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The 10%?-nd zero of the Riemann zeta function

A. M. Odlyzko

ABSTRACT. Recent and ongoing computations of zeros of the Riemann zeta
function are described. They include the computation of 10 billion zeros near
zero number 10%2. These computations verify the Riemann Hypothesis for
those zeros, and provide evidence for additional conjectures that relate these
zeros to eigenvalues of random matrices.

1. Introduction

This is a brief report on computations of large numbers of high zeros of the
Riemann zeta functions. It provides pointers to sources of more detailed informa-
tion.

There have been many calculations that verified the Riemann Hypothesis (RH)
for initial sets of zeros of the zeta function. The first were undertaken by Riemann
himself almost a century and a half ago. Those calculations did not become known
to the scientific community until Siegel deciphered Riemann’s unpublished notes
[Sie]. The first published computation, by Gram in 1903, verified that the first
10 zeros of the zeta function are on the critical line. (Gram calculated values
for the first 10 zeros accurate to 6 decimal places, and showed that these were
the only zeros below height 50. He also produced much less accurate values for
the next 5 zeros. See [Edw] for more details.) Gram’s work was extended by a
sequence of other investigators, who were aided by improvements in both hardware
and algorithms, with the two contributing about equally to the improvements that
have been achieved. The latest published result is that of van de Lune, te Riele,
and Winter [LRW]. They checked that the first 1.5 x 10° nontrivial zeros all lie
on the critical line. Their computations used about 1500 hours on one of the most
powerful computers in existence at that time. Since then, better algorithms have
been developed, and much more computing power has become available. With
some effort at software and at obtaining access to the idle time on a large collection
of computers, one could hope to verify the RH for the first 10'2 zeros in the next
year or so, Jan van de Lune has been extending his earlier work with te Riele and
Winter, using the algorithms of [LRW] and very modest computational resources.
By the end of the year 2000, he had checked that the first 5.3 x 10° zeros of the
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zeta function lie on the critical line and are simple, even though he was relying on
just three not very modern PCs (unpublished).

Starting in the late 1970s, I carried out a series of computations that not only
verified that nontrivial zeros lie on the critical line (which was the sole aim of most
of the computations, including those of van de Lune, te Riele, and Winter [LRW]),
but in addition obtained accurate values of those zeros. These calculations were
designed to check the Montgomery pair-correlation conjecture [Mon], as well as fur-
ther conjectures that predict that zeros of the zeta function behave like eigenvalues
of certain types of random matrices. Instead of starting from the lowest zeros, these
computations obtained values of blocks of consecutive zeros high up in the critical
strip. The motivation for studying high ranges was to come closer to observing the
true asymptotic behavior of the zeta function, which is often approached slowly.

The initial computations, described in [Od1], were done on a Cray supercom-
puter using the standard Riemann-Siegel formula. This formula was invented and
implemented by Riemann, but remained unknown to the world until the publica-
tion of Siegel’s paper [Sie]. The highest zeros covered by [Od1] were around zero #
10'2. Those calculations stimulated the invention, jointly with Arnold Schénhage
[0d2, OS], of an improved algorithm for computing large sets of zeros. This al-
gorithm, with some technical improvements, was implemented in the late 1980s
and used to compute several hundred million zeros at large heights, many near
zero # 10%°, and some near zero # 2 x 10%2°. Implementation details and results
are described in [Od3, Od4]. These papers have never been published, but have
circulated widely.

During the last few years, the algorithms of [Od3, Od4] have been ported
from Cray supercomputers to Silicon Graphics workstations. They have been used
to compute several billion high zeros of the zeta function, and computations are
continuing, using spare cycles on machines at AT&T Labs. Some of those zeros are
near zero # 10?2, and it has been established (not entirely rigorously, though, as is
explained in [Od3, Od4]) that the imaginary parts of zeros number 1022 — 1, 10%2,
and 10?2 4 1 are

1,370,919, 909, 931,995, 308, 226.490240...
1,370,919, 909, 931,995, 308, 226.627511...
1,370,919, 909, 931, 995, 308, 226.680160...

These values and many others can be found at
(http://www.research.att.com/~amo/zeta tables/index.html).

Further computations are under way and planned for the future. Very soon
10 zeros near zero # 10?2 will be available. It is likely that some billions of zeros
near zero # 10%® will also be computed. A revision of [0d3, Od4] that describes
them is planned for the future [Od7]. Results will be available through my home
page,

(http://www.research.att.com/~amo).

Finally, let me mention that many other computations of zeros of various zeta
and L-functions have been done. Many are referenced in [Od5]. There are also
interesting new results for other classes of zeta functions in the recent Ph.D. thesis
of Michael Rubinstein [Ru].

The next section describes briefly the highlights of the recent computations.
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2. High zeros and their significance

No counterexamples to the RH have been found so far. Heuristics suggest that
if there are counterexamples, then they lie far beyond the range we can reach with
currently known algorithms (cf. [Od7]). However, there is still an interest in under-
taking additional computations in the ranges we can reach. The main motivation
is to obtain further insights into the Hilbert-Pélya conjecture, which predicts that
the RH is true because zeros of the zeta function correspond to eigenvalues of a
positive operator. When this conjecture was formulated about 80 years ago, it was
apparently no more than an inspired guess. Neither Hilbert nor Pdélya specified
what operator or even what space would be involved in this correspondence. To-
day, however, that guess is increasingly regarded as wonderfully inspired, and many
researchers feel that the most promising approach to proving the RH is through
proving some form of the Hilbert-Pdlya conjecture. Their confidence is bolstered
by several developments subsequent to Hilbert’s and Poélya’s formulation of their
conjecture. There are very suggestive analogies with Selberg zeta functions. There
is also the extensive research stimulated by Hugh Montgomery’s work on the pair-
correlation conjecture for zeros of the zeta function [Mon]. Montgomery’s results
led to the conjecture that zeta zeros behave asymptotically like eigenvalues of large
random matrices from the GUE ensemble that has been studied extensively by
mathematical physicists. This was the conjecture that motivated the computa-
tions of [Od1, Od3, Od4]| as well as those described in this note. Although this
conjecture is very speculative, the empirical evidence is overwhelmingly in its favor.

To describe some of the numerical results, we recall standard notation. We
consider the nontrivial zeros of the zeta function (i.e., those zeros that lie in the
critical strip 0 < Re(s) < 1), and let the ones in the upper half of the critical strip
be denoted by %+z’7n, where the 7, are positive real numbers arranged in increasing
order. (We are implicitly assuming the RH here for simplicity. We do not have to
consider the zeros in the lower half plane since they are the mirror images of the
ones in the upper half plane.) Since spacings between consecutive zeros decrease
as one goes up in the critical strip, we consider the normalized spacings

)log(%/ (2m))

(21) Op = (’Yn—i—l — Tn B
Y[3

It is known that the average value of the §, is 1. The conjecture is that the
distribution of the §, is asymptotically the same as the Gaudin distribution for
GUE matrices.

Figure 1 compares the empirical distribution of §,, for 1,006,374, 896 zeros of
the zeta function starting with zero # 13,048,994, 265, 258,476 (at height approxi-
mately 2.51327412288 - 101%). The smooth curve is the probability density function
for the normalized gaps between consecutive eigenvalues in the GUE ensemble. The
scatter plot is the histogram of the d,,. The point plotted at (0.525,w) means that
the probability that §, is between 0.5 and 0.55 is w, for example. As we can see,
the empirical distribution matches the predicted one closely.

The paper [Od1] presented similar graphs based on the first million zeros,
where the agreement was much poorer, as well as on 100, 000 zeros starting at zero
# 10'2, where the empirical and GUE distributions matched pretty closely. The
graphs in [0Od3, Od4], based on large sets of zeros as high as zero # 10?° showed
far better agreement, even better than that of Figure 1.
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FiGURE 1. Probability density of the normalized spacings dy,.
Solid line: Gue prediction. Scatterplot: empirical data based on a
billion zeros near zero # 1.3 - 10'6.

One motivation for continuing the computations is to obtain more detailed pic-
tures of the evolution of the spacing distribution. Graphs such as that of Figure
1 are convincing, but are often inadequate. These graphs do not convey a good
quantitative idea of the speed with which the empirical distribution of the §,, con-
verges to the GUE. They can be misleading, since in the steeply rising parts of the
curve, substantial differences can be concealed from the human eye. It is often more
valuable to consider graphs such as Figure 2, which shows the difference between
the empirical and GUE distributions. This time the bins are of size 0.01, and not
the larger 0.05 bins used in Figure 1. It is the large sample size of a billion zeros
that allows the use of such small bins, and leads to a picture of a continuous curve.
(With small data sets, say of 100,000 data points, which is all that was available
in [Od1], sampling errors would have obscured what was going on.) Clearly there
is structure in this difference graph, and the challenge is to understand where it
comes from.

There are many other numerical comparisons between the zeta function and
various conjectures that can be performed with large sets of zeros. For example, one
can compute moments of the zeta function on the critical line, and compare them
with the predictions of the fascinating conjectures of Keating and Snaith [KeaS]
that relate the behavior of the zeta function at a fixed height to that of eigenvalues
of random GUE matrices of a fixed dimension. (The basic Montgomery conjecture
only suggested that the asymptotic limits would be the same.) There is also the
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Diffrence between empirical distribution for a billion zeros near
zero # 1.3 - 1016 and the GUE prediction.

general fact that convergence of some properties of the zeta function to asymptotic
limits is fast (for example, for the distribution of §,), while for others it is slow.

Large scale computations of zeros can also be used in other contexts. In par-
ticular, they can be used to improve known bounds on the de Bruijn-Newman
constant, as is done in [Od6].

Ideally, of course, one would like to use numerical evidence to help in the
search for the Hilbert-Pélya operator, and thereby prove the RH. Unfortunately,
so far theoretical progress has been limited. Some outstanding results have been
obtained, such as the Katz-Sarnak proof that the GUE distribution does apply
to zero spacings of zeta functions of function fields [KatzS1, KatzS2]. However,
these results so far have not been extended to the regular Riemann zeta function.

Acknowledgements. I thank Jeff Lagarias and Jan van de Lune for their
comments on earlier versions of this note.
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