolic elements v are characterized by the condition try = 2. They are conjugate
within SL(2,R) to a translation z +— 2z + 2, 2 € R and have one fixed point on the
boundary OH := RU {oc} of the upper half-plane.

(iii) Hyperbolic elements 4 are characterized by the condition try > 2. They are conjugate
within SL(2,R) to a boost z — Nz, N > 1 and have two fixed point on 9H. N is denoted
as the norm of ~.

Geodesics on the complex upper half-plane H equipped with the Poincaré metric are either
the circular arcs or the vertical half-lines perpendicular to the real axis. The two fixed points
of a hyperbolic element v € PSL(2,R) are connected by a uniquely determined geodesic. This
geodesic is mapped onto itself by v and is therefore called the invariant geodesic of ~.
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Figure 1: Geodesics on the complex upper half-plane

In the case of hyperbolic billiards, besides of the above mentioned three classes of isome-
tries of (H,ds?), also the orientation-reversing isomelries have to be taken into account due
to the presence of reflections. They can be described by the operation of antiholomorphic
automorphisms p := (* }) € GL(2,R), det p = —1 acting on a point z € H as

az+b
z = . 2.9
P cz+d (2.9)
As above —p and p will be identified implicitly, since they map a z € H to the same image
point. The representative will be chosen such that tr p > 0.

An orientation-reversing isometry p fulfilling the involution property p? = 1 geometrically
describes a pure reflection. A p is called inverse hyperbolic, if p* is of hyperbolic type. The
condition for p? to be hyperbolic tr p> > 2 can easily be shown to be equivalent to trp > 0.

The other model of the pseudosphere to be mentioned here is the Poincaré disk

D:={z=z+1y; |z] < 1}. (2.10)
It can be mapped conformally onto the complex upper half-plane H by the so-called Cayley
transformation
1 1 2
¢c:D—H, z+— Cxz 0275(2. 1). (2.11)
The Poincaré metric on D takes the form
4 (dx? 4 dy?
gs? — A" +dy) (2.12)

(1—a2—y2)2’
leading to the hyperbolic distance between two points z,w € D

2|z — w|?

(1 =1z (1 = Jw]?)

coshd(z,w) =1+ (2.13)



The orientation-preserving isometries of the Poincaré disk are represented by the operation
of the projective special unitary group PSU(1,1) = SU(1,1)/{£1} on D . Explicitly they act

on a point z € D as fractional linear transformations with complex coefficients v := (5 &) €
SU(1,1)
uz + v
= . 2.14
= (2.14)

Geodesics of (D, ds?) are circular arcs or diameters orthogonal to the boundary of the
Poincaré disk 0D = {z € C; |z| = 1}. The two fixed points of hyperbolic elements in PSU(1, 1)
are placed on 9D.

Figure 2: Geodesics on the Poincaré disk

Since matrix elements of 4y € SU(1,1) are complex numbers, it is not possible to charac-
terize the orientation-reversing isometries of (D, ds?) by simply choosing the determinant of
a transformation matrix to be —1. In order to represent concatenation of antiholomorphic
automorphisms of D as matrix multiplication, however, the operator

K:D—D,zw—z (2.15)
of complex conjugation is introduced. Then an orientation-reversing isometry p can be written
as

u v .
pz(vu)k, lul> — |v|* =1, (2.16)
acting on a point z € D as
uz +v
z = . 217
PE= (2.17)

The condition for an orientation-reversing isometry p : D — D to be of inverse hyperbolic type
turns out to be |Rev| > 0.
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2.2 Fuchsian and Reflection Groups

Let I' € PSL(2,R) be a discrete subgroup of the automorphisms of the complex upper half-
plane, i.e., there exists a neighborhood U C PSL(2,R) of the unit element 1 € U, such that
UNT = {1}. The set of all I'-images of a point z € H

I'z={yz;y €T} (2.18)
is called the orbit of z. Grouping together the orbits of all z € H leads to the orbit space

K ={I'z; z € H}. (2.19)

If T' contains no elliptic elements, i.e., all v € T, v # 1 have their fixed points on the
boundary 0H of the complex upper half-plane, the orbit space I'\'H turns out to be a regular
two-dimensional manifold. Elliptic elements in I' however have their fixed points in the interior

of H and therefore destroy the manifold structure of I'\'H at exceptional points. In this case
I'\'H will be called an orbifold.

Since the Poincaré metric (2.6) is invariant under the action of the group I' on H , it induces
a well-defined metric on the orbit space I'\H. According to the area of I'\'H being finite or
infinite, I" is called a Fuchsian group of first kind or Fuchsian group of second kind, respectively.
A Fuchsian group of first kind containing no parabolic elements is called cocompact, since its
orbit space I'\'H is compact.

It is often more convenient to use the fundamental domain F of the group I' on H as a
concrete realization of the orbit space I'\'H. This can be accomplished by choosing for each orbit
I'z a representative z € H, such that the union of all representatives is a simply connected region
F C H. Obviously no two points in the interior of F are equivalent under the action of I'. The
union of all I-images of F tessellates the upper half-plane H without gaps and overlappings.
Identifying pairwise I'-equivalent portions of the boundary 0F of the fundamental domain turns

F into a model of the manifold I'\'H.

A Fuchsian group I' consisting besides the identity 1 € T' of hyperbolic elements only, is
called strictly hyperbolic. The resulting orbit space I'\'H is a compact Riemann surface of genus
g > 2, whereas the corresponding fundamental domain F can be realized as a polygon, bordered
by 4¢ geodesic segments. According to the GauB-Bonnet theorem, the area of the Riemann
surface I'\'H is determined by its genus only

area(I'\'H) = 4x(¢g — 1), (2.20)

where the Gaussian curvature is assumed to be fixed as K = —1.

For a point-particle moving on the Riemann surface I'\'H, glueing I'-equivalent portions
of the boundary dF of the fundamental domain F in the case of strictly hyperbolic Fuchsian
groups ' effectively means the introduction of periodic boundary conditions. However, the
case of assuming the geodesic boundary segments of the fundamental domain to be hard walls,
causing an elastic reflection of the point-particle, will be of interest, too. This leads to the
notion of polygonal hyperbolic billiards. The corresponding discrete group I' then also have to
contain orientation-reversing isometries of H , representing the reflections as inversions across
the boundary segments. Groups I' having this property are denoted as reflection groups. Since
the product of two inversions across adjacent boundary portions of the fundamental domain F

11



of a reflection group I' results in a rotation, groups I' of this type will always contain elliptic
elements.

Fuchsian or reflection groups I' can be conveniently characterized by giving a set of genera-
tors and relations among them. In the case of strictly hyperbolic Fuchsian groups, i.e., groups
having as fundamental domain F a polygon with a boundary dF consisting of 4¢ geodesic arcs,
one usually chooses the transformations identifying the pairwise I'-equivalent portions of 9F
together with their inverses as generators. Denoting the 4¢g generators of I' constructed in this

way as ay, by, -+, ag, by, a7t byt ,a;l, bg_l, one single group relation

arbraT byt - aghyal b =1 (2.21)

is fulfilled. It has to be stressed, however, that the generators as well as the order of factors in
(2.21) are not determined by intrinsic properties of the group I' only, but depend on the concrete
choice of the fundamental domain and subtleties about the identifications of the boundary
portions of F to be discussed in the following chapter.

Among the reflection groups, only those having as fundamental domain a hyperbolic triangle
T will be considered in this work. It can be seen, that the sum of the inner angles of a hyperbolic
triangle obeys the relation o+ f+ v < 7. However, only hyperbolic triangles with inner angles

Tom
and overlappings. The corresponding reflection groups are called hyperbolic triangle groups
and will be denoted as T*(I,m,n). A hyperbolic triangle group 7™*(I,m,n) is generated by the

inversions L, M, N across the edges of its fundamental domain 7. The generators L, M, N obey

, =, where [, m, n are positive integers, tessellate the complex upper half-plane without gaps

the group relations
I’=M*=N*=1, (LM)'=(MN)"=(NL)"=1. (2.22)

The group elements LM, M N, NL of finite order turn out to be elliptic elements of the hy-
perbolic triangle group 7*(I,m,n) representing rotations around the corner of the fundamental
domain 7. For a detailed proof of these facts see, e.g., [42].

As has been demonstrated in the previous section, the elements v € I' of Fuchsian or
reflection groups acting on the complex upper half-plane can be represented by real 2 x 2
matrices obeying the restriction |dety| = 1. The whole group I' corresponding to a given
fundamental domain F can be obtained explicitly by forming all possible products (or words)
of the generator matrices of I', which have been constructed as described above. In general this
procedure will lead to matrices with seemingly “random” entries. The same is true for the traces
of these matrices v € I', which are closely connected to the lengths of periodic geodesics on
I'\'H. The spectrum of lengths of periodic geodesics on I'\'H, however, is the crucial ingredient
of the classical side of periodic-orbit sum rules used in the context of quantum chaos.

Calculating the length spectra of such “generic” Fuchsian or reflection groups numerically,
one usually is limited to forming all products of group generators up to a given number of
factors. Unfortunately this method does not give any information about the limiting length
up to which the spectrum is complete. For a certain class of groups it is however possible to
find an enumeration scheme for the group elements, allowing the length spectrum of I'\'H to be
determined completely up to some given limiting length. These so-called arithmetic Fuchsian
or reflection groups consist, roughly speaking, of 2 x 2 matrices with entries contained in some
algebraic number field. Since both groups to be treated in this work, the Fuchsian group
I'aw of Gutzwiller’s octagon and the hyperbolic triangle group 7*(2, 3, 8), belong to this class,

12



the basic facts about arithmetic Fuchsian groups will be reviewed shortly in the rest of this
section. However, only crude definitions will be given; for a much more thorough discussion
about arithmetic Fuchsian groups and their length spectra see e.g., [24].

An extension K of finite degree n of the field of rational numbers Q is a field that contains
Q as a subfield and is of finite dimension n, if interpreted as a vector space over Q. An element
a € K is called algebraic, if it is the root of a polynomial in one variable with rational coefficients

anan‘I‘"'-l_ala—l_aO:O? an%()’ CL()’---’(LTLEQ. (223)

There exists a unique polynomial with rational coefficients having a leading coefficient a,, = 1
and being of lowest degree, that has « as a root, the so-called minimal polynomial of «.. 1f every
a € K is algebraic, K itself is denoted as an algebraic number field. Every extension K of Q of
finite degree is known to be an algebraic number field. Moreover, every algebraic number field
K of finite degree over Q can be generated by adding a single algebraic number o € K and all
its (finitely many) powers to @, a fact usually written as K = Q(«).

According to (2.23), {1,a,---,a" '} may be used as a basis for K, viewed as a vector field
of dimension n over Q. Therefore any # € K can be written as linear combination

T = bn_lan_l + -+ bloz + bo, bk € Q (224)

The set of all algebraic numbers in K having minimal polynomials with integer coefficients
forms a ring Ry, denoted as the ring of integers of K. Elements x € Rg are called algebraic
inlegers.

Having at hand these notions, an arithmetic Fuchsian group I' can be characterized as,
roughly speaking, being an ordinary Fuchsian group consisting of matrices of the form

7:( To + x1\/a $2\/Z-|-5L'3\/%)

2.2
CL’Q\/E - 11?3\/5 To — 111\/a ( 5)

where a,b € K\{0} and zq,---,z3 € Rk. However, besides being algebraic integers, the coeffi-
cients x; obey additional restrictions depending on the particular group I' under consideration.

The most prominent example of an arithmetic Fuchsian group is the modular group SL(2,Z),
containing 2 X 2 matrices with unit determinant and integer entries. In the setting described
above, this is accomplished by choosing K = Q, and hence n = 1, leading to Rx = Z.
Furthermore the two parameters a, b are set to be a = 1 = b, and the coefficients z; have to
obey no further conditions than being integer numbers.

2.3 The Geodesic Length Spectrum

Among the trajectories described by a point-particle moving freely on a Riemann surface of
genus ¢ > 2 or inside a hyperbolic billiard, the periodic ones are, as already mentioned, of
major interest for the investigation of the particular model. Starting with a Fuchsian group T,
it can be shown, that the set of closed geodesics on the Riemann surface I'\'H is in one-to-one
correspondence to the conjugacy classes of hyperbolic elements of I'. Namely, to any hyperbolic
~v € I', a unique invariant geodesic ¢, on H is associated, which is mapped onto itself by ~.
Since any point z on ¢, is identified with its image vz by the definition of the orbit space I'\'H,
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the invariant geodesic ¢, on H projects down to a closed geodesic ¢, on I'\'H. Moreover, the
invariant geodesic ¢, of any 4/ := ovo~', o € T, belonging to the same I'-conjugacy class as
v, projects down to the same closed geodesic ¢, on I'\'H, since ¢, is mapped isomorphically
onto ¢ by the transformation ¢ € I'. On the other hand, all closed geodesics on the Riemann
surface I'\'H are generated in this manner, since no closed geodesics exist on the complex upper
half-plane.

In order to calculate the hyperbolic length [ of a given closed geodesic ¢, on I'\'H in terms
of its associated hyperbolic conjugacy class [y] = {oy0~!; 0 € T'}, consider the lift ¢,/ of ¢, on
H , which is the invariant geodesic of some 4’ € I' belonging to the conjugacy class [y]. When
tiling the complex upper half-plane by copies of the fundamental domain F of I', the geodesic
¢y 1s divided into segments of finite length. Denoting the endpoints of one of these segments
as z and w, the length of ¢, on I'\'H can be determined to be [ = d(z,w), since moving from z
to w along the segment projects down onto exactly one traversal of ¢, on I'\'H. This procedure
is, however, independent of the choice made about which of the (infinitely many) segments of
¢ is used to represent the closed geodesic ¢, on I'\'H.

According to their definition, the two endpoints z and w on H can be mapped onto each
other by an hyperbolic element p € I'. Since under a continuous variation of z along ¢,
the image point w = pz remains to be located on the geodesic ¢./, a fact, which cannot be
accomplished by a change of the discrete transformation p, the points z and w must be related
by the element 4" € T itself, which is associated to the invariant geodesic ¢y, i.e., p = 4'. Hence,
the length of ¢, can be determined to be [ = d(z,w) = d(z,7'z). Since 4" € I is a hyperbolic
transformation, it can be conjugated within PSL(2,R) to yield a diagonal matrix

Nz 0
£ = ( 0 N-% ) =q¢y'q"", qeSL(Z,R), N >1, (2.26)

having the imaginary axis as invariant geodesic on H . Now

[ =d(z,7'z) = d(z, q_lfqz) = d(qz,&qz), (2.27)

thus it is convenient to adjust gz to be purely imaginary, in order to use the hyperbolic distance
formula (2.7) yielding cosh ! = 1+ 55 (N —1)2. This relation, at last, can be rewritten to obtain

l
2 cosh 5= tré =try' =try. (2.28)

In the following the length of a closed geodesic ¢, on the Riemann surface I'\'H will be denoted as
[ =1(7), where v is an arbitrary representative of the hyperbolic conjugacy class [v] associated
to c,.

Considering reflection groups I' on the other hand, the set of closed geodesics on T'\'H is
divided into two classes. One class of geodesics corresponds to conjugacy classes of hyperbolic
elements 4 € I', and thus the above discussion carries over exactly. The other class of geodesics,
however, is in one-to-one correspondence to conjugacy classes of inverse hyperbolic elements
p € I'. Since for any inverse hyperbolic p € T' the transformation p? is of hyperbolic type,
and p? describes a double traversal of the closed geodesic ¢, on T'\'H, the length of ¢, can be

determined to be half of the length of ¢, i.e., [(p) = 1(p?). Using det p = —1 one is led to

l
2 sinh 5= trp (2.29)
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for inverse hyperbolic p € T'.

The distinction of the set of geodesics on I'\'H into two classes in the case of reflection
groups has a simple geometric interpretation, as can be seen as follows. Since the generators of
a reflection group I', which describe the inversions across the edges of the fundamental domain
of I, belong to the orientation-reversing isometries of H , which have a determinant of —1, any
hyperbolic v € I' must be the product of an even number of generators, whereas any inverse
hyperbolic p € T" is the product of an odd number of generators. From the tessellation property
of T' it follows thus, that a particle moving along a closed geodesic on I'\'H corresponding to
a hyperbolic conjugacy class [7y] is reflected an even number of times at the boundary of T'\'H,
whereas on a closed geodesic associated to an inverse hyperbolic conjugacy class [p] an odd
number of reflections do occur at the boundary.

The set of lengths of closed geodesics on I'\H will be referred to as the geodesic length
spectrum of the Fuchsian or reflection group I'. Arranging the length spectrum in ascending

order 0 < [; < l; < -, the counting function for the spectrum of distinct geodesic lengths will
be defined to be

Np(1) := #{n; 1, <1}, (2.30)

where the index m indicates, that also multiple traversals of closed geodesics will be accounted
for. Generally on I'\'H several closed geodesics can be found sharing identical lengths. In the
case of strictly hyperbolic Fuchsian groups for example, no v € T', ¥ # 1 is conjugate to its
inverse, i.e., [y] # [y~'], but obviously the relation I(y) = I(y~") holds, since

I(7) = d(z,72) = d(yz,2) = d(y " yz,77'2) = 1(77) (2.31)

for any z € H located on the invariant geodesic of 4. Thus any length [ of a geodesic length
spectrum is accompanied by a multiplicity ¢,,(/), counting the number of closed geodesics of
length [ on I'\'H. The multiplicity g,,(l) can be used to introduce the counting function of
periodic orbits on I'\'H, i.e., the lengths including multiplicities, also denoted as the classical

staircase function
Nu(D) =" gul(ly). (2.32)
1<l

For the case of Fuchsian groups it has been shown in [39], that the asymptotic behavior of

N, (1) obeys Huber’s law
I

NMUNEMN%, I — oo, (2.33)
where Ei(/) denotes the exponential integral
{ et
Ewyzp/ ats, 10 (2.34)

Since Huber’s law can be derived quite generally from Selberg’s trace formula [17], relation
(2.33) still holds in the case of polygonal hyperbolic billiards.

A closed geodesic on I'\'H being not a multiple traversal of some other closed geodesic, is
called primitive. Any representative of its associated hyperbolic or inverse hyperbolic conjugacy
class v € [y] is also primitive, i.e., there exists no ¢ € I yielding ¥ = o* for some k > 2. The set
of lengths of primitive closed geodesics on I'\'H will be denoted as the primitive geodesic length
spectrum of I'. Introducing the counting functions N(Z), N(I) and the multiplicities g(!) of the
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primitive geodesic length spectrum in an analogous manner as for the full length spectrum, one

finds

[t/i] [1/i]
Na(D)= > 1= > 1=> N(/k). (2.35)
[+ k=1 [prim k=1
(<t ki(y)<I

Since N(I) is a positive and monotonically increasing function, Huber’s law remains true for
N(I), if it holds for N,,({), i.e., the exponential proliferation of primitive closed geodesics on
I'\'H overwhelms by far the contribution brought by multiple traversals of shorter geodesics.

Due to the fact, that N(/) and N(l) are staircase functions of step-height ¢(/,) and 1 at
[ = 1, respectively, an average multiplicity < g(l) > can be defined by relating the slopes of
N(l) and N(I) in the asymptotic regime [ — oo according to

dN dN

o N> —
<g(l) > R

1 [ — 0. (2.36)

The average multiplicity < g(I) > of lengths of primitive closed geodesics on I'\'H offers an
example for a quantity allowing to distinguish the above mentioned arithmetic Fuchsian or
reflection groups from non-arithmetic ones. While for arithmetic groups it has been shown in
[24], that the mean multiplicity asymptotically behaves as

o/
<g(l)y >~ er —, [ — oo, (2.37)

where cr denotes a constant depending on the particular group I' under consideration, it is
generally believed, that in the non-arithmetic case < g(I) > does not grow exponentially.

In some sense the free motion of a point-particle on a compact Riemann surface I'\'H of
genus g > 2 can be considered to be the simplest prototype of the strongest possible classical
chaos. Namely this model exhibits a set of properties used to classify the chaoticity of classical
dynamical systems in general [17, 26].

At first it should be noticed, that the model possesses no constant of motion besides the
energy. Thus a trajectory in the phase space corresponding to the (two-dimensional) Rie-
mann surface is contained on a three-dimensional hypersurface of constant energy. Moreover,
the trajectories of the model are uniformly distributed on this hypersurface. Since periodic
geodesics are dense on the hypersurface of constant energy, any non-periodic geodesic can be
approximated arbitrarily closely by some periodic orbit, suggesting the possibility to describe
the dynamical properties of the motion on I'\'H by periodic orbits only. These characteristics
qualify the model under consideration to be an ergodic system.

A further property shared by the motion on I'\'H is the rapid decay of time correlations,
i.e., in the limit ¢ — oo all observables tend to equilibrium values. This phenomenon will be
referred to as mizing.

The geodesic flow on I'\'H also exhibits the Anosov property, meaning that initially neigh-
boring trajectories typically diverge at rate e** in the limit ¢ — oo. The characteristic quantity
A > 0 is denoted as the Liapunov exponent. Anosov systems are not only known to be er-
godic and mixing [2], but also share the Bernoulli property, indicating, roughly speaking, the
strongest possible chaos for a classical dynamical system [17]. Generally the periodic orbits of
Anosov systems are known to proliferate exponentially. For the class of dynamical systems to
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be discussed in this work the asymptotic behavior of the classical staircase function is described

by

61’1

where 7 > 0 denotes the so-called topological entropy. In the case of strictly hyperbolic Fuchsian

groups ' the topological entropy can be related to the Liapunov exponent by Pesin’s theorem,
finally leading to Huber’s law (2.33), i.e., 7 = 1.

N(I) [ — oo, (2.38)

The triangular billiard 7%(2,3,8) to be discussed in chapter 4 will be seen to result from
the desymmetrisation of a particular Riemann surface I'\'H of genus ¢ = 2 possessing the
highest possible degree of symmetry. Thus any periodic geodesic in the fundamental domain
of T*(2,3,8) can be obtained by a folding procedure from a corresponding closed geodesic in
the octagon F , which represents the Riemann surface I'\'H. This operation will not diminish
the mixing property of the geodesic flow on I'\'H. It is moreover believed that any polygonal
hyperbolic billiard is a mixing system [17].

2.4 Quantum Mechanics on Hyperbolic Surfaces

Concluding this chapter, a few remarks about the quantization of the dynamical systems re-
sulting from the operation of Fuchsian or reflection groups I' on the pseudosphere will be made.
The quantum mechanics on I'\'H is governed by the stationary Schrodinger equation

— Appip(z) = Exp(z),  z€H, (2.39)

where the convention & = 1 = 2m has been used. Here Ay g denotes the (I'-invariant) Laplace-
Beltrami operator given by

1 .
ALB = — 82 gg““@;g, g = det gik- 2.40
7 va (2.40)

The wave functions 1 obeying the Schrodinger equation will be demanded to be T'-invariant

p(yz) = x(VY(z),  VyeT, (2.41)

where the character x(v) depends on the particular choice of boundary conditions of the fun-
damental domain F of I'. In the case of strictly hyperbolic Fuchsian groups these are always
periodic ones, leading to x(v) = +1, ¥y € T, whereas reflection groups will also allow negative
values y(y) = +1, corresponding to Neumann or Dirichlet boundary conditions of the funda-
mental domain. A more detailed investigation of the characters x() will be postponed to the
discussion of the hyperbolic triangle group 7*(2,3,8) in chapter 4.

In all dynamical systems considered in this work, i.e., '\'H being a compact Riemann
surface or a compact hyperbolic triangle, the quantum Hamiltonian H = —Ap possesses a
purely discrete spectrum 0 < By < Fy < -+, and the growing behavior of the E, = p? + i is
described by Weyl’s law for the asymptotic behavior of the number N'(E) of energy eigenvalues
not exceeding K
area(I'\'H) I

Ny~ EE

E — . (2.42)
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3 Gutzwiller’s Octagon

The first example of classical chaotic dynamical systems to be investigated in this work results
from the operation of a particular Fuchsian group of first kind, denoted as Gutzwiller’s group
I'cw, on the Poincaré disk [32]. The associated orbit space I'qw\D is a compact Riemann
surface of genus ¢ = 2, and ['qw belongs to the class of arithmetic Fuchsian groups. Taking
advantage of the arithmetical properties of I'gw, an explicit representation of the group elements
can be found, which in turn allows to determine the geodesic length spectrum of I'qw up to
some cutoff-length £ completely. Subsequently the geodesic length spectrum will be used as the
input data of quantization rules based on Selberg’s trace formula [50], and the resulting energy
eigenvalues of the dynamical system under consideration are compared with those obtained
from a numerical solution of the Schrodinger equation by the method of finite elements [4].
Finally, the reverse direction will be discussed (“inverse quantum chaology”), i.e., the energy
spectrum will be used to extract the geodesic lengths via Selberg’s trace formula.

3.1 Properties of the Group I'qw

Remember the notion of a symmetry of a manifold I'\'H associated to a Fuchsian group I'. A
symmetry s isometrically maps I'\'H onto itself, thus symmetry transformations are a subset of
the isometries of the complex upper half-plane H | i.e., s € GL(2,R), det s = +1. An element
s of the symmetry group S := {1,s1--+,8,-1} of the orbit space I'\'H commutes with the
Fuchsian group I', i.e., s7'I's = I'. Thus I' can be interpreted as a normal subgroup of a
reflection group IV :=T'Us;I'U--- U s,_1I', such that § = I"/I". The orbit space ["\'H of the
reflection group 1" can be viewed as the result of a desymmetrisation procedure of the original
surface I'\'H, and tessellates the latter by the operation of S .

Among all compact Riemann surfaces of genus g = 2, there exists exactly one, allowing a
maximum number of symmetry operations. The corresponding (strictly hyperbolic) Fuchsian
group will be denoted as I'yes, since the fundamental domain of I'ye,\ D turns out to be a regular
(hyperbolic) octagon F in the Poincaré disk (cf. fig. 3). The dynamical system associated to
the regular octagon group I'ie,, also denoted as the Hadamard-Gutzwiller model, has been
investigated in a number of works, which can be dated back even to the last century [34, 3,
17, 11, 6]. In the following, a few facts about I'ye, which are necessary for the investigation of
Gutzwiller’s octagon, will be reviewed.

Since T'yeg\D is a compact Riemann surface of genus g = 2, the Fuchsian group Iy, can
be generated by 4 generators go, g1, g2, g3 and their inverses. The generators gx,g; " acting as
isometry transformations of D map geodesic boundary segments of the regular octagon F onto
each other, thereby identifying opposite edges as indicated in fig. 3. From the geometrical
setting it can be easily seen, that the group relation the generators of I'..; have to obey to, is
uniquely fixed by the choice of identifying opposite edges of the fundamental domain F

9097929595 9197 93 = 1. (3.1)

Namely, the corner P of the regular octagon is mapped onto itself by the action of the left-
hand side of (3.1). Since, however, I'., is a strictly hyperbolic Fuchsian group and hyperbolic
elements v € I'.., always have their fixed points on 9D, the transformation (3.1) must be the
identity.
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Figure 3: Fundamental domain of I'.., (opposite edges identified).

Given the corners of the regular octagon
pp = 27w GHRD) =T (3.2)

the generators gj of I'te; can be determined to be (kK =0,---,3)

B 1+v2 (2+ \/5) et T o B
gk—<(2+\/§)a6_i%ﬂ | 43 ), a=VV?2 1, (3.3)

whereas their inverses are
'z 0
gk_l = RﬁgkR;l, R, = ( e ) ) (3.4)

On the other hand, for any Fuchsian group I' corresponding to an arbitrary compact Rie-
mann surface of genus ¢ = 2 it is always possible to construct a fundamental domain with
opposite edges identified, once a set of generators obeying (3.1) is known. Consider e.g., the
corners P and @) of the regular octagon. Due to the knowledge of the identification of the edges
of the octagon, one finds

29 = 9195 9s 2P, (3.5)
whereas the corners of the other edges (counter-clockwise) are connected by the transforma-
tions g2 9595, 9s 9o g > Yo G197 5 91 ' 9295 5 92 ' 93905 95 95 915 Gogi ga, respectively. The
product of these 8 transformations maps the corner point P onto itself, by “shifting P once
around the boundary of the octagon”. Thus it must be the identity map, as can be verified
by using relation (3.1). This procedure, however, does not depend on the particular shape
of the regular octagon, but can also be applied to an arbitrary asymmetric octagon. Thus
given the 8 generators gx, gi ' of a Fuchsian group T', one can choose an arbitrary point z € D
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as the “starting corner” of a fundamental domain F of I'; and then determine the remaining
corners by successively applying the transformations (3.5sqq) to z € D. Connecting the cor-
ners by geodesic segments yields the boundary 9dF of the fundamental domain. For practical
calculations it is, however, convenient to start by constructing the invariant geodesics of the
transformations (3.5sqq), which directly yield the boundary segments of F . The corners of F
are then obtained as the points of intersection of the invariant geodesics.

It should be mentioned, that for a generic Fuchsian group I' associated to a Riemann surface
of genus g = 2 the fundamental domain F obtained by the procedure described above is not
centered around the origin. F can, however, always be centered by applying a conjugation in
SU(1,1) to I'. From the point of view of algebraic geometry, this can be understood by the
fact, that a Riemann surface I'\D of genus ¢ = 2 is completely determined by a set of three
(complex) moduli corresponding to three corners of the fundamental domain F . The fourth
corner has to be used in order to adjust the area of the fundamental domain to be area(F) = 4,
according to the Gauf-Bonnet theorem (2.20). Applying inversions across the origin to these
four corners yield the remaining four corners of the fundamental domain, which will then be
centered around the origin by construction.

The Riemann surface I'teg \D of the regular octagon group allows 96 symmetry operations,
which map I'te;\D onto itself. Due to the fact, that any Riemann surface of genus g = 2
is hyperelliptic, one of these symmetry transformations, the hyperelliptic involution, is always
contained in the symmetry groups & of Fuchsian groups I' having a hyperbolic octagon as
fundamental domain. The regular octagon group I'ye; is a normal subgroup of index 96 in a
reflection group I, which turns out to be the hyperbolic triangle group I'" = 7*%(2,3,8) to be
discussed in chapter 4. Thus the complete desymmetrisation of the regular octagon yields a

hyperbolic triangle with inner angles 7, Z, £.

It has been shown [11, 6, 47], that any element 7y € T';e, can be represented by a 2 x 2 matrix

- ( (uR+iuI (vr + vy )7 (3.6)

VR —ivr)a up — tug
where ug,uyr, vg, vy are algebraic numbers of the form
m+nv2,  m,neNU{0}. (3.7)
Defining the algebraic conjugation
c=m+nV2 —  &i=m-—nV2, (3.8)
one finds

lur| <1, |uf] <1,
[0r| < a, |07] < a,

(3.9)
by using the relation dety = 1. Denoting the algebraic components of the matrix entries as

up = mp+npV2, ur=mr+nn/2,
(3.10)
VR =pr+qrV2, v =Dpr+qV2,

and introducing the notation

7(m) := mmod 2 (3.11)
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for the parity of an integer number m, a set of parity restrictions on the algebraic components
of v can be derived. These are on the one hand

w(mg) =1, 7(m1) =0, n(pr) = 7(p1), (3.12)
and on the other hand
_ m(nr) = n(pr) = 7(pr) = O A
wlnr) =0 > xlgn) = lar),
m(nr) =1A m(nr) =0A

= (3.13)

*(pr) = x(pr) = 0 *(4r) # (ar)

m(ng) = 1A
m(pr) = w(p1) =1

m(nr) =0 A 7(qr) = 7(qr) or

T w(n) =1 A w(qr) # 7(ar).

It should be stressed, however, that the restrictions given above are only necessary condi-
tions. In order to construct a valid group matrix v € I'ye; one also has to fulfill the relation
dety = 1. The latter is sometimes impossible, leading to “gaps” in the geodesic lenghth
spectrum of I'.eg (cf. section 3.2).

Whereas identifying opposite edges of the regular octagon leads to the Fuchsian group I'yeg,
an identification according to fig. 4 results in a different group, denoted as Gutzwiller’s group
I'gw in the following [32].

bl

b2

Figure 4: Fundamental domain of I'qw (genuine identification of the edges).

The generators of Gutzwiller’s group aq, by, as, by € I'qw and their inverses obey a relation
different from (3.1), which can be easily deduced by constructing a word having the corner P
of the octagon (fig. 4) as a fixed point

aq bl al_lbl_lagbgaglbgl =1. (314)
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In order to calculate the generators of I'qw explicitly, one observes from the geometrical
setting given in fig. 4, that they are related to the generators of I, by some additional rotations

:Rggo_la bl:glR—ga

a9 = RW aq R_W, bg = Rﬂr bl R_ﬂr, (315)
yielding
o sy VD
! ~1+V2)1-i)a  (1+2)(1-i) )’
- (1+4)(1-4)  (2+V2)ai
~2+V2)ai  (1+%) (1+1)
(3.16)
o R0y 04V +i)a
’ I+v2)(1—ija (1+42)(1-1)
- (1+4)(1-i) —(2+V2)ai
(2 + V2) ai (1+f 1+ 1)
The group elements
ho = b;lal bl, hl = a;lbglal bl,
hy = ay, hs 1= bl_l (3.17)
and their inverses offer another set of generators of Gutzwiller’s group I'qw, since
Glzhg, blzhgl,
a4y = hohT', by = hyhs' B, (3.18)
As can be shown by using (3.14), the hq, h1, he, hs € I'qw are subject to the relation
hohl_lhg h;lhalhl h;lhg - 1, (319)

thus defining a set of generators of I'qw identifying opposite edges of a corresponding funda-
mental domain F . The concrete shape of F results from the algorithm described on p. 19,

e., by determining elements hy by hs,--- € T'qw having invariant geodesics containing the
boundary segments of the fundamental domain F (fig. 5).

The structure of the 2 x 2 matrices representing arbitrary elements v € I'qw of Gutzwiller’s
group can be determined in a similar way as in the case of the regular octagon group I'yes. This
is accomplished by using an induction argument for representing any v € I'qw as a product of
the generators (3.16) and their inverses. Moreover, also the condition dety = 1 and the fact
resulting from (3.15), that any yqw € I'qw can be written as the product of a Y € I'veg and
a rotation

TYTGW = Treg R%w, k= 0,1,2,3 (320)
will be incorporated. Since the actual calculations are somewhat involved, only results will be
presented here. For details see appendix A.

Two kinds of matrices 1,72 € I'qw exist in Gutzwiller’s group, depending on being the
product of an even or an odd number of generators ay, by, as, by € I'qw or their inverses. Writing

e = ( Uk R + (A17% 5 (Ukﬁ + Z”Uk,I)CY ) : - 1’2’ (3.21)

(v, —tVRI)O  UpR — tUkT
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Figure 5: Fundamental domain of I'qw (opposite edges identified).

the matrix entries obey
|1~tk,R| <1, |ﬁk7[| <1,

v 0 22
|Orr| < @, |Op1| < a. (3.22)

In the case of products of an even number of generators the matrix entries are algebraic numbers
of the form

Ui, R = M1,R+ nl,R\/§7 U,y = my g+ nl,I\/§7

(3.23)
vi,R = P1,R t+ Q1,R\/§, vi,r = p1,1 + QI,I\/§7
obeying
mig ¢ 4Z, w(mi1) # 7(miR),
m(p1,r) = 7(p1,1) = 7(n1,R) = 7(n1,1), (3.24)
‘ _ )0 = wlqr) =7(qr)
w(pn) = { 1 = 7(q,r) # 7(q1)
whereas for products of an odd number of generators one finds
U R = Mo R+ n2,R§, Ug 1 = Mo+ n2,1§7
(3.25)

U2 R = P2,R T (12,R\/§, Vo1 = p2, 1+ (J2,I\/§,
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subject to
m(mer) = 7(me1) =1 = w(ngr) = 7(n21),

m(p2,r) = 7(pa,1); (3.26)

| ) 0 = n(gr) # 7(q21)
T(p2,r) = { 1 = 7(qr)=7(q.)

The parity restrictions (3.24) and (3.26) are only necessary conditions fulfilled by the elements
v € I'gw. In order to construct a valid group matrix of I'qw a method described in the
next section in the context of the numerical calculation of the geodesic length spectrum will
be used. Furthermore, as in the case of the regular octagon group I'..s, gaps may arise by
the impossibility to satisfy the parity restrictions and the determinant condition dety, = 1
simultaneously. Finally it should be noted, that the relation my g ¢ 4Z for products being an
even number of generators of I'qw is an empirical result, obtained by the numerical algorithm
yielding the geodesic length spectrum.

3.2 The Length Spectrum

Having at hand the algebraic decompositions (3.21sqq) of the elements v € I'qw, it is possible
to derive the average multiplicity of the geodesic length spectrum of I'qw. According to (2.28),
the length of a closed geodesic on the Riemann surface I'qw\D is determined by the trace of
a representative of its corresponding conjugacy class. Explicitly, for elements 4y € I'qw being
the product of an even number of generators one finds

Z(ml,Ra nl,R)

cosh 5 =myp+ nLR\/ﬁ, (3.27)
whereas in the odd case v, € I'qw
)
cosh w =mqnr+ n273§. (3.28)

2

Using (3.22), however, unravels that in the even case v1 € I'qw the two integer numbers on the

RHS of (3.27) are not independent
|m17R — n17R\/§| < 1. (329)

Thus, to any n; g are associated two integer numbers m, g, an even and an odd one. Assuming
the set
{mEZ : |lm—nv2| < l,mEO(Q),nEZ} (3.30)

to be uniformly distributed in 27Z, leads to the counting function for different lengths corre-
sponding to even elements v; € 'qw

- 3
Neven(l(ml,Ry nl,R)) ~ § n1,R, [ — o0 (331)

in the limit of large lengths, since by (3.23) only my g ¢ 4Z are allowed. In the case of odd
elements 5 € I'gw, the traces of group matrices are restricted by

m(mer) =1 = w(nap) (3.32)
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and

Imar — na 2| < 1. (3.33)

Considering strictly positive ng g, the interval containing mg g thus is

nor — 1 <mop < nap*2 4 1. (3.34)
Since the width of this interval is 2, and n273§ + 1 are irrational numbers, any fixed ny g is
accompanied by exactly one odd integer m g, leading to

. 1
Nodd(l(m2,R7 n27R)) ~ §n27R, l — OC. (335)

In order to determine the counting function N (1) of the whole geodesic length spectrum of
F'aqw, one observes that the condition for lengths corresponding to odd elements v € I'qw to
be of the same order of magnitude as lenghts associated to even elements v; € I'qw 1s in the
limit | — oo

[(mar,n2r) > (M1 r,N1,R) = NaRr ™ 2N R, (3.36)
thus 5
N(l) ~ S - (3.37)
Using relation (3.27)
[ 1 umi rmR)
cosh w ~5 S BN 2\/§n17R, [ — oo, (3.38)
finally reveals
. 5
N~ ——e3, |- oo (3.39)

The average multiplicity of the geodesic length spectrum of I'qw is then obtained by Huber’s
law for the classical staircase function and (2.36)

el (dN - 16v/2 es

The estimate (3.39) for the counting function N(l) actually is an upper bound, since the
relations (3.21sqq) characterizing group matrices of I'qw are only necessary conditions. It is,
however, in excellent agreement with the numerical results about the geodesic length spectrum
to be discussed in the following (see figures 6 and 7). The exponential growth of the multiplici-
ties of the geodesic lengths (3.40) is a typical feature of arithmetical Fuchsian groups, and thus
was to be expected for I'qw (cf. (2.37)).

The set of lengths of closed geodesics on I'gw \ D is, as mentioned in chapter 2, in one-to-one
correspondence to the conjugacy classes of hyperbolic elements of I'qw. Using the algebraic
decomposition of group matrices v € I'qw, these conjugacy classes will now be determined by
a slight modification of the method described by Aurich, Bogomolny and Steiner [6].

Remember that the invariant geodesics of hyperbolic elements (3.21) of I'qw on the Poincaré
disk D are either circular arcs or diameters perpendicular to the boundary dD. In the first case
one finds explicitly (z = z + 1y)

2c
2’ +y?— — (viry —vkra) +1=0, (ug,r #0), (3.41)

Ug, 1
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describing a circle of radius r centered at zpr = xpr + tynr

2 2
_vprQ _ ULRQ ,  (irtugra
ap = — RIS 2 TR e TRRT RIS (3.42)
Uk, 1 Uk, 1 Uk 1

The limiting case of diameters of D occurs for vanishing uy
Vk,RY = VkIT, (ug,r = 0). (3.43)

Any hyperbolic conjugacy class [y] of I'qw has at least one representative «, which has
an invariant geodesic intersecting the fundamental domain (figure 4) of I'qw. This can be
seen from the tessellation property of I'qw, i.e., any invariant geodesic of a hyperbolic element
7" € Taw can be transformed under the action of I'qw to hit the fundamental domain of T'gw.
This transformation, however, merely amounts to a conjugation of 4" in I'gw.

In order to find representatives having invariant geodesics, which intersect the fundamental
domain of I'gw, one proceeds as follows. Since diameters of D always intersect the fundamental
domain of I'qw, only the case of circular arcs needs to be investigated explicitly. Assume for a
moment that the entries of a group matrix v, € I'qw of the form (3.21) obey ux; > 0, vy r >
vpr > 0. Then the corner of the regular octagon being next to the center of the invariant
geodesic of v is py = 2_1_6i5%, i.e., elements v, € 'gw having invariant geodesics intersecting
the fundamental domain of I'qw are characterized by the condition

lev = p2| <7 (3.44)
Inserting (3.42) leads to
Uk, 1 S (2 — \/5) (v]“R + (\/§ — 1)vk71) 5 (345)
which can be rewritten as
vip+5vl —dvgropr < (14 V2% (upp— 1) (3.46)

by use of det v = 1. Since the restrictions uxr > 0, vy g > vi ;7 > 0 can always be achieved by
~vr — —7¢ and rotations

Y — Rz v, R_z, (3.47)

relation (3.46) can be used for arbitrary group matrices of I'qw. Thus for any conjugacy class
[v] of T'aw, i.e., for fixed ug g, only a finite number of representatives exist having invariant
geodesics on D , which intersect the fundamental domain of I'gw. These group matrices will
be the starting point for determining the closed geodesics on the Riemann surface I'qw \D.

Before describing the concrete algorithm, which calculates the multiplicities of the geodesic
length spectrum of I'qw, a few remarks should be made. Remember, that v and —~ are
equivalent in PSU(1, 1), and the convention was introduced, always to choose the representative
having non-negative trace try > 0, thus for hyperbolic elements v, € I'qw it is ugr > 1.

Furthermore in (2.31) it was shown, that the length of the closed geodesic corresponding to
a conjugacy class [v] equals the length associated to [y~!]. In physical terms this fact reveals
the time-reversal invariance of the dynamical system described by Gutzwiller’s group I'gw.
Explicitly one finds for the inverse of any group matrix vz € I'aw of the form (3.21)

Up,R — URR
-1 Uk, 1 — —UgTI
e = Vi & _ : (3.48)
VrR — —ULR
VI T TURT
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After these prerequisites, the algorithm for determining the set of primitive closed geodesics
on 'qw\D can be described in detail now.

(1)

(i)

(iii)

(iv)

At first, an admissible ug g obeying (3.22sqq) is selected, thus the length [, for which the
multiplicity ¢(I) should be determined, is fixed.

Next, some off-diagonal entries subject to vy r > vir > 0, the relation (3.46) and the
parity restrictions (3.23sqq) are chosen. According to (3.46) only finitely many of such
pairs exist. If furthermore a u;; > 0 of correct parity (3.23sqq) can be found, which
satisfies the determinant condition det 4 = 1, then the matrix v; is a candidate for being
a group element of I'qw having an invariant geodesic, which intersects the fundamental
domain of I'qw. If no such uy ; exists, a new trial is made for another set of vi g and vy ;.
If, however, in all cases no valid uj ; can be generated, a so-called “gap” has been found,
i.e., no closed geodesic on I'qw\D exists, having a length corresponding to ug . In this
case the (non-primitive) multiplicity will be set to ¢,,(/) = 0. Since the parity restrictions
(3.23sqq) are only necessary conditions on the group elements of Gutzwiller’s group I'gw,
the matrix «; may be possibly not contained in I'qw. These choices will be sorted out by
a special treatment discussed in (v) below.

So far, only a segment of a closed geodesic on I'qw \ D has been determined. This segment
is represented by that part of the invariant geodesic of 7, on D , which lies inside the
fundamental domain of I'gw. The full closed geodesic can be found by “following” this
segment beyond the border of the fundamental domain. Explicitly this is achieved by
conjugating the starting matrix 4 by the eight generators of I'qw. For the following
discussion it is convenient to denote the eight generators ai',bi',af', bf' € Tqw of
Gutzwiller’s group as ¢,, v = 0,---7. Since the geodesic segment associated to 74 hits
the border of the fundamental domain of I'qw at two points, exactly two of the eight
conjugates ¢, v ¢! correspond to continuations of the original geodesic segment. They
can be recognized by checking the condition (3.46), after possibly rotating according to
(3.47). One of the two conjugates

'y,(cl) = Cyy Vi c;ll (3.49)
is selected arbitrarily for the following step of the algorithm, and stored together with
the starting matrix 4 in a list.

There exists, however, an exception to this rule. The geodesic segment of v; € 'qw may
— at one or both ends — intersect the border of the fundamental domain of I'qw exactly at
a corner of the regular octagon. In this case the geodesic segment of 44 can’t be continued
into a copy of the original fundamental domain, which is reached by a conjugation with
a single generator ¢, € I'gw. The copies touching the eight corners of the fundamental
domain moreover result from conjugations with some particular group elements d, € I'qw
of wordlength four, which has to be used in an analogous manner as described above.

Now, the previous step is repeated, i.e., a conjugate

’y;(f) = cy, 71(;—1) c;: (3.50)

obeying (3.46) is selected. However, among the two conjugates fulfilling (3.46) that one
(1)

is chosen, which ensures ’y,(f) # 7£“_2). Also ;" is stored in the list. The “corner boosts”
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(vi)

(vii)

(viii)

d, € I'qw have to be treated as described in (iii) and will not be mentioned anymore in
the following.

The conjugation cycle may terminate for two reasons. For the first, assume the starting
matrix was a valid group element 7, € I'qw. Then after n conjugations the conjugate
equals the starting matrix

W =, (3.51)
i.e., one has followed a whole traversal of a closed geodesic on T'qw\D. If the starting

matrix was a primitive hyperbolic element of Gutzwiller’s group, v or 47" (depending
on the arbitrary choice in (iii)) can be obviously written as

V= o oy oy (3.52)

If, however, the starting matrix was a power v, = ¢”, r > 2 of some primitive hyperbolic
element o € I'qw, then

’71:::1 = (cun Copqy " cyl)r s (353)

thus multiple traversals of periodic orbits can be separated by checking (3.52) at the end
of each conjugation cycle.

Secondly the case of starting matrices 7 ¢ I'qw will be considered. Since now there
is no reason why the conjugation cycle should close after n steps by (3.51), another
terminating condition has to be found. For this purpose, the number of conjugation steps
is limited to a maximum value nyay. Thus closed geodesics on I'qw\D associated to
hyperbolic elements v € I'qw (actually representatives of hyperbolic conjugacy classes)
of wordlength greater than n,.x will be skipped by the algorithm.

If the invariant geodesic of the starting matrix 44 was a circular arc, i.e., ug 7 > 0, a new
matrix 7, is generated by
Up,r — —Ug,J. (3.54)

If neither ~;, nor (v;)~" is contained in the list of conjugates obtained so far, v} is used

as a new starting matrix in step (iii).

Since the initial starting matrix in step (i) was subject to vy g > vir > 0, now seven fur-
ther matrices fulfilling the parity conditions (3.23sqq) can be constructed by sign changes
of vy g and v 1, and by interchanging real and imaginary part of the off-diagonal entries
VR < Vg 7. Due to (3.42) and the symmetry of the regular octagon, their corresponding
invariant geodesics on D also intersect the fundamental domain of I'qw. For each of these
seven matrices it is checked, if the matrix itself or its inverse is contained in the list of
conjugates. If not, it is used as a new starting matrix in step (iii).

Finally, looking for further closed geodesics of fixed length [, i.e., of fixed uy g, step (ii)
is executed again. If in (ii) no valid matrix can be found anymore, all primitive periodic
orbits of length [ have been found by the procedure described above. The primitive
multiplicity g(!) of the length [ is thus twice the number of conjugacy cycles obtained
above, since according to (vi) and (vii) backward traversals are not generated explicitly.

However, four closed geodesics on I'qw\D have to be treated separately, since they are not
recognized by the steps described above. They are of length [ = 6.11428... and their cor-
responding invariant geodesics on D are located exactly on the boundary of the fundamental
domain of I'qw.
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The algorithm discussed above has been used to determine the first 3815 lengths of I'qw to-
gether with their associated primitive multiplicities. The computed length spectrum covers
a range from 4 = 2.256767... to l3g;5 = 18.126967..., and is based on the investigation of
4369202 different orbits (including backward traversals). The limiting wordlength in step (v)
was set to nmax = 100. Thus, if closed geodesics on I'qw\D corresponding to hyperbolic ele-
ments of wordlength greater than 100 were present in the considerd range of lengths, they were
dropped.

For two reasons, however, there is a strong evidence, that the generated length spectrum is
complete up to the cutoff length /3515.

One the one hand, the terminating condition of limiting the maximum number of conjuga-
tions in step (v) occured exactly in the case of matrices of even type (3.23) having my g € 4Z.
In all other cases the conjugation cycles were closed by the condition (3.52). Since the max-
imum length of closed conjugation cycles, i.e., the maximum wordlength of hyperbolic ele-
ments v € 'gw corresponding to periodic orbits, was observed to be 18 in the covered range
[; <1 < 3815, it seems to be extremly unlikely, that closed geodesics associated to elements of
wordlength greater than 100 were missing. Thus afterwards the empirical rule my g ¢ 47Z was
introduced.

On the other hand, the computed lentgh spectrum can be compared with the theoretical
prediction for the counting function N([) of different lengths (3.39). This has been done in fig. 6
for the whole investigated range of lengths, and in fig. 7 for the small interval [ € [17.95,18].

Another test is offered by the comparison of the classical staircase function with its asymp-
totical behavior described by Huber’s law (2.33). Whereas figure 8 exhibits the exponential
proliferation of the number of closed geodesics with increasing lengths, the small range plot
fig. 9 also suggests, that no periodic orbits are missing in the computed length spectrum.

The first 64 different lengths of I'qw, corresponding to the range 0 < ! < 10, are given in
table 1 together with their algebraic decompositions and primitive multiplicities. The num-
bers in parenthesis, which are sometimes contained in the column “multiplicity” describe the
additional contribution arising from multiple traversals of closed geodesics, and thus have to
be added to the primitive multiplicities if one is interested in the full g¢,,(l) (see (2.31sqq)).
According to (3.21), the quantity k distinguishes between lengths associated to hyperbolic ele-
ments being the product of an even number (k = 1) of generators, and those being the product
of and odd number (k = 2) of generators. They are strictly separated, as can be seen from

(3.27), (3.28) and the relation w(nq ) = 1.

As discussed in step (ii) above, for some lengths no periodic orbits do exist. It may, however,
turn out, that for a particular length only no primitive closed geodesic can be found, i.e., g(1)=0,
but multiple traversals of this length do arise. The primitive gaps contained in the computed
range of lengths are listed in table 2. All except one are “true” gaps, i.e., g»({) = 0, only
the length [ = 16.87369... appears as a double traversal of [ = 8.43684 ... of multiplicity
9m(16.87369...) = 48. It should be mentioned, that all gaps in the range 0 < [ < I355
correspond to pairs (mq r,n1,gr), which are candidates for elements v, € I'qw being the product
of an even number of generators. These pairs, moreover, even obey the restrictions (3.9sqq)
describing group matrices of the regular octagon group I'teg. Thus all gaps of I'qw are also gaps
of I'teg. The other direction is not true, i.e., for some gaps of I'..; closed geodesics of I'qw can
be determined. For a list of gaps of the regular octagon group I'ye, see, e.g., [6].
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Figure 6: The counting fun(mion,fV(U of 'qw in comparison with the theoretical prediction

(3.39).
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Figure 7: The same curves as in fig. 6 are shown in the small interval [ € [17.95, 18].
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Figure 8: The classical staircase function N(I) of I'qw in comparison with the asymptotic

behavior described by Huber’s law N(I) ~ Ei(l), [ — oc.
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Figure 9: The same curves as in fig. 8 are shown in the small interval [ € [17.95, 18].
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Z'mk Rk.R k MER | kR g(lmk RyTE R) ka R,Mk.R k MER | kR g(lmk RNk R)
2.256767929933 | 2 1 1 8 8.665952114549 | 2 | 19 27 72
3.057141838962 | 1 1 1 4 8.702750556432 | 1 19 14 16
3.797845915206 | 1 2 1 8 8.837684712870 | 2 | 21 29 48
4.513535859865 | 1 2 2 4 (8) || 8.871479810735 | 1 | 21 15 48
4.633776789970 | 2 3 3 8 8.904713175372 | 2 | 21 31 32
4.896904895356 | 1 3 2 8 8.918318719921 |1 | 22 15 48
5.128992335155 | 2 3 5 16 8.982740062312 | 1 | 22 16 32
5.828070775442 | 1 5 3 8 9.027071719731 | 1 | 23 16 8 (12)
5.976318829037 | 2 5 7 16 9.057836099613 | 2 | 23 33 64
6.114283677924 | 1 5 4 14 (4) 9.171425516886 | 1 25 17 8 (4)
6.294393217254 | 1 6 4 32 9.200062471572 | 2 | 25 35 96
6.568612058019 | 2 7 9 32 9.228295089636 | 1 | 25 18 32
6.672005769911 | 1 7 5 16 9.267553579940 | 1 | 26 18 68  (8)
6.770303789798 | 2 7 11 16 (8) ] 9.321789784434 | 1 | 26 19 48
7.107375874112 | 1 9 6 16 9.332840912180 | 2 | 27 37 48
7.186788450291 | 2 9 13 48 9.359271657904 | 1 | 27 19 32
7.263163475119 | 1 9 7 8 9.385357603752 | 2 | 27 39 48
7.366419207916 | 1 10 7 48 9.482194149272 | 1 29 20 48
7.531220287193 | 2 | 11 15 32 9.506734357394 | 2 | 29 41 96
7.595691830411 | 1 11 8 4 (8) ] 9.530977057139 | 1 | 29 21 32
7.824911392100 | 2 | 13 17 8 9.564767330983 | 1 | 30 21 96
7.880692288665 | 1 13 9 16 9.621163543210 | 2 | 31 43 72
7.934958437080 | 2 | 13 19 32 9.644065648625 | 1 | 31 22 32
8.060198615979 | 1 14 10 32 9.666708433895 | 2 | 31 45 64
8.130075528900 | 1 15 10 16 9.751099758307 | 1 | 33 23 56
8.178051862130 | 2 | 15 21 64 9.772568794520 | 2 | 33 47 96
8.224903623255 | 1 15 11 32 9.793809790712 | 1 | 33 24 8 (8)
8.394761067214 | 2 17 23 32 9.823469090622 | 1 34 24 128
8.436849640524 | 1 17 12 48 9.873105918657 | 2 | 35 49 64
8.478070345869 | 2 | 17 25 32 9.893310687773 | 1 | 35 25 32
8.574217476233 | 1 18 13 56 9.968829684532 | 2 | 37 51 32
8.628463656524 | 1 19 13 16 9.988094636657 | 1 | 37 26 64

Table 1: The geodesic length spectrum of I'qw 1n the range 0 < [ < 10.
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lml R1.R mi,r | "M,R lml R1.R mi,r | M,R
11.195071243745 | 67 48 || 16.970634379124 | 1211 | 856
12.010953274128 | 101 72 || 17.025974987262 | 1245 | 880
13.619286275817 | 227 | 160 || 17.329263085353 | 1449 | 1024
13.807097226169 | 249 | 176 || 17.450146832648 | 1539 | 1088
13.898618903507 | 261 | 184 || 17.493817654885 | 1573 | 1112
14.062925092345 | 283 | 200 || 17.521992715807 | 1595 | 1128
14.289709009761 | 317 | 224 || 17.536555248372 | 1607 | 1136
14.790935353990 | 407 | 288 || 17.564138717984 | 1629 | 1152
15.602684527115 | 611 | 432 || 17.896044010303 | 1923 | 1360
15.710905146579 | 645 | 456 || 17.931063388417 | 1957 | 1384
15.778931208310 | 667 | 472 || 17.953736793196 | 1979 | 1400
15.878245974608 | 701 | 496 || 17.987768842919 | 2013 | 1424
16.578683372352 | 995 | 704 || 18.076421266499 | 2105 | 1488
16.645806049110 | 1029 | 728 || 18.097513602973 | 2127 | 1504
16.873699280665 | 1153 | 816 || 18.108444582710 | 2139 | 1512

Table 2: The (primitive) gaps of 'qw in the range l; <1 < Isg5.

3.3 Quantization by Selberg’s Trace Formula

In the previous section, the unconstrained motion of a point-particle on a particular Riemann
surface of genus g = 2 associated to Gutzwiller’s group I'gw, was investigated from the classical
point of view. A quantization of the dynamical system under consideration, however, can be
achieved by applying Gutzwiller’s semiclassical periodic-orbit theory [30, 33], which relates the
geodesic length spectrum of a classical chaotic system to the spectrum of energy eigenvalues
of the corresponding quantized version. The case of Riemann surfaces of genus ¢ = 2 has
the advantage that the periodic-orbit theory is exact [31], since it is identical to the Selberg
trace formula [50]. The latter will be used in the following to express the spectral staircase
N(E) and the Selberg zeta function in terms of the geodesic length spectrum, finally leading
to quantization rules for the dynamical system defined by I'gw.

The Selberg trace formula for Riemann surfaces of genus g = 2 reads [50]

A

i_o% h(p,) = ﬁ /_O:o dpph(p)tanh(7mp) + {Z%ki_o: m h(kL,), (3.55)

where p, are the momenta corresponding to the quantum-mechanical energy eigenvalues F,, =
P2+ i, A = area(I'qw\D) = 4xn denotes the area of the fundamental domain of I'qw, and
the sum on the right-hand side runs over primitive hyperbolic conjugacy classes {7} of I'qw.
If the smearing function h(p) is chosen to be even h(p) = h(—p), holomorphic in the strip
Im (p)| < 1 +¢€ ¢ > 0, and furthermore to decrease asymptotically faster than |p|~? for
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|p] — oo, all sums and integrals involved in (3.55) are absolutely convergent. The Fourier
transform of h(p) is denoted as

A 1 00 .
1) = %/_OO dp h(p)e™*"". (3.56)

Whereas the left-hand side of Selberg’s trace formula can be considered to be of purely quantum-
mechanical nature, the right-hand side, consisting of the so-called zero-length term being pro-
portional to the area of the fundamental domain of I'qw and a sum over the geodesic length
spectrum of I'gw\D, is completely determined by purely classical quantities.

As has been shown in [12, 14, 7], the spectral staircase N'(E) can be obtained from Selberg’s
trace formula by choosing a particular smearing function

1 _(-p)? _('+p)?
h(p) = Y= {e 2 42 }, (3.57)

and integrating (3.55) over p € [0,1/E — 1] in the limit ¢ — 0. Since

_(z—p)?

2 =§(z—y), (3.58)

lim

e—0t 6\/7

the quantum-mechanical side of Selberg’s trace formula yields the exact spectral staircase

—1+/ dpz{5 (p—pn) +6(p+Pn)} (3.59)

where the 1 arises from the ground state Fy = 0 corresponding to the constant eigenfunction

on Fgw\D

On the right-hand side of Selberg’s trace formula, the zero-length term results in

A/O\/—%dp/ dpph(p)tanh(mp) = oy / dp’p tanh(7p’), (3.60)

whereas the periodic-orbit sum can be determined by using

/dph —Sm( D e (3.61)

for the particular choice (3.57) of h(p). Thus, the spectral staircase turns out to be (E = p*+1)

sin(pkl,)
= o [ v/’ tanh( — sin(p 3.62
/ Py tanh(mp') + {z;,; ksinh(kl,/2)’ (3.62)

Since in the limit ¢ — 0% the smearing function h(p) does not obey the restrictions men-
tioned above (3.55sqq), Selberg’s trace formula offers no information about the convergence
properties of the periodic-orbit sum. It is, however, known that (3.62) is valid in the sense of
distributions [14].

For numerical calculations, relation (3.62) can be used nevertheless, if the periodic-orbit
sum is regularized by the following procedure. Assume the geodesic length spectrum has been
determined completely up to a cutoff length £ . Then the periodic-orbit sum can be evaluated
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by taking into account all closed geodesics kl, < L exactly, and approximating the remaining
sum by

>, sin(pkl, ) ) L oo dN(I) sin(ply) _2p
: lim o [ di ok .
k(p X; ; ksinh(kl,/2) ~ emo+ 27 Je 0 sy ¢ L 36
kly>L
where only the asymptotically leading contribution & = 1 has been included, since terms

associated to multiple traversals (k > 2) are exponentially suppressed. Inserting Huber’s law
(2.33), the remainder term can be rewritten as

| sin(ph) 26410,
R(p,£) = lim, — / ar (3.64)

The integral can be carried out [7], and after taking the limit ¢ — 0% one finally arrives at

(p>0) X
R(p.£) = —ImE, (-3 +ip)£) . (3.65)

Here E;(z) denotes the exponential integral defined by
o —t
— / dt 67 (3.66)

where the path of integration is assumed to exclude the origin and does not intersect the
negative real axis. Thus, finally the spectral staircase can be written as

A gr =, sin(pkl,) 1 .
B) = 2~ ["dyf ' tanh( — SImE, (—(L+ip)£). (3.
) ox Jo AP P tan mp') —I- {Z; kz:lksmh i /2)—|- 1( (2+1p)£) (3.67)
ki <L

It should be mentioned, that the expression (3.65) for the remainder term R(p, L) does
not depend on the particular group I'qw under consideration. It is, moreover, valid for all
dynamical systems, for which Selberg’s trace formula (3.55) and Huber’s law (2.33) hold.

Decomposing the spectral staircase into a mean and an oscillatory part
N(E) = N(E) 4+ Ny E), (3.68)

the asymptotic behavior £ — oo of the mean spectral staircase N'(F) can be derived from the
zero-length term of (3.67). Using the geometric series expansion

tanhz = 1 + Z(—l)k e~ x>0, (3.69)

k=1

one finds for Riemann surfaces of genus g = 2, i.e., A =4r

2 /p dz z tanh(7x)
0

= 2/ da;;z;—l—llz /da:a:e e

1 & (—1 o
] pZ_PZ(kQ) {(Qkﬂ'p—l-l) 2hmp 1}
k=1
1 &> 1 k+1
- oLy (= 132 + O(pe=2). (3.70)
k=1
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Figure 10: The spectral staircase N'(F) of Gutzwiller’s octagon (solid curve) is compared with
the approximation obtained from (3.67) (dashed curve). The dotted straight line shows Weyl’s
law N(E) ~ E — L.

3

The sum can be rearranged to yield

00 (_1)k+1 . B 7('2
Lo == (3.71)

and by inserting F = p? + i the asymptotic behavior of the mean spectral staircase turns out
to be
NE)=E-L4+0WEe ™)  E o (3.72)

This relation is, apart from the exponentially small correction, identical to Weyl’s law. Since
the dynamical systems under consideration, i.e., Riemann surfaces of genus ¢ = 2, have no
boundary, the correction to the leading order term of Weyl’s law (2.42) is a constant contribu-
tion.

The approximation (3.67) for the spectral staircase has been evaluated for Gutzwiller’s
group by using the geodesic length spectrum of I'qw discussed in the previous section (£ =
18.126967...). In figs. 10 and 11 it is compared with the “true” spectral staircase N'(E), which
has been calculated by Aurich [4] by numerically solving the Schrodinger equation using the
method of finite elements. Furthermore Weyl’s law (3.72) is also included, which, despite being
valid in the asymptotical regime E — oo, fits well even at the lowest energy eigenvalues.

The approximate energy eigenvalues F! of the dynamical system associated to I'qw can be

derived from (3.67) by defining

1
./\/(E'):n—|—§, n=1,2,3---. (3.73)
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Figure 11: The same curves as in fig. 10 are shown but in the larger energy range £ € [0, 100].

Here the groud state level Fy = 0 has been omitted, since it leads to an imaginary momentum
po = 1/2 and cannot be obtained by the method described above. For numerical purposes it is
convenient to determine the energy eigenvalues as zeros of the function [14, 9]

E(E) := cos(rN(E)). (3.74)

A plot of the quantization function {(F) for Gutzwiller’s group is shown in fig. 12, again in
comparison with the numerical solutions of Schrodinger’s equation. It can be observed, that
the zeroes of £(F) yield reasonably good approximations to the “true” energy eigenvalues K,,.
Only in those cases, where the F,, are degenerated or very close to each other, relation (3.74)
fails to resolve them (cf. table 3).

Theoretically, the energy resolution of the quantization rule (3.74) is restricted by the cutoff
length £ . Namely the closed geodesic of largest length £ | taken into account in the periodic-
orbit sum in (3.67), produces the shortest distance between two adjacent zeroes with respect
to p, 1.e.,

s
Since the mean distance AE between two adjacent energy eigenvalues is determined by the
mean level density d(F)

1 dFE
AE = ——

a0E) = Ap@, d(E) = %N(E), (3.76)

the cutoff length £ needed to resolve energy levels at energy E = p? + i is given by

1
£=3Ap. (3.77)
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Thus in the case of Gutzwiller’s group (A = 47), a cutoff length of £ ~ 18 leads to a theoretically
maximal energy Fya.x ~ 8.46, above which the resolution of two adjacent energy eigenvalues
starts to fail.

The numerical solutions F,, and the approximations F! obtained from (3.74) together with
their relative errors are given in table 3 for the range 0 < £ <= 20. The maximal errors (~ 5%)
occur for the degenerate energy eigenvalues at £ = 7.16 and £ = 13.31.
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Figure 12: The quantization function &(E) := cos(r N (E)) of T'gw is compared with the energy
eigenvalues obtained from numerically solving Schrodinger’s equation by the method of finite
elements.

A further method exists, based on the Selberg trace formula (3.55), which relates the
geodesic length spectrum of a dynamical system to the spectrum of energy eigenvalues [8].
The starting point is the trace of the regularized resolvent

> 1 1 1 Z'(s)
Z{En— —1) _E_n}:¢(3)+23—12(3)’ (3.78)

n=1 S(S

which can be derived from Selberg’s trace formula [53]. Here the complex variable s := £ —ip
has been introduced, thus s(s — 1) = p* + % = F. It can be shown, that the pole structure
of the left-hand side of (3.78) is not affected by the function ¢(s), and therefore is completely
determined by the term containing the logarithmic derivative of Selberg’s zeta function [50, 37],
which is defined by the Euler product

Z(s):=1]] ﬁ (1 — e~ (547) l”) , Res > 7, (3.79)

{7} n=0
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E, E! Relative error [%]
1.72 1.70 -1.2
3.84 3.76 -2.1
4.04 4.15 2.7
5.37 5.39 0.4
7.16 7.03 -1.8
7.16 7.54 5.3
8.24 7.93 -3.8
8.25 8.37 1.5
8.80 8.96 1.8
9.62 9.63 0.1

10.65 10.42 -2.2
13.31 12.89 -3.2
13.31 13.92 4.6
15.04 14.65 -2.6
15.17 15.23 0.4
15.62 15.91 1.9
18.03 17.86 -0.9
18.66 18.53 -0.7
18.69 19.08 2.1

Table 3: The energy eigenvalues F, of Gutzwiller’s octagon in comparison with the zeroes
E! of the quantization function £(F), obtained from the approximation (3.67) of the spectral
staircase NV(F).

where 7 denotes the topological entropy. In the case of Riemann surfaces of genus g = 2,
i.e., in particular for I'qw, the topological entropy is known to be 7 = 1 (see also (2.38sqq)).
As suggested by relation (3.78), the so-called non-trivial zeroes of Z(s), which correspond to
the energy eigenvalues of the dynamical system under consideration, are located on the critical
line |

$=5 - Lp, p € R. (3.80)

Omitting all factors n > 1 in (3.79) leads to a simpler function, which contains the same
information on the non-trivial zeroes as Z(s). It is denoted as Ruelle-lype zeta function

R(s):=1]] (1 — 6_517) , Res > 7. (3.81)
{7}

The Euler products (3.79) and (3.81) converge absolutely for Res > 7, i.e., to the right of
the so-called “entropy-barrier”. Since in the case of I'qw the topological entropy is 7 = 1, the
Euler product representations of Z(s) and R(s) seem to be of no use to calculate the non-trivial
zeroes located on the critical line Res = 1/2. Moreover, a convergence of the Euler products on
the critical line cannot be expected, since in an absolutely convergent product a zero only occurs
if at least one of the factors vanishes, which in turn would determine a quantum-mechanical
energy eigenvalue F, in terms of a single length [,.
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In order to investigate the convergence properties of the Ruelle-type zeta function R(s), the
product in (3.81) is expanded, which turns the Euler product into a Dirichlet series

R(s) = Z(—l)'LP| el Res > 7. (3.82)

p

The sum now runs over all Dirichlet-orbits, henceforth called D-orbits, which are defined as
formal combinations of primitive closed geodesics of D-lengths L, := [, + --- +1,,. The
number of primitive closed geodesics constituting a D-orbit is denoted as |L,|. As the Euler
product (3.81), the Dirichlet series (3.82) converges absolutely to the right of the entropy
barrier. Generally it is known, that Dirichlet series of the form (3.82) converge conditionally
in right half-planes Re s > o, and converge absolutely in right half-planes Res > o,, o, > o..
Thus if the critical line Re s = 1/2 is contained in the strip . < Re s < g,, the Dirichlet series
representation of the Ruelle-type zeta function can be used to determine the non-trivial zeroes

of R(s).

Arranging the D-orbits in ascending order Ly < Ly < L3 < ---, the abscissae of convergence
are obtained by the relations

?

1 N
Oy = limsupL— log > ‘(—1)“:”'
n=1

N—oo N
N o (3.83)
o. = limsup — lo — )l
m sup 7 log n;( )

In [8] a random walk model for the coefficients of the Dirichlet series is proposed, which
allows to predict the value of .. The model is based on a few reasonable assumptions. At first,
it can be shown for compact Riemann surfaces of genus ¢ > 2, that the counting function of
the so-called pseudo-orbits [20, 41], which are formal combinations of primitive closed geodesics
of pseudo-lengths f/p =mqly, +---+my,l,, mp €N, asymptotically behaves as [15]

N(L):=#{pL, <L} ~ 5,((21)) el L — o, (3.84)

with 7 = 1. Since the counting function Np(L) for D-orbits is restricted by N(L) < Np(L) <
N(L), the conclusion

1
Ly ~ —log N, N — o (3.85)
T

can be drawn. By inserting this relation into (3.83), one obviously recovers o, = 7.

Secondly, it is assumed that the multiplicities gp (L) of the vast majority of D-lengths result
from on the multiplicities of the primitive geodesic length spectrum, i.e.,

gp(L) ~]T g() (3.86)

for a D-length L = [; + --- [, composed of primitive closed geodesics of different lengths. Then
from (3.40) the asymptotic behavior of the average D-multiplicity can be concluded to be

< gp(L) >~ de°F, L — oo, (3.87)
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for some positive parameters d and «. Using the D-multiplicities, the Dirichlet series (3.82)
can be rewritten as a sum over distinct D-lengths

R(s) =" Angp(Ln) e, Res>r, (3.88)
n=1

where A,, denotes the common D-coefficient of the degenerate D-orbits of D-length L, (Ag =
1 =gp(0)).
Finally, the Dirichlet coefficients A, are assumed to be randomly distributed as a result

of arranging the D-lengths in ascending order [,y < Ly < Lz < ---. Thus the value of Ay is
independent of A, for k # n, allowing the application of the random walk model.

Putting all this together, the parameter a obtained from a fit of (3.87) turns out to be
related to the abscissa of conditional convergence

1
0= (14 ). (3.89)

It should be emphasized, that this value of o, is derived for a fixed, namely ascending, order
of D-lengths. The random walk model crucially depends on this ingredient. It is, however,
conceivable that it is possible to find a “better” ordering of the D-lengths, which yields an even
smaller o.. In this case the statistical model may break down and the general relation (3.83)
has to be used to determine o..

For the Gutzwiller group I'qw the geodesic length spectrum up to [ = l3315 = 18.126967 . ..
has been used to determine the spectrum of D-lengths up to L = l3g15, resulting in 31637374
D-orbits of 12010 different D-lengths. A fit of the average D-multiplicity according to (3.87),
yielding the fit parameters d = 1.6250... and o = 0.4324 ..., is shown in fig. 13. From (3.89)
the prediction o, = 0.7162. .. is derived and compared in fig. 15 with a numerical evaluation of
the partial sums (3.83). The prediction (3.89) of o. seems to be somewhat larger than the value
obtained from the sequences (3.83). But since the latter grow very slowly, i.e., logarithmically,
the numerically used range 1 < N < 12010 may be too small to draw a conclusion for the limit
N — oo. However, the deviation may be also caused by a slight violation of the assumption, that
the Dirichlet coefficients in (3.82) are randomly distributed (see fig. 14). A similar observation
has been made in the case of Artin’s billiard, obtained from the action of SL(2,Z) on H , where
the deviation between the prediction (3.89) and the value for o, obtained from (3.83) is even
larger than for Gutzwiller’s group I'qw [8].

The value of o, derived from (3.83) and (3.89) forbids to evaluate the Dirichlet series rep-
resentation (3.82) of the Ruelle-type zeta function R(s) on the critical line in the case of Gutz-
willer’s octagon. However, in the context of the triangular group 7*(2,3,8) to be discussed in
the next chapter, the method described above will turn out to be of some use, since then the
strip of conditional convergence of (3.82) includes the critical line.
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Figure 13: The average D-multiplicity < gp(L) > of Gutzwiller’s group I'qw is shown together
with the fit curve de®™.
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Figure 14: The probability for the coefficient A,, 11 to have the same sign as A,, in the Dirichlet
series representation (3.88) of R(s).
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Figure 15: The numerical evaluations of the partial sums (3.83) are plotted as functions of
the D-length Ly. The upper curve corresponds to o,, the lower one to o.. The critical line is
indicated by the full horizontal line at s = %, whereas the prediction (3.89) from the statistical

model is shown as a dashed line at . = 0.7162. . ..
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3.4 Inverse Quantum Chaology

So far, the Selberg trace formula has been used to derive the energy eigenvalues of the dynamical
system associated to I'qw from the geodesic length spectrum. Now the reverse direction will be
attacked, i.e., the energy spectrum will be used as input, and a suitable choice of the smearing
function h(p) unravels (the lower part of) the spectrum of geodesic lengths. Since a much more
effective method exists, which allows to determine the geodesic length spectrum (cf. section 3.2),
the results of this section mainly serve as a cross check to unmask possibly missing lengths or
wrong multiplicities.

For this purpose the smearing function to be inserted in Selberg’s trace formula is chosen
to be -
h(p) = cos(pL) " "8 450, LeR, (3.90)

resulting in the Fourier transform

o) = = {5 e 391
q 4\/_ . .

Inserting into (3.55) yields the trace of the cosine-modulated heat kernel

o

L 2.1
Cosh + Z cos(p, L) e ~(r2t+1)1

n=1

A .
By T p—
ot (L—hly)? (L+kLy)
1t + e 4t } , 3.92
{z;kz:l 2s1nh(k‘lw/2) { (3:92)

where the ground state energy level Fy = 0 has been separated on the left-hand side. The
periodic-orbit sum of the trace of the cosine-modulated heat kernel produces Gaussian peaks
of width AL ~ 2v/2¢ at the lengths [, of the closed geodesics on I'qw\D, if the parameter
L is varied for a fixed but small value of t. For any ¢ > 0 the sums of (3.92) are absolutely
convergent.

For numerical purposes, usually only a finite number of energy eigenvalues 0 < F, < FEy
is available, which can be used to evaluate the left-hand side of (3.92). The remaining part
of the sum over energy eigenvalues can, however, be approximated by the following method.
Remember that according to (3.68sqq) the average behavior of the spectral staircase N(F) is
described by (E = p* + 1)

A
= 2—/p dp'p' d(p') = —/ dp’ p’ tanh(mp'), (3.93)
7 Jo
and therefore (A = 4x)
i 2,1 A t [ 2
> cos(p, L) e~ (Pati)t o o Z/ dpp tanh(xp) cos(pL)e ", (3.94)
PN

n=N+1

Thus, if on the left-hand side of the trace of the cosine-modulated heat kernel energy eigenvalues
up to Ky are used, the upper limit of the zero-length term on the right-hand side will be set

to pn.
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In fig. 16 the periodic-orbit sum of the trace of the cosine-modulated heat kernel of Gutz-
willer’s group I'gw i1s compared with the difference between the energy sum and the zero-length
term of (3.92) for ¢t = 0.01. Whereas the geodesic length spectrum was used up to lnayx = l3s1s,
the energy sum was evaluated from the first 200 quantal energies [4]. The value of the param-
eter ¢ yields AL ~ 0.28, and as a result only the first three peaks correspond to single lengths
of closed geodesics (compare table 1). The pronounced minima near 5.5 and 6.9 originate from
exceptionally large intervals containing no lenghts of periodic orbits, whereas the minimum
near 7.7 is produced by very low multiplicities of the corresponding lengths. For larger [ the
geodesic length spectrum becomes exponentially dense according to (3.39), and the trace of
the cosine-modulated heat kernel shows a smooth behavior. In principle the resolution can
be improved by a smaller choice of the parameter ¢, but since only a limited number of en-
ergy eigenvalues serves as input for the left-hand side of (3.92), oscillations of the trace of the
cosine-modulated heat kernel arise, making it impossible to identify the Gaussian peaks of the
periodic-orbit sum.

80 T T T T T T T

60

40
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Figure 16: The periodic-orbit sum of the trace of the cosine-modulated heat kernel for I'qw,
calculated by using the geodesic length spectrum (solid curve) and the energy spectrum (dashed
curve). The parameter ¢ has been chosen as ¢ = 0.01.

The classical staircase function N(l) can be derived from the trace of the cosine-modulated
heat kernel by an integration of (3.92) [14]. For this purpose the operation

and 'h<£> 0<lp<l<lI (3.95)
s 7 smh{ o), o<l < )

is applied on both sides of (3.92). Here the lower limit of the integral has to be smaller than
the length [; of the shortest closed geodesic on T'gw\D. Performing the limit ¢ — 0% turns the
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Gaussian peaks of the periodic-orbit sum into Dirac é-functions (see (3.58)). Explicitly

lw sinh L sinh 3 I 4sinh L cosh L
O(L — Kl dL 2 2
Z Z L sinh k? ( ) o L
I 4sinh L cos(p, L) ! 4sinhL coshL
drL 2 a dL 2 2 3.96
+ T; lo L + lo L 2sinh? % ’ ( )
where k(1) := [H is the maximum upper limit occuring in the sum over multiple traversals for

closed geodesics of lengths shorter than [. The periodic-orbit sum can be related to the classical

staircase function N(/)
@ l W l WU
- / dL6(L — kL) - ( ) - (—) (3.97)
ey IPPIPIRAP kZ ;
whereas the right-hand side of (3.96), denoted as F(l) yields
FdL LdL FdL L
F(l):= / A ( —|— 4 E/ — smh — cos(an) +2 A coth (3.98)
lo lo lo

thus
&(1) 1 I
—N || = F(). 3.99
> v (1) = ro) (3.99)
Using the Mébius inversion formula [36], equation (3.99) can be solved for N(/)

(lj “(:) F (é) , (3.100)

where (k) denotes the Mdbius function, defined to be (—1)™ if k& can be written as a product

of n different primes, and zero if at least one prime number occurs twice (p(1) :=1).

Inserting the definition (2.34) of the exponential integral Ei(/) into (3.98) unravels the
asymptotic behavior of the function F()

F(l)=Ei(l) + >_ Ei(s, ) + 2log [ + O(1), (3.101)
{sn}

where the sum over energy eigenvalues has been rewritten to run over all pairs s,, = %:I:z' Pry Pn >
0 of non-trivial zeros of Selberg’s zeta function (3.79).

If the Ei-function in the sum over {s,} is approximated by its leading term

6l

Ei(l) ~ 7 [ — oo, (3.102)

relation (3.100) finally leads to

| I o cos( p, [ — arctan(2p,))
N(l):El(l)_T—I_QTZ VE,
n=1 "

Evaluating (3.103) by using the first 200 energy eigenvalues of the dynamical system asso-
ciated to I'qw only smoothly approximates the classical staircase function N(I). The general

(3.103)

growing behavior of N(I), however, is reproduced, again suggesting the completeness of the
geodesic length spectrum calculated in section 3.2.
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Figure 17: The classical staircase function N() of I'qw (solid curve) is compared with the
approximation (3.103) obtained from the first 200 energy eigenvalues (dashed curve).
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4 The Triangular Billiard 7%(2, 3, 8)

As already mentioned in the previous chapter, the Riemann surface I'ieg\D can be isometrically
mapped onto itself by the operation of a symmetry group S of order 96. The regular octagon
group I'yee is thus a normal subgroup of a particular reflection group, which turns out to be
the triangular group 7%(2,3,8). In this chapter the dynamical system associated to 7*(2,3,8),
i.e., a free particle moving inside a hyperbolic triangle with inner angles %, Z will be

973 and I
investigated.

]
In the context of the quantization of classical chaotic systems, this system possesses some
interesting features.

On the one hand, due to the small area of the fundamental domain of 7%(2,3,8), the
efficiency of the periodic-orbit theory is improved in comparison to the investigation of I'yeq.
Thus the interplay between the geodesic length spectrum and the spectrum of energy eigenvalues
can be observed in more detail.

On the other hand, depending on the choice of boundary conditions of the hyperbolic tri-
angle under consideration, the energy spectrum of the quantized system shows quite different
statistical properties. Remember, that the orbit space I'qw\D of Gutzwiller’s group, as dis-
cussed in the previous chapter, has no boundary. This is a consequence of the fact, that I'qw is
a strictly hyperbolic Fuchsian group, resulting in a fundamental domain with periodic bound-
ary conditions. The dynamical system corresponding to a reflection group, however, can be
seen from the physical point of view as a particle moving inside a domain bounded by hard
walls. During the quantization procedure of the triangular billiard 7%(2,3,8) thus eight differ-
ent systems arise, according to the choice of Dirichlet or Neumann boundary conditions along
the edges of the fundamental domain, each having the same spectrum of periodic geodesics.

The outline of this chapter will be as follows. After a discussion of the hyperbolic triangle
group 7%(2,3,8) itself, the geodesic length spectrum will be investigated. Subsequently, a
Selberg trace formula, taking into account the additional kinds of group elements arising in
7%(2,3,8) with mixed boundary conditions, will be derived. However, only four of the eight
possible choices of boundary conditions are subject to Selberg’s trace formula. The remaining
four lead to the investigation of particular non-periodic orbits in the fundamental domain of
T*(2,3,8). By use of Selberg’s trace formula, the connection between geodesic lengths and
quantal energies will be studied in analogy to the treatment described in the context of I'gqw.

4.1 Properties of the Group 7%(2,3,8)

According to (2.22), the hyperbolic triangle group 7%(2, 3, 8) is generated by elements L, M, N,
representing inversions across the edges of the fundamental domain 7 (cf. fig. 18). They are
subject to the group relations

L’=M?>=N?=1, (LM)*=(MN)®=(NL)®=1. (4.1)

It is no difficult to show, that LM, M N, N L are the only primitive elliptic elements of 7%(2, 3, 8),
having fixed points exactly on the vertices @), P, O of the fundamental domain 7.

Some general relations exist [42], describing the coordinates of a hyperbolic triangle in the
Poincaré disk with inner angles o, 7 and 1 obeying ¢ + ¢ < Z. Denoting the coordinates of
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Figure 18: The fundamental domain of 7%(2, 3, 8).

the vertices with angles ¢, 7 and ¢ as

zZ0 = 0, 2Q = 2Q, Zp = ITp + iyp, (42)
respectively, one finds
_costp —sing __\/ 5 5
rg = f, p =/ cos?p —sin” p,
cos i cos(p + sin © cos(w +
op — 8¢ p(so ¥) o, =y p(tp ¥) (43)

The side OQ) is part of the real axis, whereas the side OP is the straight euclidian line joining
O and P. The side QP is part of a circle with radius r, centered at z. = x., where
sin @ cos

r= \ T, = . (4.4)
P P

Introducing

Bi= \/\/75, vi=12 = V2, (4.5)

which will be used throughout this chapter in addition to « defined in (3.3), the particular case
of T%(2,3,8) results in
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The hyperbolic lengths of the edges OQ,QP,OP can be determined to be [, = 0.7642. ..,
and [y = 0.8607..., respectively. The area of the fundamental domain 7

I = 0.3635. ..
turns out to be area(7(2,3,8)\D) = 7;. Under the action of the generators L, M and N, the
Poincaré disk is tessellated by copies of 7. Exactly 96 copies fit into the regular octagon.
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Figure 19: The fundamental domain of 7%(2,3,8) tessellating the Poincaré disk. The regular

octagon is indicated by the double lines.

According to (4.1) the inversions M and N belong to the same conjugacy class
N=(MN)-M-(NM)=(MN)-M-(MN)™". (4.7)

Geometrically, this can be seen from the tessellation picture fig. 19. The invariant axis of M can
be mapped onto the invariant axis of N by a rotation around the vertex P of the fundamental

domain 7. This feature always arises for inversions across edges adjacent to a vertex with angle
(4.8)

T
- N
¢=5, -1 "eN

since in that case the associated elliptic element is of odd order.

By this peculiarity the eight quantum-mechanical systems associated to T*(2,3,8) are di-
vided into two classes. Namely, only if the boundary conditions along the invariant axes of
M and N are chosen to be equivalent, representations of 7%(2,3,8) can be found. Only the
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quantal energy spectra of these four triangular billiards are contained in the energy spectrum
of the dynamical system associated to the regular octagon group I'yes, and as has been pointed
out in [5, 48, 10], their spectral statistics are in accordance with the behavior expected for
arithmetically chaotic systems. The remaining four combinations, i.e., different boundary con-
ditions along the edges M and N, lead to spectral statistics obeying random-matrix theory
[27, 46]. Since the classical dynamical system is generated by an arithmetic group nevertheless,
the latter are referred to as pseudoarithmetical.

Furthermore, Gutzwiller’s semiclassical periodic-orbit theory turns out to be exact only
in those cases, where representations of 7%(2,3,8) can be found, because only in that case a
Selberg trace formula can be derived from the properties of the group. In the pseudoarithmetical
case, particular non-periodic orbits arise on the classical side of Gutzwiller’s trace formula (cf.
section 4.6).

Starting with the fundamental domain of 7*(2,3,8) on the Poincaré disk D , the matrix
representations of the corresponding generators L, M, N can be easily determined by use of

(4.6)
L = ((1) ?)K,

i1+ %2 —i

_ (i) 20 :

M = ( Zgé _Z.<1+2§)7 K, (4.9)
M+i 0

= (T ey, )

Remember, that in contrary to Gutzwiller’s group I'qw, the reflection group 7%(2,3,8) also
contains orientation-reversing isometries of (D,ds?), which are accounted for by introducing
the operator K of complex conjugation (cf. (2.9sqq)). Thus elements v € T%(2,3,8) being
the product of an odd number of generators can be identified by the presence of the complex
conjugation K.

For numerical purposes it is convenient to use the matrix representations of I, M, N on the
complex upper half-plane H, since they can be chosen to have real entries. The distinction
between orientation-preserving and orientation-reversing isometries is then established by the
choice of the determinant dety = +1 of an element of 7*(2,3,8). A possible set of matrix

representations is [22]
1 0
Ly = ( 0 —1 ) >

My = ((1) (1)) (4.10)

_'_
)

)
[

B —2 (1 (1+a)
M ‘( H(1-a) %(Hﬂ)v)'

An algorithm generating all group elements of 7%(2,3,8) has to take properly into account
the group relations (4.1), in order to avoid a double counting of words. Among all sequences
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consisting of the generators L, M, N one would thus define those containing LL, MM, NN,
ML, NMN and (LN)* to be forbidden, since these words can be rewritten in terms of admis-
sible ones by use of (4.1). Besides the “canonical” generators L, M, N obeying six relations,
there exist, however, simpler choices. Namely, 7(2,3,8) can be generated by two elements

only
U:=LMN, V =LN, (4.11)
since
L=UVU*V®, —~ M=UV', N=VUVUVS (4.12)
The group relations, the generators U and V' have to fulfill, can be determined to be
Ve — (UV7)2 = (U?V?)? = (UPV®)? = 1. (4.13)

Unfortunately it is impossible to decide, if a given set of group relations represents the simplest
possible choice [43]. For the special case of the hyperbolic triangle group 7*(2,3,8) it is,
however, pointed out in [22], that the elements

A:=U, B:=VU, C =V, (4.14)

subject to the only grammar rule forbidding C'A, actually generate T*(2,3,8) besides some
non-primitive elements corresponding to multiple traversals of the boundary orbits, running
along the edges of the fundamental domain 7. Since in this work emphasis is laid on the
investigation of the primitive geodesic length spectrum of 7%(2,3,8), the generators A, B,C
will be the most preferable choice in the following.

As already mentioned above, the hyperbolic triangle group 7%(2,3,8) belongs to the class
of arithmetic groups. It is worthwhile to mention, that only finitely many arithmetic triangle
groups do exist (see [54], which also contains a complete list of these cases). The arithmetical
properties of T%(2,3,8) are reflected in the possibility to characterize arbitrary elements v €
T*(2,3,8) explicitly, in analogy to the case of Gutzwiller’s group. Again, only results will be
presented. For details see appendix B.

At first one observes, that for an arbitrary group element of 7%(2, 3, 8), given by a 2x2 matrix
possibly preceded by the operator K of complex conjugation acting on points z of the Poincaré
disk, the (left-)multiplication by the generator L does not affect the arithmetical properties of
the matrix entries. It merely interchanges between the classes of orientation-preserving and
orientation-reversing transformations and changes the signs of the imaginary parts. Thus only
the case of orientation-preserving group elements need to be discussed explicitly.

Among these, two different kinds of matrices v1,7v2 € T%(2,3,8) can be distinguished

% (u1,p + tuy r) % (v1.r+ tv11) )
Y

o= ) )
( T(vr—ivi)a t(ur—iug)

by = 2 (uz,p + tug )y 2 (va.r + tv9,7) B
2 — . . ?
3 (ar—iven) B 3 (uap —iuz)y
where the matrix entries are algebraic numbers of the form (k = 1,2)
Up R = MpR+ nk,R\/§7 Up ] = M1+ nk,]\/§7 ( )
4.16

Vk,R = Pr,R T Qk,R\/§7 Vg1 = P, T+ Qk,l\/§-
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In the first case, the matrix entries are subject to

|1~L17R| < 2, |ﬂ17[| < 2,

|01.R] < 2a, |011] < 2a, (4.17)

and their parities are restricted by

W(mLR) = 7r(m171) = W(Pl,R) = 7r(p1,1')7

; w(n1r) (4.18)

W(Ql,R) = 77(91,1)

whereas the second case yields

|&2,R| < \/577 |a2,l| < \/577

N - 4.19
|02,R| < \/557 |U2,I| < ﬂﬂa ( )

and

7(mir) = (M), 7(p1,r) = 7(p1.1). (4.20)
All group elements of 7*(2,3,8) obey the relations (4.15sqq). The discussion in the following
section will suggest, however, that some additional rules seem to be hidden in the algebraic
structure of 7%(2, 3,8). For the calculation of the geodesic length spectrum, therefore, a method
will be chosen, which is different from the one used in the context of Gutzwiller’s group I'qw.
It is based on building valid products of the abstract generators (4.14) and properly choosing
a single representative for each conjugacy class.

4.2 The Length Spectrum

Before calculating the geodesic length spectrum of 7%(2,3,8) itself, an approximation for the
average multiplicity < g¢(I) > will be derived from the algebraic decompositions of (4.15).
Remember, that the matrices (4.15) represent (possible) group elements of T*(2,3,8) acting
on the Poincaré disk D. Thus the length of a closed geodesic on T*(2,3,8)\D, associated to a
hyperbolic conjugacy class, is given by the same relation (2.28) as derived for matrices acting
on the complex upper half-plane H. The lengths of closed geodesics, corresponding to inverse
hyperbolic conjugacy classes [p], however, are determined by the sum of the off-diagonal entries
of the matrix representations

[
2 sinh 5= atr p, (4.21)
with a representative p chosen according to atrp > 0.

In the hyperbolic triangle group 7%(2, 3,8), therefore, four different kinds of geodesic lengths
arise, according to two different types of matrices y1,v2 € T7%(2, 3, 8) and the distinction between
elements being the product of an even or an odd number of generators, i.e., hyperbolic or inverse
hyperbolic elements

1) 1(2)
2 cosh 67 =miRr+ nl,R\/§, 2 cosh 67 = (ma,r + n2,R\/§) v,

1) 2)

Z (4.22)
2 sinh 07 =(pr+ (]1,R\/§) a, 2 sinh 07 = (p2r + QQ,R\/§) 3.
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The right-hand sides of these equations are subject to the restrictions (4.17) and (4.19). As-
suming generally an algebraic number to be restricted by

lm — nv/2| < 6, m,n € Z, (4.23)

then for a fixed value of n > % the integer number m is contained in the interval

nV2 — 8§ <m < nV2+ 6, (4.24)

of width 26, bounded by irrational numbers. Thus one can expect, that for a large number of
different values of integers n, to each n there are associated an average value of 26 different
integers m. The counting function for distinct geodesic lengths in 7%(2, 3, 8) therefore results
in

N(I) ~4ny g+ 2V2ynop +daqrr+ 2V28 ur, | — (4.25)

if all kinds of lengths are taken into account up to the same order of magnitude,

[~ g~ nl—’R, qQ1,R ~ nl—’R, q2,R ~ nl—’R, (4.26)
g o g
i.e.,
N()~ (8+4V2)n1p, 1 — oo, (4.27)
Using
2 coshé ~ 2 sinh% ~ e%, [ — oo, (4.28)
leads to o
e T ~2V2nr, 1 — oo, (4.29)
by (4.22), finally revealing
NI ~2(1+v2)er, - oo (4.30)

Huber’s law and relation (2.36) then offer the average multiplicity of the geodesic length spec-
trum of 7%(2,3,8) as derived from (4.15)

LranyT :

The primitive geodesic length spectrum of 7%(2,3,8) has been investigated numerically
by building group elements as products of the generators A, B,C given in (4.14), obeying
the grammar rule forbidding C'A. However, closed geodesics of T%(2,3,8)\D correspond to
conjugacy classes of hyperbolic or inverse hyperbolic elements of 7*(2,3,8), thus an algorithm
has to be found, which separates a unique representative for each conjugacy class. This can be
accomplished as follows.

(i) At first, all words v consisting of the letters A, B, C' are constructed, which do not contain
the sequence C'A.
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(ii) Then the word v, consisting of n letters, is permuted cyclically. This operation corre-
sponds to a conjugation of 4 in 7%(2,3,8). If among the resulting y*), k = 1,---n — 1
there is one, which equals the starting word, i.e., v*) = 5, a representative of a conjugacy
class associated to a multiple traversal of a closed geodesic has been found, if v was a
hyperbolic or inverse hyperbolic element. For the investigation of the primitive geodesic
length spectrum, thus, v has to be dropped.

(iii) If all of the cyclical permutations A®) k=1,---n—1 are different from ~, but one )
contains the forbidden sequence C'A, the word v i1s dropped to avoid double countings.
Namely, ) represents a conjugacy class associated to a word, which can be constructed
as a valid word by using the group relations.

(iv) For the next step a lexicographical ordering is introduced among the words 7 in the
obvious way. If none of the cyclical permutations ¥¥), & = 1,---n — 1 contains the
forbidden sequence C'A, but one v*) is lexicographically smaller than ~, the word ~ is
dropped, too. The sequence v(*) will in that case arise as a starting word in step (i). This
step ensures, that for each conjugacy class a unique representative is selected, which is
chosen to be the lexicographically smallest one.

(v) If a valid (unique) representative 4 for a conjugacy class of 7%(2,3,8) has been found
by the above procedure, the matrix representation of 74 is determined. It can then be
checked, if v represents a hyperbolic or inverse hyperbolic element. If yes, a primitive

periodic geodesic on 7%(2,3,8)\D has been found.

In a quantized version of the triangular billiard 7*(2,3,8) the boundary conditions along the
edges of the fundamental domain have to be taken into account. According to Neumann or
Dirichlet boundary conditions along a particular edge, a wavefunction on 7%(2,3,8)\D has to
be symmetric or antisymmetric, respectively, under inversion across that edge. In the group-
theoretical setting above, this can be incorporated by introducing a multiplicative character x
for automorphic forms of weight m, subject to [37]

X =1,
X(1172) = x(m) x(72), (4.32)
X(_1> = 6—i7rm’

where v1,7v, € T%(2,3,8). The character y establishes a one-dimensional unitary representation
of 7%(2,3,8). If, e.g., the boundary conditions of the fundamental domain of 7%(2,3,8) are
chosen to be Dirichlet along the edge L. and Neumann along the edges M and N, which will
be referred to as the “dnn-case” in the future discussion, one defines

x(L)=-1, X(M) = +1, X(N) = +1, (4.33)

to ensure the correct transformation behavior (2.41) of the wave functions ¢. For an arbitrary
group element v, the character can be determined by its representation as a product of the gen-
erators L, M, N and the second relation of (4.32). For any 4’ belonging to the same conjugacy
class as v, one obviously finds x(4’) = x(7). Thus the character x is an invariant of a closed

geodesic on 7%(2,3,8)\D.
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According to (4.7) the inversions across the edges M and N of the fundamental domain of
T*(2,3,8) are members of the same conjugacy class, i.e., they share the same character

Y(M) = X(N). (4.34)

Thus one-dimensional unitary representations of 7%(2, 3, 8), compatible with a set of boundary
conditions of the fundamental domain, can be constructed only if the boundary conditions along
the edges M and N are chosen to be equivalent. Only for this case a Selberg trace formula
can be derived, which relates the quantal energy spectrum to the set of primitive conjugacy
classes of T%(2,3,8) (cf. section 4.3). In the pseudoarithmetical case, i.e., different boundary
conditions along the edges M and N, Selberg’s trace formula can be interpreted as part of
a semiclassical approximation along the lines of Gutzwiller’s periodic-orbit theory. However,
on the one hand, additional contributions may be present on the classical side of Gutzwiller’s
trace formula (cf. section 4.6). On the other hand, the quantal energy spectrum is then a
priori not related to a sum over primitive conjugacy classes of T*(2,3,8) anymore. It turns
into a sum running merely over lengths of primitive closed geodesics on 7*(2,3,8)\D, besides
the contribution from the area, the boundary and the vertices of the fundamental domain.

In the special case of the hyperbolic triangle group 7*(2,3,8), however, for each of the
eight quantum mechanical systems, the underlying classical dynamical system is the same.
Thus the closed geodesics on 7%(2,3,8)\D can be constructed by group-theoretical methods
nevertheless. Only the determination of the characters entering Gutzwiller’s trace formula in
the pseudoarithmetical case deserves a special treatment, described in the following.

By the algorithm defined above, for each closed geodesic on T*(2,3,8)\D a representative
v of its associated conjugacy class [y] is determined. There is, however, no reason why the
invariant geodesic of 4 on D should intersect the fundamental domain 7 (4.6) of T%(2,3,8).
Thus repeated conjugation of « by the group generators L, M, N is used to find a represen-
tative 4" of [y], which has an invariant geodesic hitting 7. The matrix 4’ then represents a
segment of the closed geodesic associated to [y]. The full closed geodesic will be constructed by
“following” the segment beyond the borders of the fundamental domain 7, in the same way as
discussed in the context of Gutzwiller’s group I'qw (cf. p. 27). As a result, the matrix 4" can
be written as a product of generators L, M, N, each representing a “physical” reflection across
the corresponding edge

Y =c, Ch Cy, ¢, € {L,M,N}. (4.35)
The character x(v'), which enters Gutzwiller’s trace formula, is then calculated as the product

X(7) = xlew) x(ew) - x(ew,). (4.36)

Numerically, the geodesic length spectrum of 7%(2,3,8) has been determined by taking
into account products of the generators A, B, (', consisting of at most 22 factors. Totally,
118976317 conjugacy classes arose, and the computed geodesic lengths covered the range from
[ = 0.632974 ... t0 lmax = 31.269816 . ... Comparing with Huber’s law (2.33), however, reveals
that the computed length spectrum is far from being complete up to lphax. At [ ~ 18 already
~ 3% of the periodic orbits are missing (fig. 20 and fig. 21). Thus only the geodesic lengths
covering the range l; < [ < 18, amounting to 3746841 conjugacy classes, will be used in the
discussion of the quantized system in section 3.4. The missing of conjugacy classes towards
higher lengths can be understood by considering the distribution of geodesic lengths among
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group elements being the product of a fixed number of generators (fig. 22). The distribution
shows a Gaussian shape, and long words can be observed to contribute to comparatively small
geodesic lengths. The shortest length associated to a conjugacy class generated by a word
consisting of 22 letters e.g., turns out to be ll(jfn) = 14.116210.. ..

The first 40 different (primitive) lengths of 7%(2,3,8) are listed in table 4. Since not the
characters y itself, but merely the effective multiplicities

gx(1) = 2 x(v) (4.37)
2

enter Selberg’s or Gutzwiller’s trace formula, the latter are listed for all combinations of bound-
ary conditions. Not contained in table 4 are the periodic orbits running exactly on the bound-
ary of the fundamental domain 7. There are in total two of them. The first, being of length
1.528570. .., runs along the edge L and is then reflected backwards. Since it is invariant un-
der inversion by L, it is associated to a hyperbolic and an inverse hyperbolic conjugacy class,
i.e., twofold degenerated. The second, being of length 2.448452...) runs along the edge N
beyond the vertex of angle Z, then along the edge M, and is finally reflected backwards. This
boundary orbit is twofold degenerated, too. The peculiarity of passing a vertexis due to the fact,
that the inversions across the adjacent edges belong to the same conjugacy class (cf. 4.7sqq).

Translating words consisting of the generators A, B, C to a representation using L, M, N by
(4.14) shows, that a maximal wordlength of 22 for the set A, B, C corresponds to a maximal
wordlength of 152 for the set L, M, N, since the longest word is produced by the sequence BC?!,
Thus the periodic orbits generated above, may bounce the edges of the fundamental domain 7
at most 152 times. A few examples of closed geodesics inside 7 are given in fig. 24.

Finally, the counting function N (1) for different lengths is compared with the theoretical
prediction (4.30), derived from the algebraic decomposition of matrices in T*(2,3,8) (fig. 23).
Since the difference at [ ~ 18 is larger (~ 5%) than for the counting function N (/) of closed
geodesics, it seems, that the theoretical prediction is somewhat too large, due to the presence of
additional algebraical restrictions of the group elements. However, it may be, that the asymp-
totic regime for the validity of the assumption (4.23sqq) is not reached within the considered
range of lengths.
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Figure 20: The classical staircase N(I) of 7™(2,3,8) is shown in comparison with Huber’s law

N(I) ~ Ei(l), | — .
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Figure 21: The difference between Huber’s law and the classical staircase, i.e., Ei(l) — N({) is
plotted using a linear scale, revealing the missing conjugacy classes towards longer orbits.
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10 30

Figure 22: The distribution of geodesic lengths arising from words consisting of a fixed number
of letters is shown. The highest curve corresponds to a wordlength of 20, the lower ones to

19,18,---,13.

Figure 23: The counting function of distinct lengths is compared with the theoretical prediction

(4.30), i.e., N(l)/Ntheor.(l) is plotted versus geodesic lengths.
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| par || nnn | dnn | ndn | ddn | nnd | dnd | ndd | ddd
0.632974319201
1.128383964966
1.429036246039
2.316888394985
2.773126164854
2.881636604457
2.914035387721
3.463835764702
3.553687937056
3.620547300604
3.631581737559
3.871634380606
3.892253494796
3.912455696050
3.920705543304
4.065037764450
4.166842119797
4.188532248096
4.218424820262
4.332976057275
4.351375278216
4.423821178548
4.430820234407
4.585712758443
4.714558786083
4.735970195373
4.741097074636
4.810581771605
4.856954340898
4.875549879154
5.010279562612
5.057452705724
5.063794553608
5.091317939403
5.112098403850
5.128992335155
5.176656991338
5.209040231773
5.268689627145
5.278062857180
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Table 4: The effective multiplicities (4.37) of the shortest 40 geodesic lengths of 7%(2,3,8) for
all combinations of boundary conditions. The column “par” distinguishes between hyperbolic
(0) and inverse hyperbolic (1) conjugacy classes.
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N

(©)

Figure 24: The two shortest geodesics inside the fundamental domain of 7%(2,3,8) are drawn
in (a) LMN, [, =0.6329... and (b) LNLMN, I, = 1.1283.... Figure (c) shows the shortest
geodesic running through the vertex of angle 7/3; MNMILNLNLMNMLNLMNL, I, =
3.5536.... The remaining orbits correspond to words consisting of 66 (d), 66 (e) and 68
(f) letters L, M, N. Their geodesic lengths are [,

14.1279. . ., respectively.
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4.3 Selberg’s Trace Formula for Hyperbolic Billiards with Mixed
Boundary Conditions

Hyperbolic billiards with boundary conditions, which allow a one-dimensional unitary repre-
sentation of the corresponding reflection group I', are subject to a generalized form of Selberg’s
trace formula. The latter has been derived in [17] for equal boundary conditions at all edges of
billiard domain. In this section, now, the case of arbitrary mixed boundary conditions will be
investigated, mainly by evaluating the trace of Green’s function. Smoothing the trace formula
for Green’s function with suitable analytic test functions then yields the extended form of Sel-
berg’s trace formula (3.55). Since emphasis is laid on the correct treatment of the characters
x(7), which incorporate the boundary conditions, the smoothing procedure is not presented
explicitly. It can be taken over without changes from the case of equal boundary conditions
(cf. e.g., [17], appendix L.).

Starting point is the free Green function on the Poincaré disk D (E =: p* + 1)

e—zpt

1 /00
—_ di ;
272 Jagz,21) \/cosh(t) — cosh[d(z, 2')]

Go(z,2'; E) = — (4.38)

which is obviously a symmetric function with respect to z and z’. The Green function is the
kernel of the integral operator (Arg + £)~" on D

(Ais +E)"9] (2) = /D Golz, 2'; B) (') ds?(2). (4.39)

Turning to the fundamental domain F of a reflection group I', the wave functions @ are de-
manded to be automorphic functions transforming according to (2.41). The Green function on
F can be constructed by summing the free Green function Gy(z, z’; F) over all images yz', v € T
of the source point 2’

Gr(z,2E)=>_ x(v)Go(z,72; E). (4.40)

~eT

Since, however, the image points vz’ proliferate exponentially with respect to their distances,
this sum only converges in the half-plane Rex > %, k := tp. The trace of Green’s function
diverges, because Gz(z, z'; ) has a logarithmic singularity at z = 2z’. Therefore a regularization
is introduced by differentiating with respect to F

0
K [coshd(z,2")] := Ko(z,2'; E) = _8_EGO(Z 2 ), (4.41)
which yields by summing over image points
Kr(z,2'yE) =Y x(v) K [cosh d(z,v2")] (4.42)
~eT

the integral kernel of the operator (Arg + F)~? on F . Evaluating the trace of this operator in
the eigenfunction basis leads to a sum over eigenvalues F, of —Arg on F

= 1

tr Kr = —_ . 4.43
TRF 7;) (E — En)2 ( )
Using (4.42), however, yields
tr Kr :/ Kr(z,2z; E)ds* = Z)( / K [coshd(z,~2)] ds?, (4.44)
F
~er
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thus relating a sum over quantal energy eigenvalues to an expression depending merely on the
properties of the group I'.

The summation over group elements in (4.44) can be rearranged to a summation of con-
jugacy classes of I'. For this purpose, one observes that I' can be decomposed into conjugacy
classes according to

[1]7"'7[7;]7"'7 n =1, (4.45)

where «, runs over a set {7,} of primitive, mutually inconjugate elements of I'. The elements
within each conjugacy class [v] can be written as cyo~!, o € T'. Since, however, any ¢’ being
element of the centralizer of ~

C,:={ceTl; oyo™ ! =4} (4.46)

results in oo’y(oa’)™?

[v] turns out to be

= oy0o~ !, the proper enumeration of elements within the conjugacy class

v = oyo Tt ocel/C,, (4.47)
where I'/C., denotes the right coset space of C, in I'. Rewriting (4.44) thus yields
tr Kr = Z > x(y / K [coshd(z,g»yg—lz)] ds?. (4.48)
[v] o€T/Cy

The symmetry property of the hyperbolic distance reveals d(z,0v07'2") = d(c™'z,v07'2'),
which turns (4.48) into

tr Kr = Z Z x(y / Ly K [cosh d(z,~2)] ds?, (4.49)

[v] c€l/Cy

by using c='z as the new integration variable. Since the integral in this expression depends on
o only by the choice of the integration domain, the disjoint copies o ~!F are grouped together

F= |J o'F (4.50)

cel’/C,
yielding the fundamental domain F., of the centralizer C',. Thus (4.49) can be simplified to
tr Kr =>_ x(7) / K [cosh d(z,7z)] ds®. (4.51)
B Fr

The summation over conjugacy classes [vy] will now be investigated according to the different
kinds of elements in the reflection group I

At first, the identity element 1 € T yields Cy =T, i.e., F; = F. Thus it contributes
area(F) K(1) (4.52)

to the trace formula. This contribution is usually denoted as “zero-length term”, and can be
rewritten more explicitly by inserting (4.38)

R ok 0 1 0 1

where ¢(z) = 2 log I'().
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Next, inversions [ € T' will be treated. Any inversion [ is associated to an edge of the
fundamental domain F | being the invariant axis of /. The centralizer C'7 contains three kinds
of elements. At first, the inversion /| across a perpendicular axis. Secondly, any rotation R, by
7 around a point of the invariant axis of /. Finally, hyperbolic or inverse hyperbolic elements
having invariant geodesics, which coincide with the invariant axis of /. The set of inversions
I € T" can be divided into conjugacy classes as follows. Assume [ and .J are inversions across
adjacent edges of the fundamental domain. The vertex between them, being of angle =, will
be denoted as even or odd depending on the parity of the integer m,. The rotation around that
vertex gives rise to the group relation

(1))™ = 1. (4.54)

If 7 and J belong to the same conjugacy class, i.e., J = yIy~1, the invariant axis of I can be
mapped onto the invariant axis of J by the operation of ~. In the case of triangular billiards,
this can only be accomplished by a rotation v = (I.J)* around the vertex under consideration.

Thus
J = (IO I(JI)* = (I I(JDRT = (1) =1, (4.55)

i.e., inversions adjacent to odd vertices are conjugate, whereas inversions adjacent to even
vertices are not. Inside each portion of the boundary 0F of the fundamental domain, which
is delimited by even vertices, the edges are invariant axes of mutually conjugate inversions.
Choosing for each portion a representative inversion I, yields the complete list [I] of inversion
conjugacy classes. The total length of each portion is denoted as I

If at least one vertex of the fundamental domain is even, the centralizer C7 is generated by
I and the two rotations R, around the endpoints of the associated boundary portion. Namely,
the inversion [, across a perpendicular axis results from I, = R, I, whereas the product of the
two rotations yields the primitive hyperbolic element 77, corresponding to a boundary orbit
of length 2/;5; along the invariant axis of /. Finally, the associated primitive inverse hyperbolic
boundary orbit can be found to be Iv7,. The boundary orbits commuting with 7 form an
Abelian group {vlp, ]’ylp} A coordinate transformation, which maps the invariant axis of [
onto the imaginary axis, and the rotation centers onto ¢ and ¢ exp ljy], turns the fundamental
domain of the centrahzer Cr into

Fr={z=z+weH; 2>0,1<y<explp}, (4.56)

yielding

expliy dy oo (D e
/1/ —/d]’ hd(z,— :7/ !
A A O v B v =

as contribution of the inversion conjugacy class [[]. In the case where all vertices are odd,

(4.57)

there is only one inversion conjugacy class [I]. The corresponding boundary orbit then runs
around the whole boundary of the fundamental domain. Defining [;;) := length(0F), also leads
o (4.57).

Elliptic elements of I' correspond to rotations around the vertices of the fundamental domain
F . A primitive rotation r can be written as the product of two inversions across adjacent edges,
i.e., v = I.J. I its fixed point is a vertex of angle .=, the elliptic element r rotates by ;—’:, and
is subject to (4.54). The centralizer of r*, 1 < k < m,, k # ™= is the rotation subgroup {r"},

thus the fundamental domain F,x of C,x results to be a sector of opening = 27 in the Poincaré
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disk D . Using polar coordinates, the contribution of the elliptic conjugacy class [r*] can be
calculated to be

2 (rF o0 K(t
x (%) / K [cosh d(z,rkz)] _ 7 L)ﬁk/ dt ) . (4.58)
Foi my 2\/§ sin = I — cos (27:16)

In the case of k = =~ ¥ = R, commutes with I or .J, doubling the centralizer
C,x and cutting the fundamental domain F,« by half, thus leading to half of the contribution
(4.58). In the case k # %=, on the other hand, the rotations r® and r™ % are conjugated by I
or J. Putting all together, the contribution of all elliptic conjugacy classes can be established

by summing over all nontrivial powers of primitive rotations and multiplying with an additional

factor %

D TS Ay smereet (459)

{r} k=1 t—cos(%f)

Among the hyperbolic elements, two cases have to be distinguished. At first, assume vy € T
is a primitive hyperbolic element corresponding to a geodesic of length [, running inside the
fundamental domain F . Its centralizer contains all integer powers of ~

Cy = {7 ez (4.60)

Using half-plane coordinates, which diagonalizes 7, the fundamental domain of the centralizer
can be chosen as

F,={z€H; 1 <Imz <expl,}, (4.61)
leading to the contribution of the hyperbolic conjugacy class [v*]
exply 0 k ) 00 Kt
X(’yk)/ ’ —Z/ de K [COSh d(z, e z)] = L)Zl/ dt 10 . (4.62)
1 y* J-oo V2sinh =+ Jcosh(kl,) t — cosh(kL,)

Hyperbolic conjugacy classes associated to boundary orbits, however, need a slight modification.
As discussed above, the centralizer then turns into

Cyp = {97 177 Ykezs (4.63)

reducing the integration domain by a factor % Thus the contribution of all hyperbolic conjugacy
classes sums up to

X() L e K(1)
(E—I_ Z) 2 W /co h(kL,) di : (4.64)

O ) k=1 t — cosh(kl,)

Inverse hyperbolic elements can be treated along the same lines as (direct) hyperbolic ele-
ments. However, inverse hyperbolic elements act on a point z € D according to

vz =—€ez, (4.65)

in coordinates, which diagonalize «. The contribution of an inverse hyperbolic conjugacy class
[v*] associated to a periodic orbit running inside the fundamental domain then results in

2x(v") 1, g Kl 166
V2 [eXp (kl”) — (=1)kexp <—%)] /cosh(klv) t t — cosh(kl,) (4.66)
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Inverse hyperbolic conjugacy classes associated to boundary orbits are of the form [I4¥], and
have a centralizer twice as large, in complete analogy to the hyperbolic case. Notice, that
even powers of primitive inverse hyperbolic elements are of (direct) hyperbolic type, whereas
multiple traversals of boundary orbits corresponding to inverse hyperbolic elements IyF always
are of inverse hyperbolic type. Thus the contribution of the conjugacy class [I7F] is

1 x(IvH)1 o0 K(1
L A . LU (4.67)
2 /2 cosh =+ Jcosh(kl,) t — cosh(kl,)

Due to the compactness of the fundamental domain F, parabolic elements do not arise.

Rewriting all occurrences of the integral kernel K (¢) by the free Green function Gy(z, 2"; F),
and smoothing as pointed out in the beginning of this section, finally leads to the Selberg trace
formula for a smearing function h(p), subject to the restrictions listed in the context of the
strictly hyperbolic case (3.55sqq)

oo l .
Z h(p,) = area(F / dpph(p)tanh(wp) + Z A7) h(0)
n=0 0 4

—27rp—

€

’ {ZE stmwk/ P h) Ty

inh =L cosh —Z£

¥ Zf { L+ 2 }Mklm
= Xk(r)/)l’v iL(kl.y)

) 4.68
ZE S () -t o (5) -

_|_

where p,, are the momenta related to the energy eigenvalues by E, = p? + i. Hyperbolic and
inverse hyperbolic conjugacy classes have been grouped together by introducing

+1, ~ direct hyperbolic,
o) = { Ty e (.69

—1, v inverse hyperbolic.

In the special case of the hyperbolic triangle group 7*%(2,3,8), remember that the require-
ment of one-dimensional unitary representations to exist, enforces the choice of boundary con-
ditions compatible with

X(M) = x(N), (4.70)
because the inversions M and N belong to the same conjugacy class. There are in total
two inversion conjugacy classes, and the lengths of the associated boundary portions of the
fundamental domain are given by

Iy = 1o, Iy = Iy = I + Iy (4.71)

The hyperbolic conjugacy classes associated to the two boundary orbits can be calculated to
be
v, ~ LN(LMN)?, v = ~ (LMNLN)*LN, (4.72)

thus
xX(z) = x(var) = x(L) x(N). (4.73)
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4.4 The Energy Spectrum

In this section Selberg’s trace formula for polygonal hyperbolic billiards (4.68) will be used to
derive quantization rules for the dynamical system associated to 7%(2, 3, 8) along the same lines
as described in the context of Gutzwiller’s group I'gw.

Inserting the smearing function (3.57) into Selberg’s trace formula and integrating over the

interval [0, /F — i] in the limit € — 0% yields an expression for the spectral staircase N (F).
Since the structure of the zero-length term and of the sums over hyperbolic conjugacy classes
in (4.68) coincide with the corresponding terms in the strictly hyperbolic case (3.55), only the

remaining contributions need to be investigated explicitly.

Using the Fourier tansform of the smearing function h(p)

8]

A 1 €
h(q) = . cos(p'q)e” T, (4.74)

the term of inversion conjugacy classes yields (E = p* + i)

lim / a3 M L= LS i (4.75)

o o AT 0
Elliptic conjugacy classes can be found to contribute
00 ¢~ 2t
Jim [ % T [

_ Zmil (r) /Om 4z " =)o . (4.76)

o7 k= 47m, sin I+ cosh z

The hyperbolic triangle group T*(2,3,8) contains three primitive elliptic conjugacy classes,
which will now be investigated separately.

(i) r = LM, m, = 2: Only the term k = 1 arises in (4.76), yielding [29]

X(LM) /’*p de  x(LM) o
Ry 'y coshz _ 8n arctan(sinh 7p). (4.77)

(ii) r = MN, m, = 3: For k =1 the contribution can be found to be [29]

/ is h z Y2 q
X(MN) / ' dx oS5 _ X(MN) arctan(\/g tanh @) (4.78)
673 6 3

cosh s
Since, however, equal boundary conditions along the edges M and N of the fundamental
domain of T*(2,3,8) have to be chosen in order to ensure one-dimensional unitary rep-
resentations x to exist, one finds x(MN) = 1. The term k = 2 also leads to (4.78), thus

the total contribution of the elliptic conjugacy class [M N] is

1 4
i arctan(\/g tanh %) (4.79)

T
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(iii) = LN, m, = 8: Using the symmetry properties with respect to k, the sum in (4.76) can
be splitted

s L) /Owdxcosh[(——l) d

o 327 sin Wsk cosh z

1 > Y*(LN) m  cosh [(1 — %) :z;]
= 39n arctan(sinh 7p) + Z PP /0 dx - . (4.80)

s
27 1 167 sin £2 5

The integral can be solved in a number of steps. At first, a geometric series expansion of
the denominator leads to

, /rp . cosh [(5-1) 2]

cosh x
(o] b
_ Z(—l)”/o dx{ (+b)e | =20+ ))x}
v=0
oo 1 1
D R U A
© e 2Y E 2Y
—4 —1)¥{zs 1—57} 4.81
2 ){Z Sv kY TSrs—kS (4.81)

where the notation z := e~ 2™ has been introduced. The first sum can be identified as a
partial fraction expansion [44]

:%é@: { 1k+ ! )}, (4.82)

v+E v+ (1-%

2sin Ex

whereas the second one can be summed up by using [35]

> ZU 1 m nol iTm 1 i
1) = ——z 7n —(2p+1)*7 1 1—2n (2u+1)t8
UZ:;J( ) nv +m " < “Z::O € Og{ zZne } , (4.53)
m,n=1,23,--; m<n; |z]<I1,
leading to

I= (4.84)

2sin £z 8

~2 Y sin{ e )T faretan { O

Substituting into (4.80) finally reveals the contribution of the elliptic conjugacy class [LN]

1 1
—— arctan(sinh 7p) + - arctan <\/§ sinh %)

27 T

(LN 2 sinh 22 2sinh X2
+ X(LN) {arctan (&) + arctan (&) } . (4.85)
dm 22 2 +1/2

68



Putting all terms together leads to the spectral staircase N'(F) for T*(2,3,8) as derived from
Selberg’s trace formula

A
N(E) = —/pdp’p tanh(mp') +—Z\(
27 Jo 175!

x(LM

81

_|_

1
) arctan(sinh 7p) + 3r arctan(\/?: tanh %)
s

1 1 '
+ 39 arctan(sinh 7p) + & arctan <\/§ sinh %)

™ T

X(LN){ (QSinh%) (ZSinh%)}
+ arctan | ————=—| + arctan | ————
Am 22 2+ 2

+ _ZZX (y1) { 1k17 + X(])l }Siﬂ(};klw)

2
I I
T oy k=1 sinh 5 cosh —t

1 x*(7) sin(pkl,)
+ - Z Z E - L . ki ’ (4.86)
{’Yhyp}k 1 ( 2 ) - ag (’7) eXp (_T)
where A = L. The asymptotic behavior of N(FE) in the limit £ — oo, i.e., Weyl’s law, is
controlled by the zero-length term and the terms associated to inversions and elhptlc conjugacy
classes. Using the result (3.70sqq) obtained in the context of Gutzwiller’s group I'qw, and

noticing that x(LM) = x(LN), one finds
A X(L)ZL—I—X(M)(ZM—I—ZN)\/— 107 + 180 x (L M)

Ey=—F E 4.
N( ) 47 + 47 + 576 + ( 87)

In the discussion of the strictly hyperbolic case it has been pointed out, that the sum over
hyperbolic conjugacy classes needs a regularization, since in the limit ¢ — 0% the smearing
function h(p) as defined in (3.57) is not a valid test function. If all boundary conditions at
the edges of the fundamental domain of 7%(2,3,8) are chosen to be Neumann, the sum over
hyperbolic conjugacy classes in (4.86) possesses the same structure as the corresponding sum in
(3.62). Thus the remainder term R(p, £), defined in (3.65), has to be used, if the geodesic length
spectrum is taken into account up to a cutoff length £. For all other combinations of boundary
conditions, the sign changes of the characters x(v) seem to cause conditional convergence of
the periodic orbit sum in (4.86), i.e., no remainder term is needed.

Based on numerically solving Schrodinger’s equation by the method of finite elements, the
first 200 energy eigenvalues of the dynamical system associated to 7*(2,3,8) have been calcu-
lated for all combinations of boundary conditions in [5]. Later, the two special cases of Dirichlet
boundary condition along edge L, and Neumann boundary conditions along edges M and N
(dnn), as well as Neumann boundary conditions along edges L and M, and Dirichlet boundary
condition along edge N (nnd) were studied by the more effective boundary element method
[10, 48], yielding all quantal energies in the range 0 < E,, < 100000, which amounts to roughly
1050 energy levels for each system.

The spectral staircase N'(FE) of the dnn-case, which is subject to Selberg’s trace formula
(4.68) is compared in figs. 25 and 26 with the expression (4.86). The latter has been evaluated
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by taking into account the geodesic length spectrum of 7%(2,3,8) up to a cutoff length of
L ~ 18. The two curves agree much better than in the case of Gutzwiller’ group I'qw. Small
fluctuations around the “true” staircase function can be observed, which are similar to the
classical Gibbs phenomenon. They are due to cutting off the periodic orbit sum of (4.86) at a
finite geodesic length.

The much better resolution in the case of 7%(2,3,8), as compared with I'gw, can be under-
stood by relation (3.77). Due to the small area of the fundamental domain Are238) = Argy /96,
a cutoff length of £ ~ 18 now leads to a maximum energy FEn.x =~ 75636, above which the
fluctuations of (4.86) become comparable with the step-height of N'(E). Thus the quantization
rule (3.74) is expected to yield reasonable good approximations for the first ~ 800 quantal
energies. In fig. 27 the quantization function () is compared with the “true” eigenvalues of
the dnn-case for different energy ranges. Even above the 1000th energy eigenvalue the quanti-
zation rule (3.74) works reasonably good. Only values of F,, which are very close to each other
cannot be resolved. But the number of eigenvalues can be read off, nevertheless. The relative
error of the energy eigenvalues derived from £(F) does not exceed ~ 0.05% within the whole
range 0 < £, < 100000. For those remaining combinations of boundary conditions, which
lead to systems obeying Selberg’s trace formula, £(F) is compared with the energy eigenvalues
obtained by the method of finite elements in fig. 28.

Comparing the first two terms of Weyl’s law (4.87) with the energy spectrum derived
from Schrodinger’s equation, a fit value og; for the constant contribution cineor = 51%(107 +
180x(LM)) can be calculated. The results are given in table 5. It must be pointed out, how-
ever, that the fit value obtained fo the dnn-case is the most reliable one, since it is based on five
times as much energy levels than for the remaining combinations of energy levels. By the same
reason, for the dnn-case a much higher energy range is reached, for which Weyl’s asymptotic

approximation is expected to be better.

boundary condition ddd nnn dnn ndd
O'theor. +0.4982 | 40.4982 | -0.1267 | -0.1267
Ofit +0.543 | 4+0.521 | -0.125 | -0.088

Table 5: The fit value og for the constant contribution in Weyl’s law (4.87), as obtained from
the numerical solutions of Schrodingers equation, is compared with the theoretical prediction.
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Figure 25: The spectral staircase N(F) of T*(2,3,8) with boundary conditions “dnn” (solid
curve) is compared with the approximation obtained from (4.86) (dashed curve). The dotted
straight line indicates Weyl’s law (4.87).
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Figure 26: The same curves as in fig. 25 are shown above the 108th energy eigenvalue.
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Figure 28: The quantization function {(F) := cos(xN(F)) of T*(2,3,8) with boundary con-
ditions, which allow one-dimensional unitary representations y, is compared with the energy
eigenvalues obtained by the method of finite elements.
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From the Selberg trace formula for polygonal hyperbolic billiards Selberg’s zeta function

Z(s) = II11 (1—x(w) e‘<5+2”+%[1—><<1>1>1w)

{71} n=0

x ] ﬁ (1 —x(7)a"(y) e~ s+ l”) , Res > 7. (4.88)

{’Yhyp} n=0

can be derived (cf. appendix C). As described in section 3.3, the non-trivial zeros of Z(s) are
related to the quantal energies of the dynamical system under consideration, and thus can be
used to establish a quantization rule. The corresponding Ruelle-type zeta function

R(s):= ][ (1 —x(7) e_Sl”) , Res > 1 (4.89)
{myp}

can be rewritten as a Dirichlet series to be summed over D-orbits L,

R(s) =Y A,e*  Res>r, (4.90)
P

which converge conditionally in right half-planes Res > ., and converge absolutely in right
half-planes Re s > o, = 7. The Dirichlet coefficients A, := [I,¢,[—x(7)] are determined by the
characters of the primitive closed geodesics constituting a D-orbit L,. Arranging the D-orbits
in ascending order Ly < Ly < L3 < --- allows to calculate the abscissae of convergence by

1 N
Oy = limsupm log Z |A,],
n=1

N—oo

(4.91)
N
o, = limsup — log Z A,l.
N—oo N n=1
Introducing effective D-multiplicities
gn(L)= > A, (4.92)
Lo=L
turns the Ruelle-type zeta function into
R(s) = gn(L,) e, Res > 7. (4.93)
n=1
A fit to the absolute value of the average effective D-multiplicities
|< gp(L) >| ~ de*F, L — o0 (4.94)

then allows to derive a prediction (3.89) for 0., based on a random walk model, which assumes,
that the signs of gp(L,) are randomly distributed.

Due to the presence of comparatively short geodesic lengths {; ~ 0.632974, ... in the case of
the hyperbolic triangle group 7*(2,3,8), the number of different D-lengths grows very rapidly,
soon reaching the limits of computational power. Already the first 8241 geodesic lengths,
covering the range [y <[ < 15, result in 2287989 D-orbits of 524642 different D-lengths. A fit
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to | < gn(L) > | according to (4.94) yields d = 0.3641 ... and o = 0.1765 for all combination of
boundary conditions, which are compatible with Selberg’s trace formula (cf. fig. 29 for the dnn-
case). Thus the statistical model leads to the prediction o. = 0.5883... by (3.89). Evaluation
of the sequences (4.91), however, seems to indicate a value of 0. < %, which allows to use the
representation (4.93) of the Ruelle-type zeta function R(s) on the critical line s =1 —ip, pe R
(see figs. 30 and 32). The assumption of the signs of gp(L,,) to be randomly distributed can be

observed to be much better realized than for Gutzwiller’s group (figs. 31 and 32).

In figs. 33 to 35 the absolute value of the Ruelle-type zeta function |R(s)| is evaluated on the
critical line as a function of £ = s(s—1), £ € R. A comparison with the numerical solutions of
Schrodinger’s equation shows a reasonably good agreement. In comparison to the quantization
rule based on {(F) as defined in (3.74), however, the investigation of |R(s)| on the critical line

has two drawbacks.

On the one hand, if short geodesics are present, the number of different D-lengths grows
very rapidly. For the numerical values given above, more than 60 times as much terms have to
be used to evaluate R(s), than for the calculation of {(£). This relation becomes even worse,
as can be seen from the value of «a, suggesting that the degeneracy of the D-orbit spectrum
grows much weaker, than the average multiplicity (4.31) of the geodesic length spectrum.

On the other hand, the search for zeroes of the complex valued function R(s) actually
becomes a search for minima, due to the finite number of D-lengths taken into account. Thus
towards higher energies the resolution of energy levels, which are very closed to each other,
tends to be difficult. Even the decision of how much quantal energies are associated to a
minimum becomes impossible, as opposed to the quantization rule based on {(F). Based on
Selberg’s zeta function, however, a quantization rule can be derived, which amounts to the
search of zeroes of a real valued function [7]. But rewriting (4.88) into a Dirichlet series, turns
out to require the spectrum of pseudo-lengths, which proliferates even faster than the spectrum

of D-lengths.

<g_D(L)>

Figure 29: The average D-multiplicity | < gp(L) > | of T%(2,3,8) with boundary conditions
“dnn” is shown together with the fit curve de®”.
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Figure 30: The numerical evaluations of the partial sums (4.91) for 7%(2,3,8) with boundary
conditions “dnn” are plotted as functions of the D-length Ly. The upper curve corresponds to
04, the lower one to o.. The critical line is indicated by the full horizontal line at s = %, whereas
the prediction (3.89) from the statistical model is shown as a dashed line at o. = 0.5883. ...
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Figure 31: The probability of the effective multiplicity gp(L,+1) to have the same sign as
gp(Ly) is shown for T*(2,3,8) with boundary conditions “dnn”.
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Figure 32: The same curves as in figs. 30 and 31 are shown for the remaining three combinations
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Figure 33: The absolute value of the Ruelle-type zeta function |R(s)| for 7*(2, 3, 8) with bound-
ary conditions “dnn” is evaluated on the critical line as a function of £ = s(s —1), £ € R, and
compared with the energy eigenvalues obtained by the method of boundary elements.
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Figure 34: The same curve as in fig. 33 is shown above the 56th eigenvalue.
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Figure 35: The same curves as in figs. 33 and 34 are shown for the remaining three combinations
of boundary conditions.
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4.5 Inverse Quantum Chaology

Substituting the smearing function h(p) as defined in (3.90) into Selberg’s trace formula (4.68)
yields the trace of the cosine-modulated heat kernel for 7%(2, 3, 8)

Ecos (pn L ~(ra+i)t

»:-p_x

A
= / dp cos(pL)e™” * {Q—ptanh(wp + 4—ZX

n
Y [E;h;ﬁ o
N 16;_ g:}; {Sinhlkl% N CO:’}EI]C)Z%} {e—u_ftl”)Q N 6_<L+ftzw>2}
* 4\/i {g}i exp( ) Xk%wexp (_%) {6—“‘52“2 - e } (4.95)

Since the sums over hyperbolic conjugacy classes produce Gaussian peaks at the lengths [, of
the closed geodesics on T%(2,3,8)\D, relation (4.95) can be used as a consistency check for the
numerically determined geodesic length spectrum of 7%(2,3,8). Remember, that using a finite
number of energy levels on the left-hand side of (4.95) has to be accounted for by adjusting the
upper limit of integration (see the discussion in section 3.4).

Using geodesic lengths in the range [; < [, < 18 and the numerical solutions of Schrodinger’s
equation as mentioned in the previous section, both sides of (4.95) totally agree for boundary
conditions subject to x(M) = x(N). Since no differences can be observed graphically, fig. 36
only shows the sums over hyperbolic conjugacy classes in (4.95), calculated by the energy
spectrum, for boundary conditions “dnn”.

Due to the presence of inverse hyperbolic conjugacy classes, which introduce the quantity
a*() in the periodic orbit sum, it is not possible to derive an expression for N(I) from (4.95)
along the lines described in the context of Gutzwiller’s group.

4.6 Pseudoarithmetical Triangles

Since the equivalence of the boundary conditions along edges M and N of the fundamental
domain of 7%(2,3,8) essentially entered the derivation of Selberg’s trace formula, the latter
cannot be expected to hold for the pseudoarithmetical case, i.e., x(M) # x(N). However,
the Selberg trace formula can then be conjectured to be part of a semiclassical approximation,
since the zero-length term and the periodic orbit sums in (4.68) are present in Gutzwiller’s trace
formula, too. Evaluating the trace of the cosine-modulated heat kernel for boundary conditions
subject to x(M) # x(N) shows, that quantum mechanical and classical side of (4.95) disagree
(fig. 37). Thus additional terms are missing, which will be investigated in the following.
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Figure 36: The sums over hyperbolic conjugacy classes of the trace of the cosine-modulated
heat kernel for 7%(2,3,8) with boundary conditions “dnn” is calculated by using the energy
spectrum in the range 0 < F,, < 100000. The parameter ¢ has been chosen as ¢t = 0.00005.

The first term of Selberg’s trace formula, which is based on the assumption y(M) = x(N),
is the sum over inversion conjugacy classes. Here the fact, that M and N belong to the same
conjugacy class led to the introduction of lengths /[ of boundary segments, which are delimited
by even vertices. One may, however, turn the sum over inversion conjugacy classes into a sum
over the inversions itself

3 XDl . (4.96)
7 4
If the characters x (/) are defined to be +1 or —1 according to Neumann or Dirichlet boundary
conditions along the edge associated to I, and the [; are the lengths of this edge, substituting
into (4.86) reproduces the boundary contribution in Weyl’s law for general billiards, which is
in the special case of the hyperbolic billiard 7%(2, 3, 8)

N(E):____I_X(L)ZL‘|‘X(M)ZM‘|‘X(N)ZN\/E_I_.“ . (4.97)
4z

The next term, which has to be adjusted, is the sum over elliptic conjugacy classes. It has
been observed [10], that using V' (E) as derived from Selberg’s trace formula in (4.86), leads to
a constant contribution in Weyl’s law, which does not agree with the value obtained from fitting
the numerical solutions of Schrodingers equation. Thus one is pointed to the contribution of

the vertex with angle %, which is associated to the elliptic element MN not allowing a unique

definition of the character y.
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Figure 37: The difference between quantum mechanical side and classical side of the trace of the
cosine-modulated heat kernel (4.95) is shown for 7%(2,3,8) with boundary conditions “nnd”,
which do not obey x(M) = x(N). The parameter ¢ has been chosen as ¢ = 0.00005.

Denoting the constant contribution of the elliptic term corresponding to a vertex of angle

Y= ;7; as F,, it can be shown from Selberg’s trace formula, that [17]
B, = < ! ) €N (4.98)
T\ T ) e '

if the boundary conditions along the edges adjacent to the vertex under consideration are
chosen to be equivalent. It is, moreover, known that (4.98) even holds for possibly nonintegral
m, [18]. Assuming, that the contribution F, is additively composed by contributions E¢ from
fractional parts of the inner angle of the vertex [51], relation (4.98) may be used to determine

Es for T%(2,3,8) in the pseudoarithmetical case. For this purpose consider a vertex with angle
vertex is composed by two vertices of angle

where the boundary conditions along the adjacent edges are chosen to be Neumann. This
%, but for the latter only the boundary condition
along one edge is fixed (cf. fig. 38). The boundary condition along the inner edge may be

chosen to be Dirichlet or Neumann, thus one is led to

= EF 4 B (4.99)
Using relation (4.98) then reveals
LS (4.100)
P44 '

Replacing the constant contribution of the elliptic conjugacy class [M N] in (4.86) by E%n

and taking into account the modified inversion term (4.96) leads to the asymptotic behavior
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n/d

Figure 38: A vertex with fixed boundary conditions along the adjacent edges allows two choices
of boundary conditions for the two composing sectors.

of the spectral staircase N (E) in the limit £ — oo for 7%(2,3,8) with boundary conditions
subject to x(M) # x(N)
A (L)1 M)l (N)1 1+ 108 (LM
XL A XM) I + x(N) Iv s L+ 10SX(LM)

Ey=—F
N( ) 47 + 47 576

(4.101)

Comparing the constant contributions for all pseudoarithmetical combinations of boundary
conditions with the values obtained by fitting the numerical solutions of Schrodinger’s equation
along the same lines as in section 4.4 yields a reasonably good agreement (table 6). It must be
pointed out again, that the fit value corresponding to boundary conditions “nnd” is the most
reliable one, since it is based on five times as much of energy eigenvalues than the values for
the remaining combinations of boundary conditions.

boundary condition dnd ndn ddn nnd
O'theor. +0.1857 | 4+0.1857 | -0.1892 | -0.1892
Ofit +0.231 | 40.229 | -0.146 | -0.188

Table 6: Constant in Weyl’s law (pseudoarithmetic case).

However, additional contributions must be present in a semiclassical trace formula for
T*(2,3,8) with boundary conditions subject to x(M) # x(N), since despite adjusting Sel-
berg’s trace formula as described above, both sides of the trace of the cosine-modulated heat
kernel (4.95) still disagree. This disagreement may be understood by a contribution arising as
follows. Assume, a periodic orbit hits an even vertex, say ) in fig. 18. Then all those orbits
just missing to hit ) are either reflected first at the edge M and afterwards at the edge L or
in reverse order, as can be seen from the tessellation picture fig. 19. Since x(LM) = x(ML),
even in the pseudoarithmetical case, possibly different boundary conditions along the edges
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adjacent to ) do not introduce a discontinuous behavior at (). The situation changes, how-
ever, for an orbit hitting an odd vertex, say P in fig. 18. Then the neighbored trajectories
either bounce at the edges M, N and M or at N, M and N, thus introducing a discontinuous
behavior by x(MNM) # x(NMN). One may now suspect, that this peculiarity causes the
stationary phase argument in the derivation of Gutzwiller’s trace formula [33] to break down.
The stationary phase argument selects those orbits to contribute, which are periodic in phase
space, as opposed to those, which are just closed in the configuration space.

10 T T T T

-10

05 1 15 2 25 3

Figure 39: The differences of both sides of (4.95) are shown for boundary conditions “nnd”
(solid) and “ndn” (dashed). The dots indicate geodesic lengths of non-periodic orbits passing
the corner with angle % of the fundamental domain of 77(2, 3, 8).

Thus in the case of 7%(2,3,8), closed, but non-periodic orbits, which pass the vertex with
angle Z may contribute to a semiclassical trace formula if the boundary conditions are subject
to x(M) # x(N). In fig. 39 the difference between quantum mechanical side and classical
side of the trace of the cosine-modulated heat kernel (4.95) as derived from Selberg’s trace
formula is plotted for two combinations of boundary conditions, namely “nnd” and “ndn”,
together with the geodesic lengths of the non-periodic orbits described above. The latter can
be easily generated by calculating the geodesic distance d(zg,vzg) between the vertex @ and
its images under the operation of all group elements v € 7%(2,3,8). The positions of the
peaks coincide quite well with this set of lengths. The two marked lengths correspond to
double traversals of the edges M and N, which are no periodic orbits (compare the discussion
of boundary orbits in section 4.3). Whereas the orbit along edge M only contributes for
boundary conditions “nnd”, the orbit along edge N only does for the case “ndn”. Thus,
contributions of non-periodic boundary orbits along edges with Dirichlet boundary conditions
seem to vanish. This behavior can be compared with “true” boundary orbits associated to an
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edge with Dirichlet boundary condition, for which the contribution to Selberg’s trace formula
is exponentially small (cf. (4.68)). Extending Gutzwiller’s trace formula in order to explain the
contribution of non-periodic orbits quantitatively, however, seems to be impossible analytically,
due to the complicated structure of the hyperbolic distance d(zg,vzq) (cf. (2.7)), as compared
with geodesic lengths related to traces of group matrices.
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5 Summary

Two objectives have been attacked in this paper. The first one was the numerical investigation
of quantization rules based on the Selberg trace formula with respect to their accuracy and
applicability to particular chaotic systems. In the more general context, it is Gutzwiller’s trace
formula, which establishes a semiclassical relation between the quantal energy spectrum and the
spectrum of classical periodic orbits of a given chaotic system. Thus Gutzwiller’s trace formula
can be considered to be a substitute for the semiclassical EBK quantization rule, which applies
to integrable systems only. For a special class of dynamical systems, namely, the geodesic
flow on surfaces of constant negative curvature, Gutzwiller’s trace formula turns into an exact
identity, known as the Selberg trace formula. Within the class of chaotic systems, those obeying
Selberg’s trace formula are the prototype examples for studying quantization rules, since they
do not suffer from unknown contributions in higher orders of Planck’s constant .

Two particular dynamical systems were investigated in this work. One of them is the free
motion of a point-particle on the Riemann surface of genus ¢ = 2, which is generated by Gutz-
willer’s group. The other dynamical system is the hyperbolic triangle billiard 7*(2, 3, 8). Since
it is generated by a reflection group, the influence of the boundary and of the vertices on the
quantization procedure has to be treated carefully. The hyperbolic triangle group 77%(2, 3, 8) al-
ready arose in the context of the investigation of the regular octagon group, and it has been
pointed out before [5], that according to different choices of boundary conditions the quantal
energy statistics may differ completely. This fact led to the second aim of this paper, which was
the examination of the different behavior of quantized systems arising from one classical dy-
namical system from the point of view of classical quantities entering semiclassical quantization
rules.

In detail the content of this work can be summarized as follows. After briefly reviewing
the relevant aspects of classical and quantum mechanics of dynamical systems associated to
hyperbolic surfaces, Gutzwiller’s octagon was investigated in chapter 3 as the first model. Tt
was found to be the fundamental domain of a particular compact Riemann surface of genus
g = 2. According to the choice of identifications of the edges, however, different fundamental
domains result, each representing the same Riemann surface. Due to the arithmetical nature of
Gutzwiller’s group I'gw, the group elements have been specified explicitly as 2 x 2 matrices with
entries, which are algebraic numbers obeying particular restrictions. Subsequently, this property
has been used to derive the average multiplicity of the geodesic length spectrum. Moreover,
the explicit knowledge of the group matrices was the main ingredient to an algorithm, which
allows to calculate the multiplicities of the geodesic length spectrum up to some cutoff length
L completely. Numerically, the geodesic length spectrum has been determined up to £ ~ 18,
covering more than 4 million closed geodesics on T'gw \D.

Two quantization rules based on Selberg’s trace formula have then been investigated by
using the numerically determined geodesic length spectrum as input data. The first one results
from an approximation of the spectral staircase N(E). For a given cutofl length £ of the
geodesic length spectrum, the accuracy of the obtained quantal energy eigenvalues is mainly
limited by the area of the dynamical system under consideration. The second method relies
on the examination of Selberg’s zeta function Z(s), whose nontrivial zeroes on the critical
line Res = % are related to the quantal energies. Since the Euler product representation of
Z(s) does not converge on the critical line, it is rearranged into a Dirichlet series, which may
improve the convergence properties. The price to be paid, however, is a combinatorial effort,
since then pseudo-orbits enter the classical side of a quantization rule, instead of the geodesic
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length spectrum itself. The combinatorial effort can be somewhat reduced by considering the
Ruelle-type zeta function, which possesses the same zeroes as Z(s) on the critical line, and can
be calculated by use of D-orbits. For the particular case of the Gutzwiller group, however, no
convergence is achieved on the critical line, thus this quantization rule fails to apply.

Concluding the treatment of Gutzwiller’s octagon, Selberg’s trace formula has been used to
extract information about the geodesic length spectrum by the spectrum of quantal energies,
which has been calculated by numerically solving Schrodinger’s equation using the method
of finite elements [4]. Two methods have been used, one relying on the trace of the cosine-
modulated heat kernel, the other on the calculation of the classical staircase function N(I).
Within the limits of numerical errors, no discrepancies were observed, confirming the geodesic
length spectrum calculated before.

The triangular billiard 7*(2, 3, 8) was investigated as the second model in chapter 4. Whereas
the “boundary” of the fundamental domain of a strictly hyperbolic Fuchsian group is merely
of artificial nature, vanishing by the identification of the edges according to periodic boundary
conditions, the fundamental domain of a reflection group possesses a true boundary. Due to
this property, in reflection groups several classes of group elements arise in addition to hyper-
bolic ones. Inversions are associated to reflections at the edges, elliptic elements correspond
to rotations around a vertex of the fundamental domain, and hyperbolic elements have to be
distinguished according to the number of reflections at the boundary. Studying the properties
of the hyperbolic triangle group 7*(2,3,8), the arithmeticity can be used to derive an explicit
representation of the group elements as 2 x 2 matrices with algebraic entries along the same
lines as for I'qw. However, the algebraic restrictions for group elements of 7%(2,3,8) seem to
be more intricate than for the case of Gutzwiller’s group.

For this reason the geodesic length spectrum of 7%(2,3,8) has been calculated by building
group elements as products of an efficient set of generators and properly separating a unique
representative for each conjugacy class. Due to the presence of edges of the fundamental
domain, a quantization procedure requires the specification of boundary conditions along the
edges. Thus the classical triangular billiard 7%(2,3,8) gives rise to eight different quantized
systems. The boundary conditions are incorporated in the transformation behavior of the wave
functions by introducing characters x(v). However, two situations may arise. Either the choice
of boundary conditions is compatible with the group structure, thus allowing x(7) to be a one-
dimensional unitary representation of 7%(2,3,8). In that case, the so-called arithmetical case,
the characters are invariants of conjugacy classes and can be easily determined. Otherwise, in
the “pseudoarithmetical” case, the representatives of the conjugacy classes have to be used to
construct the corresponding periodic orbits as a set of geodesic segments inside the previously
fixed fundamental domain. The characters can then be derived from the actual “physical”
reflections at the boundary of the domain of motion, i.e., in the same way they are defined for
generic systems obeying Gutzwiller’s trace formula.

Subsequently, a generalized Selberg trace formula was derived, which applies to polygonal
hyperbolic billiards with mixed boundary conditions. The existence of a one-dimensional uni-
tary representation compatible with the chosen set of boundary conditions essentially entered
the proof, thus for the case of T*(2,3,8) only those quantized systems are subject to Sel-
berg’s trace formula, which result from the desymmetrization procedure of the regular octagon
group. For this class of systems, afterwards, the same quantization rules were investigated as
for Gutzwiller’s group I'gw. Due to the small area of the fundamental domain of 7%(2,3,8) a
much larger range of energy eigenvalues has been resolved with a high degree of accuracy by the
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method relying on the spectral staircase N'(E). In contrast to the case of I'qw, the quantization
rule based on examining the zeroes of the Ruelle-type zeta function R(s) applies for 7%(2, 3, 8).
However, the combinatorial effort in order to determine the spectrum of D-orbits increases much
more rapidly, due to the presence of comparatively short geodesic lengths. Moreover, the zeta
function quantization using R(s) suffers from the impossibility to resolve energy eigenvalues
which are very close to each other.

Finally, the trace of the cosine-modulated heat kernel has been used to check the consis-
tency between the numerically determined geodesic length spectrum and the quantal energy
spectrum [5, 48]. For the four choices of boundary conditions leading to arithmetical systems,
no discrepancies could be observed. In the pseudoarithmetical case, the Selberg trace formula
was not expected to apply. But interpreting Selberg’s trace formula as part of a generalized
Gutzwiller trace formula, the difference between quantum mechanical and classical side of the
trace of the cosine-modulated heat kernel has been investigated to obtain hints for the nature
of the additional contributions. The terms corresponding to edges and vertices of the funda-
mental domain arising in Selberg’s trace formula have been adjusted to agree with the behavior
predicted by Weyl’s asymptotic law for the spectral staircase N'(E). The remaining contribu-
tions seem to originate from non-periodic orbits, which are however not incorporated in the
form of Gutzwiller’s trace formula known so far. A similar observation has been made recently
for the truncated hyperbola billiard, which has a finite area [38]. Thus the difference between
the spectral statistics of the two classes of quantized systems associated to 7%(2,3,8) can be
understood from the classical point of view by the applicability of Selberg’s trace formula. In
the arithmetical case Selberg’s trace formula applies, being a special case of Gutzwiller’s trace
formula. In the pseudoarithmetical case, however, a new class of orbits arises, which contribute
due to the subtle combination of boundary conditions.
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A General Structure of Group Matrices in gy

In order to prove the relations (3.21sqq) characterizing the matrix entries of an arbitrary element
~v € 'qw of Gutzwiller’s group one proceeds in three steps.

At first, note that the generators a,,b, € I'gw of Gutzwiller’s group are related to the
generators gi' € I'yeg of the regular octagon group by

a1 = Rz g5' = g7 Rz,

by = R—g g3 = g1 R—ga
(A.1)
az = Rggo = 92 R§7

by=R_zg5' =g7 R_z,

and similarly for their inverses. Thus the rotations Riz “commute” with the generators of
the regular octagon group in the sense, that for any Ryz g a ¢! can be found, such that
Ryz g = glﬂRig. Furthermore, also the rotations Ry, “commute” with the generators of
the regular octagon group

Rir gi' = ¢F" Ren, (A.2)
and obviously with the rotations Rig too. Therefore any element ygw € I'qw may be written

as a product of generators ¢gi' of the regular octagon group and a number of rotations Rz, all
commuted to the right (cf. 3.20)

YGwW = ’yregler, k= 0,1,2,3. (AS)

5
According to this relation, matrices 74, € 'qw composed of an even number of generators
are either of the form

T = Yreg (A.4)
or
B | —ur4wr (v —ivR)a
71 - ’Yreg Rﬂ' — ( (U[ _I_ iUR)Oé —uy — Z-UR ) . (A5)

In the first case 74 € I'qw obeys the same restrictions (3.12) and (3.13) as group matrices of
the regular octagon group I'yes, whereas in the second case the roles of real and imaginary part
are reversed. Thus even group matrices 4 € I'gw share the same algebraic decomposition of
their entries (3.23) as elements 4yep € I'reg and are subject to

w(ma1) # 7(myr),  7(prr) = 7(pr1)- (A.6)

Elements 7, € I'qw being a product of an odd number of generators can be written as

up + iug (vR+ivz)a)((1ii)§ 0 ) (A7)

2 :%egRig - ( (UR—iv[)Oz UR — LU 0 (13FZ')§

leading to
uyp = (up F UI)? =npFnr+ (mpF mz)%
V2 V2

UQJZ (uI:I:uR) B :nI:I:nR—I—(mI:I:mR)

=qrEqr+ (pr im)%

2

V2R = (’UR + U[)

o efy
S

vo,r = (v For)S = q1 F qr + (p1r F pr) 2
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Since matrices of the regular octagon group I'te, obey

n(mg) # 7(mr), w(pr) = 7(pr), (A.9)

the algebraic decomposition (3.25) follows from (A.8), and the entries of odd group matrices
~vo € I'qw are restricted by
m(ma.r) = m(ma,),

m(ng,r) =1 =m(nyr),

(A.10)
W(P2,R) = W(PQ,I)-

The second step consists in forming all possible products of general group matrices v € 'qw
and generators aF!,b*! € I'qw of Gutzwiller’s group in the proper algebraically decomposed

v 77y
form. For the investigation of the resulting expressions the following relations, valid for arbitrary

integers =,y € Z, will be useful
w0 =s={ ] = sheral{ 7 belie-a], (A1)

0
L (A.12)

= 7 [%(;z:z + yQ)] = {
= 2,2 0
W(f){ 2 }W(y) = (2’ +y?%) z{ L (A.13)
m(z) £7(y) = 7 [1-22—y?)]=0. (A.14)
Since from (3.15) it follows, that
yaf' =y Ry af'R_, = Ry 7}, af'R_,, (A.15)

where 7, denotes an element of I'gw usually different from =, and a analogous relation holds
for 44 b3', only products v ai' and ~; bf' need to be considered explicitly. The remaining
products vz af' and 45 b' only differ by a conjugation by R,, i.e., by the signs of the off-
diagonal elements, thus yielding no further information. Using

-1 -1
a b 1 d —b
(o0 () o

€ I'qw of Gutzwiller’s group can be written as

the generators ai’, b

w o [ () aE) FO+VI(I 4
b\ FeevR-ie () aFi) )

o _ (2 AF) £2+ vV
v F2+v2ai (1+2)(1+i) )

(A.17)

Now, four kinds of products have to be investigated:
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(i) 71 =72 afl, yielding

g +iun s = (g + iug 1)(1£4) (14 32) F (vpn +iveg) (1 — )(1+ V2) 0, (A8

thus
U1,R—m1R+n1R\/_— (ug,r F ugr) ( i) (v2,r + v2.1),
(A.19)
Ul,I—m1[+n1I\/_— (ug,r £ ug R) (1—|- \/_) F (vo,r — v2.R),
and
N1,R = %(mz,R F mQ,I) + %(TLZ,R + nz,l) + ((J2,R + Q2,1)7 (A.20)
.20
ni=1 s(mar+myp)+ %(nQ,I + n9.r) F (2,1 — 92,R)-
Since w(nyr) = 1 = w(ng) relation (A.11) results in
s [%(ngﬁ F TLQJ)] #7 [%(ngﬁ + ngJ)] , (A.21)

therefore (A.20) forces

) = st ={ | @ wmn{ 2 e o

(ii) 71 = 72 bf', yielding

uyp + tuy; = (ug,p + tug 1) (1 F2) (1 + g) F (ve,r + v ) (2 + \/5) o?, (A.23)

thus
U1R—m1R+n1R\/_— (ug,r Fuzr) ( )iUQI\/_
(A.24)
UlI—m1[+n1I\/_— (ua,r F ug ) (1—|-£) qing\/_
and
niR = %(WLQ,R +my 1) + %(ngﬁ + ng 1) &+ par,
(A.25)

ni,r = 5(ma, 1 F ma,R) + 5(na,r F no,r) F pa.r,

also leading to (A.22) by use of 7(p2.r) = 7(p2.1)-
(iii) 72 = 71 i, yielding

upp + ity = (ur g+ iun ) (1£14) (14 2) F (vra+iv)(1—i)(1+V2) e, (A.26)

thus
Uy R = Mo R+ n2,R72 = (u1,p F ui,1) (1 + ?) (vi,r + v11),
(A.27)
Ug 1 = Mo+ n2,[§ = (u1,7 £ u1,R) (1 + \f) + (va,r — V1.1),
and
ma R = (m1,R F mu) + (n1,R + n1,1) + (Pl,R + pl,I)a
(A.28)

mor = (mirtmipr)+ (gt nig)+(prr— ),
again leading to (A.22) by (A.6).
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(iv) 2=m biﬂ, yielding

upp+ iy = (urp+iun ) (1F ) (14+2) F (via+ivi)i2+v2)a?,  (A29)

thus
U R = Mo R+ n2,R§ = (u1,p L usr) (1 + ?) + vl,I\/§7
(A.30)
Ug = Mo+ nz,]? = (u1,r Fui,r) (1 + @) F Ul,R\/§7
and
mor = (mirtmis)+ (nirtnir)*2q.1,
(A.31)

ma, = (M1 Fmir) + (n1.1 F ni,r) F 2¢1.R-

This case again yields (A.22), since 7(mq,r) # 7(m1,R).

Putting all together, incrementing the wordlength of an arbitrary v € I'qw is always subject to
the relation (A.22). Since, however, all generators aq, by, az, by € I'qw and their inverses fulfill
7(me,r) = 1, general group matrices v € I'qw obey

m(mer) =1,

(A.32)
m(nir) = ®(n1 7).
The final step takes advantage of the determinant condition
dety, =1, Vi € Taw, (A.33)
or explicitly
upp+uis — (V2= 1) (i g+ ol = 1. (A.34)
Applying an algebraic conjugation results in
i p+ ﬁi,f + (\/§ + 1) (03 p + 1713,1) =1, (A.35)
leading to
|1~tk,R| <1, |ﬂk7[| <1, (A 36)

|1~)k,R| < «, |1~)k,l| < «.

Inserting the algebraic decompositions of group matrices (3.23) and (3.25) into (A.34) yields
two independent relations, an integer and an irrational part.

In the case of group elements v, € I'qw being the product of an even number of generators
the integer part turns out to be

Q(niR + n%[) + P%,R + Pi[ + 2(‘112,R + Qil) —Aprrr+pirqr)=1- miR - mi[' (A.37)
By 7(p1,r) = #(p1,1) and (A.13) one finds
W(P%,R + P%,I) =0, (A.38)
thus (A.37) can be multiplied by % Since w(m1,r) # w(mq 1) relation (A.14) leads to

7300 = mtp—mi | =0, (A.39)
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therefore
T [“%,R tni +3Prtpi) et Q%J] = 0. (A.40)

However, 7(ny gr) = w(ny,7) yields 7(nf z + nf ;) = 0 by (A.13), leading to

T [%(P%,R + p%,[)] = W(QiR + Qil)v (A.41)
which can be rewritten as
, R 0 = 7(qr) =7(q1)
w(pr) = 7(p11) = { 1 = wlqim) £ (g (A.42)

by using (A.12) and (A.13). From (A.40) and (A.41) one finds

W(”%,R + n%[) =7 [%(P%,R +pi)+air+ Qil] = W(P%,R + P%,I) =0. (A.43)
Multiplying by % yields
T [%(W%R + n%[)] =7 B(P%,R + P%,I)] ; (A.44)
unraveling
7(p1r) = ®(n1.R) (A.45)

by use of (A.12).

Turning to the case of odd group elements v, € I'qw, the integer part of the determinant
condition (A.34) can be found to be

mg,R + ng + Pg,R + Pg,l + Q(QS,R + qi;) —4(p2rq2,r+ P2rqer) =1 — %(n%,R +n37). (A.46)

Since 7(ng,r) = 7(n2,r) = 1 the right-hand side is even by (A.12), i.e., (A.46) can be multiplied
by % yielding

T [%(ng +m3 )+ 5(Pr+Pis)+ R+ qg,[] =0, (A.4T)
which can be rewritten as
T |3(Ph e+ 1)) # R R+ a), (A.48)
by usin
g i Lim?2 2 =1 A .49
T [Q(mQ,R + m2,1)] =1, (A.49)

resulting from w(mqr) = 1 = wx(my ) and (A.12). Finally, by use of (A.12) and (A.13) one
finds

W(pZ,R) = W(P2,I) = { (1) z ZEZ;;; i Zggzg (A.SO)

from (A.48).

93



B General Structure of Group Matrices in 77(2, 3, 8)

The outline of the proof of the relations (4.15sqq), which characterize arbitrary group elements
v € T*(2,3,8) is follows. At first, the structure (4.15) of the two different kinds of matrices
e € T*(2,3,8) is assumed to be true. Then the determinant condition

detyx =1, Ve € T7(2,3,8), (B.1)

will be inspected to derive parity restrictions on the matrix entries of -, which in turn will
be used to show, that the structure (4.15) of matrices is conserved under multiplication with a
generator of 7%(2,3,8).

Throughout the calculations, the following two statements will be of some use.

Let z1,z9,y1,y2 € Z be integer numbers subject to
m(xq) = 7(z2). (B.2)

(i) If the z; are connected to y; by

ww) =) = s Z et (B.3)

it follows, that
m(z1y1 + 22 y2) = 0. (B.4)

(ii) If on the other hand

O O I (B.5)

one finds

m(z1y1 + Tay2) = w(2q). (B.6)
Starting with the case of k£ = 1, equation (B.1) explicitly yields
U%,R + Ui[ - (\/5 - 1)(”12,1% + Uil) =4. (B.7)

Applying an algebraic conjugation results in

Wrt il + (V24 1)@ R+ 010 = 4, (B.8)
thus . ) ) )
Igllj iy IEIIH by (B.9)
The proper algebraic decomposition yields the two relations
p(mi g+ mip)+3(nfp+ni )+ 50l + 1)
+ %(912,3 + qu) —(praar+piipy) =1 (B.10)
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and
s(mirmip+myrmr) — (0 + 1)
— (@ n+ain) +3(mrar+ prrgLr) =0. (B.11)
Multiplying (B.11) by four, immediately results in
T(pip+pis) =0 = w(prr) = 7(p11), (B.12)
by use of (A.13). Thus, multiplying (B.10) by four, one can draw the analogous conclusion
7(ma ) = 7(mag). (B.13)
Now multiply (B.10) by two. The resulting expression
w{3mip+min) + (et} =7 {30he + pho) + (6t al)} (B.14)
can be rewritten by (A.12), (B.12) and (B.13) to yield
m(myir) + W(niR + n%[) = 7(p1,r) + W(QiR + Qif)- (B.15)

The value of the latter expression can be determined as follows. At first, assume it to be one.

Then (A.13) would lead to

|0 = =w(nir) #7(nr)
W(ml,R) —{ 1 = W(nl,R) — 77(“1,1) >
(B.16)
, _J 0 = 7w(qur) #7(qr)
’ﬂ'(pl,R) = { 1 = W(QLR) _ 7T((J1,I)
Multiplying (B.11) by two and inserting
(3 a+pi) + (@rtal)) =1 (B.T)
offers
m{(mirnir +myrn) + (pLrOr+ e} =1 (B.18)

Using (B.3sqq), however, leads to a contradiction. Thus the assumption (B.16) must have been
wrong, i.e., the value of the expression (B.15) is zero, resulting to

r(mag) = 0 = w(nigr)=mw(n1s)
LR 1 = #w(nigr) #xlng)
(B.19)
, _J 0 = 7(qr) =7(qr)
w(pr) = { 1 = nlon) # wla)
Since (B.18) turns into
m{(mirnir +mirnig) + (prr,r +Pipg)} =0, (B.20)
applying (B.5sqq) yields
7(mi1r) = 7(p1.R) (B.21)
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Investigating the second type of matrices (k = 2), the determinant condition (B.1) yields
(2 - \/5)('“31% + ug[) - \/5(1’3,1% + Ug,[) =4, (B.22)
which transforms into
(2= V2)(@3 g + 5) — V205 + 03 ) = 4 (B.23)
under algebraic conjugation, i.e.,

|a27R| < \/577 |&2,I| < \/577

02,0 < V28, [621] < V28 (B.24)
Decomposing (B.22) algebraically, yields
3(mi g+ mi )+ (nd g+ n3 )
— (ma,rna,r + Mmarna 1) — (P2,RI2,R+ P21 P2,1) = 1 (B.25)
and
(mo,rn2,R + Ma1nyr) — i(mg,R + mg[) - i(ng,R + ng[)
—3(3r+nip) —3(Gr+a) =0 (B.26)
Multiplying (B.25) by two, leads to
ﬂ-(mg,R + mg,[) =0 = m(mar) = 7(ma1), (B.27)
by relation (A.13), finally revealing
7 (p2,r) = 7(p2,1) (B.28)

from equation (B.26).

Finally, it must be checked, if the algebraic structure of the matrices 7, and -3, defined
in (4.15) is compatible with the multiplication in 7%(2,3,8). This can be accomplished by an
induction argument. On the one hand, the group generators L, M, N obviously fit into the
structure (4.15). For arbitrary group elements, on the other hand, all kinds of product of
generators L, M, N and matrices 71,72 have to be investigated. Since, however, multiplication
by L does not affect the algebraic structure of a group matrix, only four different kinds of
products need to be considered explicitly.

(i) v2 = My, yielding after algebraic decomposition

mor = mi 1+ N1+ qu,1, P2,R = N1+ q1,1,
1 1
nagr=nis+ §(m1,1 + P1,1)7 q92,R = §(m1,l + PLI)v
(B.29)
Mo = MR+ N1,R — ¢1,R, P2,1 = ¢1,R — N1,R,
1 1
nay=niRr+ §(m1,R - pl,R)a q2,1 = §(P1,R - ml,R)-

All of the right-hand sides result to integer numbers, as can be derived from (B.12), (B.13)
and (B.21).
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(i1) v2 = N1, yielding
Mo R = %(mLR + ma1) + naR,
Ny R = %(7711,1% +n1ir+n11),

(ml,R - ml,I) —nir,

B =

mo 1=

nor = %(nl,R — 7 — nl,I)a

Using in addition (B.19), here the right-hand sides

(i) v = M~,, yielding
mi R = Mag+ Pa2r,
ni,rR = na1+ qr,
my, 7 = M2 R — P2,R,

n1,1 = N2,R — q2,R,

which are obviously integer expressions.

(iv) v = Nra, yielding
mi,R = My 1+ Nar— NaJ,
_ 1
ni,rR = na s+ 5(77”62,1% —myy),
myr=mogRr — Ny R —Nar,

niy =Ny R— %(mzR + maR),

v+ 3(pLR — Pra),

P2,r = ¢
q2.R = %(pl,[ + ¢1,r — ¢1,1),
(B.30)
1
P21 = q1,R — 5(P1L.R+ Pr1),
q2,1 = %(pl,R —q1,R — qu)-
result to integer numbers, too.
P1,R = Mo+ par1+2qr,
QiR ="no21+ P21+t q.1,
(B.31)
P1,1 = p2,R — MaR + 2¢2 R,
q1,1 = p2,R — N2,R + q2,R,
P1,R = @2.R t q2,1 + P2,R,
91,R = q2,r + %(PzR + pa,1);
(B.32)

P11 = 42,R — P2,71 — 42,1,

q1,1 = %(sz - PQ,I) —q2,1-

Taking into account relations (B.27) and (B.28), in this case also all expressions are integer

valued.

Thus any product of the group generators L, M, N possesses the structure (4.15), thereby

concluding the proof.
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C Selberg’s Zeta Function for Polygonal Hyperbolic Bil-
liards

In this appendix the Selberg zeta function for polygonal hyperbolic billiards is derived from
the generalized Selberg trace formula (4.68). The calculation proceeds along the same lines as
in the strictly hyperbolic case. However, a slight modification due to the presence of boundary
orbits arises.

Using Selberg’s trace formula to calculate the trace of the regularized resolvent, the sums
over hyperbolic conjugacy classes can be expressed as the logarithmic derivative of Selberg’s
zeta function. Thus one is led to the smearing function
B 1 1

PAls—3)? pPPHlo—3)"

h(p) (C.1)

which is a valid choice for Res > 1, Reo > 1. Inserting the first term of the Fourier transform

. 1 . 1
W) — ~(s=D)lal _
(0) =5 —7¢ % — 1

e (=31l (C.2)

into the sum over hyperbolic conjugacy classes in (4.68), which is associated to closed geodesics
instde the fundamental domain, yields

1 — XN o~ (5= 5) iy
Kl Kl
512 & e () o) o ()
_ 1 - X", — skl
25 —1 Z Z 1 —ok(y) ek ‘

{myp} k=1

1 oo 00 e
- 95 — 1 Z ZZ Xk(’}/)l,yakn(fy)e (s4n)kly

{myp} k=1n=0

where N
Zngo(s) =TI TI (1= x(7) 0" (7) e 1), (C.4)
{Ynyp} =0

The contribution of boundary orbits can be found to be

1 Z f: Xk(’yf) Z’Y] 1 + X(]) e—(s—%)klw
25 — 1 4 sinh Mo . by

{vrt k=1 inh 2 osh 2

1 00 . e—sklyj X(]) e—sklyj
S IRy
2(2s — 1) {Z 2 X0 by {1 e A e

v} k=1
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B 2(5_1 ZEEX i) by, [T+ x(D) (=1)"] e —(s4n) kly,

{1} k=1 n=0

T 21 Z Z Z X" (vi) 1y, € —(s+2n+5[1=x(D)]) klv;

{~v7} k=1 n=0
1 Zi X(71) L, e~ G2t 50=x(DD by
25— 1 £ 1 — x(yr) e G lox(D by
1 d
- as 18 oo C.5
25 — 1 ds 08 Zb.o.($), (C.5)
where
Zvols) =1 H (1 —x(1)e (5+2n+15[1—x(1)])]71) ‘ (C.6)

{’y]} n=0

Thus the Selberg zeta function turns out to be

111 (1 — x(1) e—(s+2n+15[1—x(1)])lw)

{71} n=0
x 1 II (1 —x(y) o™ (7) e~ H) l”) ) Res > 1. (C.7)
{’Yhyp}nzo

Since the Euler product representation of the corresponding Ruelle-type zeta function

R(s) =TI (1= xlan e triimntni)
{or}

< 1L (1= x(me) (C3)

is absolutely convergent for Res > 1, and

o0

H (s+mn), Res > 1, (C.9)

]%(5) and Z(s) have the same zeroes on the critical line Res = 1. Moreover the first term in
(C.8) is a product over a finite number of boundary orbits, which can be evaluated directly
on the critical line. For Re s = %, however, it never vanishes, thus it cannot contribute to the

zeroes of ]%(s) on the critical line. Therefore one finally arrives at

R(s)= ] (1 —x(y) 6_817) \ Res > 1, (C.10)

{'Yhyp}

which has the same zeroes on the critical line as the Selberg zeta function Z(s).
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