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Preface

This monograph presents the results of a computation of over 175 million consec-
utive zeros of the Riemann zeta function near zero number 10?°, as well as of several
other large sets of high zeros, including some near zero number 2 x 10%°. These
zeros lie about 10® times higher than previously calculated large sets of zeros, and
their computation was made possible by a fast algorithm invented by A. Schénhage
and the author. Although the present implementation of this algorithm is not en-
tirely rigorous due to incomplete control of roundoff errors, it appears to be highly
accurate as well as fast, and the results indicate that all the computed zeros satisfy
the Riemann Hypothesis. Various statistical studies of these zeros are presented.
Some of them provide numerical evidence about conjectures that go even beyond
the Riemann Hypothesis, and relate the distribution of zeros of the zeta function
to that of eigenvalues of random matrices studied extensively in physics. Other
studies compare the observed behavior of the zeta function to known asymptotic
estimates. The computations described in this book were carried out on a Cray

X-MP supercomputer.



Chapter 1

Introduction

The 102°-th zero of the Riemann zeta function equals
1/2 41 15202440115920747268.6290299 . . . .

It and a few of its nearest neighbors are shown in Table 1.1. All told, almost 176
million zeros near the 10%°-th zero were computed, as wee as over 101 million zeros
near zero number 2 x 1029, These zeros lie almost 10® times higher than any other
large sets of zeros that had been computed before. This monograph reports statistics
of these and some other high zeros and describes the algorithms that made these
calculations possible

The Riemann Hypothesis (RH) has been subjected to a series of numerical inves-
tigations, starting with unpublished ones by Riemann. (See [Ed, Od3] for a history
of these computations.) The latest result is that the RH is true for the first 1.5 x 10?
zeros (i.e., all zeros up to height < 5 x 10%) [LRW2]. This computation required
about 1500 hours on modern supercomputers (primarily the Cyber 205). It only
separated the zeros, and did not produce accurate values for them. The reason
for not obtaining values of zeros was that the investigations in this case were very
concerned with establishing the validity of the RH, and for that purpose, as was ex-
plained earlier, it is only necessary to separate the zeros of Z(t). Several other large
sets of zeros (four sets of roughly 10° zeros in each case, starting with zeros number

109, 10, 2 x 10!, and 10'?) have also been computed accurately [Od2]. Those

1



2 CHAPTER 1. INTRODUCTION

computations took several tens of hours on Cray-1 and Cray X-MP supercomput-
ers, and produced values of the zeros that are accurate to within about 1078, (The
10'2-th zero equals 1/2+ 14y, with v a2 2.7 x 10'1.) The purpose of those calculations
of zeros was partially to check the validity of the RH, but the primary goal (and
the reason for obtaining accurate values of the zeros) was to obtain data about the
distribution of spacings between zeros of the zeta function so as to compare them to
some recent conjectures. These conjectures, which are described briefly in Section 2
and which go substantially beyond the RH, originate in the Montgomery pair cor-
relation conjecture, and relate the behavior of the zeta function zeros to eigenvalues
of random hermitian matrices that are used to model energy levels in many-particle
systems in physics, and to the quantum chaos theories. Agreement between these
conjectures and computed values of zeros might be taken as providing some support
for the Hilbert and Pdlya conjecture that the RH is true because the zeros of the
zeta function correspond to eigenvalues of some positive operator. While all these
conjectures are highly speculative, it seemed worthwhile to test them numerically.
As it turned out, the agreement between conjectures and empirical data was excel-
lent in most cases. A few features of the data that were initially unexpected were in
the end explained by relating the behavior of the zeros to that of the primes. How-
ever, there were some features of the data that were slightly counterintuitive (such
as a slight excess of small spacings between consecutive zeros over that predicted by
the random matrix theories), and so it seemed desirable to obtain data about even

higher zeros of the zeta function.

All large-scale computations of zeros of the zeta function in the last fifty-odd
years (as well as Riemann’s own unpublished computations [Ed, Od3, Siel]) relied on
the Riemann-Siegel formula [Ed, Siel, Gab], which requires roughly t1/2 operations
to compute ((1/2 4 it) for ¢t a large positive real number. Recently a much more
efficient algorithm for computing the zeta function was invented by A. Schénhage

and the author [Od1, OS]. It enables one to compute all the approximately T2



zeros of ((1/2 4 it) in an interval T < t < T + T2 in about T'/2 steps. (This
algorithm is described in detail in Section 4. At this point we only note that the
above description assumes that the RH is satisfied by the zeros between heights
T and T + T2, and that in addition these zeros are simple and well separated.
All of these conditions are satisfied in all the ranges that have been investigated.)
The new algorithm has now been implemented, and used to compute the zeros
described in this paper. It turns out to be fast in practice as well as in theory, and
for computing large sets of zeros around the 102°-th zero was at least 10° times
faster than the straightforward application of the Riemann-Siegel formula. The
computations described in this book took about 2000 hours of (otherwise idle) time
on a Cray X-MP supercomputer, so they were substantial. However, without the

new algorithm they would have been totally infeasible.

The computations that have been carried out with the new algorithm of [OS],
and that form the basis for this paper, had several goals. The first was to test the RH
numerically. If the RH is false, then counterexamples are probably more likely to be
found at large heights than closer to the origin, since the behavior of the zeta function
is very constrained at low heights. As it turned out, no counterexample was found.
Another, more important goal, was to extend the numerical studies of [Od2] by
computing accurate values of large sets of high zeros to provide additional numerical
checks on various conjectures about the zeros, especially about the frequency of
occurrence of small gaps. If the slightly excessive frequency of small gaps that was
observed in [Od2] were to occur again at greater heights, that would cast doubt
on many of the conjectures that have been made. The latest computations show
excellent agreement with these conjectures in almost all the measured statistics.
The excess of small spacings found in [Od2] is still somewhat ambiguous, though,

as will be described in Section 2.7.

Another reason for the computations of this monograph was to produce various

statistics about the zeta function at large heights. One advantage of the algorithm
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of [OS] is that once the main step of the computation is done, it is easy to compute
individual values of the zeta function in the covered ranges, and collect many statis-
tics. Such statistics can be used to test various conjectures (about mean values of
the zeta function, for example) and to judge how fast the zeta function approaches
its asymptotic behavior. Some of the statistics presented in Section 2 show amaz-
ingly fast convergence to the asymptotic behavior, while others are far from it. It
is remarkable that the most noticeable difference between observed and expected
behavior occurs in the study of the distribution of values of log [((1/2 + it)|, which
in the ranges that have been investigated is rather far from the normal distribution
that has been rigorously proved to hold asymptotically (see Section 2.12 and Fig-
ure 2.11.1). On the other hand, many of the unproved conjectures are supported
by the numerical data to a surprising degree (see, for example, Figures 2.4.5 and
2.12.1).

The main conclusion that can be drawn from the data in this paper is that
in many respects the zeta function reaches its asymptotic behavior slowly, so that
even the neighborhood of the 102°-th zero does not represent what happens much
higher. That this slow convergence is observed is not too surprising. For example,
one important question (see Section 2.10) concerns the maximal size of the zeta

function on the critical line. It is known that
C(1/2+it)| = 0@%)
for constants « that are a bit less than 1/6, while on the RH one would have
1C(1/24it)] < t°) as t — o0 .

(This is the Lindelf conjecture.) It would be desirable to produce convincing nu-
merical evidence about the precise maximal size of {(1/2 4+ it). However, this is
hard to do. The main difficulty is that near the 102°-th zero, one has t ~ 1.5 x 10'9,

so that t'/6 ~ 1570, while (logt)? & 1950, so it is even hard to distinguish between
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these two functions that have entirely different rates of growth. (Throughout the

paper, log  denotes the natural logarithm of z.)

Some of the data from the present computations might also be useful in other
number theoretic investigations. For example, the Stark method [St] for obtaining
lower bounds for imaginary quadratic number fields with small class numbers de-
pends on knowledge of pairs of zeros of the zeta function that are very close together.
(Another method for bounding class numbers, that of Montgomery and Weinberger
[MW], depends on zeros of Dirichlet L-functions.)

The final reason for the computations of this paper was to prove that the new
algorithm of [OS] is of practical use, and not just a theoretical curiosity. Since this
algorithm is complicated, this was not obvious to start with, and a large section
of this paper is devoted to a description of its implementation, including various
modifications that were made to the basic algorithm described in [OS]. As it turns
out, the algorithm is fast, over 10° times faster than the older algorithms would have
been near the 102°-th zero. Moreover, work on this implementation has suggested
many additional modifications, described in Section ??, which can probably speed

up the algorithm by another order of magnitude.

The main sets of zeros that were computed are listed in Table 1.2. The entry for
N = 10?°, for example, means that 175,587,726 zeros were computed, starting with
zero number 102° — 30,769,710, and ending with zero number 10%° + 144,818, 015,
and that all these zeros are of the form 1/2 + 4y with v = 1.5 x 10'®. Throughout
the paper, references to the N = 10?° data set will denote these 175,587,726 zeros

or some subset of them and similarly for the N = 10'?,..., data sets.

The starting points for the large data sets listed in Table 1.2 were chosen to be
near zeros of round order (such as 10%%), to be easy to refer to. It was thought that
as far as the distribution of zeros is concerned, these intervals would behave like
random ones. One can also concentrate on investigating the behavior of ((1/2+ it)

near those t where the zeta function might be expected to behave in an unusual
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fashion (e.g., where it is large). Some such special values of ¢ were found, and the
computations that were carried out there are listed in Tables 3.1.1 and 3.1.2. (A full
explanation of the entries in these tables is given in Section 3.) These computations
produced many values of the zeta function and of gaps between zeros that are current

the largest ones known.

While the computations that are described in this book did yield values of zeta
function zeros at much greater heights than would be feasible with older methods,
they do have one serious defect, namely that they are not rigorous. The validity of
the values for the zeros that have been computed (and also of the assertion that all
these zeros satisfy the RH) depends on the assumption that substantial cancellation
among the roundoff errors takes place. This is due largely to the extremely large
sizes of the numbers being handled, and not so much to the new algorithm, and
is explained in detail in Section 4. At this point we only mention that the values
of zeros that have been obtained are believed to be accurate to within £107° or
even better for N = 10%0. This belief is based partially on the expected cancella-
tion of errors in the computation. The strongest argument for the validity of the
computations, however, comes from several large sets of zeros which were computed
twice, in entirely different ways. That the numbers being computed were the same
follows only from deep mathematical analysis, and is not obvious from the numbers
being processed. The resulting duplicate values for the zeros agreed to the expected
degree, and this is a strong argument in favor of the validity of the computations.

These issues are discussed in greater detail in Section 4.7.

The remainder of this monograph is organized into three sections. Section 2
recalls the basic definitions and conjectures, and then presents the statistics of the
large sets of zeros given in Table 1.2. Section 2 is organized into subsections on
a variety of topics, such as large values of the zeta function, large and small gaps

between consecutive zeros, and many others.

Section 3 is devoted to the zeros listed in Table 3.1.1. First the statistics of



these zeros and of various properties of the zeta function in those ranges are pre-
sented. Then some simultaneous Diophantine approximation algorithms (based on
the Lovasz lattice basis reduction algorithm [LLL]) are described, as well as the ways
in which they have been used to produce the points of Table 3.1.1 where the zeta
function was expected to behave pathologically, and where it does indeed exhibit
unusual behavior.

Section 4 describes the algorithms and computations on which the results of this
monograph are based. First the basic algorithm of [OS] is briefly surveyed, and then
various modifications to it are described. (Some are minor, while others, such as the
use of band-limited function interpolation, are much more substantial.) A discussion
of various additional modifications that can be utilized in the future is included (such
as the replacement of the crucial rational function evaluation algorithm of [OS] by
somewhat similar algorithms that have been proposed in the context of astrophysical
and fluid dynamics simulations [GR1], or ways to obtain more rigorous results).
There is also a large subsection on the accuracy and validity of the computations of

this paper.
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Chapter 2

Large sets of zeros: conjectures
and statistics

2.1. Notation and definitions

The trivial zeros of the zeta function are —2,—4,—6,.... We will consider
only the nontrivial zeros, which lie in the critical strip 0 < Re(s) < 1, and are
customarily denoted by p. Since for every nontrivial zero p, p is also a zero, we will
consider only zeros p with Im (p) > 0. (There are no nontrivial zeros p with Im (p) =
0.) We number these zeros pq, pz, ... (counting each according to its multiplicity)
so that 0 < Im (p1) < Im (pg) < .... All the zeros that have been computed so
far are simple and lie on the critical line, and so can be written as p, = % + Y,
Yn € RT, with 97 = 14.134725 ..., v = 21.022039..., v3 = 25.010857 ..., etc. In
many definitions throughout the paper we will be tacitly assuming that the RH
holds, as otherwise those definitions might not make sense.

Let N(t) denote the number of zeros p with 0 < Im (p) < t (counted according
to their multiplicity). Then it is known unconditionally [Tit2, Chapter 9.3] that

N(t) = %log;ﬁ—}—O(logt) as t—o00. (2.1.1)

Therefore ~,, ~ 27n/(logn) as n — co. Since the zeros become denser as the height
increases, and the average vertical spacing between zeros at height ¢ is asymptotic

to 27/(log(t/(27))), we define the normalized spacing between consecutive zeros

9
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1/2+ 47y, and 1/2+ iy,41 to be

J1og(y:/(27)) 2.1

5n = (7n+1 — Tn o

(Here we are assuming that both zeros satisfy the RH.) It then follows from (2.1.1)
that the §, have mean value 1 in the sense that for any positive integers N and M,

N+M
> =M+ O(log(NM)) . (2.1.3)
n=N+1

For ¢ real and positive (as will be the case throughout the paper) we define
0(t) = arg[x ="/ (1/4 4 it/2)] (2.1.4)

where the argument is defined by continuous variation of s in 7=%/2I'(s/2), starting

at s = 1/2 and going up vertically. We also let
Z(t) = exp(i0(t))C(1/2 4 it) (2.1.5)

so that |Z(t)| = |((1/2 + ¢t)|. Then it follows from the functional equation of the
zeta function that Z(t) is real, and sign changes of Z(t) correspond to zeros of ((s)
on the critical line. Almost all calculations of the zeta function on the critical line
compute calculate Z(t) and not ((1/2 4 it) (cf. Section 4). However, it is easy to
derive one from the other.

The function #(t) is monotonic increasing for t > 7. For n > —1, we define the

n-th Gram point g, to be the unique solution > 7 to
6(g,) = nr . (2.1.6)

We have g_1 = 9.666 ..., go = 17.845 ..., etc. Gram points are about as dense as the
zeros of ((s) (see Section 2.13 for a detailed discussion), but are much more regularly
distributed. In graphs, by a Gram point scale we will refer to labeling Gram point
gn by n (or n — M for some fixed M as n varies). For example, Fig. 2.1.1 shows

Z(t) near zero number 10%°. Figure 2.1.3 shows Z(t) over a somewhat wider range.
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We let
S(t) =n"targ((1/2+it) , (2.1.7)

where the argument is defined by continuous variation of s in ((s), starting at
s = 2, going up vertically to s = 2+ it, and then horizontally to s = 1/2+t. (This
definition assumes that there are no zeros p with Im (p) = ¢.) The function S(¢) has

jump discontinuities at heights equal to zeros. We have
Nt)=1+7"10(t)+5S(t) , (2.1.8)

so that (2.1.1) is a consequence of the asymptotic expansion of §(¢) (which follows

from Stirling’s formula [HMF])
o(t) = %tlog(t/(%re)) _ /84 0() as t— oo (2.1.9)
and the bound [Tit2, Theorem 9.4]
|S(t)|=O(logt) as t— 0. (2.1.10)

Since N(t) is an integer, and 6(¢) is smooth, (2.1.8) shows that S(¢) jumps at
zeros and decreases at a very steady rate between zeros. Figure 2.1.2 shows S(t)
over the same range of values of ¢ as in Fig. 2.1.1, near zero number 1020, This
range represents typical behavior of S(¢) at that height. (For rare behavior of S(t),
see Fig. 3.2.3.) The function S(t) is of crucial importance in understanding the
distribution of zeros, and Sections 2.5, 2.13, and 2.14 are devoted largely to its
properties.

In comparing empirical distributions of various functions, such as S(¢) and é,, to
their conjectured distributions, we will rely extensively on comparing the moments
of their distributions. The method of moments has fallen into some disrepute in
statistics because of its many faults, such as lack of robustness. (For example, a
single outlier in the data can have a large effect, something we will see in our data.)

However, there are some good reasons for using it. One is that it is easy to apply.
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A more substantial one is that for many of the statistics of the zeta function, such
as those of S(t), or of Z(t), computation of moments is currently essentially the
only known tool that can be used to obtain rigorous results. In such cases moments
provide the most direct way of comparing empirical distributions to theoretical
results.

If a sequence of probability measures with distribution functions F,,(z) is such

that for every k£ > 0, the k-th moment

() = [ a*ar,(a)

converges to u(k) as n — oo, then there is a limiting measure with distribution
F(z) whose k-th moment is (k). Furthermore, if the (k) determine their measure
uniquely, and this measure has distribution function F'(z), then the F,(z) converge
to F(z) (in the weak star sense) [Bil, pp. 342-353]. The p(k) determine F(z)
uniquely if they do not grow too fast [Bil], [Fel, pp. 227-228], so that the normal
distribution, for example, is characterized by its moments. On the other hand, the
log-normal distribution (distribution of exp(7), where 7 is normal) is not determined
uniquely by its moments [Bil],[Fel].

The standard normal distribution has the density function
flz) = 2m)~ V2 /2 (2.1.11)

with mean 0 and variance 1. Often we will be dealing with quantities (such as S(t))
whose known asymptotic distributions are normal, but which have variances on the
order of loglog N (for zeros near zero number N). Since log log N grows very slowly,
it is to be expected that the observed data will have somewhat different variances,
as second order terms are likely to be substantial. (For N = 10%° loglog N =
3.82976 . .., so even an additive constant of 1 in the estimate of the variance makes
a considerable difference.) On the other hand, it is not too unreasonable to hope
that the shape of the distribution should be close to the expected one. To carry out

such a comparison, we will often use a scaled and translated empirical distributions.
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If 1,...,z, are samples (of ,,, say, or other quantities) with mean « and variance

v = 0? (so that o is the standard deviation, or rms value),

1 n

« = - Z z; (2.1.12)
J=1
1 n

vo= — > (xj—a)?, (2.1.13)
j=1

then the scaled and translated values will be

2] = (z;—a)/o. (2.1.14)

The z7 have mean 0 and variance 1. The tables will usually list the £-th moment
of z7 in the k-th entry, but there will be entries giving the ordinary mean a and
ordinary variance v that will be marked & = 1* and k = 2%, respectively. In a few
cases where the mean a is extremely small, we will use 27 = z;/o. (These cases will
be easy to distinguish because the scaled 1-st moment will not be 0.)

[13 ”

Throughout this paper, numbers that have at the end are truncated to

” are rounded, but the rounding

the form that is shown, while those without “...
is sometimes up and sometimes down. Thus, for example, 7 could be represented
as 3.14159...; as 3.14159, or as 3.14160. The log function will always refer to the
natural logarithm. References to maximal values of a function f(z) will usually
mean the values of f(z) for which |f(z)| is maximal.

Constants such as ng, nq, ..., will generally be different in different sections, but

will be the same within a section.
2.2. Validity of the RH and correctness of the computational results

The main question about the validity of the computations described in this paper
has to do with size and cancellation of roundoff errors. This issue is discussed in
detail in Section 4. Even if we assume that roundoff errors are small (as they seem
to be), there remains some further lack of rigor. The set of zeros corresponding

to N = 10'2, for example, is claimed to consist of exactly the zeros numbered
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10'?2 -6, 032 to 10'2 41, 586, 163. Those 1,592,196 values are indeed zeros of the zeta
function strictly between Gram points of orders 10'2 — 6,034 and 10'2 4 1, 586, 162,
provided all the computational steps were correct. Given the degree of regularity
in the locations of those zeros, a theorem of Turing (see [Br5, Theorem 3.2] for a
modified and corrected version) allows us to conclude, for example, that the 21-st
through the 1,592,176-th zeros in our set are indeed zeros numbered 10'? — 6,012
through 10'2 4 1,586, 143. However, this theorem does not exclude the possibility
that, for example, the interval between Gram points 10'? — 6,034 and 10'? — 6,014
might contain some additional zeros. Since such additional zeros would violate either
Rosser’s rule (see Section 2.14) or even the RH, they seem unlikely to exist, and in
any event would not affect most of the statistics to a noticeable extent, and so were
assumed not to exist.

There are some further cases of nonrigorous computations in this paper. For
example, the conjectured distribution of the 4,, (see Section 2.3) is complicated, and
(as was done in [Od2]) was computed using Van Buren’s program [VB], with some
modifications by S. P. Lloyd and this author. This program uses an involved com-
bination of variational procedures and special function expansions, and no rigorous
error analysis for it is known, although it appears to be very accurate (cf. [Od2]).

Other examples of nonrigorous computation are presented by various piecewise
linear approximations and other interpolation schemes used in the following sections.

They are all thought to produce accurate results, but no proofs are available.

2.3. Eigenvalues of random matrices and zeros

Over the last few decades, an extensive collection of results about eigenvalues
of certain types of random matrices has been obtained by mathematical physicists.
The aim of these investigations was to obtain insight into the distribution of energy
levels in heavy nuclei, and recently their results have been applied to studies of

energy levels in other kinds of many-particle systems. Some of the references for
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this field are [Bel, Be2, Be3, BG, BGS1, BGS2, BFFMPW, Meh, Por]. Not only
are there many beautiful and mathematically rigorous results in this area, but there
is also experimental evidence that these results do describe the behavior of physical
systems [HPB]. (Because of the difficulty of the experiments, the physical data,
which was obtained through a major effort over the span of several decades, is
sparse and of poor quality compared to the data that can be obtained for the zeta
function.)

The eigenvalue results that will be of greatest interest to us are those of the
Gaussian unitary ensemble (GUE), which together with the Gaussian orthogonal
ensemble (GOE) and the Gaussian symplectic ensemble (GSE) has been studied
extensively. The GUE consists of n X n complex Hermitian matrices of the form
A = (aji), where a;; = 21/20jj, a;p = o +in;, for j < k,and a;; = ar; = op; —in;
for j > k, where the oj; and 7;;, are independent standard normal variables. (The
GOE consists of real symmetric matrices defined similarly.) The eigenvalues of
these matrices are real, and it is their asymptotic distribution, as n — oo, that is
of interest. If we denote the eigenvalues by A; < Ay < --- < A, then we have the
Wigner semi-circle law: if M (z) denotes the expected number of eigenvalues < z,

then for all fixed real =z,

1 xr
5/_2(4—#)1/%, 2| <2,
nh_}rréo n~'M(zy/n) = 0 < -2, (2.3.1)
1, T >2.

This distribution law applies to much more general classes of matrices than those
of the GUE and related ensembles. For the GUE (and also for the GOE and GSE)
a further step is possible in that one can obtain precise information about the dis-
tribution of spacings between consecutive eigenvalues. The complete distribution of
eigenvalues is known, and one can derive many limit laws. To do that one normalizes
the eigenvalues (basically by stretching the distance between consecutive eigenval-

ues A < X by a factor of (4n — A2)'/2/(27)) to make the average nearest neighbor
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spacing equal to 1. With this normalization, the distribution of eigenvalues looks
the same everywhere (in the limit as n — oo) and one can in principle determine
any desired statistic of the zeros. (Doing so in practice means evaluating a definite
multidimensional integral, which is often hard, and gives rise to interesting prob-
lems.) For example, if we use w to denote a normalized eigenvalue in the GUE, then

one finds that for any fixed 0 < a < 8 < 00,

E{u': w< !, w—we [a,A}) ~ /j (1 - (3122“)2) du (2.3.2)

2

as n — 0o, where £(z) is the expectation of z. We say that 1 — ((sin7u)/(7u))
is the pair correlation function of the GUE. (The pair correlation functions of the
GOE and the GSE are different.) Equation (2.3.2) shows, for example, that it is rare
for GUE eigenvalues to be close together. If the w’s were obtained by choosing n
points independently and uniformly from the interval [0, n] and letting n — oo, the
pair correlation function would be identically 1. The GUE pair correlation function
in the range 0 < u < 3 is drawn as the solid curve in Fig. 2.4.1, and is far from
being a constant.

If w is a normalized eigenvalue of the GUE, we let w(¥) denote the k-th smallest
normalized eigenvalue of those that are > w. Then it is known that the £-th nearest

spacings w®) — w satisfy a distribution law; for all 0 < @ < § < oo,

Prob(w(k) —w € [a, §]) ~ /ﬁ plk —1,u)du (2.3.3)

a

as n — oo. The probability densities p(k, u) (referred to as pa(k;u) in many pub-
lications, such as [CM2, ?, MdC], where the subscript 2 denotes the GUE) are
complicated functions defined in terms of linear prolate spheroidal functions. For
methods of computing them, see [MdC, Od2]. Graphs of p(0,u) and p(1,u) are
given by the solid lines in Figs. 2.4.4 and 2.4.6, respectively. Those graphs show the
“rigidity” of the GUE; the eigenvalues repel each other and most of the time are

close to the expected distance from their neighbors. For all v > 0,

1- (Sin ”)2 = g% p(k,u) | (2.3.4)

U
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We note for future reference that the p(k, u) have the following Taylor series expan-

sions around 0 [Meh, MdC]:

2 27t w5
Ou) = 2 a6 2.3.5
(0, u) gu -t gt (2.3.5)
6
p(l ,‘U,) — 4050u7+ cee (236)
(2 ) i 14_|_
P& 5358150000

The normalized eigenvalues in the GUE have (in the limit as n — co) a stationary
distribution. This means that clusters of eigenvalues have the same distribution
no matter where in the spectrum they are located. However, this distribution is
not Markovian, so that the distribution of an eigenvalue depends not just on the
preceding eigenvalue, but on all previous ones as well.

The basic results about distribution of GUE eigenvalues are completely rigorous.
However, they do have many gaps. One of them is that the results are obtained
by averaging over the full ensemble of GUE matrices. It is conjectured that if
one considers a large random GUE matrix, the distribution of its eigenvalues will
be close to that of the entire ensemble with high probability. Although numerical
calculations confirm this conjecture, there is no proof of it. Also, it is thought that
entries of the matrix do not have to be of exactly the form specified above for the
GUE result to hold.

The main goal of this monograph (and of the preceding paper [0d2]) is to test
the conjecture, which will be referred to as the GUF hypothesis, the GUF theory,
or simply the GUF, that the zeros of the zeta function behave like eigenvalues of
the GUE. More precisely, it is conjectured that the 4, behave asymptotically like

w) — w in the GUE, so that for any 0 < a < 8 < o0,
B
M Y{n: N+1<n<N+M, 6,¢lag]}~ / (0, w)du (2.3.7)

as M, N — oo with M not too small compared with N. Similarly, it is conjectured
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that
B
M Yn: N41<n<N+M, 6, +81 € [o 8] N/ p(L,u)du.  (23.8)

More generally, the same reasoning leads one to expect that for any fixed k, the em-
pirical distribution function of é,,, 8,41, ..., 0,4% for N4+1 < n < N+ M approaches
the stationary process that holds for the GUE.

If the GUE hypothesis is true, it might be interpreted as providing some support
for the Hilbert and Pélya conjectures [Be2, Be3, Mon1, Od3] which predict that the
RH is true because the zeros of the zeta function correspond to eigenvalues of a
positive linear operator. The argument is that if such an operator exists, its eigen-
values might be similar to those of a random operator (especially if, as is conjectured
for the GUE, most random operators have similar eigenvalue distributions), and a
random linear operator ought to be the limit of a sequence of random matrices.

If the GUE hypothesis were true, that would also be of interest in physics, as
the zeta function could then be used as a model of quantum chaos [Be2, Be3].

The main theoretical support and inspiration for the GUE hypothesis comes
from H. Montgomery’s work on the pair correlation function of the zeros of the zeta
function. Under the assumption of the RH, Montgomery showed [Mon1, Mon2] that

if we define

4
F(a,T)=2n(TlogT)~ =) (2.3.9)
O;T 4+ (-2
o<~/<T
for @ and T real, T > 2, then
Fla,T) = (14+o0(1))T *logT + a+o(1) as T — oo, (2.3.10)

uniformly for 0 < a < 1. Montgomery also observed that if the primes are dis-

tributed sufficiently uniformly in arithmetic progressions, then

Fla,T)=1+0(1) as T — (2.3.11)
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uniformly for a € [a, b], where 1 < @ < b < oo are any constants. If the conjecture

(2.3.11) were true, then one would find that for any 0 < a < 8 < o0,

N7TH{(nk): 1<n <N, k>0, 84841+ 4 dnpk € [, ]}

ARSI

as N — oo. The relation (2.3.12) is known as the Montgomery pair correlation

(2.3.12)

conjecture. It says that the pair correlation of the zeros of the zeta function is
the same as that of the GUE. Since the pair correlations of the GOE and GSE
are different, (indeed, they are even inconsistent with (2.3.10)), this leads one to
expect that the zeros might behave like eigenvalues of the GUE rather than GOE
or GSE. Therefore the discussion above was concentrated on the GUE distribution.
(One possible implication of this observation is that the hypothetical Hilbert-Pélya
operator is likely to be complex.)

Montgomery’s hypothetical result (2.3.10) and the conjectures (2.3.11) and
(2.3.12) are the main theoretical evidence we have in favor of the GUE hypothesis,
and the two conjectures depend on far-reaching assumptions about pseudorandom
behavior of primes. Some further evidence in favor of the GUE hypothesis was
provided by Ozluk [Oz1], who showed that if one considers a function similar to
F(a,T), but where one sums over zeros of many Dirichlet L-functions, then under
the assumption of the Generalized Riemann Hypothesis for these L-functions, the
analog of Montgomery’s conjecture (2.3.11) is true for 1 < o < 2. Some further
slight support for the GUE hypothesis is provided by new results of Ozluk [Oz2] on
zeros of Dirichlet L-functions close to the real axis.

Extensive numerical evidence in favor of the GUE hypothesis was presented in
[Od2]. It was based largely on computed values of 7,, with 1 < n < 10° and
102 4+1 < n < 10'% 4+ 10°. With some slight exceptions (such as the slight excess
of small §, that was mentioned in the Introduction) this evidence was in excel-

lent agreement with the GUE hypothesis, and the degree of agreement improved
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dramatically as one went from the first 10° zeros to those near zero number 10'2.
Some numerical evidence for the pair correlation conjecture for Dirichlet L-functions
has been obtained since then by Hejhal [Hej5]. It involved computations of a few
quadratic character L-functions for several moduli at large heights. Much more
extensive data have been obtained by Rumely [?], who computed all zeros of all
L-functions to small moduli up to height 2500. His evidence also supports the GUE
hypothesis.

Various theoretical results and conjectures related to the GUE theories and the
pair correlation conjecture have been obtained in recent years. Some of the references
are [Be2, Be3, Bed, Fu8, Gal2, Gal3, Gal4, GM, Gol, Go2, Go3, GG, GHB, GM,
HB1, Mue2].

2.4. General distribution of gaps between zeros

Figure 2.4.1 shows how well the pair correlation conjecture is satisfied. The
solid line is the GUE prediction y = 1 — ((sin7z)/(wz))?. The scatterplot is based

on about 8 x 10° zeros near zero number 10%°. Let

n1 = 10%° — 15,409, 240,

ny = 1029 — 13, 366, 460,
ns = 1020 — 10, 302, 282,
ny = 10%° — 6,216, 711,
ns = 1020 — 42,778,

ng = 10%° + 15,316, 087,
ny = 1029 + 46,073, 204,

ns = 1020 + 47,098, 588,
and
V={n: n; <n < n;+ 10 for some i, 1<i<8}.
Then for each interval I = [a, §) with a = £/20, 5 = a4+ 1/20, 0 < k < 60, a star
is placed at the point z = (a + 3)/2, y = a, 3, where

20
=
P T 8% 106

{mk): n €V, k20, Syt +our €l )} . (24.)
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The solid line is the GUE prediction y = 1 — ((sin 7z)/(7z))?. As can be seen, the

agreement between the conjectured and observed values is excellent.

Figure 2.4.2 presents similar data, but this time based on just 10 values of n;
ng < n < ng + 10%, ng = 10'? — 6,032. A comparison of these two graphs with
Figures 1 and 2 of [0d2] is instructive. Those figures show similar graphs, but
based in each case on 10° zeros starting with zeros number 1 and 10"2 + 1. The
scatterplot of Iig. 2.4.2 is much smoother than that of Fig. 2 of [Od2], because the
former is based on 10° instead of 10° samples, and so the sampling error is smaller.
That same reason explains why the scatterplot of Fig. 2.4.1 looks smoother than
that of Fig. 2.4.2. Even if we make allowances for the different sample sizes, though,
it is clear that the agreement between empirical and predicted values improves
dramatically from N =1 to N = 10'?, and improves even more between N = 10!?
and N = 10%°. In all cases, the empirical data has more pronounced peaks and

troughs than expected, but this effect decreases as the height increases.

Some of the pair correlation function oscillations can be seen even for normalized
spacings that exceed 3. Figure 2.4.3 shows a graph based, just like Fig. 2.4.1, on
8 x 10° zeros near zero number 10?°. Here, though, the scatterplot was smoothed
slightly by applying the lowess function of [BC] (an implementation of Cleveland’s
robust locally weighted regression [Clev]). The reason for this smoothing is that even
with 8 x 106 zeros, each of the a, g defined in (2.4.1) corresponds to about 4 x 10°
counts (n, k). Therefore we can expect random sampling errors about (4 x 10%)'/2,
which gives a variation of about 1.6 x 107 in the value of a, 5. Given the small

2 over the range 3 < z < 5,

variation in the GUE prediction y = 1 — ((sin7z)/(7wz))
this random sampling error produces a confusing picture if the data is not smoothed.
(Another, but slightly less effective way to produce a better picture is to use sampling

intervals larger than 1/20. The resulting picture is similar to that of Fig. 2.4.3.)

Figure 2.4.3 shows that the empirical pair correlation function, even for N =

102°, has peaks and troughs that are more pronounced than those of the conjectured
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distribution, at least in the range 3 < < 5. This is also true in the range 5 < z <
10.

Figures 2.4.4 and 2.4.5 show the distribution of the normalized spacings §,, for
N =10'? and N = 10?°, based on the 1,592,196 and 78,893,234 zeros, respectively,
that have been computed. Thus, for example, in Fig. 2.4.4 a star is plotted at
= (a+0)/2,y="bypfora=£k/20,3=a+1/20,0 <k <59, where

20
bag = ————|{n: 10" = 6032 < n < 10'* 4+ 1586162, 4, . (242
# = T5ga155 (" sn< 107+ el B} . (242)

The solid lines are the GUE predictions, y = p(0, z). Similarly, Figures 2.4.6 and
2.4.7 show the distribution of §,, +d,,4+1. (Similar graphs based on the first 10° zeros
are contained in [Od2].)

The graphs show excellent agreement between conjecture and numerical data,
and, as was to be expected, the degree of agreement increases substantially as one
goes from N = 1 to N = 10'2, and then improves a bit more as one goes to N = 102°.
That the disagreement is greater for §,, + d,41 than for §, is to be expected, given
that S(¢) is small. (See Section 2.5 for a discussion of this.)

A quantitative measure of the agreement between observed and conjectured dis-
tributions is shown in Tables 2.4.1 through 2.4.3, which display moments of distri-
butions. For each set of M zeros, K < n < K+ M (M = 1,592,196 for N = 102,
78,893,234 for N = 10?°, etc., where K is close to N.) Table 2.4.1 displays

K+M—1
M-1)"" > (6, - D, (2.4.3)
n=K+1
while Table 2.4.2 shows
K+M—2
(M =271 > (00 + 641 —2)", (2.4.4)
n=K+1

in each case for 2 < £ < 10. (The values for N = 1 are taken from [Od2].) Table 2.4.3

shows moments of logd,, -1, and §-2. The values predicted by the GUE are also

n

shown.
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Tables 2.4.1 to 2.4.3 show satisfactory agreement between observed values and
conjectured ones, with the degree of agreement increasing as the height of the zeros
increases. (The slightly anomalous value for the moment of 5% for N = 10'® is due
to one extremely small §,, that is very unusual and will be discussed in Sections 2.6
and 2.8.)

The Kolmogorov test [KS, Section 30.49] yields a method for measuring the
agreement between the observed distribution of the §, and the GUE predictions.
If samples z1,...,x, are drawn from a distribution with a continuous cumulative

distribution function F'(z), let F.(z) denote the sample distribution function:
F.(z)= n 'k 1<k<mn, z,<2}.
The Kolmogorov statistic is then
D= sup |Fe(2) — F(2)] . (2.4.5)

If the z; are drawn independently from the distribution characterized by F'(z), then
[KS, Eq. 30.132]

li_>m Prob(D > un~"%) = g(u) , (2.4.6)
where
g(u) =2 (~1)""exp(-2r’u?) . (2.4.7)
r=1

Table 2.4.4 gives the Kolmogorov statistic D for §,, and d,,+6,,41 for several blocks of
10° consecutive values of n. The set denoted by N = 10'? corresponds to ng < n <
ng + 10%; the ones denoted by N = 10?°(a), N = 10?°(b), and N = 10*°(c) start at
n = ng, n = ng and n = ns, respectively, where the n; were defined at the beginning
of this section. The “N = 10'2 vs. GUE” entry, for example, gives the Kolmogorov
statistic of the N = 10'2 set when it is compared to the GUE distribution. For
each value of D, the “prob.” column gives an estimate that this statistic would
arise if the 6, (8, + 0,41, respectively) were drawn independently for each n from

the GUE distribution. This estimate is obtained by evaluating ¢(D x 1000). The
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“N = 10%°(a) vs. N = 10%°(b)” row of the table was obtained by constructing a
continuous distribution from the N = 102°(b) data and computing the Kolmogorov

statistic for the discrete N = 10?°(a) data against this continuous distribution.

What is apparent from Table 2.4.4 is that as the height increases, the empirical
distributions of §,, and §,, + 6,41 do approach that of the GUE. When one computes
the D statistic for the &, in the 10 blocks of 10° consecutive zeros that are contained
in the N = 10?°(b) set, one obtains values ranging between 0.002 and 0.0031, which
correspond to probabilities between 0.83 to 0.3 of occurring if the 4, were drawn
from the GUE distribution. Thus for sets of 10° zeros around zero number 10%°, it
is essentially impossible to distinguish the empirical distribution of the &, from the
expected one. (For &, + 0,41, the corresponding D values are 0.0035 and 0.00555,
which gives probabilities of 0.17 and 0.004, so the fit here is slightly worse.)

The comparison of the three different sets of 10¢ zeros near zero number 102°
to each other is revealing. The Kolmogorov statistics D are small (especially for
d,), and indicate that all three sets come from essentially the same distribution.
What seems to be happening is that at each height, when we examine large sets of
zeros, the &, and 6, + &,41 behave as if they were drawn independently from some
distributions that depend on ¢, change slowly as ¢ changes, and tend to the GUE

distributions as t — oo.

2.5. Values of S()

The upper bound (2.1.10) for S(¢) is the best that is known unconditionally. The
Lindel6f Hypothesis (see Section 2.9) implies that |S(t)| = o(logt) as t — oo, while
the RH implies [Tit2] that

logt
t)| = t . 2.5.1
1S()] O(loglogt) as t— o0 (2.5.1)
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The true rate of growth is thought to be much smaller. The best lower bound that

has been proved under the RH is that of Montgomery [Mon3], who showed

S(t) = Qa4 (( log! )1/2) as t 00 . (2.5.2)

loglog t

(The best unconditional bound, due to Tsang [Tsl1, Ts2], replaces the square root
in (2.5.2) by a cube root.) Montgomery [Mon3] has conjectured that the quantity
on the right side of (2.5.2) represents the correct rate of growth of S(t), and Joyner
[Joy2] has presented a heuristic argument supporting this conjecture. As we will
see in Section 2.6, the GUE suggests that |S(¢)| might occasionally get as large as
(log t)1/27 which would contradict the Montgomery conjecture. In any case, it is

thought likely that
1S(t)] < (logt)/?+°() as t = oo . (2.5.3)

Some lower bounds for S(t + h) — S(t) are also known, see [Ts1, Ts2], for example.

Not only is S(t) small, but its oscillations tend to cancel out. If we define

t
Sy () = / S(u)du (2.5.4)
to
then |S1(f)] = Of(logt) unconditionally, and |Si(¢)] = O((logt)(loglogt)™2) on
the RH [Tit2]. The true maximal magnitude of |Si(¢)| is probably again around
(logt)'/2. (See [Ts1, Ts2] for lower bounds. The estimate |S;(t)| = o(logt) is equiv-
alent to the Lindel6f Hypothesis, see Notes to Chapter 13 of [Tit2].) Furthermore,

if one chooses ty appropriately, then one obtains
¢
/ Si(u)du = O(logt) as t—o0. (2.5.5)
0
(The same property applies to further iterations of this process.) In addition,

T
lim 771 [ Sy (t)%dt = c

T—o0 0

exists for a constant ¢ > 0 (Theorem 14.19 of [Tit2]).
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Selberg [Sel2] proved, under the assumption of the RH, that for every fixed
positive integer k,

/OT S(1)*di = %T(log log T)*(1 + O((log log T)™1)) (2.5.6)

as T — 0o. Later [Sel3] he proved similar estimates unconditionally, with (loglog 7)1
in the remainder term replaced by (loglog T)_l/Q. Although it was apparently not
noticed right away, these results imply (unconditionally) that S(¢) is asymptotically
normally distributed with mean 0 and variance 27%loglogt, so that for a < 3,

S()

lim 77!
o (272loglog T

T— oo

{t:0§t§T7 i72 E(a,ﬂ)}‘:(2%)_1/2Lﬁe_$2/2dm.
(2.5.7)
For further results on moments and distributions of S;(t), S(t + h) — S(¢), and
related functions, see [Ful, Fu2, Fu3, Fu4, Fu8, GM, Gh1, Gh2, Go2, Joy1, Tsl, Ts2].
Goldston [Go2] has improved the estimate (2.5.6) for £ = 1 by showing, under the

assumption of the RH, that
/TS(t)Zdt— T oglog T 4 —- ( —|—/OOF( T)a~2d )+ (T)  (2.58)
A t = 5 loglog 5.3 | €1 . o, TYa™“da 0 5.

as T'— oo, where F(a,T) is defined by (2.3.9), and ¢; is a constant,

c1 = co+ i > (—% + %) L (2.5.9)

)
m
m=2 P m p

where ¢g = 0.577...1is Euler’s constant. (The sign of the m~! term is wrong in
[Go2].) If Montgomery’s pair correlation conjecture (2.3.11) holds, then
[7° F(a,T)a™2da is asymptotic to the constant 1, but if his conjecture were to
fail, it is conceivable that the second order term in the asymptotic expansion of
foT S(t)%dt might oscillate.

Table 2.5.1 presents data on the moments of S(¢). Statistics were collected on
two intervals of the form (v,,,v,4106), where n = ny = 10'2—6, 032 for the N = 10'?
data, and n = ny = 1020 — 48,778 for the N = 10?° data. The average values of

S(t) and S(t)? for these sets are given in the k = 1* and k = 2* zeros. To obtain a
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good comparison with the asymptotic normal distribution, the other moments were
scaled, so that if we let o? be the mean value of S(¢)?, then the k¥ = 1,2,...,8
entries denote the average values of (07'S(t))*, and the k& = [1], 3], and |5 entries
the average values of |o='S(¢)|*. Finally, the last column gives the corresponding
values for the standard normal distribution. As we can see, the agreement between

empirical values and asymptotic ones is reasonably good, and is somewhat better

for N = 1029 than for N = 1012,

S(t) has jumps discontinuities by 1 at zeros and decreases monotonically be-
tween zeros with derivative very close to —1 (on Gram point scale). Since there is
asymptotically one zero per Gram point, the smallest mean values of S(¢)?* for any
k € Z* that is at all conceivable would be obtained by having a zero exactly halfway
between every two neighboring Gram points. This would yield a mean value of S (t)?
of 1/6. The values that are observed, 0.23 for N = 102 and 0.26 for N = 10%°, are

not much larger than that.

That the distribution of S(¢) is close to the normal one can be seen visually
in Fig. 2.3.1. This figure is based on determining for what fraction of values of
t € (Yng,yn,+108) we have S(t) € [k/100, (k+1)/100), and then scaling the resulting
histogram by ¢ to produce a graph that can be compared to that of the standard
normal distribution. It is curious that the observed distribution of S(¢) is less peaked
than the normal one, whereas in most of the other comparisons the empirical dis-
tributions have sharper peaks than expected. It is especially interesting to compare
Fig. 2.5.1 to Fig. 2.11.1, which compares the distribution of log |Z(¢)| (up to a con-
stant the harmonic conjugate of S(¢)) to the normal distribution. In both cases the
limiting distributions are known to be normal (even without assuming the RH), but
the observed deviations from normal behavior are different for S(¢) and log |Z(¢)|,

and are much more pronounced in the latter case.

The area between the two curves in Fig. 2.5.1 is 0.023. For the corresponding

figure using the N = 10'? data, the area is 0.029.
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Since both S(¢) and its integral S;(¢) are small, we can expect that S(t) will
have many sign changes, and several results in this direction have been proved,
the strongest ones being due to Ghosh [?] and Mueller [Muel], but they are all
weak. For example, Mueller proves that gaps between consecutive zeros of S(¢)
are O(logloglogt). On the other hand, we know that S(¢) has a limiting normal

1/2 and mean close to 0, and that

distribution with variance on the order of (loglogt)
it cannot vary too widely (in particular, except for jump discontinuities at zeros it
is monotone decreasing with derivative close to —log?). Therefore we might expect
that the ratio of the number of zero crossings of S(t) fort € (yn,yn+m) to M might
be roughly the fraction of ¢ in (yn, yYn4+ar) for which |S(#)| < 1. This suggests that

-1/2

on average there ought to be on the order of (loglogt) zeros of S(t) per Gram

interval.

The number of sign changes of S(f) in the intervals that have been investigated
can be determined easily from the statistics of Gram blocks and of exceptions to
Rosser’s rule that have been collected. When g, is a good Gram point (see Sec-
tion 2.13 for a definition) that is not close to an exception to Rosser’s rule, and is
not a zero of the zeta function, then S(g,) = 0, and S(t) changes sign at g,. We
will count this sign change as occurring in the Gram interval [g,, gn,+1). If B(n, k)
is a Gram block that has exactly & zeros, then an easy accounting shows that S(¢)
has exactly 2 sign changes in B(n, k). On the other hand, when B(n, k) is an excep-
tion to Rosser’s rule (see Section 2.14 for definitions), and [gm, gm+r) is the smallest
union of Gram blocks that contains both the exception and the excess zeros, then
a similar accounting shows that [g,,, gm+-) contains exactly 2 sign changes. Thus if
Gram’s law (see Section 2.13) held universally, we would have an average of 2 sign
changes of S(t) for every zero of zeta(s). Departures from Gram’s law lower this av-
erage. Table 2.5.2 shows the computed averages for the different data sets. There is
a steady decrease in the average, but it is slow. Since the argument in the preceding

paragraph suggests a rate of decrease of (loglog t)_1/2, this is not surprising.
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For every exception B(n, k) to Rosser’s rule there is a ¢ nearby with |S(¢)| > 2
(and even |S(t)| > 2, if zeros do not coincide with Gram points, as seems likely).
Statistics about these large values of S(t) were collected during investigation of
exceptions to Rosser’s rule. Large values of S(t) are of special interest because it is
only when S(t) is large that unusual behavior of the zeta function can take place.
Locally extreme values of S(t) occur at zeros. (Each zero has associated to it two
values of S(t), the limits of S(¢) as ¢t approaches the zero from the right or the left.)
Table 2.5.3 shows the values of S(t) for which |S(¢)] is largest in absolute value, as
well as the number of zeros at which |S(¢)| > 2.3 divided by the number of exceptions
to Rosser’s rule. The largest value of |S(¢)| that was found in these computations is
2.7916, while among the first 1.5 x 109 zeros the largest such value is 2.3137 [LRW?2].
(A point ¢ at which |S(¢)| = 2.8747 was found later in the computations described
in Section 3.) Earlier computations established that |S(t)| < 1 for 7 < t < 280, and
|S(t)| <2 for 7 <t <6.8x 10°.

The values of Si(t) were investigated in the two intervals (v,,¥,4106), Where
n =102 — 6,032 (for the N = 10'? set) and n = 102 — 48,778 (for N = 10?°). The

values of S;(7y,) were chosen to make

Vm

/ Sy (t)dt = 0 (2.5.10)
for m = n + 10%. The data that were obtained are summarized in Table 2.5.4; the
mean of Si(t)%, for example, refers to

Ym
! / Sy (t)'dt .

Ym — In Tn

In addition to the uncertain choice of S1(7,), there were additional problems in these
computations due to the accumulating errors from the uncertainties in the values of
zeros and S(t). Values computed over shorter intervals suggest that the mean values
in Table 2.5.4 are accurate. The entry for sign changes of S; (¢) refers to the number

of sign changes per Gram interval. This figure appears to be moderately accurate.
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Changing the initial value of Sy(v,) by £10~* varied the number of computed sign
changes of S(t) for the N = 10?° interval only between 73799 and 74089.

2.6. Extreme gaps between zeros

In its weakest form, the GUE hypothesis predicts only that (2.3.7) holds for
all 0 < o < B < o0, and so it says nothing about the existence of a small number
(o(M), say) of large or small 6,. A double zero of the zeta function, giving §, = 0,
would not by itself contradict this weak hypothesis. On the other hand, it is known

(cf. (2.3.3) and (2.3.5)) that in the GUE,

2 ot 6
Prob(s, <z)= %m?’ LI 2;T05$

7 R
TR TR (2.6.1)

so very small §,, (roughly o(M~!/3) among M samples) are rare in the GUE, and a
similar result holds for large §,,. A strong form of the GUE hypothesis would predict
that even extreme values of §,, (and &, + d,41) for the zeta function would behave
as in the GUE model.

Given the constraints on S(¢) described in Section 2.5, we can expect that even if
the strong form of the GUE hypothesis holds, it only applies to the zeta function at
large heights, and that the lower the region under investigation, the fewer extreme
values of §,, or 6,,+9,4+1 we will find. This is clear for large values of §,, and d,,+3,41,
as these clearly correspond to large values of |S(¢)|. It is also true for small values
of 4, and &, + d,,+1, though, since several zeros clustered close together again force
|S(t)| to be large.

What was observed in [Od2] in a comparison of the first 10° zeros to 10° zeros
starting with zero number 10'2 is that the above predictions were largely satisfied
by the data. In general, there was a deficiency of extreme values of é,, and 6,, + 6,41
(compared to the GUE prediction), but this deficiency declined as one considered the
higher zeros. There was, however, one observation that went counter to expectations.
The number of small é,, that were observed at large heights was larger than predicted

by the GUE theory. This excess was not large, but it was also observed in the data
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for 10° zeros starting with zero number 2 x 10'!, as well as by some data based on
the first 1.5 x 10? zeros. This excess of small spacings was very counterintuitive,
and so gave rise to some suspicions about the validity of the GUE hypothesis.
Table 2.6.1 shows the extremal values of §,, and 4, + §,41 that were found in
each data set. (The number of zeros in each data set is given in Table 1.2.) The
last column in Table 2.6.1 gives the probability that the minimal 4, would not
exceed the values in the second column if all the &, in the data set were drawn
independently from the GUE distribution. From (2.6.1), we see that the probability

that the smallest &, out of M that are drawn from the GUE satisfies §,, < z is about

M
1- (1 - %Qx?’) ~ 1 —exp(—mz®M/9) . (2.6.2)
This approximation was used to compute the last column of Table 2.6.1. We can see
that most of the entries in that column are high (although not too high, which would
indicate a severe deficiency of small spacings), while those for N = 10'® (where §,, =
0.001124 for n = 10'® 412,376, 780, a case that will be discussed in sections 2.7 and
4.5) and for N = 10'? (where &, = 0.000897 for n = 1019415, 987, 196 is the smallest
d,, that was found in our computations) are extremely low. The smallest value of §,,
that is known is §,, = 0.000310 for n = 1, 048,449,114 (found by van de Lune et al.
[LRW2]), and the probability of such a small spacing occurring among 1.5 x 10°
samples drawn from the GUE is only 0.048. Thus the extremely small values of the
d, do appear to be somewhat more frequent than expected. (Some more evidence
pointing to this conclusion is presented in Section 3.)

When we next consider small, but slightly larger spacings, we find no evidence of
an excess of small spacings. Table 2.6.2 shows the number of §,, < 1/20 and < 1/10
observed in each set (given in terms of cases per million zeros to make comparisons
easier). If we consider the N = 1019 entry for &, < 1/20, for example, we see that we
are dealing with 2353 cases altogether, so a normal sampling error might be around
50, which is about 2%. Thus the 140.5 figure in the table is consistent with the
136.8 expected for the GUE.
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Still another way to judge whether there is any anomaly in the distribution of
the &, or the 4, + §,41 is to use the quantile-quantile (¢ — ¢) plots to compare
the observed distributions to those of the GUE. Given a sample zq,...,2,, and a
continuous cumulative distribution function F(z) for some distribution, the ¢ — ¢
plot is obtained by plotting z(;) against ¢;, where (1) < z(3) < -+ < () are the z;
sorted in increasing order, and the ¢; are the theoretical quantiles defined by F'(¢;) =
(7 = 1/2)/n [CCKT]. The ¢ — ¢ plot is a sensitive method of detecting differences
among distributions. In particular, while it does show the outliers that are far away
from the expected position, it makes it possible to disregard them and concentrate
on the main part of the distribution curve. If the z; are drawn from the distribution
corresponding to I'(z), and the sample size n is large, the ¢—¢ plot will be close to the
straight line y = z. In all our g — ¢ plots, straight lines y = 2 are drawn to facilitate
comparisons. (By the standards of typical statistical investigations, the sample sizes
we deal with are very large, and the degree of agreement between conjecture and

numerical evidence is very good, so one has to look at minute deviations.)

The ¢ — ¢ plots of [Od2] that showed the distribution of small §, indicated a
deficiency of small §, for N = 1, and a slight excess for N = 2 x 10'" and N = 10'2.
Those plots were each based on 10° values of §,. When the new, more extensive
data for N = 10'? were obtained, the resulting ¢ — ¢ plot was similar to that of
Fig. 2.6.1, and did not behave like the plot in Fig. 8 of [Od2] (which was based
on only 10° zeros). Figures 2.6.1 and 2.6.2 show ¢ — ¢ plots of 4, drawn from two
disjoint sets of 10° zeros near zero number 102, While the plot of Fig. 2.6.1 might
indicate a slight excess of small spacings (those in (0.02,0.04), roughly), and a slight
deficiency of slightly larger spacings (where the scatterplot lies above the straight
line), Fig. 2.6.2 indicates almost perfect agreement between theory and experiment.
Figure 2.6.2 is not completely representative of zeros in the N = 10?° sets, since it
was the one of several ¢ — ¢ plots based on disjoint sets of 106 zeros that gave the

best agreement. Figure 2.6.1 is more typical in this respect.
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Figures 2.6.1 and 2.6.2 provide only a little, if any, support to the theory that
there is an excess of small spacings among the zeros. Some further support can
be found, however, if we combine all the data from the N = 108, 10'% and 10%°
data sets, which contain 112,314, 006 zeros, and yield 112,314,003 values of é,. The
resulting ¢ — ¢ plot, shown in Fig. 2.6.3, does indicate a slight excess of small 4,
(the two outliers close to the bottom of the graph are the unusually small §,, that
are minimal in the N = 10'® and 10'? data sets), but the evidence is not conclusive.

When we consider the other extremal values of 4, and &, + 8,41, the evidence
is in much better agreement with expectation. The counts in Table 2.6.2 show
that the numbers of small é,, + 8,41, large 4, and large 4, + 6,41 are all smaller
than predicted by the GUE theory, but increasing towards that prediction. The
q — q plots of Figures 2.6.4 through 2.6.7 also support this impression; there are too
few extreme values in general, but the deficiency is smaller for N = 10%° than for
N =10"%.

Because of (2.3.6), one can expect that among the values of §, + §,41 drawn

from the GUE, the probability of the minimal value being < z is about
1 — exp(—m°2®M/32400) .

The minimal value of 6, + 8,41 of 0.1124 in the N = 10?° data set would then occur
with a probability of 0.06 in the GUE, while the corresponding probabilities for the
N = 10'2, 10™, 10'6, 10'®, and 10" data sets are 0.93, 0.78, 0.25, 0.27, and 0.60,
respectively. Thus the only one of these figures that might seem unusually small is
that for the minimal § + 6,41 for N = 10%°.

The maximal values of §,, and §,, + 6,41 recorded in Table 2.6.1 are all somewhat
smaller than what the GUE predicts, which is not too surprising given the bounds
known to hold for S(¢) and S (¢). For very large spacings in the GUE, des Cloizeaux
and Mehta [CM2] have proved that

log p(0,t) ~ —m**/8 as t— oo, (2.6.3)
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which suggests that

8, ~ 7' (8log M)'/? 2.6.4
N T (8log M) (2.6.4)

as N, M — oo with M reasonably large compared to N. This is larger by about a
(loglog M)'/? factor than the conjecture (2.5.2) of Montgomery allows. Our data
are too limited to decide whether that conjecture is right.

Values of §, and §, + 0,41 larger than those of Table 2.6.1 have been found
in other computations, and are described in Section 3.2. In particular, the largest
known values of é,, and of d,, + 8,41 are 5.1454 and 6.0165, respectively.

Even on the assumption of the RH, it is only known that §, < 0.5172 and
d, > 2.337 each occurs infinitely often [CGG1], and §,, > 2.68 occurs infinitely often
on the assumption of the Generalized Riemann Hypothesis for Dirichlet L-functions
(or at least of a Generalized Lindel6f Hypothesis) [CGG2]. On the assumption of
the RH, it is also known that &, < 0.77 and &, > 1.33 each holds for a positive
proportion of n [CGGGH]. The GUE predicts that 6, < ¢ and 6, > ¢! should
each hold for a positive proportion of n for every fixed ¢ > 0. If we could prove
that &, < 1/4 holds for infinitely many n, we could obtain effective bounds for class
numbers of imaginary quadratic number fields [MW]. The GUE hypothesis predicts
that 8, < 1/4 for 1.6% of n’s, and this is very close to what is observed in numerical

data. (For §,, < 1/2 the corresponding figure is 11.3%.)

2.7. Long and short range correlations between zeros

The distribution of the eigenvalue spacings in the GUE is stationary. What
this means is that for any k, the frequency with which (8,, épy1,...,0,4%) € @ for
any measurable subset ) C R¥*! does not depend on the range of n, so that the
distribution eigenvalue spacings looks every place the same. On the other hand,
this distribution is not Markovian, so that the distribution of §,,41 does not depend
just on that of é,. Instead, &,41 is correlated to all the neighboring 4, 6,_1,...

as well as 0,42, 6,43,.... In the limit, that also should be true for the zeros of the
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zeta function. However, given the slow growth rate of S(¢), one cannot expect GUE
behavior from joint distributions of 6, 8,41, ..., 0,4k if k is large. Already the data
of sections 2.3 and 2.5 show that the behavior of 4, is much closer to the GUE
prediction than that of 4, + d,4+1. That was the main reason for not investigating
On + dpt1 + Ony2 and higher order spacings.

When we investigate long range correlations among the zeros of the zeta function,
we find phenomena connected not to the GUE, but to the distribution of primes.

For example, if we let the autocovariances of a set of 8§, be defined by

1 H+M
ek = cx(H, M) = > (6= 1) (Gngr — 1), (2.7.1)
n=H+1

then it has been conjectured by F. J. Dyson (unpublished) that in the GUE,

1

~5o (2.7.2)

Cr ~

for k > 0, with the approz indicating some degree of approximation, not necessarily
asymptotic equality as N, M — oo. This result has not been proved for the GUE,
but it is intuitively appealing for both the GUE and the zeros of the zeta function,
since it says in effect that a large spacing would lead to smaller spacings nearby (and
vice versa), and that this effect would diminish as one considered spacings further
and further apart.

What was observed in [Od2] for the 4,, was quite different from the conjecture
(2.7.2). Additional data based on the new computations are presented in Table 2.7.1.
The N = 1 entries come from the [Od2] computations, and have H = 0, M = 10°.
The N = 10'? and 10?° entries come from the new computations, and both have
M = 108, with H = 10'? — 6,032 for the N = 10'? column and H = 10?° — 48,776
for the N = 10%° column. (A comparison of the N = 10'? entries here with those
in Table 6 of [Od2], which are based on 1/10 as many zeros indicates the size of
the sampling errors.) For small k, the data in this table support Dyson’s conjecture
(2.7.2). For higher sets of zeros, the agreement with (2.7.2) extends to slightly

higher values of k. However, for large &, we see totally different behavior. If §, and
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d,+x were independent, then, since their mean value is 1 and variance is about 1/6,
we would expect a sum of 106 terms of the form (8, — 1)(8,4% — 1) (for & > 0) to
be about 106/2/6 ~ 170, and this would correspond to a value of ¢ of 1.7 x 1074,
The values in Table 2.7.1 for 9,980 < £ < 10,000 are usually much larger than
that, which shows that there are strong long range correlation between the §,. The
pattern of signs of the ¢; also shows the nonrandom nature of the c¢;. The ¢; are
occasionally positive, and occasionally negative, indicating that for some k, a large
d,, tends to be associated with large 4,4, while for other £ it tends to be associated
with small &,4.

An explanation for the long range dependencies among the &, was proposed in
[Od2]. It implies that the observed correlations come from primes through formulas

such as that of Landau [Lanl], which says that for any fixed y > 0, as N — oo we

have
N CIN =v/2 19 O(e"*log N) if y=logp™ ,
Z ety — 2T (273)
=1 O(e¥/2log N) if y#logp™,

where p denotes a prime and m € Z*. The above statement assumes the RH, but
Landau proved a similar unconditional result. Improvements on Landau’s result
(with better error terms and more explicit dependencies of the error terms on y)
have been obtained by Fujii [Fu5, Fu7] and Gonek [Gon2]. (There are many formulas
relating primes and zeros, and the “explicit formulas” of Guinand [Gul, Gu2] and
Weil [Wel] are among the most general.)

The paper [Od2] presents the detailed explanation of how Landau’s formula
(2.7.3) forces the spectrum of the §,, to consist largely of point masses at frequencies
corresponding to prime powers, which then forces the initially unexpected behavior
of the ¢; that is seen in the tables. This explanation will not be repeated here.
We will mention only that while it is not rigorous, it is supported by heuristics and
numerical evidence. What we will do now is to check how well Landau’s formula

(2.7.3) fits with the numerical data. The main interest here is to see just how many
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zeros 7y, are needed at various heights to observe the phenomenon of large values
occurring at logarithms of prime powers. Some proposals have even been made to
use sums like that in (2.7.3) for primality testing and factoring integers. While it
seems unlikely that efficient methods could be developed by this approach, it is of

some interest to see what happens when one considers a relatively short sum over

high zeros.
Let
102044x10%
h(y)= > M. (2.7.4)
n=102041

Figure 2.7.1 shows a graph of 2log|h(y)| for 0 < y < 3. It is instructive to compare
this graph with that of Fig. 15 of [Od2], which is drawn on the same scale, but
is based on an exponential sum of 4 x 10 zeros starting at zero number 1012 + 1.
Both graphs show sharp peaks precisely at logarithms of prime powers, and the
peaks are visibly higher at primes than at proper prime powers, as predicted by
Landau’s formula. (The heights of the peaks are not represented too accurately on
the graph because of limited sampling.) All the prime powers < e = 20.09 are
visible. The main difference between the two graphs is that in Fig. 2.7.1 the peaks
are slightly lower, and the “noise” region between the peaks has somewhat higher
values. Furthermore, the regular patterns seen in the “main” regions of Fig. 15 of
[Od2] (which come from sampling at regular intervals a rapidly oscillating function
whose frequency and amplitude are changing slowly) is not visible in Fig. 2.7.1.
These differences are probably due partly to the errors in the computed values of
the 7, near the 102°-th zero and partly to taking a very short sum. 4 x 10* zeros
out of the first 10%° is a very small proportion, so it is remarkable that the pattern
of Iig. 2.7.1 is as clear as it is, since this is much better than the proved results of
[Fub, Fu7, Gon2, Lan1] might lead one to expect.

Figure 2.7.2 shows a graph of 2log |h(y)|, where h(y) is again defined by (2.7.4),
but this time over the region 8 < y < 8.05. (This graph is based on 10* equally

spaced values of y.) The interval from e* = 2980.96 to %% = 3133.79 contains



38 CHAPTER 2. LARGE SETS OF ZEROS: CONJECTURES AND STATISTICS

the primes 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083,
3089, 3109, 3119, and 3121, and the prime power 5° = 3125. Figure 2.7.2 fails to
distinguish between several close pairs of primes. When one graphs a similar sum,
but with 10 times as many zeros, as is done in Fig. 2.7.3, all the primes can be
distinguished, and even 3125 can be easily discerned.

An elegant measure of long range correlations between zeros was found by Berry
[Bed]. If we consider an interval of length 27 L(log(T/(27))~! at height T, the
expected number of zeros in it equals L. We define the number variance of the zeros

by

V(L) = Vog(L) = H! /TT+H {N <t + %) _ N - L}2 di . (2.7.5)

In the GUE, one has Vr(L) = G(L), with

G(L) = n=*{log(27L) — Ci(2wL) — 2r LSi(2rL)

+ 7L —cos(2rL) + 14 co} (2.7.6)

where C'i and S7 are the cosine and sine integrals [HMF] and ¢y = 0.577 .. .is Euler’s

constant. Asymptotically,
G(L)~n"%log(2rL) as L — oo, (2.7.7)

while

G(L)~L as L->0. (2.7.8)

Gallagher and Mueller [GM] showed that Montgomery’s pair correlation conjecture
implies Vz(L) = L — L?+0(L?) as L — 0, which is consistent with (2.7.8). (See also
[F'u8].) On the other hand, the numerical evidence of [Od2] showed that V(L) was
small even for moderately large L, and so a relation like (2.7.7) appeared impossi-
ble. Motivated by this discovery, by the relations between primes and long range
correlation between zeros discussed above, and by his earlier work on eigenvalues

of Hamiltonians of chaotic dynamical systems [Bel, Be2, Be3], Berry [Be4] found
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heuristic arguments which suggested that for any 7 € (0,1), and any L > 0,
Vr(L) = G(L)+ Br(L) (2.7.9)

where for U = T(2m) 7,

Br(L) =7"2%{2 E i sin2(7rLr(102g]:)/(log ) + Ci(2nL7) — log(2nLT) — ¢o ¢
B i

(2.7.10)

and p denotes primes. Computations using 10° zeros near zero number 10'2, using

values of L up to 1000, showed excellent agreement between Berry’s conjecture

(2.7.9) and empirical data, and those results are shown in the graphs in [Be4]. Note

that the log(L) terms in G(L) and B (L) cancel out, and so for every fixed L, one

can show that there is a positive function g(L) such that
G(L)+Br(L)=¢(L)4+0(1) as T —oo. (2.7.11)
Moreover, if 7 is held fixed, then it is easy to see that
G(L)+ Br(L) ~ 7 %loglogT as T ,L — oo, (2.7.12)

(with L growing much more slowly than 7), since the arguments of the sine in the
definition (2.7.10) of Br(L) will be asymptotically equidistributed modulo 2.
The new zeros were used to obtain further data. For N = 10'2, the number
variance Vy(L) = Vpr (L) defined by (2.7.5) was computed with
T = Yp, no = 1012 — 6,032 ,
T+ H = vpy, mo = ng+ 5 x 10° .
For N = 10%°, the values that were chosen were
T =9, n1 = 10%° — 48,778,
T+ H =7, m; =ny +5x10° .
Berry’s function (2.7.10) was computed in each case with 7 = 1/4. (Varying 7

between 0.2 and 0.3 did not appreciably change the results, as was to be expected.)
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The results of some of these computations for N = 10?° are presented in Figs. 2.7.4
through 2.7.6. In Fig. 2.7.4, the dashed line is the graph of the GUE prediction G(L),
the solid line is the graph of Berry’s prediction G(L) + Br (L), and the scatterplot
is that of computed values of Vr(L). In Figs. 2.7.5 and 2.7.6 the graphs of the
computed values of V(L) and of Berry’s prediction G(L)+ Br(L) were both drawn
as solid lines, one superposed on the other. The slight differences between the two
curves show up as slight blotches on the graph. (The empirical data is slightly more
wiggly than G(L) 4+ Br(L).) We see that even for I = 5 x 10°, the agreement
between computed and predicted values is almost perfect.

A comparison of the graphs of [Be4] (and of similar graphs drawn with the more
extensive data that has been obtained for N = 102 in the present computation) with
Figs. 2.7.4 through 2.7.6 shows that for N = 10?°, the number variance oscillates
less than for N = 10'2. The agreement of data with Berry’s prediction is better for
N = 10%°.

While Berry’s prediction (2.7.9) for Vy(L)was based on heuristic arguments,
one can prove that a version of the conjecture follows from the RH and the pair

correlation conjecture (2.3.11). This will be shown in a separate paper [Od4].
2.8. Lehmer phenomenon

For the RH to be true, |Z(t)| cannot have any relative minima between two

consecutive zeros of Z(t). Cases where

= Z(t 2.8.1
v %gggwl()l (2.8.1)

is very small (so that in a sense the RH is “almost violated”) are referred to as
Lehmer’s phenomenon [Lr2], and provide some of the more interesting heuristics
both for and against the RH (cf. [Od3]). In this section we present statistics on the
frequency of this phenomenon (which does not have a precise definition).

The zero-locating program printed the largest value of |Z(¢)| that had been com-

puted in each stretch of 10* zeros. To provide further information, the program was
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modified for the N = 10", N = 10?°, and N = 2 x 10?° data sets to obtain statisti-
cal information about the behavior of v,. Since getting a very good approximation
to v, would have required substantial computing time, what the program computed

was the midpoint value

o = | Z((Yn + 1n41)/2)] - (2.8.2)
When a value of w,, > 250 or w,, < 5x10~4 was encountered, it was printed together
with n, v,, and §,,. (However, w,, was not computed for a total of roughly 100 zeros
at the ends of data sets.)
To see how good an approximation w, was to v,, the values

vr = max
1<k<39

Z <7n + 4k_0(7n+1 - vn))‘ (2.8.3)

as well as of w, were computed for ng < n < ng+ 8 x 10> — 1, where ng =
10%° 4 15,316, 087. Let
Ty = v /Wy, . (2.8.4)

Then the maximal value of r, that was found was 1.43. Only 755 out of the 8 x 10°
values of r,, were > 1.2, while the rms value of r, — 1 was 0.029. Among the 873
values of n for which 4, < 0.1, the maximal value of r,, was 1.008, and the rms
value of r, — 1 was 5.1 X 1074. For the 898 values of n for which 4, > 2.5, the
corresponding numbers were 1.29 and 0.036. For the 244 values of n for which
w, > 100, these numbers were 1.137 and 0.032, while for the 1426 values of n for
which w, < 0.01, they were 1.072 and 0.0066. Thus in general the values of w,, do

*

%, and therefore surely also to v,,. This was to be

provide good approximations to v
expected on the basis of the GUE predictions (in particular that the approximation
would be exceptionally good when §,, is small). The size of v, is determined largely
by the few zeros nearest to §,, (cf. [Hej5, Hej6]), and so under the assumption of the
GUE one can make quantitative predictions about the behavior of r,,.

Table 2.8.1 shows the frequency of occurrence of values of w,, < 5x 1074 among

the approximately 3 x 10® values of n that were checked in the N = 10'?, N = 10%°,
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and N = 2 x 10?° data sets. The smallest value of w, that was found there was
1.82 x 1079, for n = 1020 4 52,127, 155 and §,, = 0.00263, while the second smallest
was 1.84 x 1076.

One might expect, and one does observe empirically, that the Lehmer phe-

nomenon is associated to small values of §,. If §, is small, then one might expect

2

that w,, is almost proportional to §;,

since zeros other than v, and 7,41 ought to
contribute multiplicative factors that behave like a power of log~, on the average,
and are at most 72(1) as n — oo (assuming the Lindel6f conjecture). Since the
probability that &, < z is about 7%223/9 for 2 small (see Sections 2.3 and 2.6), one
might conjecture that the probability of w, < y might be proportional to y/2. This
would suggest that among the first n zeros, the smallest w,, might be n=2/3 4 o(1)
as n — oo. If true, this relation would settle an old question [Ed] about the number
of terms in the asymptotic part of the Riemann-Siegel formula that have to be used

to separate the zeros; even the old estimate of Titchmarsh [Tit1] with an error term

of O(t~3/%) would suffice at large heights.

The above heuristic about the behavior of small w,, is supported well by empirical
data. Let W denote the set formed by the N = 10'® data set and the first 78,893,234
zeros in set N = 102, (In the notation of Table 4.7.1, it is the union of sets i, k,
[, m, and n.) In set W, 1976 values of n have w, < 5 x 1074. Among these 1976
values, the ratio w, /82 varies between 0.0136 and 8.56, with a mean of 0.608 and a
variance of 0.427. Thus the correlation between 2 and w, is only modest. On the
other hand, these w, follow almost perfectly the rule conjectured above that the

3/2_ This can be seen by

fraction of them that are < y ought to be proportional to y
looking at the ratio of the k-th smallest w, to 5 x 10~4 x (k/1976)%/3, which varies
between 0.715 and 1.267, with a mean of 1.01 and a variance of 9 x 10~%, and from
looking at a ¢ — ¢ plot of the sorted w, against 5 x 10=* x (k/1976)%/3. We also

find good agreement between this prediction of the behavior of the small w, and

the counts of Table 2.8.1, which are based on all of the zeros in the N = 10'?, 102,
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and 2 x 10?° data sets. Thus on average the influence of the neighboring vz cancels
out.

The most extreme example of the Lehmer phenomenon that was found during
the computations described in this paper occurs for n = 10'® + 12, 376, 780, where
w, = 5.28 x 1077 and &, = 0.001124. A graph of Z(f) near this point is given
in Fig. 2.8.1. (Figure 2.8.1 shows also what looks like another case of the Lehmer
phenomenon near Gram point n — 5, but in that case the minimum of Z(¢) reaches
—0.0094, and so it does not qualify under our definition.) A much more detailed view
of Z(t) in a small neighborhood of this Lehmer phenomenon is given in Fig. 4.7.1.
(That picture plays an important role in the discussion of the validity of the present
computations that is presented in Section 4.6.)

The most extreme example of the Lehmer phenomenon that is known was found
by van de Lune et al. [LRW2]. For n = 1,048,449,114, they discovered that
8, = 0.000310, while v, = 2.2 x 10=7 (> w,,). Since the height of this example is
only about the square root of that for n = 10'® + 12,376, 780, it could be argued
that the higher example of this paper is even more extreme. However, the §, found

by van de Lune et al. is by far the smallest of any that are known.

2.9. Large values of ((1/2 + it)

The largest value of |Z(t)| = |((1/2+ it)| that was encountered by van de Lune
et al. [LRW2] in their investigation of the first 1.5 x 10? zeros was 117. Table 2.9.1
lists the largest values of |Z(t)| that were encountered in each of the data sets
computed in this paper. The main zero locating program kept track of the largest
value of |Z(t)| that had been computed, but did not attempt to do a systematic
search for large values. However, since large values are usually associated with large
8., the standard zero locating procedure seemed to be quite good at finding the
high peaks in |Z(t)|. For the N = 10 N = 10%°, and N = 2 x 10%° data sets,

the more careful procedure described in Section 2.8 was employed, which provided
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even more reliable statistics. The number of values of n in those two data sets for
which w,, (defined by Eq. (2.8.2)) exceeded various thresholds is given in Table 2.9.2.
(Section 3 lists some values of ¢ for which |Z(¢)| is much larger and which were found
by a different procedure.)

The rate of growth of |Z(t)| is one of the most intensively studied problems in
the theory of the zeta function, since bounds on it provide estimates on the density

of possible zeros away from the critical line. It is easy to show that
1Z(@t)| <2+ a5t 0o (2.9.1)

with @ = 1/4. Exponential sum methods were used in the first few decades of this
century to show that (2.9.1) holds with o = 1/6, and then to successively lower this
value of a. (See the Notes to Chapter 5 of [Tit2] for a list of the improvements.)
Until recently, the smallest value of a for which (2.9.1) was known to hold was
a = 139/858 = 0.162004 . .., proved by Kolesnik [Ko], and there were indications
that this result was close to the limit of what the two-dimensional “exponent pair”
method that was being used could yield [GK]. However, Bombieri and Iwaniec [BI]
have obtained a new method that gave o = 9/56 = 0.16071.... This method was
then developed by Huxley, Kolesnik, and Watt in a series of papers, and the latest
result, proved by Huxley [Hux] is that (2.9.1) holds with o = 89/570 = 0.15614 .. ..

The Lindel6f hypothesis is the statement that (2.9.1) holds with o = 0. The RH
yields a slightly stronger bound [Tit2]

|Z(t)] < exp(c(logt)(loglogt)™) (2.9.2)

for some ¢ > 0. On the other side, Balasubramanian and Ramachandra [Bala, BR]

have shown that

. 3(log T)'/

if 7" is large enough and more generally, that if > 0, then for T" > T'() and
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(logT)" < H <T, we have

3(log H)'/? ) (2.0.4)

r R 171 2 (W
Montgomery [Mon3] has conjectured that (2.9.3) is close to the real rate of growth
of |Z(t)].

While the data that was collected about large values of |Z(t)| probably does
reflect accurately the behavior of the zeta function in these ranges, it does not help
in assessing what the true rate of growth of |Z(¢)| is. There are two main problems.
One is the relatively small number of zeros that were investigated. Since large
values of |Z(t)| are rare, we probably do not even have a good representation of
the large values of |Z(t)| for t < 7,, n = 10%°. (This is supported by the results
of Section 3, where much higher values were found by special methods.) Another
problem in using our data to assess the true growth rate of |Z(¢)| arises from the
slow approach to its true asymptotic behavior. As is noted in Section 2.12 (see
especially Fig. 2.10.1), even log |Z(t)| in the ranges that have been investigated can
be far from its eventual distribution. Furthermore, as was noted in the Introduction,
even when one investigates at heights t ~ 1.5 x 109, it is hard to tell the differences
in growth rates between various functions. (The situation is not as bleak as might
seem from the argument used in the Introduction, since one can use sensitive tools
such as ratios of values of a function at different points to estimate its growth rate,
but that only helps to a limited extent.) Note that for ¢ = v, n = 10?°, the bound
(2.9.3) is only 12.9.

Before concluding this section, we present some more statistics on the large values
of |Z(t)| that were found in the W data set, which was defined in Section 2.8, and
which is a subset of the N = 10'® and 10?° data sets. In set W, 565 values of n were
recorded for which w, > 250. The largest is w, = 631.7 for n = 10%° 4 13,704, 916,
for which 4, = 3.1428. (The maximum of |Z(t)| between v, and 7,41 is at least
641, and there is no violation of Rosser’s rule near v,.) Of the 565 values, 94 are

associated with violations of Rosser’s rule. (Of the 28 values of n for which w,, > 400,
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7 are associated with violations of Rosser’s rule.) The smallest value of §,, that was
found for these 565 values of n was 2.07, and the largest was 4.03.

There was a substantial correlation between §2 and w, among these 565 samples
in set W. The ratio w,/d2 was in the range (19.47, 64.74), with a mean of 35.47
and variance 61.32. However, at large heights one would expect this correlation to
diminish, in contrast to the situation for Lehmer’s phenomenon (Section 2.8). In the
latter case the GUE theories predict that §2 will occasionally get as small as n=2/3,
so that the influence of the other zeros (likely to be n°(!) because of the Lindelsf
hypothesis and the separation of the other zeros that is predicted by the GUE)
will not affect the size of Z(t) very much. On the other hand, the GUE theories
predict that §2 = O(logn), and since Z(t) is known to get much larger (cf. (2.9.3)),
this must be due to some long-range imbalances in the locations of the zeros. One
model for the distribution of Z(¢) (first proposed informally by Montgomery, and
worked out in detail by Bombieri and Hejhal [BH, Hej5, Hej6]) predicts that at large
heights, the size of Z(t) is determined primarily by long “amplitude” waves, which
are then modulated by local distributions of zeros. This model predicts that there
should be clusters of large values of |Z(t)|, and that over wide ranges, w, ought
to depend mostly on the “amplitude” waves, and not on 4,. That there is a very
strong correlation between the large w,, and §2 in our data might therefore indicate

that we are not yet seeing the true asymptotic behavior.
2.10. Moments of ((1/2 + it)

It is conjectured that for every A > 0,

T
lim T—1(1ogT)—X“/ 1Z(t)[Pdt = e()) (2.10.1)

T—o0
exists, with ¢(A) > 0 for all A\. A proof of this conjecture, or even of some much
weaker bound, would be very important, since it would prove the Lindel6f conjecture.

However, this conjecture is only known to be true for A = 0 with ¢(0) = 1 (trivial),

A =1 with ¢(1) = 1, and XA = 2 with ¢(2) = (27%)~! (see the Notes for Chapter 7
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n [Tit2] for detailed information and references). No specific values have been
conjectured for ¢(A) in general, but under the assumption of the RH, Conrey and
Ghosh [CG1] have shown that ¢(A) > ¢1(A), where
2 o
a(N)=T1+2)7'] { (1 - 5)A mz_:o (%)2])_771} , (2.10.2)
and since ¢(A) = ¢;(A) for A = 0 and 1, they suggested that perhaps ¢(A) = ¢1(A) for
all A € [0,1]. Since ¢;(2) = (472)7" = ¢(2)/2, equality of ¢(X) and ¢;()) is unlikely
outside the range 0 < A < 1. (There is a mistake on this point in the Notes to
Chapter 7 of [Tit2].) Conrey and Ghosh [?] have shown that the derivatives of ¢;(A)
and c(A) with respect to A agree at A =0 and 1. Also, for 0 < A < 2, Heath-Brown
[HB2] has shown under the assumption of the RH that if ¢()) exists, it is not much
larger than predicted by the Conrey-Ghosh conjectures.
One purpose of this section is to provide some numerical evidence about possible

values of ¢(A). One might expect that if
1 e [T 2)
r(NT, H) = H ' (log T)™ / 1Z(t)[Pdt (2.10.3)
T

then r(A\,T,H) ~ ¢(A) as T" — oo, if H grows sufficiently fast with 7" while X is
held fixed. Table 2.10.1 presents some values of r(X, 7T, H) computed for T = 7,
with ng = 10%° 4 47,098,588 and T + H = 7,,,n; = ng + 10°. Each of the 10°
gaps between consecutive zeros was divided into 40 intervals, Z(t) was evaluated at
the endpoints of these subintervals, and Simpson’s rule was applied to estimate the
integral. Variations on this procedure showed that it produced estimates that were
accurate to at least three decimal places (and more for high moments, as Simpson’s
rule is least accurate for small A, where the function has singularities at zeros that
are hard to deal with). However, the values in the tables, especially for large A, have
to be used with caution because even an interval of 106 zeros around zero number
10?0 is too small to be truly representative. For example, similar data was obtained
for T = =, with ny = 102° + 15,316,087 and T+ H = v,,,, n3 = ny + 8 x 10°, and
also for T = =,,, ng = 1020 — 15,409,244, T + H = v,,_, ns = ng + 10°. For A = 1,



48 CHAPTER 2. LARGE SETS OF ZEROS: CONJECTURES AND STATISTICS

the values found there differed by less than 0.5% from those in Table 2.10.1, but for
A = 2.5 these values were 1.20 and 0.752 times those in Table 2.10.1, respectively.
The problem is that high moments are determined largely by the few exceptionally
large values of Z(t), and those are rare. (See the next section for some further
evidence of this.) To get a good sample, for large A, one would need to integrate
|Z(t)|* over much longer intervals.

The data in Table 2.10.1 are consistent with the Conrey-Ghosh conjectures that
c(A) = ¢1(A) for 0 < X < 1. However, given the differences between the empirical
data for A = 1 and A = 2 and the known asymptotic values, it is hard to draw any
definitive conclusions. For A = 1, estimates of the second moment of Z(¢) are known

that are better than (2.10.1). They are of the form
T
/ Z(t)2dt = T(log T — 1 — log(2r) + 2¢0) + E(T) , (2.10.4)
0

where ¢y denotes Euler’s constant (= 0.577215...), and |E(T)| = O(T?) for various
a < 1/3. (The best current value of o is 139/429 4 o(1) as T — oo, due to
Kolesnik [Ko] and in a slightly sharper form to Hafner and Ivi¢ [HI]. Note that
139/492 = 0.3240...) If we let r*(X, T, H) be defined similarly to r(\, 7, H), but
with log 7" in (2.10.3) replaced by logT — log(27) + 2¢o, we find that for the values
of T and H that were used to compute Table 2.10.1, (1,7, H) = 1.004, which
is closer to the asymptotic value ¢(1) = 1 than the value of r(1,7, H) = 0.989.
(The other two sets of values that were considered give r*(1,7, H) = 1.0003 and
0.9995, respectively.) Thus a major problem in using empirical data is that we do
not have good conjectures about asymptotics of moments of Z(t), and that second
order terms in those asymptotics are likely to be only slightly smaller than the main
terms. (See also Section 2.11 on deviations between observed and expected behavior
of Z(t).)

Some data were obtained also about the negative moments of | Z(t)|. Table 2.10.2

shows some values of

1 T+H
— Z()|" 2 dt
g O]
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for 7" and H as in Table 2.10.1. (The values for 1" = v,,, T+ H = 7,,, were
essentially identical.) They were obtained by applying Simpson’s rule to the inner
38 subintervals in every gap between consecutive zeros, and approximating |Z(t)|
by a linear function on the two outer subintervals.

Conrey and Ghosh [CG2] have shown (assuming the RH) that

L Z Z(1)? ~ %(62 — 5) log(var/(27)) (2.10.5)

1m <t<'7m+1

as M — oo. Since ¢(1) = 1, this means that on average Z(¢)? at its maxima is
1+5(e*—7) = 1.1945 . . . times the average of Z(t)? over the entire range 0 < t < yy/.
(This surprisingly small factor of 1.1945... occurs because the values of Z(t)? at the
critical points where they achieve their maxima are not weighted by the lengths of
the intervals on which the maxima are computed. Large values of Z(t) are usually
associated to large gaps between consecutive zeros.) Computation over the range
from 7' = ~,, toT + H = v,, yielded a value of 1.224... instead of the asymptotic
value of 1.1945.... (The value 1.224... is probably a slight underestimate of the
correct ratio, since the actual maxima were not determined, but the largest of the
values at the 40 evenly spaced points was used.)

Gonek [Gonl] has shown, again assuming the RH, that

u sin Ta\ 2
7 > Z(ym +iaA)? ~ (1 - < ) ) log(var/(27)) (2.10.6)

me1 T

as M — oo, where A = 27 (log(yar/(27))) . Computations for o = 0.1,0.2, ...,0.9
and over the zeros numbered ng4, n4+1, ..., n5—1 showed reasonably good argument,
but with the ratio of empirical data to Gonek’s asymptotic estimate declining by

4% as a goes from 0.1 to 0.9.
2.11. Distribution of values of ((1/2 + it)

Since

log ((1/2 + it) = log | Z(t)| + 7iS (1) ,
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it is not surprising that methods that yield the distribution of S(¢) should give
corresponding results for log|Z(t)|. Selberg in unpublished manuscripts studied
mean values of (log ¢(1/2+ it))"(log¢(1/2 — it))* for nonnegative integers h and k,

and his results imply, for example, that for rectangles F in R?

lim th: T <t<or, 080U/2+i) EH = (27r)‘1//e—(I2+y2)/2dxdy,
E

T—co T = T T (27 loglog T)1/?
(2.11.1)
so that in particular, for any a < 3,
.1 log |Z(t)] H 172 /ﬁ a2/
e . <t < — T T .
Th_r}nooTHt T<t<2T, a< 3T loglog 1)172 < p (2m) e dzx
(2.11.2)

Thus the real and imaginary parts of log ((1/2+it) behave like independent normal
variables with means 0 and variances (loglogt)/2. While Selberg’s results have
not been published, they were known to some mathematicians (see [Hej6, Joyl, Jut,
Mon6], and some extensions of Selberg’s results have been obtained by Joyner [Joy1]
and Tsang [Ts2]. The weaker result (2.11.2) has been reproved by Laurinchikas
[Laul, Lau2, Lau3, Lau4, Lau5].

The critical issue here is whether the approximation (2.11.2) is accurate even for
T fixed and o and (8 varying over wide ranges. If that is the case, then we are led
to expect that something like (2.10.1) holds. Furthermore, if the approximation is
accurate even for o and f relatively large (compared to T'), one would expect that
the maximal size of |Z(t)], for 0 < t < T, would be exp((log7)*/?+°()) which is
conjectured by some to be the true rate of growth of Z(t) (cf. Section 2.9). Thus
it is of substantial interest to find out more about the tails of the distribution of
log | Z(t)].

Forng < n < mn;—1,ng =102 -6032, n; = ng+10°, each interval (Vs Ynt1) Was
partitioned into 40 equal subintervals, Z(¢) was evaluated at the endpoints of these

subintervals, and a linear approximation to Z(f) between consecutive evaluation
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points was used to estimate

1
ba,ﬁ = -~ A~ |{t Yng S t S Tnyy & S IOg |Z(t)| S ﬁ}l (2113)

7n1 no

for § = a4+ 1/100, @« = £/100, —1000 < k£ < 1000. The mean of this distribution
(as derived from the b, 3 data) was 5.29 x 1074 and the variance was 2.2930. (In
Fig. 2.11.1 it is labelled as the 10 = 10'? distribution.) Similar data was obtained
forng <mn < mns—1, ng = 102°415, 316, 087, n3 = ny+ 10°, and there the mean was
5.20 X 1074 and the variance was 2.5657. (This is the N = 10%° distribution.) Based
on (2.11.2), one would expect mean values of 0, which is very close to the calculated
values, given the errors in the computation and sampling errors. The values for
the variances would be expected to be (loglog1)/2, where T is the height of the
data set, which equals 1.635 and 1.894 for the two data sets, respectively. Since
(loglogT)/2 is only the asymptotic value and increases very slowly, lower order
terms can be expected to be significant, and so the agreement between observed
data and theory is reasonably good on this point as well. However, the shapes of the
observed distributions of log | Z(#)| appear to be different from the asymptotic normal
distribution. To obtain a good comparison, the two distributions for N = 11'? and
1029 were each scaled to have variance 1, and were plotted in Fig. 2.10.1 together
with the standard normal distribution. We see that while the fit of the N = 10%°
data is slightly better than that for N = 1012, it is not much better. This is in great
contrast to the fit of the data for S(¢) (which, apart from a factor of 1/pi, is the
imaginary part of log ((1/2+ i), while log |Z(t)| is the real part of it) which, as we
see in Section 2.5 and Fig. 2.5.1, is much better. It might be of some interest to
compute second order terms in the expansion of moments of log|Z(¢)| to see what
is responsible for the deviations from the asymptotic behavior that are visible in
the data. In view of Goldston’s results [Go2] (mentioned in Sections 2.5 and 2.7),
it seems likely that such higher order terms depend on the pair correlation of zeros,
and even on higher order correlations.

The area between the empirical distribution curve for N = 10'? in Fig. 2.11.1
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and the normal curve is 0.132, while for N = 1020 the corresponding area is 0.114. In
both cases these areas are much larger than those for the distribution curves for S(t)
discussed in Section 2.5, which confirms the impression one obtains by comparing

Fig. 2.5.1 to Fig. 2.11.1.

Table 2.11.1 presents extensive data on the moments of log|Z(¢)|. The six sets
of data summarized in this table were all obtained by choosing 106 random points in
an interval of length 1.5 x 10°. For N = 10'2, this interval started near zero number
10'? — 6,032. For N = 10'®(a) and N = 10'8(b), the intervals were the same,
starting near zero number 10'® — 8,839 but the random sequences were different,
since different seeds were chosen for the pseudorandom number generator. This
was done to estimate the size of the sampling error. For N = 10%°(c), the starting
point was near zero number 10?° — 48,776, while for N = 102°(d), it was near zero
number 102 4 15,316,087. The mean and second moment for each data set are
shown in the £ = 1* and k& = 2* entries, respectively. These were then applied to
translate and scale the data sets to obtain mean equal to 0 and variance equal to
1, for ease of comparison with the standard normal distribution. The k-th entry
in the table, 1 < k < 10, given the k-th moment of each scaled data set, and the
last column gives the corresponding value for the normal distribution (0 for & odd,

(k—1)-(k—=3)-...-3-1for k even).

Given that the distribution of log|Z(t)| differs so much from the expected normal
one, we have to treat the data about moments of |Z(t)|, for example, with extreme
caution, as they may not be representative of the true asymptotic behavior. Fur-
thermore, the general distribution of Z(¢) may be even further from what happens

higher up.

Figure 2.11.2 presents some empirical data on values of Z(¢). This figure is
based on the values of Z(t) in the three intervals covering 2.8 x 106 zeros that were
described in the preceding section. For each interval between consecutive zeros, the

function |Z(¢)| was approximated on 40 equal-sized subintervals by a linear function,
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and the length of the interval on which this linear approximation was in each range
[k — 1,k) for k > 0 was computed. If Ay denotes the length of all the intervals on
which the linear approximations were in [k — 1, k), and
Ay,
= Z;; Aj

the fraction of time spent there, then the plot in Fig. 2.11.2 shows log ¢. From this
graph and other graphs based on the data from each of the three main intervals
separately, it appears that for £ <~ 150, the empirical data obtained so far repre-
sents well the long-run statistics of |Z(¢)| at the heights that were investigated. In
particular, the curves of log ¢; for the three main intervals are almost identical in
that range. On the other hand, for & >~ 250, the behavior of log g;, is dominated by
a few large peaks of |Z(t)| (which also account for a large part of the values of high
moments of Z(t) dealt with in the previous section). In particular, the segments of
the graph in Fig. 2.11.2 that shoot up are caused by high peaks. The final region
(k > 353) is due to two peaks where |Z(t)| reaches about 460, and the preceding

region of increase in log ¢ is due to a point where |Z(¢)| is around 351.

2.12. Values of ('(1/2 + i)

Under the assumption of the RH and of a weak consequence of the pair corre-

lation conjecture, namely that for some 7 > 0, there is a constant B such that

) 1
lim sup —
N—oo

{n: N <n2N, §, < c}| < B (2.12.1)

holds uniformly for all ¢ € (0, 1), Hejhal [Hej6] has shown that for all @ < 3,

. 1 log logQ(Zf(/Jrr)L‘l) -1/2 g —?/2
]\;gnooﬁ n:N <n<2N, (21 log log N)1/? € (a,B) ¢| = (2m) /a e dz .

(2.12.2)
(Note that under the RH, which we assume throughout this section, |('(p)| = |Z’ ()|
if p=1/2417.)
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As was the case with the values of Z(t), we would like to obtain more information
about the tails of the distribution of Z'(7y,), and in particular about the moments.

Let us define

T =D 172 () (2.12.3)
m<T

Then Jy(T) exists for all A > 0, and if the zeros of the zeta function are all simple
(as they are conjectured to be, and as is the case with all of the zeros that have
been dealt with numerically) then J)(7') also exists for A < 0. The only nontrivial
asymptotic result was proved by Gonek [Gonl] under the assumption of the RH;

T
.]1(T)rv%(logT)4 as T — 0.

It is clear that Jo(T') = N(T) ~ LlogT as T — oo, and it is known (cf. [Tit2,
Section 14.27]) that J_;,5(T)/T — oo as T" — oo. Gonek [Gon3] has also shown
that (under the RH) J_4(T") > T for some ¢ > 0. If the limit law (2.12.2) holds
even for small N, and the tails of the distribution of Z/(7,,) are not too large, then
we might expect (as was suggested by Hejhal [Hej6] and stated explicitly by Gonek
[Gon3]) that J)\(T) is on the order of

T(logT)(’\+1)2 as T —o00. (2.12.4)
Furthermore, Gonek [Gon3] has conjectured that
J_1(T)~3772T as T —o0. (2.12.5)

Approximate values were obtained for |Z/(v,)|, no < n < ng + 106 — 1, where
ng = 102°+ 15,316, 107. Since the behavior of Z(¢) is determined primarily by zeros
close to t (cf. [BH, Hej6]), it was assumed that for ¢ near -, Z(t) is approximated

well by
20

a JT t=7+3), (2.12.6)

7=-20
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where «a, representing the influence of zeros further from =,, is almost a constant,

and this led to approximating Z’(v,) by

20 .
-1 Yn +J
€ Z(Yn+€ -, 2.12.7
( )FHQO%JFG_%J” ( )
J#0

where € = (V41 — 7n)/40. Varying the number of terms in the heuristic approxima-
tion (2.12.6) as well as varying ¢ showed that (2.12.7) does produce good approxi-
mation to Z'(vy).

The smallest value of |Z’(v,)| that was found was 0.13, while the largest was
2.47 x 10%. The values of log|Z’(7,)| had a mean of 3.35 and a variance of 1.14,
in contrast to 1.91 and 1.9, respectively, which are predicted by Hejhal’s result
(2.12.2). Given the slow rate of growth of these quantities, second order terms in
the asymptotic results are likely to be large, so this difference between expected and

observed values is probably not significant. If we let
vn = (log | Z'(yn)| = m)/o (2.12.8)

where m is the mean and o the standard deviation of our set of log|Z'(7,)|, then
Fig. 2.12.1 shows a comparison of the distribution of v, with the standard normal
distribution. The line is the standard normal density, while the scatterplot repre-
sents a histogram of v,,; for each interval [, ), & = k/50, 8 = o+ 1/50, a star is
placed at (z,y), 2 = ((a+ §8)/2— m) /o,y = 6b, g, where

ba,g = 5010° [{n: v, € [a, B)}]. (2.12.9)

It is worth noting that the distributions of log|Z(t)| and log|Z’(y,)| are both sup-
posed to be asymptotically normal, but the convergence appears much faster for
log |Z'(v,)], as is revealed by a comparison of Fig. 2.12.1 to Fig. 2.11.1. This is true
even though the asymptotic normality of log|Z(t)| is an unconditional theorem,
while that of log |Z'(,)| depends on unproved assumptions.

Table 2.12.1 lists the moments of the v, and of the asymptotic normal distribu-

tion. The entry for £ = 1,...,10 denotes the k-th moment of v, and the normal
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distribution, while the & = 1* and k£ = 2* entries give the first two moments of
log | Z'(v,)|, respectively. Comparison with Table 2.11.1 again shows much better
agreement between empirical and expected values for log|Z’(7y,,)| than for log|Z(¢)].

Moments of Z'(v,) for the 10° values that were computed are shown in Ta-

ble 2.12.2. Since (2.12.4) suggests that for M relatively large,
N+M

JX(M,N)=— () |2 12.
LN =2 Y (2] (212.10)
n=N+1
ought to be of the order of magnitude of
(log ) MF* =1
while for A =1 and A = —1 we ought to have the more precise relations
1
JI(M,N) ~ 5(log v)? (2.12.11)
JP(M,N) ~ 67 *(logyn)™" (2.12.12)

(the asymptotic relations holding as M, N — oo with M relatively large). Ta-

ble 2.12.2 shows the ratio of empirical to expected values, namely
ry = J5(10%, ng — 1) (log v,y )1~ D* (2.12.13)

The value for A = 1 is in excellent agreement with (2.12.11) (which is a theorem
under the assumption of the RH), while the value for A = —1 is reasonably consistent
with that of (2.12.12). Since (2.12.12) is derived from Gonek’s conjecture (2.12.5),
this supports the conjecture.

A theorem announced by Fujii [Fu4] (which assumes the RH) states that

T T T
E ()24 iy,) = —10g2—+co—10g—
47 27 27 27
0<’VHST

(2.12.14)
T 9/10+0(1)
+c1 —4+O(T o)
27
as T — oo, where ¢g and ¢; are explicit constants. This turns out to be in excellent

agreement with the empirical result

no+108—1
S (1/2+iy,) =2 181 x 10° +148.7 x 10°. (2.12.15)

n=ng
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The approximate procedure (2.12.7) that was used to estimate Z'(vy,) can be
replaced by a much more rigorous and accurate method. The algorithm of citeOS
that was used to compute Z(t) precomputes a set of values from which Z(t) is
obtained by interpolation. However, the main interpolation formula (4.4.15) can be
differentiated with respect to ¢, which enables one to compute Z’(t) (and therefore
also ¢'(1/2 4 it)) from the basic data. If such a program were written, it could be
used to check the speed of convergence of the distribution of log [('(1/2+ it)| to the
Gaussian limit that has been shown to hold under the assumption of the RH by
Hejhal [Hej6].

2.13. Gram points and blocks

Gram’s law is the empirical observation that Z(t) usually changes sign in each
Gram interval G, = [gn,Gn+1), » > —1. (The Gram points g, are defined in
Section ??.) Gram [?] observed that it held in the range of values he investigated,
but he conjectured that it would fail eventually. The first counterexample occurs for
(G125, and was discovered by Hutchinson [?]. If Gram’s law held universally, the RH
would obviously be true. However, it is known that this “law” fails infinitely often.
On the other hand, it does hold for a large fraction of cases. For n < 1.5 x 10%,
Gram’s law holds 72.79% of the time [LRW2], among 10° Gram intervals near zero
number 10'2, it holds 70.82% of the time, and among 10% Gram intervals near
zero number 102°] it holds 68.9% of the time. (Under the GUE and some further
assumptions to be discussed later, one might expect that asymptotically, Gram’s
law should hold about 66.3% of the time.)

One barely plausible reason Gram’s law might hold (and why the RH might hold)
is that in the Riemann Siegel formula for Z(t) (see Eq. (4.2.2)) the leading term
equals 2(—1)" at t = g¢,,. If this term, which is the largest, were always dominant,
then Gram’s law and the RH would follow. We now know this to be false, but there

is still interest in the behavior of Z(¢) at Gram points, since sign changes of Z(t)



H8 CHAPTER 2. LARGE SETS OF ZEROS: CONJECTURES AND STATISTICS

correspond to zeros of the zeta function on the critical line.

A Gram point g, is called good if (—=1)"Z(g,) > 0, and bad otherwise. A Gram
block is an interval B,, = [¢n, gn+k) such that g, and g,4+x are good Gram points,
while ¢,41,...,gn+k—1 are bad Gram points. The length of a Gram block B, =
[9ns Gn+k) is k. The pattern of zeros in a Gram block B, = [gn, gn+k) is the string
aj ---ag, where a; denotes the number of zeros of Z(t) in [gn4i—1,9n+i). Since
no Gram interval with more than 4 zeros has even been found, writing a; ---ag
without comma separators is unambiguous. (Gram intervals with arbitrarily many
zeros almost surely exist, but given the GUE predictions about zeros repelling each

other, they are likely to be rare.)

The statistics that have been collected on Gram intervals and blocks (as well
as on exceptions to Rosser’s rule, which are discussed in Section ??) are subject to
errors, not only because of the roundoff problems that have been mentioned before
and are discussed extensively in Section 4, but also because even if the computations
of Z(t) were exact, Gram points were determined only approximately, so that the
determinations of the signs of Z(g,,) were not always certain. No special precautions
were taken to deal with this problem (such as checking on the size of the computed

value of Z(g,)) as it was felt that this was unlikely to affect general statistics.

The computations of [LRW?2] of the first 1.5 x 10? zeros found only 6 Gram blocks
of length 9, and none of lengths > 10. In contrast, the maximal lengths of Gram
blocks found during the present computations were 9 for N = 10'2, 9 for N = 104,
11 for N =106, 13 for N = 10'® (1 case), 12 for N = 10'?, 14 for N = 10?° (2 cases,
with zero patterns 01111111113110 and 01111111111130), and 13 for N = 2 x 10%°,

Table 2.13.1 gives the fraction of Gram blocks in given data sets with given
lengths. The N = 1 and N = 1.4 x 10° data is derived from Table 1 of [LRW2],
and comes from two sets of 108 Gram intervals each, the first one starting at g, the
second at ¢, for n = 1.4 x 108. The N = 10'? data is based on only 1,590,000 Gram

intervals.
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The main program did not keep track of Gram blocks according to their pattern
of zeros. However, a special study was made of two blocks of 106 Gram intervals
each, one starting at g,,, n; = 10'2 — 6,034, the other at g,,, ny = 10%° — 42,780,
which for the remainder of this section will be referred to as the N = 10'? and

N = 10%° data sets, respectively.

If a Gram block B(n, k) contains exactly k zeros (so is not associated with a
violation of Rosser’s rule, see Section 2.14) then its zero pattern must be either
211...110, or 011...112, or 011...131...110 (where the data ... refer to any strings of
consecutive 1’s, but these strings might be even shorter than indicated). pattern
might be missing). Van de Lune et al. [LRW2] noted in their computations that for
a fixed k, the first two zero patterns seemed to be much more frequent than the third
one, and that the frequencies seemed stable as the height of zeros increased. The
new computations, however, show a steady decrease in the frequency with which
the third pattern appears as the height increases. Table 2.13.2 shows the observed
frequencies. The N = 1 entry is drawn from Table 2 of [LRW2], which is based on
statistics of 3 sets of 108 Gram intervals each, starting at g,, with m = 0, 7 x 102,
and 1.4 x 10%, respectively. Only Gram blocks of length k with exactly k zeros are
considered, and the entry in the table gives the fraction of all such Gram blocks that
have a zero pattern containing a 3. The decrease in the frequency of the third zero
pattern is puzzling. The GUE theories suggest that this pattern ought to occur a

positive proportion of the time.

Table 2.13.3 presents data on the fraction of Gram intervals that contain a given
number of zeros. The N = 1 and N = 1.4 x 10? data sets are the same as in
Table 2.13.1, and these entries come from Table 5 of [LRW2]. Note that there were
no Gram intervals with > 4 zeros in the N = 10'? and N = 10?° sets (although such

intervals did turn up in other data sets around the 102°-th zero, for example).

The GUE entry in Table 2.13.3 was derived by assuming that a Gram interval

does not differ from any other interval of that length, and so the entry in the table
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for a given m in the GUE row is the probability that an interval of length 1 contains
exactly m zeros. Since the averages of S(¢) do increase as ¢ increases, it seems
reasonable to expect that at large heights the local distribution of the zeros will be
independent of Gram points, which leads to the above assumption (cf. [Fu4]). In
other words, the expectation is that at large heights, any grid of points spaced like
the Gram points would exhibit similar behavior with respect to location of zeros.

If the zeros at large heights are distributed independently of the Gram points,
in the sense above, namely that shifting all the Gram points in a large interval by
the same amount would not affect the statistics of Gram intervals and blocks, then
we can expect that if we define

Tn — m if

= m Y € [Gm » Gm+1)s

-
“n

then the z, will be distributed uniformly in the unit interval [Fu4]. (So far, the
equidistribution of the =, has been shown only modulo much coarser grids, see
[Hl, Fu3].) Figure 2.13.1 shows the distribution of z, for the two data sets N = 10'2
and N = 10%° as well as for a third set, labelled N = 108, derived from the 108 zeros
¥, with 10641 < n < 2 x 108, In each case a histogram was prepared giving the
number of z, € [7/1000, (5 + 1)/1000), 0 < j < 103, and these data were used to
derive the smooth curve in the picture using the lowess function of [BC]. A perfectly
uniform distribution would correspond to a straight horizontal segment at height 1,
while the most nonuniform distribution (which also would minimize the moments
of |S(t)|), corresponds to a point mass at 1/2 and 0 elsewhere. The N = 10%° curve
is much closer to this conjectured uniform behavior than the N = 10'? curve, and
neither is far away from it. Even the N = 10% curve is not very far from uniform
behavior. The area between the curve in Fig. 2.13.1 and the straight horizontal
segment at height 1 is 0.105 for N = 10°, 0.051 for N = 10'2, and 0.028 for
N = 102?°. Thus is appears to be of the order of (log N)~!.

A quantitative study of the extent to which the sign of Z(g,) might coincide
with (—1)" was started by Titchmarsh [Tit0], who showed (as might be expected
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from the Riemann-Siegel formula (4.2.2)) that as M — oo,

M
M= Z(g,) = o(1), (2.13.1)
n=1
M
M"Y (-1)"Z(gn) = 2+0(1), (2.13.2)
n=1
as well as
M
M= Z(90)Z(gng1) = —2(1+ co) + o(1) (2.13.3)
n=1
where ¢ = 0.577... is Euler’s constant. These results have been strengthened

and extended considerably by Moser [Mos1, Mos2, Mos3, Mos4, Mos5, Mos6, Mos7,
Mos8, Mos9, Mos11, Mos12, Mos14]. Table 2.13.4 presents some averages involving
the Z(g,) that were computed, using the 2 sets of 10° values each that were specified

above. For example, the |Z3(g,)| entry gives the value of

R+106-1

107 > 12°(90)

n=R
for the appropriate R. We see that the computational results are in excellent agree-

ment with Titchmarsh’s results (2.13.1) to (2.13.3).
2.14. Violations of Rosser’s rule

Rosser’s rule, formulated on the basis of empirical evidence, states that a Gram
block B(n, k) contains at least k zeros. It thus requires less regularity than Gram’s
law, yet if Rosser’s rule were to hold universally, it would imply the RH (just as the
validity of Gram’s law would), and would also imply that every Gram block B(n, k)
contains exactly k zeros. However, it is easy to see that Rosser’s rule holding up to
height 7" is equivalent to the bound |S(¢)| < 2 holding for ¢ < 7', which contradicts
the unboundedness of S(¢). Thus Rosser’s rule has to fail infinitely often.

S(t) grows very slowly, and Rosser’s rule holds for most Gram blocks that have
been checked. The first exception to Rosser’s rule (defined as a Gram block B(n, k)
which has fewer than k zeros) is B(n,2) with n = 13,999,525 [Br5]. There are
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only 15 exceptions to Rosser’s rule for n < 7.5 x 107 [Br5], and 3055 exceptions for
n < 1.5 x 102 [LRW2]. Among the values of n with 1.4 x 10° < n < 1.5 x 10, there
were 0.287 exceptions per 108 zeros.

The new computations found 62528 exceptions to Rosser’s rule. Table 2.14.1
shows how many occurred in each data set and their density. Not only are the
exceptions in the new data sets more frequent, but they also are much more varied
than those found among the first 1.5 x 10? zeros. If B(n,k) is an exception to
Rosser’s rule, then k will be referred to as the length of the exception. The pattern
of zeros inside this block has to be 011---110. (For notation, see Section 2.13.)
To describe the exception, we have to specify where the two “missing zeros” are

located. We will use the notation
kXaray---a,, X=L or R, (2.14.1)

to denote an exception B(n, k) where the missing zeros are to the left of B(n,k)
(if X = L) or to the right of it (if X = R), and where ajas---a,, denotes the
pattern of zeros in the smallest union of Gram blocks that is adjacent to B(n, k)
and contains the missing zeros. Thus, for example, 310312 denotes an exception of
length 3, where the pattern of zeros in [g, — 4, g, + 3) is 0312010. This is not a
completely unambiguous description, but it suffices for all the cases that have been
encountered, as no case of 3 exceptions to Rosser’s rule that are close together has
been found. We will refer to (2.14.1) as the type of the exception, and m will be
called the length of the excess block. With this notation the 3055 exceptions among
the first 1.5 x 10° zeros fall into just 13 types:

2R3, 2L3, 2R40, 2L04, 2R22, 2L22, 2R230 ,

21032, 2R410, 3R3, 313, 3R40, 3L04

with 2715 of them being of types 2R3 and 2L3, and only 82 being of length 3. In
particular, all lengths of exceptions and lengths of excess blocks are < 3.

The exceptions found during the new computations fall into 206 distinct types.
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The relative frequencies of the most popular types in the new data sets and also
among the first 1.5 x 10° zeros are shown in Table 2.14.2.

The maximal length of an exception that was found is 9, and it occurs in two
exceptions, one of type 9123 and one of type 9L3. There are 15 exceptions of length
8, 84 of length 7, and 416 of length 6. The maximal length of an excess block is
9, and occurs in 2 exceptions of types 21211113110 and 3L011311112. There are 8
cases of excess blocks of length 8, and 46 of length 7.

Some of the 62528 exceptions to Rosser’s rule that were found in the main com-
putations occur very close to each other. There are several cases where 2 exceptions
are separated by a single Gram interval. The smallest such case that was found
is that of B(n,3) and B(n + 4,5), where n = 10'® + 3,916,331, and the pattern
of zeros in [¢,, gn+10) is 0103011103. No case was found where two exceptions are
adjacent. (However, Section 3 presents results of other computations that found
several examples of this phenomenon.) Finally, no example of 3 exceptions close to

each other has been found.
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Chapter 3

Special points for the zeta
function

3.1. Introduction

The main computations described in Section 2 were carried out at heights that
were thought likely to be random as far as the behavior of the zeta function is
concerned. Thus the data that were collected were likely to represent long-run
statistics of the zeta function at those heights. However, what is most interesting
is not to study the typical behavior but to look at extreme values. It would be
desirable, for example, to determine where the smallest spacing of consecutive zeros
up to some height is without finding all the zeros up to that height. No way to do
this is known. It is not even known how to find places where consecutive zeros are
very close to each other. The problem is that we would need a way to determine
places where both the zeta function and its derivative are small, and this is not
feasible currently. On the other hand, there are ways to determine values of ¢
where ((1/2 + it) is likely to be very large. Such methods have been used before
[KW, vdL, Od2], and the method described later in this section is a development of
the method that was mentioned briefly in [Od2]. These methods determine values of
t for which the large initial terms in formulas for {(1/2+t) have the same argument,
and therefore add up to a large quantity that often is not cancelled by the remaining

terms.

65
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One reason for the interest in large values of ((1/2+ it) is that one can think of
a large peak as “pushing aside” the zeros that would normally lie in that area, and
if these zeros were pushed off the critical line, one would find a counterexample to
the RH. No such counterexamples were found in the computations described here,
but many interesting phenomena were observed.

Section 3.2 presents the results of the computations near the special points.
Section 3.3 describes the diophantine approximation algorithms that were used to
construct these special points. Finally, Section 3.4 discusses how these algorithms

could be improved, and what other computations could be attempted in the future.

3.2. Computational results

The computations of this section, which are summarized in Tables 3.2.1 and
3.2.2, found 5,168,540 zeros. As is the case with the main sets of zeros described
in Section 2, even if the programs are correct and roundoff errors do not matter, it
is not absolutely certain that the few dozen zeros at the ends of the data sets are
indeed all the zeros in those ranges (cf. Section 2.2). However, for the purpose of
exposition, it will be assumed that they are.

There were 22 separate computations, and the sets of zeros and special points
associated to them will be denoted by the letters A through V. Table 3.2.1 shows
the first zero of each data set, the number of zeros in that set, and the value of
to = (Yn + Ynt1)/2 for that n for which |Z((v, 4+ Yn+1)/2)| is largest among all n in
the data set. Table 3.2.2 then shows the value of Z(t) at ¢ = ¢g, the largest value of
S(t) in a neighborhood of ¢ty (which is always the largest S(¢) in a given data set,
but which does not always occur at 7, or v,41), the value of §,, (which in all cases
is the largest §,, in a given data set), and the pattern of zeros in a union of Gram

blocks that include ¢y (see Section 2.13 for notation).

The entries in Table 3.2.2 show that the attempt to produce unusual behavior

of the zeta function was successful. The value of |Z ()| = 1580 found in set U is
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far higher than 641, the largest value that was found in the main computations.
Similarly, the value of 4§, = 5.1454 from set C is the largest §, that has been found
so far, and the value of S(¢) = 2.8747 from set T is a record for this function.
Figures 2.2.1 and 3.3.2 show graphs of Z(t) near the special value of ¢ = ¢ from set
T, and Fig. 3.2.3 shows a graph of S(¢) in that same range.

Figures 3.2.1 and 3.2.2 are typical of those for the other sets in that they display
a single high peak of |Z(t)|, with other nearby values of Z(#) much smaller. For
example, in looking at stretches of about 30 Gram intervals centered at the special
points, one finds only 3 peaks among all 22 data sets where the sign of Z(¢) was
opposite to that at the main peak, and |Z(t)| > 30 was satisfied. The largest value
of |Z(t)] in such secondary peaks was 36. Thus we are probably still not seeing the

expected behavior of large values of Z(t) that is discussed at the end of Section 2.9.

The general distribution of zeros as well as other properties of the zeta function
in the ranges covered here were not too remarkable, aside from the behavior near
the peaks of |Z(t)|. Exactly 3 midpoint values w,, (see (2.8.2) for a definition) that
were > 250 were found away from the special values of ¢, but they were all < 304.
Exactly 100 values of w, < 5 x 10~* were found, the smallest of them 2.47 x 107°.
The smallest value of §, that was found was 3.29 x 1073, with the second smallest
7.62x 1073, (Since the probability the minimal &, of 5,168,540 being drawn from the
GUE ensemble is < 3.29 x 1072 is about 0.18, this is consistent with the tendency
that was observed before of the minimal §,, being somewhat smaller than expected.)
There were 5459 values of n with 6, < 0.1, and 844 values of n with §, > 2.8.
The largest 22 §, that were found are the ones given in Table 3.2.2. The 23-rd
largest &, was 3.50. There were 1861 values of 4, + &, < 0.6, the smallest of
them 0.2512, and 525 values of §, + 6,41 > 4, the largest of them 6.0165. (If
n = 35,200, 636,070,992, 305,894, so that §, = 4.3214 is the largest §,, in set V,
then for this n we have §,,_; + 4, = 6.0165.)

An initial concern about these computations was that they might give a distorted
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view of various properties of the zeta function, such as the distribution of §,, for
example, at the heights being investigated. This was thought possible because the
special points ty were chosen so that the initial terms in the Riemann-Siegel formula
for Z(ty) behave as if to were close to 0. Thus it seemed possible that aside from
the vicinity of the special point to, where Z(t) is large, Z(¢) might behave as if
t were small, and so would be very constrained. However, that appears not to
be the case. The agreement between the distributions of the 4, in our small sets
and the GUE prediction is good when one compares graphs prepared like those of
Figures 2.4.4 and 2.4.6, and also when one prepares ¢— ¢ plots. In those comparisons,
the presence of one huge outlier does not make much of a difference. On the other
hand, when comparing moments of §,, — 1, one sees substantial differences, especially
for high moments. These are easy to explain. When computing the mean value of
(8, — 1) over 2.5 x 10° zeros, for example, a single value of &, = 5 will contribute
419.4.107% = 4.1943 to the mean, whereas the GUE prediction for that mean is
only 0.488.

The maximal value of |S(t)| does not always occur at one of the two zeros
adjacent to the highest peak of |Z(t)|. For example, in set V, if we let n =
35,200, 636,070,992, 171, 653, then w, = 1329.5, 8, = 4.3214, but §,_; = 1.6951,
and S(v,_1+) = 2.8314, S(ya—) = 1.1363, S(yn+) = 2.1363, S(yns1—) = 2.1851,
S(Yng1+) = —1.1851.

Exactly 614 exceptions to Rosser’s rule were found. They fall into 45 types,
each of which had occurred in the main computations. The longest exception had
length 6, and the longest excess block also had length 6. On the other hand, a new
phenomenon was observed in 21 of the 22 data sets, namely that of 2 exceptions
to Rosser’s rule being adjacent to each other. Thus for example, the zero pattern
22000022 near the special point tg for set A corresponds to an exception of type
2122 followed immediately by an exception of type 2R22. This phenomenon has
been observed only in the 21 cases exhibited in Table 3.2.2.
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The basic conclusion to be drawn from the computations of this section is that
the idea of looking for special points where the zeta function behaves in unusual
ways is sound, and does produce interesting results. It also shows that investigating
only a random selection of about 10® out of the first 10?° zeros misses some of the

most intriguing places.
3.3. Diophantine approximation algorithms and special points

The Riemann-Siegel formula (Eq. (4.2.2)), as well as other “approximate func-
tional equations” show that the size of ((1/2+ it) is determined by the size of the
sum of an initial segment of the divergent Dirichlet series

o0

STt (3.3.1)

n=1
One can also hope that the size of this sum is determined largely by the size of a
partial Euler product,

Px(t)y= JJ(1—-p /3", (3.3.2)
p<X

The basic strategy for finding large values of ((1/2474t) is to find ¢ such that | Px (¢)|
is large, and if it is, compute ((1/24¢t). (In practice, it has turned out to be helpful
to first check that | Py (¢)| is large for some Y > X. This eliminated many candidate
values of ¢.) There is no guarantee that this approach will succeed, but it appears
to work well.

To find values of ¢ that make |Px (t)| large, we search for values of ¢ such that
each of the p* is close to 1, as that makes each term in the product maximal.
Thus we need to find a ¢ for which there exist integers mq, ..., m, such that each of
tlog pr—27mmy issmall, 1 <k < n, where n = 7(X) and p1, pa, . .., p, are the primes
< X. Thisis an instance of a homogeneous simultaneous diophantine approximation
problem. We solve it using the Lovdsz lattice basis reduction algorithm [LLL], which

has now become the basic tool in solving a variety of diophantine approximation
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problems in high dimensions. Given a basis for a lattice in which the vectors have
integer coordinates, this algorithm produces another basis of short vectors. While
the new reduced basis is not guaranteed to contain the shortest vector in the lattice,
the algorithm has polynomial running time and variants of it are efficient in practice.
The papers [LO2, OtR] contain some examples of the applications of this algorithm.

The lattices to which the Lovasz algorithm was applied have as their basis the

rows of the following (n + 1) X (n + 1) matrix:

[127 7 log pr] - [0p2™ 7 logpo] -+ [@n 277" logpa] 1
[2map2™] 0 e 0 0

0 [27mag2™] e 0 of, (3.3.3)
0 0 e 27, 2™] 0

/4

where ap = plzl , and m > r > 0 are integers. A typical vector in the reduced

basis is then of the form

(M[on2™ " log p1] — mi[2mai2™], ..., M[a,2" 7" log p,] — my 27, 2™], M) ,
(3.3.4)

where M, mq, ..., m, are integers. For this vector to be short, M and each of
Map2™ 7" log pr] — mi[2ma2™] (3.3.5)
have to be relatively small. For the difference in (3.3.5) not to be large,
M27" log py, — 2mmy, (3.3.6)

must be small, so that t = M27", mq,..., m, gives a solution to our basic problem.
The function of the aj in the definition (3.3.3) of the lattice basis is to take
advantage of the fact that in trying to make Py (¢) large, it is more important that

the p = 2 term be large than that the p = 79 term be large, say. If

tlogpr — 27my = ¢ , (3.3.7)
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and the ¢ are small, then

1 _
log |Px (1)] — log Px (0) ~ =3 3~ étp/* | (3.3.8)
p<X

/

and so we really wish to minimize Zeip,?l ?. Since the Lovész algorithm attempts
to minimize the Euclidean norm of vectors, the definition of the a; induces it to
produce the desired result.

The implementation of the Lovasz algorithm that was used in the computations
of this section was essentially the same as that of [LO2, OtR], and will not be
described here. Just as those implementations, it computed the Gram-Schmidt
factors in floating point approximations, and not in exact rational arithmetic, to
make the computations practical. For each initial basis, several iterations were
performed; after reducing a given basis, the rows of the reduced basis were permuted,
and the Lovasz algorithm was applied to that basis. This had roughly the same effect
as the procedure followed in [LO2], in which several permutations of the initial basis
were reduced separately, in that additional reductions gave sometimes better and
sometimes worse results.

As in [LO2, OtR], the lattice basis reduction algorithm was implemented using
Brent’s MP multiple precision package [Br4]. The lattice basis of the form (3.3.3) to
which it was applied usually had 40 < n < 85,70 < m < 75, and 11 < r < 16, and
usually about 6 successive reductions were performed. All the values of ¢ from all
the reductions (several thousand values in total) were collected and used to compute
| Py (t)| with Y about pgs = 499. Those ¢ for which |Py (¢)| was largest (in a given

range of values of ¢) were then used for the computations described in Section 3.2.
3.4. Possible extensions

One possible way to obtain even better values of ¢ is to speed up the implementation
of the Lovasz algorithm. The Brent MP package [Br4] was written to be portable

and is not very efficient, and on a machine like the Cray X-MP is about 10 times
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slower than a program customized for this machine could be. Also, there are some
nice methods for speeding up the Lovasz algorithm itself that have been developed
by Radziszowski and Kreher [RK]. All these improvements could be used to reduce
lattices of larger dimensions or reduce more permutations of a given basis. Another
approach might be to develop better lattice basis reduction algorithms. Several
approaches are available, such as those of Schnorr [Sch1, Sch2], but apparently none
of them have been implemented yet. Any one of those approaches could also be
combined with simpler tricks, such as that of trying to maximize a product like that

of (3.3.2), but where some of the large primes are replaced by slightly larger primes.

All the above approaches have major limitations. Logarithms of primes are
rationally independent, and ought to behave like independent random variables as
far as multidimensional diophantine approximation properties are concerned. This
means that given any fixed subset S of them, values of ¢ for which all the ¢logp for
p € S are small modulo 27 are likely to be far apart, and if .S is large, the smallest
value of t of this kind is likely to be large. Therefore to find values of ¢ for which
¢(1/2+1it) is large, we probably need algorithms that can find vectors in extremely
high dimensional lattices that are only slightly shorter than usual, as opposed to the
method that has been used, which finds very short vectors in low dimensions. It is

doubtful that any of the approaches suggested above could yield such algorithms.

Computations with some of the values of ¢ that were found during the main
computations of Section 2 and for which {(1/2 4 it) is large confirm the suggestion
above that such large values arise typically from unpredictable interactions of many
large primes and not from an almost perfect lining up of a small set of initial primes.
Therefore further searches for values of ¢ with ((1/2 + i) large using algorithms
known or foreseeable today might produce additional interesting phenomena, but is

not likely to find all the large values.

Simultaneous diophantine approximation algorithms could also be applied to

find other values of ¢ for which {(1/2 + 4t) is unusual. For example, the values of
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t in Table 3.2.1 all lie close to values of u for which S(u) is large, but that is a
by-product of having a large gap between zeros in that region. One could also try
to search directly for values of ¢ for which S(¢) is large. There are various formulas
for S(t), such as those of Selberg (Theorem 14.21 of [Tit2]) or Goldston [Go2] (see
Section 2.7). The main term in Selberg’s formula suggests that to make S(t) large,
we ought to search for ¢ such that
3T Arg(l-pT/E (3.4.1)
p<X
is large in absolute value. This task can be formulated easily as a diophantine
approximation problem, but to obtain large values, it appears that we need to deal
with large X, which tends to produce impracticably large values of t. There are two
culprits here. One is that the contribution of the sum in (3.4.1) to S(¢) is divided
by m. The other one is that the error term in Selberg’s formula is large compared
to the main term in ranges of ¢ that are of interest. (This is to be expected, since
|S(t)| < 2.9 for all values that have been computed, while the remainder terms in
Selberg’s formula have to produce the jumps by 1 of S(¢) at zeros, since the main
term is continuous.)
The final conclusion to be drawn from the above discussion is that searches for
special values of ((1/2+ it) do produce interesting results and can be improved
somewhat, but there is no method in sight that is likely to produce all the points of

interest.
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Chapter 4

Algorithms and their
implementation

4.1. Introduction

The main result of [OS], namely Theorem 5.1, can be reformulated for the case

of computations of ((1/2+ it) as follows:

For any a € [0,1/2] and any positive constants § and ¢y, there is an
effectively computable constant c; = c2(6, ¢1, a) and an algorithm that for
every T > 0 will perform < ¢y TY/?5 operations on numbers of < ¢y log T
bits using < c;Tt0 bits of storage and will then be capable of computing
any value Z(t) for T <t < T+T* to within £T~ in < e T? operations

using the precomputed and stored values.

This result is completely rigorous, but implementing it as it is described in [OS]
presents difficulties because of the need for high precision and large storage. This
section shows a modified version of the algorithm that is practical, but which does
sacrifice some of the rigor of the basic result to achieve speed. Many of the choices
that were made in the implementation were forced or at least suggested by the
hardware and software that was used, and would have been made differently on

another machine.

75
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All the main computations were carried out on a Cray X-MP supercomputer
with 2 processors and 4 million words of main memory. Although occasionally both
processors were used, there was no true parallel processing involved, as the programs
did not interact with each other. The Cray computers have 64-bit words, with 48-
bit mantissas (including the sign bit), which give slightly over 14 decimal digits of
precision in the standard single precision (sp) floating point numbers, and slightly
over 28 decimal digits in double precision (dp). (See [Od2] for a more extended
discussion of this issue.) A crucial part of the algorithm, as will be shown later,
involves computing exp(it logn)for n ranging up to about /2. Since t ~ 1.5 x 10'°
near the 102°-th zero, tlog n is on the order of 10?°, and so if we do the computations
in dp, then after reducing modulo 27 we are left with only about 8 decimal digits of
accuracy, and this is also true for values of exp(itlogn) that we obtain after expo-
nentiating. This is only barely acceptable, and accounts for most of the lack of rigor
in the computations. Attempting this computation in sp would produce a totally
meaningless answer. On the other hand, the Cray is designed for sp computations
that vectorize. All dp computations are done in software, and although some of
them are vectorized by the latest Cray compilers, some dp arithmetic operations
are about 100 times slower than sp ones. Therefore even though dp computations
were by themselves only barely accurate enough, it was necessary to do as much
computing as possible in sp to obtain high speed. To achieve this, some hybrid

methods described in Sections 4.2 and 4.3 were used.

The problems outlined above of getting sufficient accuracy were due not to the
nature of the new algorithm but to the large height at which the computations
were undertaken. Implementation of any of the older algorithms (such as that of
the Riemann-Siegel formula discussed in Section 4.2) would have had to cope with
the same difficulties. (No matter which algorithm was used, supercomputers like
the Cray would be essential in practice, since less powerful machines typically have

only 32-bit words, which would require using multiple precision packages, which are
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prohibitively slow.) The new algorithm does introduce some additional sources of
errors, however, which would make rigorous error analysis harder than it would be

for the older methods even if higher precision computations were employed.

The present implementation applies only to computations of the zeta function on
the critical line. The algorithm of [OS] can also be used to compute the zeta function
on other lines, and this has applications to problems such as that of computing 7 (z)
[LLO4], but no attempt was made to write programs to carry out such applications.
The method of [OS] also applies to the computation of Dirichlet L-function and
related functions. Only minor modifications to the present implementation would

be needed to compute Dirichlet L-functions, and this may be done in the future.

The main computations were all carried out on a Cray X-MP supercomputer
running the Unicos 2.0 operating system, with some of the final statistical computa-
tions done under Unicos 3.0. The language of the main computations was Fortran,
with several different compilers being used. Various UNIX™ tools, such as the
Awk programming language [AKW], were utilized. Many of the statistical studies
of zeros were carried out on a DEC VAX 8550 computer using Fortran, Awk, or (es-
pecially) the S statistical programming language [BC]. S was also used to produce

all the graphs in this paper.

4.2. Zero-locating program

The program for locating zeros is based on the Riemann-Siegel formula [Ed, Gab,
Iv, Siel, Tit2], which has been the basic tool for all zeta function computations at

large height during the last 60 years. This formula says that if

r=t/(2n), k=712, =2 P k) - 1, (4.2.1)
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then for any m > 0,

Z(t) =2 ﬁ: k=2 cos(tlog k — 6(t))
= (4.2.2)

DA (2 (<1 T R(7)
=0

where the ®;(z) are certain entire functions that can be expressed in terms of deriva-

fives of 2
®o(2) = Cos{ﬂc(j:(;):s)/g} ’
and
Ro(r) = O(T—(2m+3)/4) as T — 00 . (4.2.3)

Gabcke [Gab] has obtained essentially optimal bounds for the remainder terms

R,.(7), and the one used in the new computations was
|R1(7)] < 0.053t™%/* for ¢ > 200 . (4.2.4)

The asymptotic expansion terms ®g(z) and ®;(z) were computed using their Taylor
series expansions [CR, Gab].

The main difficulty in computing Z(t) using the Riemann-Siegel formula is in the
evaluation of the cosine sum in (4.2.2). (For ¢ near the 10?°-th zero, k; & 1.5 x 10%.)

In the new implementation it was computed as the sum of two terms,

ko—1
Zit) =2 k7?cos(tloghk — 8(t)) , (4.2.5)
k=1
and
Re e O p(1) (4.2.6)
where .
1
F(t) = F(ko, kist) = Y 2k~ /2 exp(itlogk) . (4.2.7)

k=kg

The advantage of the new algorithm over the straightforward term-by-term evalu-

ation of the Riemann-Siegel formula is in the method of evaluating F'(¢), which is
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an adaptation of the method presented in [OS], and is described in detail in Sec-
tions 4.3 and 4.4. We will now describe the computations of 6(t), of Z;(t), and of
the zero-locating procedure.

One could take ko = 1, in which case Z;(¢f) = 0 identically, but for technical
reasons having to do with the speed of the algorithm for computing F'(¢) it was ad-
vantageous not to do this, and in practice one had 100 < kg < 500. (See Table 4.5.1
for some values.) The method used to compute 7Z;(t) was essentially the same as
that used in [Od2] for computing the entire cosine sum in the Riemann-Siegel for-
mula. The argument ¢ was always maintained as a dp variable. Another dp variable,
to, was also maintained, which normally had the property that |t — #y| < 10. Three
arrays, dn, Gn, Uy, 1 < n < kg — 1, were also used; d,, was the dp value of logn, ¢,

was the value of 2n~1/2

, computed in dp but stored in sp, and u, was the value of
tologn reduced modulo 27, where the computation was again done in dp but the
stored value was in sp. To compute 7 () for a new value of ¢, ¢ was compared to
to. If |t —to| > 10, to was set to ¢, and the u, were recomputed. At that point (and
also if |t — to| < 10 was satisfied initially) & was defined as the sp value of ¢ — g, t;

as the dp value of tg+ 6, 6(¢1) was computed in dp, reduced mod 27, and converted

to an sp variable v. Finally, Z;(f) was computed as the sum (in sp) of
wy, = qpcos(de, +u, —v), 1<n<ky—1,

where e, is the sp value of d,, (obtained by truncation).

For the computation of 8(t), another dp variable #, was maintained together with
the dp value of 6(ty) and with dp or sp (depending on order) values of derivatives
of () at tg. When |t — to| < 50 was satisfied, 6(¢) was computed from the stored
values using its Taylor series expansion around g, using partially dp and partially
sp arithmetic. When |t — £o| > 50, f5 was set to ¢ and 0(¢) and its derivatives were
computed in dp (or sp for higher derivatives) using Stirling’s formula. The reason for
this involved procedure was to avoid using the Cray dp logarithm function, which

was extremely slow when the program was being written. Later, a new version
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of the dp logarithm routine was installed in the system libraries that is about 4
times faster than the old one, so that this procedure does not gain much. However,
the old procedure was retained, both because it was still faster, and because of
the considerations of accuracy and reliability of the computational results that are
described in Section 4.6.

The procedure for locating zeros was the standard one of finding Gram blocks
and searching for the expected number of sign changes of Z(f) in them. When a
violation of Rosser’s rule was encountered, the program searched neighboring Gram
blocks. Once all the zeros were separated, they were located to a nominal accuracy
(i.e, disregarding any inaccuracy in the computation) of £2 x 107® by the Brent
combination [Brl] of linear and quadratic interpolation. The sophisticated zero-
locating strategies of [LRW1, LRW2] were not employed, and about 8.5 evaluations
of Z(t) were used on average to compute each zero. (An additional 1 evaluation
of Z(t) per zero was performed to determine the value of Z(t) halfway between

zeros.)

4.3. Odlyzko-Schonhage algorithm

The function F(t) = F'(ko, k1;t) is computed in two stages. In the first, precom-
putation stage, which accounts for most of the computing time, F(t) is computed

at a uniform grid of points.
t=T,T+6,..., T+ (R-1)5. (4.3.1)

The second stage, described in Section 4.4, is fast, and computes the values of F'(¢)
for T+ A<t <T+ (R-1)§— A for a certain constant A from the stored values
of F(T'), F(T'+36),...,F(I'+ (R—1)d). This section describes the precomputation
phase. It is based on [OS] with only minor modifications, and although it is essen-
tially complete, it is technical. The description in [OS] does not cover the details

of the implementation, but is more conceptual and easier to read, and is therefore
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likely to be preferable for those interested only in the basic ideas of the algorithm
and not in the details.

Let r € Z*, and define
R=2", w=-exp(2ri/R) . (4.3.2)

In principle any R for which the Fast Fourier Transform (FFT) can be applied

efficiently could be used, but it was convenient to work with powers of 2. The

values of r that were used in the main computations were r = 17,19, 23, and 24.
For —R/2 < h < R/2, define

R-1
up =Y F(T+jo)w™™ . (4.3.3)

J=0
Once the uy, are computed, the F/(T + 74) can be obtained from them fast through

the FEFT:
R/2-1

F(T+j6)=R" > u'™. (4.3.4)
h:—R/Q

This computation takes a negligible amount of time.
Using the definition (4.2.7) of F'(¢) in (4.3.3), exchanging the orders of summa-
tion, and summing the geometric series that arises, one obtains
ky

h ag
up = w -k 4.3.5
! 121;0 wh — by ( )

where the §; are defined so that —R/2 < 8 < R/2 and

b = exp(2mifr/R) = exp(idlogk) , (4.3.6)
ay = Qk—l/ZeiTlogk(l_eiR5logk) ) (437)
Write
B,
= 4.3.8
o= s (4.3.5)

Then we need to evaluate f(w") for —R/2 < h < R/2. Term-by-term evaluation of

the sum in (4.2.8) would require on the order of k; R operations, which of the same
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complexity as evaluating the Riemann-Siegel formula in the standard way at each
point 7'+ j&. However, the new algorithm of [OS] leads to much faster evaluation of
the f(w") by means of Taylor series expansions. Let (z) denote the nearest integer

to z, let ||z||r denote the “cyclic distance” modulo R:
||z||r = min |z — mR| ,
m

and for integers p,q with ¢ > 0,37 < R/2+ 1, —R/2<p< R/2, |p3!| < R/2—-1+
(37 — 1)/2, define

Ipg = {k ko < < hu, |18 = p3%lR > 37— 1, [1x — (p/3)3H1 ] < 371 — 1}
(4.3.9)
Then it can be shown easily (¢f. [OS]) that each k belongs to at most 6 different I, ,
for a fixed gq.
Let @ = |logs(R/2+4 1)]. Then for any h, —R/2 < h < R/2, it is easy to
see (cf. [OS]) that {ko,ko+ 1,...,k1} is the disjoint union of the sets Ih3—ay,q for
0 <¢<Q. Hence if

fralz) = Z - 5 (4.3.10)

helng Ok
then for —R/2 < h < R/2, we have
Q
F@™) =37 fipa—aq (@) - (4.3.11)
q=0

The new algorithm evaluates the functions f, ,(z) at points z = w" with (h37%) = p.
For ¢ < @1, ordinary evaluation of the sum in (4.3.10) is used. For Q1 < ¢ < @, the

function f, ,(2) is expanded in its Taylor series around the point
Zpq = exp(2mip3?/R) . (4.3.12)

It is easy to show (cf. [OS]) that these Taylor series converge fast, so not too many

terms in them have to be kept. Finally, these Taylor series are used to evaluate the

fp,q(wh)-
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The threshold ()1 was taken to be 3 in all the computations after some experi-
ments showed that it was reasonably close to the optimal choice. The Taylor series
method is inefficient when |/, ,| is small, since its overhead is large. A slight im-
provement in the program could be obtained by selecting which method to use based
on |I, 4| and not on ¢ alone.

The main computation proceeds in stages indexed by integers m, —R/2 < m <

R/2 — 1. In stage m, only k € S, are considered, where
Spm=A{k:ko <k <k, Br€[mm+1)}. (4.3.13)

For any p and ¢, if k € I, for some k € S,,, then S,, C I, ,, which makes book-
keeping for the various computations easy. The distribution of the 3 is nonuniform,
with almost all the time being spent in the small fraction of stages m for which |S,,|
is large.

Each stage m is further subdivided into substages corresponding to a partition
of Sy, into blocks S,, ;, 1 < j < s, of consecutive k’s with |S,, ;| < 2560 for all j,
and |S,, ;| < 2560 being possible only for j = s. (For almost all stages |S,,| < 2560,
and so s = 1.) This was done to keep the sizes of the auxiliary arrays small, and
also to have their lengths be multiples of 64, the length of Cray vector registers.

Suppose that
Smdz{k kggkgkg}

Several auxiliary arrays are defined. The most important and most time consuming
to compute is the dy array, ks < k < k3, with di being an approximation to the
dp value of logk. The set S, ; is partitioned into blocks of 64 consecutive values
of k (with the last block possibly being smaller), and if a block consists of k’s with
ky <k < ks < k44 63, then di, is computed using the Cray dp logarithm routine,
and the dj, k4 < k < ks are then computed from dj, using Taylor series expansions.
When the program was first written, this involved procedure was about 6 times faster

(for computations near zero number 102°) than using the Cray dp logarithm routine,
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which served to cut the running time of the entire rational evaluation program by
over 30%. (As a result, the computation of the d now takes about 10% of the total
running time instead of the roughly half that was required by the earliest version
of the program which involved the Cray dp logarithm function.) The latest Cray
mathematical subroutine libraries have a dp logarithm routine that is about 4 times
faster than the old one, and so the procedure described above is only about 1.5
times as fast as using the standard Cray dp logarithm all the time would be. (Much
faster variants of this method are possible, as is shown in Section 4.7.1.)

Once the dj are computed, they are used to calculate T'logk modulo 27 in
dp, which is then converted to sp and used to compute exp(:1'log k) utilizing the
Cray cosine and sine routines. The 2k~1/2 factor is also computed in sp arithmetic.

Finally the difference 1 — exp(iRdlog k) is computed in the form
. 1 . (1
—21 exp <15R5 log k) sin <§R5 log k) , (4.3.14)

where sp arithmetic is used for the trigonometric functions, but 2='Rélog k is com-
puted in dp and reduced modulo 27 in dp, for reasons that will be explained later.
All these factors are then combined using sp arithmetic to obtain a;. The by are
also computed in sp.

For ¢ = 2 and 3, ordinary complex sp arithmetic is used to evaluate the ak/(wh —

by,) for k € S, ; and these are added to stored variables corresponding to f(w"). For

q > 4, complex sp arithmetic is used to compute the coefficients ay(zp,4 — bx) """
for 0 < n <V in the Taylor series expansion
ar =
= Z ar(2p,q — bk)_n_l(zp,q -z)" (4.3.15)
z=by =

around z, 4, and these are added to the arrays holding the Taylor series coefficients
of f,4(2). The number of terms V' depends on m, p, ¢, and is chosen so as to make
the V-th computed coefficient about 107'® times the size of the 0-th one. Except
for ¢ close to (), V' is almost always < 50. After all the S, have been processed, the

Taylor series of the f,,(z) are used to compute the f<h3_q7q>(wh) in sp arithmetic



4.3. ODLYZKO-SCHONHAGE ALGORITHM 85

for ¢ > 4, and these numbers are then added to the variables corresponding to
f(w"). Since the ay, are only accurate to 9 or 10 decimal digits in the computations
near zero number 10%°, one could take V much smaller for computations at such
large heights, say about 2/3 of the present value, without significantly affecting the
accuracy of the final results. This would speed up the main program by about 15%.
This modification was not made in the programs to keep them the same for all
heights.

For ¢ = 0 and 1, a special procedure is used, since here b and z,, = wh (for
h = p3?) are close to each other, and so computing z,, — by in sp would lead to

large errors. Instead, we use the expansion
wh — b, = —2iexp(mi(h+ Bi)/R) sin(x(h — B1)/R). (4.3.16)

The m(h — Bk)/ R factor is evaluated in dp, reduced modulo 27, and converted to sp
before being used to evaluate the sine. If (A — )/ R is small, the definition (4.3.6)
of 31, shows that 27! Ré log k reduced modulo 27 cannot be too large, and the ratio
of the two sines in (4.3.14) and (4.3.16) is bounded by R in absolute values. The
Cray sin(z) routine is accurate for small z, since it computes z(sin(z)/z), and so
the quotient of the quantities in (4.3.14) and (4.3.16) is evaluated accurately. (The
computation of 271 R log k modulo 27, which was mentioned above, is done in dp
to make sure that the arguments of sine in these computations are accurate.)
Aside from the dp operations, which are often not vectorized by the Cray com-
pilers, most of the computations were written so they would be vectorized automati-
cally by the compiler. (No assembly language routines were used.) This is even true
of the Taylor series expansions, since those are almost always performed on large
sets of k’s simultaneously, so the inner loops are written to run on k, and not on the
index of the Taylor series term being evaluated. (This does require the use of some
auxiliary arrays, but since at most 2560 k’s are considered in each stage, storage in
not a problem.) As will be described in Section 4.7.1, some of the crucial loops in the

program are executed at the rate of over 100 million floating point operations per
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second, which is fast for Fortran programs, since the cycle time on the Cray X-MP
is 9.5 nanoseconds.

The above sketch of the implementation of the rational function evaluation al-
gorithm applies directly only for the runs with » = 17 and 19. For r = 23 and
24, a modified version of the algorithm had to be used because of space restrictions
that are discussed at greater length in Section 4.5. In the implementation discussed
above, a complex array of length R is kept for the values f(wh)7 —R/2< h< R/2,
as well as arrays for the Taylor series coefficients of the f, ,(z) with ¢ > @1 =3. In

2r—17

the versions used for r > 23, the program works on segments of values of h,

each of length 2!7 = 131072. If we denote one such segment by
H={h: ho < h < hg+2'7}

(ho = —R/2, —R/2 + 217, etc.), then the main program computes the contribution
to f(w") for h € H of all k such that k € I,,, with some 0 < ¢ < 8, p = (h'379) for
some h' € H, where these contributions are computed as before, namely directly for
q < ()1, and through Taylor series expansions for ¢ > (1. These values are stored
in a file. Another file is also created, which contains the contributions to the Taylor

series coefficients for ¢ > 9 of all the

ke | Sm.
meH

As different H’s are processed, the Taylor series contributions for ¢ > 9 are added,
and at the end they are combined with the previously computed contributions of
q < 8 to obtain the values of f(w").

The algorithm is involved, and its running time depends on a complex combina-
tion of various factors. A rough indication of where most of the time is spent is pro-
vided by Table 4.3.1. It is based on experiments with the algorithm for r = 17, when
it is applied to evaluate the f(w”) for kg = 1.5 x 10°, ky = ko +10%, T ~ 1.5 x 101,
d = 0.15. The total running time was 132 seconds. The figures in Table 4.3.1
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should be treated with caution as only a rough indication of where most of the
computational effort was spent.

The basic FFT routines that were used were those of Bailey [Bail]. They were
written especially for the Cray-2, where they are both faster and more accurate
than the standard Cray routines. On the Cray X-MP, Bailey’s routines are slightly
slower than the standard Cray ones. They were selected because of their greater
accuracy, although in comparison with the errors in the rational function evaluation
algorithm, the additional errors introduced by the FFT program are negligible. The
time needed for the FFT itself was completely negligible, with complex transform
on 2'? points taking under 1 second, much less time than it took to read in the data.

Because of space limitations on the Cray X-MP, Bailey’s routines could be used
directly only for » = 17 and 19. For r = 23 and 24 it was necessary to per-

form extensive reformatting operations. Suppose that we wish to take the FIF'T of

Vg, ..., UM—1, Wwhere M = 29K say, and we can only carry out FI'T of length K in
core. If wo, ..., wpr—1 is the Fourier transform of the v;, then

M-1

wp = Z vjexp(2mihj /M)
=0
291 K-1
= Z exp(2nihs/M) Z Voamts exp(2mimh/K) . (4.3.17)
s=0 m=0

The inner sum above is just the Fourier transform of a sequence of length K, and
can be handled by the FFT directly. To implement this, one needs to create new
data sets consisting of the subsequences vgg,,4s, 0 < m < K — 1, carry out the
FFT on them, and then combine them to obtain the wj. For computations with
r = 23, for example, Bailey’s algorithm is used with K = 2!, so that for each of
the 16 = 2% FF'T’s, all 223 values v; have to be read, and after all the FF'T’s are
done, 16 passes through the data are performed to compute and store the decimal
linear combination given by (4.3.17). This takes about an hour of elapsed time (the
exact length depending on the load on the system), although very little computing

time. For r = 24, the total time is about 4 times longer. For large computations, it
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would be worthwhile to use more efficient procedures, some of which are discussed in
Section 4.7. Such procedures would have been advantageous even for computations
on the scale described here, and the only reason they were not carried out was
the additional programming effort that would have been required, and the limited

facilities for data storage that were available.
4.4. Band-limited function interpolation

Section 4.3 shows how F(t), F'(T' +6),..., F(I' 4+ (R — 1)) are computed. In
general, though, we need to compute F(t) for various ¢ € (T,T + (R — 1)§) that are
not predictable a priori. The approach that was presented in [OS] was to compute
several of the derivatives F(#)(t) at the grid points t = T, T+36, ..., T+(R—1)8, and
then to compute desired values of F'(t) by expanding in a Taylor series around the
nearest grid point. Since the derivatives F(*)(¢) are representable as sums similar
to that for F'(t), they can be computed by a variant of the algorithm described in
Section 4.3. However, the need to use a dense grid and to store the derivatives
Fh) () at the grid points make this approach inefficient. Another possible approach
is that of interpolating values of Z(¢) from the values computed on the grid 7,7 +
8,..., T4+ (R—1)6, as is done in [Hej5], for example, where Z(t) is approximated as
if it were a polynomial through the Lagrange interpolation formula. This method
also appears inefficient, and furthermore it is not rigorous.

The method that is used to compute F(¢) for ¢ not a grid point is based on
band-limited function interpolation techniques. If
G(t) = / " g(a)elde (4.4.1)
then it’s been known for a long time that G/(¢) is determined by its samples at the
points nw /7, n € Z, provided only that G(t) satisfies some mild conditions, and
further that G/(¢) is then representable by the “cardinal series”
G(t) = i G <@) sin(rt — nm) (4.4.2)

T Tt — nw
n=—oo
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Results of this type have a long history, going back to E. Borel, Hadamard, de la Vallée
Poussin, E. T. and J. M. Whittaker, and Ferrar in the mathematical literature, and

to Nyquist, Kotelnikov, Shannon, and Someya in engineering (see [Hig] for a his-

tory), and are the basis for digital sound transmission and storage, for example.

Two comprehensive surveys of the literature in this area are those of Butzer et al.

[BSS] and Jerri [Jer].

The cardinal series in (4.4.2) is not suitable for the interpolation of F'(t) because,
aside from the question of whether the expansion (4.4.2) is valid for F (), the sum
in (4.4.2) converges slowly. We use instead a formula for GG(¢) that involves a sum of
G (nm/p) for some > 7, which thus involves more frequent (and thus less efficient)
sampling of G/(¢), but in which the coefficients of G(n7/3) decrease rapidly. The
basic approach appears to be well-known to many analysts and communications
engineers, but no published reference for the result we use was found, so a proof is
sketched below. (See [BSS, Jer] for other possible approaches.)

Suppose that G/(t) satisfies (4.4.1), where g(z) will be assumed for the moment
to be in L%(—r, 7). Take 3 > r and define g(z) = 0 for 7 < |z| < 3, and then extend

g(z) to the entire real line by making it periodic with period 23. Then we have

g(z) = Z a, exp(2winz/(25)) , (4.4.3)
where
B
ay = (28)"! / g(x) exp(=2minz/(28))da . (4.4.4)
Eq. (4.4.1) then shows that
an = (28)7'G(-n7/B) . (4.4.5)
Next, choose A, e > 0 so that
T<A—e<A+e<L B, (4.4.6)

and let H(z) be some continuous function with H(z) = 0 for |z| > ¢, and

/Oo Hz)de =1. (4.4.7)



90 CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATION

Further, let x(z) be the characteristic function of the interval [\, A], and let ustarv

denote the convolution of the functions » and v:

(u+v)(z) :/ u(y)v(z — y)dy .
Then
o+ 1, |z|<A—¢€,
(x* H)(z) = / H(y)dy = (4.4.8)
z=X 0, |[z]>A+e.
Therefore
G(1) = / g(z)e"tdz = / g(2)e (x + H)(2)dz . (4.4.9)
Substituting the Fourier series (4.4.3) into the last expression above and using (4.4.5)
yields
G(t) = (28) Y. G(=nr/B) / (Tl BHiTt (4 1) (o) da (4.4.10)

If we change n to —n in the above formula, then the integral above is just the
Fourier transform of y x H evaluated at nw/8 — ¢, which is the product of the
Fourier transforms of x and H. If h(t) is the Fourier transform of H (z),

h(t) = / H(2)etdz | (4.4.11)

then we obtain

sin A\(nw/8 —t)

G(t)= ZG(nﬂ'/ﬁ) NCTIE) hinm/B—1) . (4.4.12)

| >

The interpolation formula (4.4.12) was derived under the assumption that g(z) €
L?(—7,7), but by taking limits, it is easy to see that this formula holds when g¢(z)
is a finite linear combination of delta functions, as well as in more general settings.

The formula (4.4.12) can be applied directly with G(t) = F'(t) for 7 = log k1, but
since the spectrum of F(¢) is limited to [log ko, log k1], it is more efficient to apply
it with

G(t) = F(t)e ™, (4.4.13)
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where

1
a= §(log k1 + log ko) .

Then Eq. (4.4.12) yields

_é nm e_m(m/ﬁ_t)sin/\(mr/ﬁ—t) /G
=530 (%) T I

valid for any 8 and A that satisfy (4.4.6), where we now take

1
T = 5(10g kl — log kg) .

We choose
p = x/d,
A= (B+T)/2,
¢ = (B-1)/2,
and take

¢ sinh(c2 - 2u?)t/2
h(u) = sinh(c) (c? — u?)t/2 7’
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(4.4.14)

(4.4.15)

(4.4.16)

(4.4.17)
(4.4.18)

(4.4.19)

(4.4.20)

where ¢ is a constant that was equal to 30 in most of the computations. A typical

set of values used for the computation of one of the large sets of zeros near zero

number 1020 is

ko = 450,

ki = 1,555,488,184 ,
a = 13.637...,

T = T7.5279...,

6 = 0.29,

B = 10.833...,

A = 9.1804...,

¢ = 1.65258...,

c = 30.

(4.4.21)

Note that the distances between consecutive Gram points are 0.148433..., so there is

only about one grid point at which F'(¢) is evaluated for every two Gram intervals.
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Many different kernels hA(u) could have been used for the interpolation. The
specific function h(u) of (4.4.20) was suggested by B. F. Logan. He had discovered
a long time ago [Kai] that A(u) is a remarkably good approximation to the principal
eigenfunction of the finite Fourier transform, which led to its widespread use in some
signal processing applications, as well as in some problems in number theory [MO].
More important for our application are some further optimality properties of A(u)
that have been proved by Logan [Logl, Log2]. The formula (4.4.15) is evaluated
by summing the terms in the series corresponding to n with nx /3 close to ¢, and
neglecting the remainder of the sum. If we do not use any special knowledge of the
behavior of F(nw/3) or of sin(A(n7/3 —t)), and we sum the series in (4.4.15) over

n with [nmw /3 — t| < ¢/¢, then we need to minimize,

/| o I

and Logan’s results show that this minimum is achieved by the function defined in

eqneq4320, and equals
1+e ¢

1—ec

2log

(For ¢ = 30, this quantity is &~ 2e73° &~ 1.9 x 10713.) Interpolation using the formula
(4.4.15) is performed over approximately the interval [T+ ¢/, T+ (R — 1)§ — ¢/¢].

For the set of parameters listed in (4.4.21), the interpolating sum in (4.4.15)
was estimated by explicitly evaluating and adding up about 120 terms of the sum.
Increasing & (without changing kq) increases the length of the interval over which
F(t) can be computed, and therefore increases the number of zeros that can be cal-
culated. This has practically no effect on the running time of the rational function
evaluation program (assuming the number of grid points stays the same), but in-
creases the time needed by the zero-locating program, both because there are more
zeros to be processed, and because more terms in the interpolation formula (4.4.15)
have to be evaluated. Increasing kg allows one to increase § (and so the number of

zeros that can be computed) without changing € (and thus the number of terms that
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have to be computed in (4.4.15)). Such a change, however, increases the running
time of the zero-locating program by increasing the number of terms in the sum
Z1(t). The choice of parameters listed in (4.4.21) was not optimized carefully, and

could undoubtedly be modified to obtain a more efficient algorithm.

4.5. Space and time requirements

Table 4.5.1 shows the running times of the rational function evaluation program
in some of the computations that were carried out. The first column denotes the
zero set. Upper case letters refer to the computations near the special points de-
scribed in Section 3 and listed in Tables 3.2.1 and 3.2.2. Lowercase letters refer to
computations listed in Table 4.6.1. These were primarily the large sums that are
described in Section 2, together with some smaller computations designed to check
the accuracy of the larger ones. (See Section 4.6 for a discussion of the reasons for
such computations.) The FF'T computations were fast, by comparisons, especially
for R < 219, (For R = 2% and 2?%, they took several hours of elapsed time, most
of it spent reading and writing disk files to rearrange the data, but only seconds of
computing times.) The zero-locating program took slightly under 90 minutes per
million zeros when 6 ~ 0.3 (and less for smaller §), so that the computation of the
roughly 3.3 x 107 zeros in set n took about 46 hours (2800 minutes) in addition to
the 102 hours for the rational function evaluation program.

Comparison of entries g and 7, and also of k£ and n, shows that increasing the
number of grid points (and therefore the number of zeros that can be computed)
has relatively little effect on the running time of the rational function evaluation
program; around the 102°-th zero, going from 1.6 x 107 zeros to 3.2 x 107 zeros
increases the running time by less than 17%. The reason for not using even larger
grids was lack of memory.

Lack of memory, both core and disk, was the main constraint in planning the

program from the beginning. Computing time was not a major limitation. Around
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2000 hours were used for all the computations reported here, which is substantial.
At the time these computations were carried out, however, the Cray was lightly
utilized, and so although only time that would have been idle otherwise was used, a
lot of it was available. As a result, minimizing the running time of the program was

not of high priority. (Various possible improvements are discussed in Section 4.7.)

The Cray X-MP that was used had 2 processors and 4 million words of memory
(32Mb, or megabytes). In practice a maximum of 25Mb was available for a single
process, and when such a process ran, one processor stood stands idle. The first
version of the rational function evaluation program to be implemented had R = 2!°
and maintained all the auxiliary arrays in memory all the time, and as a result
required over 15Mb. This program was used to compute the zeros in sets b, ¢ and
e of Table 4.6.1, as well as the N = 10'4 set of Table 1.2, but it would not run
if there was any other process of over 10Mb that was running. For R = 2'7, the
corresponding program (which was used to compute all the small sets of zeros of
Section 3) requires only about 5Mb, and so was able to utilize much more of the
spare time that was available, since sometimes it would even run when there was one
process of < 20Mb running, and all other waiting processes were too large to fit into
the remaining memory. (This did not happen in all such cases because of the way
the scheduler was working.) Most of the large computations were carried out with
the segmented version of the program that is described at the end of Section 4.3.
For R = 2% it requires 8Mb. (This can be lowered to below 5Mb with some simple
rewriting of the program.) The main zero locating program also uses about 8Mb
of space. In this program the space requirement can be lowered to below 1Mb very
easily, since only small segments of the values of F(¢) at grid points are needed at
any time. The reduction of process size to 8Mb seemed sufficient, however, to take

advantage of available time.

The limitation on core memory was overcome by segmenting the rational function

evaluation program. A limitation harder to overcome was the lack of disk storage
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space. Most of the large computations had R = 223, which meant that 2?3 complex
values of F'(t) were being computed and stored, which comes to 128 Mb. Moreover,
this data had to be reformatted for the FFT application, so that at least for short
periods, 256 Mb had to be stored. (An in-place FF'T program would have eliminated
the need for the extra storage, and thus would have led to the computation of twice
as many values, but this option was not used since it would have required larger
storage of final files. This is discussed further in Section 4.7.) Disk space, even
for temporary storage, was extremely scarce during these computations, and so this
seemed to be close to the limit of what could be easily computed at that time. For
R = 2%* (set n in Tables 4.5.1 and 4.6.1), the peak storage requirement is 512Mb,
and was satisfied only because W. M. Coughran kindly made available some of his
dedicated disk space.

Some of the ways of overcoming the memory limitations are discussed in Sec-
tion 4.7.1.

Over 2000Mb of data from these computations (mostly values of F'(t) at grid
points, but also some listings of zeros, as well as various other data) have been
stored on an optical disk, and are available for further studies. While optical disk
storage technology appears to be very reliable, some of the data may have been
corrupted in moving it over a local area network, and so may not be usable. (When
the possibility of such errors was realized, a system of parity checks was instituted

for later data sets, to prevent such problems from arising.)

4.6. Correctness of computational results

The main defect in the computations reported here is that they lack rigorous
error bounds. This is owing to the combination of the height at which the zeta
function was computed and the computer hardware that was available. Even if one
were to use the standard term-by-term evaluation of the Riemann-Siegel formula,

this problem would be severe. The main difficulty there would be in evaluating the
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first sum in (4.2.2), which is (neglecting the #(t) term) of the form

ky
QZk_l/z cos(tlogk) . (4.6.1)
k=1

Near the 10%20-th zero, k; =~ 1.5 x 10%, t ~ 1.5 x 10'?, and so for almost all values
of k in the sum, tlogk ~ 3 x 10%0. Therefore, since dp arithmetic on the Cray is
performed with about 28 decimal digits of precision, the values of tlog k that are
computed are accurate only to within about +£107%, and hence the values of tlog k
after reduction modulo 27 are only likely to be accurate to within 1078, and the
sum in (4.6.1) is likely to be evaluated with an error of

1.5x10°
E=2x10"% Y k™% 1< <1, (4.6.2)
k=1

172 and of the sum in (4.6.1) are performed in

even if the computations of the k£~
infinite precision. Given no special knowledge of the ¢, all one can say is that

1.5x10°
E[<2x107® Y kV?Px15x107%. (4.6.3)
k=1

Many examples of Lehmer’s phenomenon that have been found where the maximum
of |Z(t)| between zeros is substantially less than the bound (4.6.3), and so in these
cases one not be even certain that all the zeros are on the critical line, much less be
able to locate them accurately.

The use of multiprecision arithmetic packages would solve the above roundoff
problem, but at a high price in computing time. In the straightforward evaluation of
the Riemann-Siegel formula, one can gain a few extra digits of guaranteed accuracy
by a method described at the end of Section 4.7.1. In the new method that was
used for this paper, there are several additional difficulties. The rational function
evaluation method computes the f(wh) as sums of a large number of terms, and
some of these terms are Taylor series expansions whose coefficients are obtained by
adding up numerous other expansions. It would be a difficult task to obtain good

error estimates for all these operations. Further, even if one succeeded, it would



4.6. CORRECTNESS OF COMPUTATIONAL RESULTS 97

be necessary to also bound the errors in the FFT routines and in band-limited
function interpolation. The FFT, for example, is known for its good properties
in controlling errors, but this applies to only a limited extent when one considers
worst-case behavior and has to worry even about roundoff errors in addition.

The above roundoff problem would not arise if one used machines with larger
word sizes than the Cray’s 64 bit ones, but such computers are unlikely to become
available in the near future. Another solution would be to restrict computations
to lower heights. However, it seemed desirable to obtain information from as high
up as possible, since the zeta function approaches its asymptotic behavior slowly.
Therefore it was necessary to abandon rigor in the computations.

While no rigorous error bounds have been obtained, the computational results
are thought to be accurate. One reason for thinking this is based on heuristics. The
bound (4.6.3) is very conservative in that it is sharp only when almost all the ¢ in
(4.6.2) are close to +1 or almost all are close to —1. In practice, one expects that
the ¢; will be practically independent of each other, and if that is so, then even
under the assumption that the ¢; take only the extreme value £1, we find that the

rms value of F is only

1.5x10° 1/2

2x107% 1 > k'] =9x107%.
k=1

This is the typical error we expect as a result of cancellation among various round-
off errors. Similarly, one expects substantial cancellation in the rational function
evaluation, in the FFT, and in band-limited function interpolation.

The need to rely on cancellation of roundoff errors introduces another level of
uncertainty to the computation. Although it is common and accepted in numeri-
cal analysis, statistics, and the physical sciences, it is seldom encountered in pure
mathematics. This uncertainly is added to the usual uncertainties about reliability
of hardware, the design of hardware floating point units (¢f. [Br, Od2, Schr1, Schr2]),

the correctness of manufacturers’ mathematical subroutines (¢f. [SF]), the reliability
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of compilers, and finally the correctness of the main programs. All these problems
occur with reasonably high frequency. To add to the long list of problems that
have been found, we mention that with some Cray Fortran compilers, the test pro-
gram for the Brent MP package [Br4], which computes 7, exp(w(163/9)'/?), and
exp(m(163)'/2) to about 100 decimal places, produced all the digits of 7 correctly,
but gave it a negative sign, and produced totally unrecognizable numbers for the
remaining two problems. Mathematicians usually insist on a higher standard of

rigor than this.

In some mathematical computations it is not important to have absolute assur-
ance of correctness, since the results are used only to obtain insight into behavior of
various functions or systems, and eventually conventional proofs that make no ap-
peal to any computations are constructed (cf. [0d0]). In many other cases, though,
such as that of the Four Color Theorem [AH], or of some proofs in dynamical sys-
tems (cf. [Lan]), computational results are an integral part of the proof. There is a

school of thought that questions the validity of all such proofs.

The computations of this paper are in one sense even more questionable than
those mentioned above, since they depend not only on the correctness of the hard-
ware and software, but also on quasi-random cancellation of roundoff errors. This is
to some extent worse than relying on usual probabilistic algorithms, since in these
at least the coin tosses are really independent, so one can talk of rigorous proba-
bilistic results. (This assumes, of course, that one can obtain really random bits,
but that is another topic we will not deal with it here.) In our case there is no
true randomness, as the roundoff process is deterministic. Moreover, the zeta func-
tion is certainly nonrandom, and so it is certainly conceivable that the errors in
the evaluations of Z(¢) might arrange themselves to conceal a violation of the RH.
It is for this reason that the previous numerical verifications of the RH, such as
those of Brent [Br5] and of van de Lune, te Riele, and Winter [LRW2], were done

very carefully. For example, those investigators did not even rely on their machines’



4.6. CORRECTNESS OF COMPUTATIONAL RESULTS 99

cosine routines, and were careful in the analysis of their error terms. As a result,
the validity of the verification of the RH for the first 1.5 x 109 zeros by van de Lune
et al. relies only on the assumptions that the hardware and compilers were reliable,
their program was correct (it is available for inspection in [LRW1] and some further
modifications are in [WR]), and that their machines’ dp cosine routines (used to
provide data to the linear interpolation routines that compute cosines) were at least

moderately accurate.

The new programs do not have the same assurance of correctness that those of
[LRW2] do. However, in a sense they can be argued to be even more trustworthy.
The reason for this is that large parts of the computations were done twice. In
general, redoing the same computation on the same machine with the same program
provides a check only against certain intermittent errors. In our case, though, the
computations were quite different. The grids T, T+, T +24, ..., at which F(¢) was
being evaluated were always different. As a result, the rational functions f(z) that
were being evaluated at the R-th roots of unity (where R was sometimes the same
and sometimes different in different computations) were different for the two grids.
Therefore the numbers that resulted from the application of the FFT, and were
used for band-limited function interpolation, were different. That what was being
computed in the two calculations was in both cases Z(t) was thus not apparent at
all from the numbers being processed, and is a result of the involved analysis of
Sections 4.2 to 4.4. That the two values that were obtained were the same to within
the expected error serves as evidence that they are indeed values of Z(t), since
it would require a very unusual combination of errors for the two computations
to yield the same answers otherwise. This method thus serves to check not only
the roundoff errors, but also the hardware, compilers, operating systems, and the

program themselves.

Care was taken to minimize the parts of the computations of Z(t) that were

common to the overlapping sets. The values of § were always different. The com-
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putations of Z;(¢) and of the asymptotic expansion in the Riemann-Siegel formula
were harder to make distinct. However, the procedure for computing 6(¢) outlined
in Section 4.2 served to make the values of #(¢) in different computations slightly
different, so that in locating zeros, different computations dealt with different values
of t.

The above method of computing Z(¢) in two different ways that ought to yield
the same result only because of deep mathematical results is not novel. In early
computations of 7, such as that of Shanks and Wrench [SW] (see [BB] for history
of this subject and much more efficient modern methods), = was calculated through

two different Machin-like formulas. In the case of [SW], they were

1 1 1
™ = 24 arctan <§> + 8 arctan <5—7) + 4 arctan <@>

and

1 1 1
7 = 48arctan (E) + 32 arctan (5—7) — 20 arctan (ﬁ) .

Since again only a very unusual combination of errors could give the same answer
by both methods, obtaining the same result provides a convincing (although non-
rigorous) argument in favor of correctness.

With new algorithm, the comparison of results of overlapping computations did
lead to the uncovering of one error in the program that had escaped detection in
several earlier runs. After one computation of over 1.6 x 107 zeros near zero number
10%° (set m of Table 4.6.1, described below), the set below it (set / of Table 4.6.1)
was computed. However, a computation of the zeros in the segment overlapping set
m showed apparent violations of the RH when the values of F'(¢) from set [ were
being used, although no such violations were found using set m. Interpolation of
values of F'(t) from set m to give the values of F'(t) on the grid of set [ revealed
that the computed values of F'(¢) at the grid points f; = T 4 j§ of set [ differed
from the (presumably correct) ones derived from set m by ¢(—1)7, where ¢ was

a certain constant. This immediately suggested that in set [, f(—1) was being
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evaluated incorrectly. An inspection of the code revealed a simple mistake having
to do with indexing of the roots of unity w” in the segmented program, and it was
easy to correct the data. This bug had not revealed itself before because the unusual
combination of having a pole of the rational function f(z) in a certain range close to
—1, which was required for the code to produce incorrect output, had not occurred

in the earlier runs.

How close to each other are the values of Z(¢) computed in different runs? Let
us consider the neighborhood of the extreme example of Lehmer’s phenomenon near
Yn, n = 10" 412,376, 780, where the minimum of Z(t) between =, and 7,4 is only
—5.3 x 1077, This is the example that comes closest to violating the RH among all
those found in our computations, and the obvious question is whether one can be
sure that the RH is indeed satisfied by rho, and rho,4q. This example was found
in a computation of 1.7 x 107 zeros, and to confirm the accuracy of the computed
values of Z(t), two additional computations were carried out, each of about 1.5 x 10°
zeros, and each centered close to v,,. The starting points of the three computations
and the grid spacings § were distinct in all three computations to assure maximal
independence in the computed values. When the results of the these runs are plotted
on the scale of Fig. 2.7.1, they are indistinguishable. When one plots Z(t) only in
the immediate vicinity of v, and v,41, as in Fig. 4.6.1, the three graphs are still
indistinguishable. It is only when one goes over to the scale of Fig. 4.6.2, which
shows Z(t) near its minimal value in (., ¥n+1), that differences are apparent. This
graph was prepared by computing Z(t) from each run at intervals of 107° times the
length of a Gram interval (so that I'ig. 4.6.2 corresponds to about 150 evenly spaced
values of t) and connecting the points obtained that way by lines. (The function of
the lines was to enable the reader to tell which values come from the same data set.)
The jagged appearance of the lines is the result of the quantization and roundoff
errors. (Note that changing a value of ¢ & 1.7 x 10'7 by 10~ times the length of

a Gram interval affects only the last 15 or so bits in the dp representation of ¢.)
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Given the scale of Fig. 4.6.2, the three curves are close together, and thus provide
convincing evidence that the claimed values of Z(t), v, and 7,41 are indeed highly

accurate, and that the RH is not violated in this region.

All indications from preliminary runs were that the new algorithm was highly
accurate, and storage of two complete data sets needed to perform a detailed com-
parison would have been hard to arrange. Therefore it was decided not to recompute
all the values of zeros near zero number 102° using different grids, but to have dif-
ferent computations cover consecutive ranges with some overlap. Table 4.6.1 shows
all the different sets of zeros that were computed and that overlapped other ranges.
The three sets of zeros that were referred to above in the discussion of Lehmer’s
phenomenon, for example, are listed under f, g, and h in Table 4.6.1. (The set a
consists of the zeros computed in [Od2] by the standard Riemann-Siegel formula
method, and so its values of zeros are very trustworthy.) The four main computa-
tions (near N = 10%°) are those in sets k,l,m, and n, and each one overlaps each
of its neighbors in about 10¢ zeros. The small set o was computed as an additional
check, since the smaller grid spacing and fewer grid points were expected to produce
more accurate values, and the somewhat different program used was an extra check
on programming mistakes. (This was also the motivation behind some of the other
computations of small sets of zeros, such as that of 7. The medium size sets, b, ¢

and e, were computed by the earliest of all versions of the new program.)

A few large scale statistical comparisons were made of the values of Z(t) produced
in different computations. For example, to compare sets m and o of Table 4.6.1, the
values of Z(t) were computed using data from each set at 5 x 106 points spaced 1/300
apart (about 45 per Gram interval) starting at ¢ = 1.52024401159207401 x 10'.
The largest difference (in absolute value) was 1.5 x 107, and the rms difference was

5x 1078.

While the errors made in computing Z () are of some interest, the main question

is that of accuracy in computing the 7,, which depends not only on accuracy of
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values of Z(t), but on the size of Z(¢) and Z’(t) near zeros. Therefore extensive
and careful comparisons were made of the differences in values of v, computed in
different sets. Table 4.6.2 summarizes the results of these comparisons. The “a vs.
b” entry, for example, shows that the values for the 101,053 zeros common to sets a
and b different by no more than 2.5 x 1072, and the rms difference was 3.7 x 10~'1.
(These are differences in the values of the ,. Should the values of two adjacent
zeros in set [, for example, each be off by ¢, with one value too small by ¢ and the
other too large by ¢, the resulting value of §,, would be off by +14¢.) The maximal
differences increase as one looks down the table, as was to be expected. They all
stay small, though, and are the main justification for the claimed validity of the

data.

The rms difference entries in Table 4.6.2 should be treated with great caution.
One reason is that the zero-locating program was only asked to compute the zeros
to a nominal accuracy of +2 x 10™® (for zeros near zero number 10%2%; somewhat
higher accuracy was specified for lower zeros). Because of the mixture of linear and
quadratic interpolation that was used, usually the convergence of the algorithm at
the end of a particular search was quadratic, and so accuracy much greater than the
specified one was reached in almost all cases. Thus the fact that the rms figures in
Table 4.6.2 are substantially below the specified accuracy of 2 x 1072 is the result of
many happy accidents, and not a matter of design. Another reason not to rely on
the rms figures is that often they were inflated by the programs that were used for
the comparisons. Since there was no reason to expect accuracy better than +107%,
sp programs were used for most of the computations of Table 4.6.2, which led to
the loss of the last few bits of precision. (The anomalously large rms value for the
“l vs. m” entry, as compared to the “k vs. [” and “m vs. n” entries, which cover
roughly the same number of zeros at about the same height, is almost certainly due
to the use of a sp array in a data conversion routine, for example.) Thus in general

the rms figures in Table 4.6.2 are upper bounds for the rms errors achievable with
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the new algorithm, but should not be regarded as accurate estimates.

One source of errors in the computation of the +, lies in the method of cal-
culating 6(t). Some of these errors come from the roundoff difficulties associated
with handling large numbers within the limited precision that was available. Other
errors came from the Taylor series expansion procedure, described in Section 4.2,
that was used to compute 6(¢). Some indication of the errors introduced this way
can be obtained from the data produced during the main runs. Because of the in-
efficient search procedure near exception to Rosser’s rule (described in Section 4.2),
usually about ten zeros near each exception were computed twice. The two values
were hardly ever identical, since the zero locating program was usually invoked with
different arguments. Differences caused by this factor were usually extremely small.
Much larger were differences caused by the fact that often the two computations
calculated 6(t) for nearby values of ¢ by expanding around different values of y. The
largest difference in the computed values of the 7, that was found that is due to this
phenomenon is 2.7 x 1077 for n = 10?° 4 31, 141,844. (The second largest was only
slightly more than half as large.) This zero is located near two exceptions to Rosser’s
rule that are close to each other, with the peak value of Z(#) in that region equal to
257.6. The pattern of zeros (starting at Gram point ¢,,_19) is 2111110110030101311,
and Z(t) is small in a large neighborhood of v, (|Z(t)| < 0.015 over approximately
the whole Gram interval that contains v,). Z’(vy,) = 0.7 is small, and so the com-

puted location of =, is sensitive to errors in the computation of 6(¢).

Other tests to determine the sensitivity of the computed values of the zeros to
errors in the computation of (¢) were also performed. For example, the zeros in set
o were computed several times, always using the same rational function evaluation
output for the interpolation of band-limited functions, but modifying the strategy
of evaluating #(t) by forcing more frequent recomputations of g, or simply the use
of different sets of #g’s. The resulting values for the zeros had differences (when

compared to the basic computation of the zeros in that set) that were < 1077 in
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absolute value, and < 2 x 1072 in rms value. Thus the basic conclusion from these
tests is that errors in the computed 6(t) were not a significant factor.

Another reason for trusting the computational results of this paper is that the
results of the most time-consuming part, the rational function evaluation, are trans-
formed by the FIF'T before being used for the computation of zeros. This means
that any error in this part of the computation affects the computation of all zeros,
and so if it is substantial, is likely to lead to an apparent counterexample to the
RH. This is in contrast to the standard methods, such as that of [LRW2], in which
a single mistake affects the computation of only one value of Z(¢).

The final, and in many ways most convincing, although unrigorous argument in
favor of the correctness of the computations reported here is that they did not find
any counterexamples to the RH. This might seem a strange argument. The point of
it is that if the RH is true, it is only barely true, in the sense that even tiny changes in
the formulas used to compute the zeta function yield functions that no longer satisfy
the RH. Many deliberate as well as accidental experiments were performed in which
some of the parameters in the programs were modified slightly, and they almost
invariably ended up giving apparent counterexamples to the RH. For example, in
set V of Section 3, the minimal w,, (see Section 2.8 for definitions) that was found
was 1.43x 10™*, so perturbing Z(t) by smaller quantities could not produce apparent
counterexamples to the RH. In particular, dropping the asymptotic expansion part of
the Riemann-Siegel formula does not produce visible problems in this set, although
it does in other ones that have more extreme cases of Lehmer’s phenomenon, and
in all cases it perturbs the computed values of the zeros. On the other hand, only
slightly larger perturbations do produce apparent counterexamples. One also finds

counterexamples when one computes
Z(t) — 2k~ cos(tlog k — 6(t))
for k = 105. Also, when one computes

Zy(t) + Re e F(t — )
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with @ = 10™* instead of a = 0, apparent counterexamples to the RH appear. (In
all these cases, the apparent counterexamples refer to cases where the function being

computed has a positive relative minimum or a negative relative maximum.)

4.7. Possible improvements

At large heights, the new algorithm is much faster than previous methods.
The computation of 105 zeros near zero number 10'? in [0d2] took about 15 hours
on a Cray X-MP using direct evaluation of the Riemann-Siegel formula. Set n
of Table 4.6.1 contains almost 3.3 x 107 zeros near zero number 102°, and it was
computed in about 150 hours on the same machine. Since the Riemann-Siegel
formula involves about 7.5 x 10 times more terms near zero number 102 than near
zero number 102, computing all the zeros in set n by the method of [Od2] would

have required about

15 x 300 x 7500 ~ 3.7 x 107

hours, or more than 2 x 10° times longer than the new algorithm required.

While the current implementation of the new algorithm is much more efficient
than previous algorithms, it is far from optimal. The author’s main interest was
in demonstrating that the new algorithm was indeed faster than old ones, and in
obtaining data about zeros of the zeta function. Since spare computer time was
available, saving programming effort was often chosen over efficiency of the program.
The following subsections present some of the ways in which the program could be
modified to run faster or to produce more accurate results. They might be useful
in future computations. It seems likely that the ideas in Sections 4.7.1 and 4.7.2
could be used to increase the speed of the algorithm by another order of magnitude
on the Cray X-MP. This might make it possible to compute large sets of zeros near
zero number 1022, for example.

All the main programs can be parallelized, and one can achieve high performance

this way. (For the rational function evaluation program, there are some examples of
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similar algorithms, discussed in Section 4.7.2, that have been implemented effectively
on parallel computers by Greengard and Gropp [GG], Zhao [Zh], and Zhao and
Johnsson [ZJ].) One difficulty in using existing multiprocessors would likely be
their relatively low precision. Our discussion will be oriented towards more standard

vector processors, however.

4.7.1. Faster and more accurate computations

Many parts of the rational function evaluation program can be speeded up.
Table 4.3.1 shows that the present strategy of computing dp values of logk takes
about 10% of the running time. While this is 1.5 times faster than using the current
standard Cray dp routines would be (and 6 times faster than using the old Cray
routines), it can be improved substantially by modifying the program slightly. For
example, the following method is about 3.5 faster (for & = 10?) than the one cur-
rently used. Group the k € S, ; into consecutive blocks, say k4 < k < k5, with
ks — ky 22 x kg x 1075, and let kg = | (k4 + k5)/2]. Compute the dp log ke using
the Cray routine, and compute the h; = 1/(j - ké) in dp for 1 < j < 4. Initially,
for ky < k < ks, assign to dj the value of log kg, and then, for 1 < j < 4, modify
each di, k4 < k < ks, by subtracting from it h;(k — kG)j, where the (k — kG)j are
taken from a precomputed integer array. For j = 4, the multiplication of %; and
(k — kg)? can be carried out in sp. Further improvements can probably be obtained
with further experimentation. (The speeds that can be achieved in this part of the
program depend strongly on how the compiler treats dp computations.)

Substantial savings can be obtained by modifying the procedures used to evaluate
the fp7q(wh). Instead of choosing a uniform threshold (), the decision whether to
use Taylor series expansions or direct evaluation can be made dependent on the
size of I,,. Reducing the number of terms in the Taylor series as mentioned in
Section 4.3 can reduce the total running time by at least 15%, and even greater

savings are probably possible by more careful choices.
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The zero-locating program can be improved in several ways. The computation
of O(t) takes about 7% of the time for the choice of parameters in (4.4.21). This
time can be reduced practically to zero, since around the 10%°-th zero, 8(t) is almost
linear and the distances between consecutive Gram points are almost constant.

The strategy for locating zeros can be improved, especially in the neighborhoods
of exceptions to Rosser’s rule, where it is grossly inefficient. Currently about 8.5
evaluations of Z(t) are used to compute each zero (with one more evaluation to ob-
tain the value of Z(t) at the midpoint between adjacent zeros). It should be possible
to devise strategies that take better advantage of the previously computed values
and of the expected behavior of Z(t). This might involve computing Z’(¢) (which
can be obtained from the interpolation formula (4.4.15)) and modifying Brent’s al-
gorithm [Br1]. A good model for this approach is the algorithm of van de Lune et al.
[LRW1, LRW2], which uses fewer than 1.2 evaluations of Z(t) per zero to separate
the zeros.

About 45% of the time of the zero-locating program (for the parameters listed
in (4.4.21)) is spent in band-limited function interpolation. (The computation of
Z1(t) takes approximately 25%.) Logan’s kernel (4.4.20) has desirable optimality
properties in terms of rate of convergence of the interpolating sum (4.4.15), but it
is somewhat hard to compute. It is possible that other kernels could be constructed
that would give slower convergence, and therefore require evaluating explicitly more
terms in the sum in (4.4.15), but which would be much more efficient to compute.
Another approach would be to initially use the formula (4.4.15) only for values of ¢
that belong to a grid somewhat finer than that of T, T+ 6, T+ 24, .. ., say at points
T+ k§/1000, & > 0. For such values of ¢, it would only be necessary to precompute

the values of
iam5/100051n(/\m5/1000)

(Ama/10000) *(m9/1000) (4.7.1.1)

for |m| < 1000¢/(d¢), and later evaluations of the interpolation formula would be

reduced to inner products of vectors. With this approach, even without the use
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of assembly language, one could compute interpolation sums of the form (4.4.15)
at the rate of about 1.2 x 107 terms in the sum per second on the Cray X-MP.
(If one selects § to be a simple rational multiple of the average gap between Gram
points, say 6 = 2(gn+1 — ¢n), another factor of 2 improvement in speed is possible
by taking advantage of the fact that only Re e~*() F'(#) is needed, and 6(t) is close
to linear.) In the existing program, they are computed at the rate of only about
5 x 10° terms per second. Once the zero was proved to lie between two points of
the subgrid 7" 4 £§/1000, one could locate it more accurately by evaluating Z(¢)
at several neighboring points of the subgrid, using some numerical interpolation
method to obtain an approximation to the zero that is likely to be accurate. Finally
this location of the zero could be confirmed by using the standard interpolation
method to evaluate Z(¢) at points on either side of the zero.

All the main programs are written in Fortran, and many parts of the computa-
tion are handled by subroutines. Some slight improvements can be expected from
replacing subroutine calls, which are slow on the Cray machines, by in-line code.
Much greater speedups are likely to be achieved by using assembly language. Cur-
rently none of the dp operations vectorize. However, given the structure in the dp
operations employed in the new algorithms, it should be possible to write assembly
language code that would vectorize these operations. Another case where assembly
language ought to produce much faster programs is in the computation of Taylor
series coefficients and the evaluation of Taylor series, which, as is shown by Ta-
ble 4.3.1, account for more than half of the running time of the rational function

evaluation program. Let ¢, be defined by

o0

E "= Z cn(zpg — 2)"

P

so that
Cn = Z ar(2p,q — bk)_n_l )
kE€Sm,j

and the ¢, corresponding to different sets S, ; are added together to obtain the n-th
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Taylor series coefficient of f,,(z). The ¢, are computed in the present program by

using two complex sp arrays, uy and vg, k € S, ;, with

up = (Zpg — bk)_l )
vp = ap(Zpg —br) ™"

To compute ¢, vy is assigned the value ugvy, for & € S, ;, and the Cray library
function csum is invoked to sum the new ug. (C'sum sums a complex sp array
in a vectorized way.) Each ¢, thus requires |5, ;| complex sp multiplications and
|Sy.;| — 1 complex sp additions. These combinations of complex multiplications and
additions are carried out at the rate of 1.29 x 107 per seconds. Since each complex
multiplication involves 4 real multiplications and 2 real additions, and each complex
addition requires 2 real additions, the Cray is performing 1.03 x 10® floating point
operations per seconds, which is good when one recalls that the cycle time of the
Cray X-MP is 9.5 nanoseconds. However, it should be possible to take advantage of
the fact that each of the basic combinations of a complex multiplication and complex
addition involves 4 real multiplications and 4 real additions. Since the Cray can do
an addition and a multiplication at the same time, it ought to be feasible to write
the code so that additions coming from computation of some particular n would
be done at the same time as the multiplications for n + 1, say. This would give a
speedup factor 2, if the data transfers could be arranged appropriately. (It might
even be possible to obtain some savings in Fortran, without resorting to assembly
language.) Similar improvements can probably be obtained in other parts of the
program.

Table 4.3.1 shows that many different parts of the rational function evaluation
program consume noticeable fractions of computing time, and so for maximal effi-
ciency one would have to work on all of them. This is also true of the zero-locating
program. No matter to what extent these programs are optimized, however, one can
obtain some savings by optimizing the choice of the parameters 8, kg, etc., which

were not chosen very carefully in the computations that are reported here.
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Memory constraints can be overcome by using larger mass storage devices. These
could be larger magnetic disks (the maximal total storage requirement for computing
the 3.3 x 107 zeros in set n was 512Mb, and much larger disks are commercially
available), or even magnetic tapes (especially the high capacity digital tapes that
are becoming available) or optical disks. Substantial savings can be realized by
using in-place FFT programs, which perform the FFT on a set of data with little
additional space being required. Most such algorithms require about log R passes
through the data for an R-point FFT. D. H. Bailey has pointed out that there is an
algorithm of Gentleman [Gen] which requires only three passes through the data,

and so is particularly attractive for our application.

One factor that might facilitate very large scale computation with the new algo-
rithm is that most of computing time of the rational function evaluation program is
spent in only a few segments, because of the nonuniform distribution of the 8;. This
means that one can first perform most of the computation with very little storage,
and only a couple of hours would be needed to deal with the overwhelming majority
of segments and the FFT program, and it’s only during that time that substantial
storage would be needed. Afterwards, the data can be stored away even on slow
mass storage devices, since the zero-locating program requires only small segments
of data at a time. FFurthermore, storage space can sometimes be used more fully by

choosing R not to be a power of 2.

At the time the program was implemented, limitations on disk storage, capacity
of local area networks, and availability of long-term storage on optical disks were
such that utilizing the methods suggested above seemed very cumbersome. Right
now, however, with the availability of an automatic optical disk changer and larger

disks, it would be much easier to carry out some of these improvements.

It is possible to gain some additional speed by taking advantage of the nonuni-

form distribution of the fi. Instead of computing F(ko,k1,t) at a grid of point
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t=T,T494,...,T4+(R—1)J, one can compute F'(m;, m,,41;t) for 0 < j < s, where
mog=kg<my <---<mg=k,

where the m;i;/m; are roughly equal, and where ¢ now would run over a much
sparser grid, approximately ¢t = T, T +s8, T+ 2s4, . . ., since the range of frequencies
in each F'(m;, m;41;t) would be much narrower. In order not to use too much space,
one could then compute F(m;, m;41;t) at only R/2°77 points at a time. This would
mean that the F'(m;, m;41;t) for j < s — 2 would be computed on several adjacent
grids of points, but since in the ranges that are being considered now, the running
time depends mostly on k1, and to a much smaller extent on R, it appears that one
could obtain substantial savings.

It should be possible to obtain slightly more accurate results at very small addi-
tional cost in computing time. This might be useful if one were to do some computing
near zero number 1022, for example. The main source of inaccuracy in the present
program is in computing T log k mod 27, 2 < k < ky. While multiprecision pro-
grams such as Brent’s MP package [Br4] are likely to be too slow to be used on each
such term separately, one can apply them for some values of k spaced far apart, and

then use Taylor series expansions in terms of k£ to obtain the other values. One has
Tlog(k+h) =Tlogk+Th/k — Th*/(2k* +--- ,
and so if |h/k| < 1073, say, dp arithmetic would give about 4 more decimal digits of

accuracy than the method that is now used.

4.7.2. Greengard-Rokhlin algorithm

The possible modifications to the present implementation that are discussed in
Section 4.7.1 are small programming improvements. It is also possible to change the
basic rational function evaluation algorithm, by modifying the functions f, ,(2) (see

Section 4.3). What is needed is a collection of functions f;(2) such that for every A,
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for some subset J(h), and such that all the f;(w") can be computed efficiently by
direct evaluation or by using their Taylor series expansions. The functions f, ,(2)
of [OS] and of Section 4.3 are only one of many choices.

As was already noted in [OS] in remarks about the Trummer problem, the ratio-
nal function evaluation algorithm of that paper can be extended to the evaluation
of much more general functions. Another algorithm for the evaluation of Coulomb
and gravitational potentials was invented by Greengard and Rokhlin [GR1], and
was subsequently improved, extended,and applied to several additional problems by
several investigators [AGR, CGR, GG, GR2, GR3, Kat, Zh, ZJ]. It seems to offer
the possibility of a substantial improvement in the speed of the zeta function pro-
gram. Its underlying principle is the same as that of the algorithm of [OS], namely of
aggregating the contributions of those poles of the function that are close together.
However, it works differently. To avoid unnecessary notation, we explain briefly how
it would be applied to the zeta function problem, which is the evaluation of f(w"),
although it is more general than that. In the algorithm of [OS] and this book, the
functions f](z) are usually evaluated by obtaining their Taylor series expansions
around points outside the regions containing their poles. For each m, and each
k € Sy, the coefficients ay (2, —br) """ in (4.3.15) are evaluated for 0 < n <V (V
is usually around 40) and for each pair p, ¢ such that S,,, C I, ,, @1 < ¢ < Q. Since

there are about @ = log R such pairs p, ¢, the total effort involves on the order of
Vkilog R (4.7.2.1)

basic arithmetic operations.
In the Greengard-Rokhlin algorithm, one would compute instead the coefficients

ar(br — z,)™ in the expansions

o0

=3 ap(b—z0)"(z — 20) "7, (4.7.2.2)

n=0

z—bk

for example. Here z,, would be some point located among the by with k € S,,, say

Zym = exp(2mi(m + 1/2)/R) .



114 CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATION

Expansions of the type (4.7.2.2) converge for z away from z,, and by, say for |z —
Zm| > 3/2. The coefficients a(by — z,)" would again be computed for 0 < n <V,
with V of about the same size asin the present algorithm. Addition of the coefficients
ar(by, — z,)" for k € Sy, gives an expansion

\%4

S S Az (4.7.2.3)

that can be used to compute the contribution of the £ € S,, at z = w" for wh

close to z,,. For w” that are further away, one would combine the contributions of
several S;’s, say Sy, Sm+1, Sm+2, and obtain an expansion around z,,4+1. The crucial
point about the Greengard-Rokhlin algorithm is that unlike in the algorithm of [OS]
and this book, this expansion around z,,41 would not be done by recomputing the
contribution of each £k € S, cupS,,+1cupS,+2, but by translating the previously

computed expansions; e.g.,

v 14
S Az = 2) T =3 BUY (2= )T (4.7.24)
n=0

n=0

where the Bﬁzm) are derived from the A;m) by linear transformations coming from
the binomial expansion, without reference to the a; and by for & € S,,,. The straight-
forward formulas for the Bﬁlm) take on the order of V2 operations to compute them
from the A;m). As a result, since there would again be on the order of log R levels in
the hierarchy of expansions, with each level having only 1/3 or 1/2 of the expansions
in the level below, obtaining all the expansion coefficients would take on the order

of
AV + V2R (4.7.2.5)

operations. For k; = R and V = log R, as would be true for the zeta function
algorithm in the absence of memory constraints, and also for the Coulomb or grav-
itational potential calculations of [GR1] and related papers, this is about the same
operation count as for the present algorithm (see (4.7.2.1)). However, for present

and foreseeable computations of the zeta function at large heights, R is much smaller
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than &y (R ~ 1.6 x 107 as compared to k; =~ 1.5 x 10° in the largest computation
of this paper), and so the Greengard-Rokhlin algorithm is likely to give much faster
rational function evaluation. An order of magnitude improvement seems likely in
the time needed to evaluate the expansion coefficients. At present, Taylor series
expansions consume about half of the time, so even eliminating them entirely would
only double the speed of the program. However, with faster coefficient expansion
techniques, one could also use these methods to evaluate contributions to f(w") of
bi that are closer to w” than is done at present, and this would give much greater
gains in efficiency. Moreover, once these parts of the program were improved, the
improvements to other parts (such as that of evaluating dp values of log k) that have
been suggested would become much more significant, and all of them together could
increase the speed of the entire algorithm by an order of magnitude, especially if

assembly language was used as suggested in Section 4.7.1.

The basic idea of translating an expansion that is at the heart of the Greengard-
Rokhlin algorithm for pole expansions can also be used for Taylor expansions of the
kind that are used in the present algorithm, but it is not as efficient in this setting.
Also, since the Bgm) are derived from the Aﬁzm) by a convolution, one can do this
computation in fewer than the V2 steps of the straightforward algorithm, by using
FFT-based methods. Greengard and Rokhlin [GR2] report some improvements
obtained this way, but they are only about 2 or 3 for 2-dimensional problems, and
about 8 for 3-dimensional ones. Since the zeta function problem is essentially a
1-dimensional one (with all the poles and points of evaluation on the unit circle),
we might expect small improvements from this source. This might be counteracted
to some extent by the fact that the order of expansion V that is used with the zeta
function is higher than in [GR2], so the overhead might be smaller, and noticeable

savings might still be obtained.

One aspect of this multipole expansions of Greengard and Rokhlin that would

have to be investigated carefully before their algorithm could be used for the zeta
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function computation is its accuracy. However, based on the results reported so far

[GR1, GR2], that is not likely to be a problem.

4.7.3. Computations of low zeros

The new algorithm is much more efficient than the implementation of the stan-
dard Riemann-Siegel formula evaluation in [Od2] even around zero number 1012
However, this advantage might not hold or be as noticeable around zero 1.5 x 102,
especially if one were only interested in separating zeros, and not computing them
accurately (so that only about 1.2 evaluations of Z(¢) would be needed per zero,
instead of the 10 or so of the current implementation of the algorithm of [OS]). Thus
if one were interested in extending the numerical verification of the RH beyond the
1.5 x 102 zeros of [LRW2], the present implementation might not help much. This is
due to a large extent to the design of the program, which was aimed at computing
around the 102°-th zero, and so various parameters were chosen with that goal in
mind. It is likely that the program could be rewritten to be much faster at lower
heights, and with more extensive use of dp arithmetic rigorous error analysis could

be performed for it, but this would represent a substantial programming effort.

What we present here is a combination of several techniques that ought to give a
simple algorithm for computing Z(¢) that ought to be about an order of magnitude
faster than the algorithm of [LRW2], and for which rigorous error analysis could
be performed. The basic idea is to again compute Z;(¢) in the standard way, and
to compute F'(t) on a uniformly spaced grid of points 7', 7'+ §,..., and to use
band-limited function interpolation to then obtain F'(¢) at intermediate points, as
is explained in Section 4.4. The band-limited function interpolation method errors
can be bounded rigorously. If kg =~ 174 it would suffice to compute F'(t) once every
4 Gram intervals, but to shorten the interpolation computations and to control the
errors better (through having to sum fewer terms in the series in (4.4.15)), it could

be preferable to sample somewhat more frequently.
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The evaluation of F'(¢) in the suggested method would be performed not by the
method of [OS], but by forming arrays a; and by, ko < k < ky, with

ap = 2k~ 2 Tlosk g — ilogk (4.7.3.1)

F(T) would then be the sum of the a;. Next, we assign to ay the value of aj - by,
and sum the new aj, to obtain F(7" 4 §). Repeating this operation yields all the
F(T + j6). Since complex sp multiplications and additions are vectorized by the
Cray Fortran compiler, this method would be fast, as was already noted in [Od2].
(To avoid loss of accuracy in repeated multiplications, it would be advisable to use
this method only on short stretches of the grid T, T+ 4, . . ., so that at £ = T+ 10054,
for example, one would recompute aj = 2k~1/2 exp(itlog k) from scratch.)

A further improvement can be obtained by using the Euler product, as was
suggested by A. Schénhage in a slightly different context. To compute F(t), we
do not need to compute all the 2k~1/2 exp(itlogk) for ko < k < ki explicitly.
Instead, we can compute them for all k, 2 < k < ky, such that (k, P) = 1, where
P=2x3x5x---xppis the product of the first A primes (with A small, say h = 4
or 5). (This computation would be done by a modification of the method presented

above.) Then, to obtain F(t), we can compute, for each &k, 1 < k < ky,

9f—1/2 pitlogk Z g /2eitlogg (4.7.3.2)

9eQ
ko <kg<ki

where () is the set of integers all of whose prime factors are < pj. Since the sum in
(4.7.3.2) would be the same for many k, this operation would be vectorizable.

The methods presented in this section could also be useful for very accurate
computations of high zeros. If one were to find an extreme example of Lehmer’s
phenomenon at large heights, or even a suspected counterexample to the RH, where
it would be necessary to obtain more accurate values of Z(t) than are given by the
present implementation of the algorithm of [OS], writing an improved version of this

algorithm with a guaranteed error bound would be laborious, and might require a
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prohibitive amount of time to run. On the other hand, since values of Z(¢) in only a
short interval would likely be needed, the method of this section (combined with the
suggestion at the end of Section 4.7.1 about increased accuracy) might be adequate

to resolve any uncertainties.
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Table 1.1.

zeros are of the form 1/2 + iv,.

Table 1.2. Large computed sets of zeros of the Riemann zeta function.

Several zeros of the Riemann zeta function near zero number 1020, All

n v — 15,202,440, 115, 920, 740, 000

1020 — 6
102° -5
1020 — 4
1020 -3
1020 — 2
1020 — 1
1020

1020 41
1020+ 2
1020+ 3
1020+ 4
1029+ 5

7267.894628
7267.988948
7268.077538
7268.258252
7268.337163
7268.563308
7268.629029
7268.828625
7268.972156
7269.122460
7269.241484
7269.313890

index of first

approximate height

N number of zeros zero in set of zero no. N
106 1,000,1052 | N +1 6.003 x 10°
10'2 1,592,196 | N — 6,032 2.677 x 101
104 1,685,452 | N — 736 2.251 x 103
1016 16,480,973 | N — 5,946 1.941 x 10'°
108 16,671,047 | N — 8,839 1.706 x 10'7
109 16,749,725 | N — 13,607 1.608 x 10'8
1020 175,587,726 | N — 30,769,710 1.520 x 10

2x10%° | 101,305,325 | N — 633,984 2.991 x 10"




Table 2.4.1. Moments of §,, — 1.

E|N=1|N=10| N=10"2 | N=10" | N =108 | N =10%° | N =2 x 10%° | GUE
2 | 0.161 | 0.167 0.176 0.177 0.178 0.178 0.178 0.180
3| 0.031 | 0.032 0.035 0.036 0.036 0.037 0.037 0.038
4 | 0.081 | 0.088 0.096 0.098 0.098 0.099 0.099 0.101
5 | 0.046 | 0.052 0.059 0.061 0.062 0.062 0.062 0.066
6 | 0.075 | 0.087 0.100 0.103 0.105 0.106 0.106 0.111
71 0.072 | 0.089 0.109 0.113 0.115 0.116 0.116 0.124
8 | 0.103 | 0.136 0.171 0.178 0.180 0.183 0.183 0.197
9 | 0.126 | 0.182 0.246 0.258 0.261 0.266 0.266 0.290
10| 0.181 | 0.283 0.408 0.431 0.434 0.444 0.444 0.488
Table 2.4.2. Moments of 4, + §,+1 — 2.
E|N=1|N=10°| N=10"2 | N=10"" | N =10 | N =10* | N =2 x 10%° | GUE
2 | 0.207 | 0.218 0.236 0.241 0.242 0.243 0.243 0.249
3 | 0.028 | 0.029 0.027 0.027 0.027 0.028 0.028 0.030
41 0.123 | 0.143 0.167 0.173 0.175 0.176 0.177 0.185
5 | 0.047 | 0.057 0.062 0.064 0.065 0.066 0.066 0.073
6 | 0.119 | 0.158 0.204 0.214 0.218 0.220 0.220 0.237
71 0.078 | 0.113 0.151 0.159 0.162 0.164 0.164 0.185
8 | 0.155 | 0.246 0.370 0.393 0.401 0.406 0.407 0.451
9 | 0.142 | 0.250 0.423 0.453 0.465 0.470 0.471 0.544
10| 0.252 | 0.482 0.909 0.985 1.016 1.025 1.029 1.178




Table 2.4.3. Moments of log d,, &, 1, and 4, 2.

moments
of N=1|N=10°|N=10"2 | N=10"" | N=10"8 | N =10%° | N =2 x 10%° GUE
logd, |—0.0912| —0.0960 | —0.1013 | —0.1022 | —0.1025| —0.1027 —0.1027 | —0.1035
51 1.2363 | 1.2534 1.2700 1.2725 1.2733 1.2737 1.2738 1.2758
52 2.2235 | 2.4153 2.5277 2.5309 2.5855 2.5475 2.5545 2.5633

Table 2.4.4. Kolmogorov statistic for &, and &, + 6,41, for blocks of 10° zeros.

(Sn 5n ‘|’ 571—}—1
D prob. D prob.
N = 10" vs. GUE 0.00419 | 10~'® | 0.00819| 10—°%

N =10%(a) vs. GUE 0.00180 | 3 x 1073 || 0.00318 | 3 x 10~°

N =10%(b) vs. GUE 0.00152 | 2 x 1072 | 0.00399 | 3 x 10~ 14
N =10%(a) vs. N = 10%°(b) || 0.00108 | 0.19 | 0.00119 | 0.12
N =10%(a) vs. N = 10%(c) || 0.00082 | 0.51 || 0.00123 | 0.10
N =10%(b) vs. N — 10%°(c) || 0.00089 | 0.41 || 0.00096 | 0.32




Table 2.5.1. Moments of scaled values of S(¢) computed from two intervals of 106
zeros each near N = 10'? and 10%°.

E | N=10'2 N = 10%0 normal
1 [1.2x107°| —6.3 x 107° 0

2 1.0 1.0 1

3 139%x107%| —4.7x10~4 0

4 2.792 2.831 3

5 14.8%x1072| -9.1x1073 0

6 12.22 12.71 15

7 0.050 —0.140 0

8 70.98 76.57 105
[1] | 0.8058 0.8042 0.79788...
[3] | 1.3130 1.3458 1.5957 ...
5] 5.597 5.742 6.3830. ..
1% | 5.9%x107% | —3.2x107°

2% | 0.2330808 | 0.2606901

Table 2.5.2. Average number of sign changes of S(¢) per Gram interval.

N S(t) sign changes
106 1.719
1012 1.600
1014 1.575
1016 1.556
1018 1.538
101? 1.531
1020 1.524
2 x 10%0 1.522




Table 2.5.3. Largest values of | S(t)| in various data sets and fraction of exceptions
to Rosser’s rule that had |S(¢)] > 2.3.

fraction of cases
N largest S(t) | with [S(¢)] > 2.3
10'? 2.1918 -
1014 —2.2784 -
1016 —2.4639 0.0123
10'8 2.6121 0.0175
101? —2.5698 0.0162
1020 2.7916 0.0240
2 x 1020 2.6271 0.0224

Table 2.5.4. Statistics of Sy (t).

N =10"| N =10%*
mean of S (t)* 0.0793 0.0793
mean of Sy(¢)* 0.0058 0.0058
mean of Sq(f)* 0.0148 0.0148

max S (1) 0.966 | 0.996
min S(t) | —0.786 | —0.768
no. sign changes | 0.120 0.074




Table 2.6.1. Extremal values of 4, and 4, + d,4+1, and the probability that the
minimum value of §, in the GUE in a sample of the same size would
not exceed the minimal value that was found.

prob.

N min §, | maxd, | min(d, + d,41) | max(d, + d,41) | mind,
108 0.00545 | 3.3035 0.2914 4.0683 0.16
102 | 0.00649 | 3.5098 0.2952 4.5833 0.38
10'* 1 0.00935 | 3.4716 0.2723 4.6564 0.78
106 | 0.00454 | 4.1637 0.1664 4.9921 0.82
10'® 1 0.00112 | 3.9869 0.1680 5.0401 0.025
10 | 0.00090 | 3.8089 0.1918 5.0588 0.013
1020 | 0.00197 | 4.0258 0.1124 5.2125 0.77
2 x 10%° | 0.00121 | 4.0215 0.1377 5.0859 0.18

Table 2.6.2. Frequencies of large and small ¢, and &, + §,, (number of cases per
million zeros) and the GUE predictions.

N 8, <0.05|6, <0.1|6,>28|6,+ 0,41 <0.6|68,+0d,41 >4
109 121.9 945 87.0 126.9 8.0
1012 126.2 1055 157.6 331.0 94.8
1014 118.7 1103 156.6 329.9 97.9
1016 130.9 1070 164.4 341.1 107.7
108 135.3 1088 169.9 356.1 108.5
101? 140.5 1084 170.2 362.5 114.0
10%° 134.7 1077 174.3 363.3 111.9
2x10%0 | 135.8 1074 172.8 366.8 112.4
GUE 136.8 1088 196.8 386.3 135.7




Table 2.7.1 Autocovariances

of the 4,.

k N=1 N =102 N =102

0 1607429 | 0.1754737 | 0.1781405

1| —.0574023 | —0.0576441 | —0.0566976

2 | —.0126083 | —0.0143034 | —0.0143122

3 | —.0065874 | —0.0055030 | —0.0065465

41 —.0045317 | —0.0026406 | —0.0028474

5 | —.0031454 | —0.0016681 | —0.0019375

6 | —.0011362 | —0.0013422 | —0.0014018

7| —.0007084 | —0.0009186 | —0.0006824

8 | —.0013904 | —0.0010702 | —0.0006266

9 .0013483 | —0.0007598 | —0.0005397

10 .0034456 | —0.0006851 | —0.0004818
11 .0018714 | —0.0006116 | —0.0002820
12| —.0002503 | —0.0004058 | —0.0004115
13 | —.0005412 | —0.0006459 | —0.0003212
14 0025227 | —0.0005569 | —0.0003363
15 .0046388 | —0.0007091 | —0.0003671
16 .0025451 | —0.0001529 | —0.0001061
17 .0010829 | —0.0000236 | —0.0004597
18 | —.0001093 | 0.0004387 | —0.0000046
19| —.0057139 | 0.0001141 | —0.0003378
20 | —.0133596 | —0.0000075 | 0.0000028
9980 0.0020484 | 0.0018166
9981 —0.0037100 | 0.0012394
9982 —0.0030168 | 0.0003898
9983 0.0029465 | —0.0015079
9984 0.0043783 | —0.0019355
9985 —0.0010326 | —0.0012999
9986 —0.0034815 | 0.0001715
9987 0.0000487 | 0.0014113
9988 —0.0012679 | 0.0021382
9989 —0.0037964 | 0.0004500
9990 0.0003175 | —0.0005050
9991 0.0048778 | —0.0014679
9992 0.0062130 | —0.0018540
9993 0.0053806 | —0.0002132
9994 0.0011459 | 0.0014712
9995 —0.0048852 | 0.0013364
9996 —0.0057967 | 0.0010678
9997 —0.0056723 | 0.0001780
9998 —0.0034737 | —0.0014741
9999 0.0031196 | —0.0020779
10000 0.0074084 | —0.0014374




Table 2.8.1. Frequency of the Lehmer phenomenon in the N = 10'?, N = 10?9,
and 10 = 2 x 10?° data sets.

x no. values < z
0.0005 6190
0.0004 4422
0.0003 2877
0.0002 1534
0.0001 573
0.00005 208
0.00002 61
0.00001 24




Table 2.9.1. Largest values of [((1/2+ it)| that were found.

N max |Z(t)]
10"2 176
1014 246
10'6 460
108 376
109 448
1020 641

2 x 10%0 628

Table 2.9.2. Frequency of large values of [((1/2+ it)], N = 10'%, N = 10?°, and

N =2 x 10%.
z | no. values > x
250 1851
300 671
350 288
400 111
450 46
500 17




Table 2.10.1. Mean values of |((1/2 4+ it)|.

A r(AH) | aa(A) | ee(A) | e(N)
.1 1.004 1.0042
2| 1.034 1.0172
31 1.067 1.0381
41 1.098 1.0640
5| 1.123 1.0904
.61 1.135 1.1113
71 1.132 1.1195
.81 1.107 1.1076
.91 1.060 1.0690
1.0 .989 1.0 1.0 1.0
1.1 .896 901 0.906
1.2 .787 776 0.795
1.3 .667 637 0.672
1.4 .554 494 0.544
1.5 .426 .360 0.421
1.6 .319 .246 0.309
1.7 .229 157 0.215
1.8 .156 .092 0.142
1.9 .101 .050 0.086
2.0 .0624 .025 0.051 | .051
2.1 .0364 012
2.2 .0201 .0049
2.3 | .0105 .0019
2.4 .00522 | .00066
2.5 .00239 | .00021

Table 2.10.2. Negative moments of |((1/2+ it)].

A | mean values of | Z(t)

|—2,\

0.1
0.2
0.3
0.4

1.06
1.27
1.83
3.77



Table 2.11.1. Moments of the scaled distribution of log |((1/2+ it)| obtained from
10 random samples near zero number N and the moments of the
normal distribution.
k N = 10'? N = 10'3(a) N = 10'3(b) N =10%%(c) N = 10%°(d) normal
1 0.0 0.0 0.0 0.0 0.0 0
2 1.0 1.0 1.0 1.0 1.0 1
3 —0.61867 —0.54505 —0.54199 —0.53625 —0.55069 0
4 4.1319 3.9441 3.9491 3.9233 3.9647 3
5 —9.0528 —7.8024 —7.8610 —7.6238 —7.8839 0
6 44.065 39.717 40.360 38.434 39.393 15
71 —175.39 —159.45 —162.86 —144.78 —148.77 0
8 900.06 930.19 930.70 758.57 765.54 105
9 | —4700.06 —6065.28 —5692.4 —4002.5 —3934.7 0
10 | 27016.2 48430.0 40818.3 24060.5 22722.9 945
1% —0.0003725 —0.0009607 0.00101075 —0.00159534 0.00054934
2% 2.29679 2.52283 2.51805 2.57360 2.51778




Table 2.12.1. Moments of scaled values of log|(’(1/2 + it)| computed from 106 zeros for
N =10%.
moments of
k | scaled moments of log |7/ ()| | normal distribution
1 0.0 0
2 1.0 1
3 —0.03377 0
4 3.0182 3
5 — 0.59687 0
6 15.4522 15
7 —9.0568 0
8 115.378 105
9 —144.031 0
10 1180.33 945
1 3.34571
2% 12.3312
Table 2.12.2. Moments of |{'(1/2 + v, )| divided by conjectured main term, two sets of

zeros near zero number 1020,

A first set of 5 x 10 zeros | second set of 5 x 10° zeros
—5. 6.08 x 10772 4.68 x 10=2°
—4.5 1.29 x 10716 5.40 x 10~15
—4. 4.21 x 10712 9.45 x 10~11
-3.5 2.15 x 108 2.54 x 10~7
-3. 1.74 x 10~5 1.07 x 10~
—-2.5 2.29 x 1073 7.41 x 1073
—2. 5.29 x 1072 9.51 x 1072
—1.5 0.275 0.322
—1. 0.640 0.644
—-0.5 1.079 1.078

0. 1.0 1.0

0.5 0.436 0.436

1. 8.17 x 1072 8.17 x 1072

1.5 5.31 x 1073 5.32 x 1073

2. 9.26 x 1075 9.48 x 1075

25| 3.53x1077 3.83 x 1077

3. 2.59 x 10~10 3.10 x 10—10

3.5 3.38 x 10~14 4.65 x 10~14

4. 7.50 x 10719 1.22 x 10~ 18

4.5 2.73 x 10~24 5.34 x 10~24

5. 1.59 x 10~30 3.79 x 10730




Table 2.13.1. Fractions of Gram blocks of various lengths.

N k=1 |k=2|k=3] k=4 k=5 k=6 k=1 >8
1 0.8449 [ 0.1249 | 0.0258 [ 0.0041 [ 3.1 x 10=* [ 1.7x 107° [ 6.4 x 10~7 0
1.4 x 108 | 0.8325 | 0.1289 | 0.0305 | 0.0069 | 1.03 x 1073 | 8.2 x 1075 | 6.0 x 1076 | 2.8 x 10~7
102 0.8178 | 0.1326 | 0.0356 | 0.0106 | 2.8 x 1072 | 5.4 x 107=* | 6.7 x 1075 [ 9.4 x 10~°
10t 0.8099 | 0.1347 { 0.0380 | 0.0122 | 3.9 x 1073 | 1.1 x 1073 | 2.1 x 107* | 4.3 x 1075
1016 0.8045 | 0.1357 | 0.0393 | 0.0135 | 4.8 x 1073 | 1.6 x 1073 [ 4.5 x 107* | 1.1 x 10~*
108 0.7998 | 0.1364 | 0.0407 | 0.0147 | 5.5 x 1073 | 2.1 x 1073 [ 6.9 x 10=* | 2.5 x 10~*
10%° 0.7977 | 0.1368 | 0.0412 | 0.0150 | 5.9 x 1073 | 2.3 x 1073 | 8.2x 107* | 3.3 x 10~*
10%° 0.7957 | 0.1371 | 0.0417 | 0.0155 | 6.2 x 1073 | 2.5 x 1073 [ 9.3 x 107* | 4.3 x 10~*
2 x 10%° 1 0.7952 | 0.1372 | 0.0418 | 0.0156 | 6.2 x 1072 | 2.5 x 1073 | 9.7 x 107* | 4.6 x 10~

Table 2.13.2.  Fraction of Gram blocks of given length k& that have exactly k zeros and
contain a Gram interval with 3 zeros.

N |k=3|k=4]k=5|

k=6

1012
1020

0.0511 | 0.0799 | 0.1737

0.5448
0.0449 | 0.0541 | 0.0776 | 0.1032

0.0356 | 0.0413 | 0.0447 | 0.0392



Table 2.13.3. Fractions of Gram intervals that contain m zeros, and the GUE prediction.

N m=20 m=1 m=2 m=3 m =
1 0.13197 | 0.73772 | 0.12864 | 0.00167 10-8
1.4 x 10° | 0.13965 | 0.72254 | 0.13598 | 0.00183 | 3 x 10~8
1012 0.14787 | 0.70625 | 0.14388 | 0.00200 -
1020 0.15748 | 0.68709 | 0.15339 | 0.00204 -
GUE 0.17022 | 0.66143 | 0.16649 | 0.00186 | 4 x 10~7

Table 2.13.4. Averages of Z(g,) and related functions.

average of N =10'2 N =10%
Z(gn) 1.12x 1072 | —8.801 x 10~*
|7 (gn)| 2.6213 2.952707053204
(=) Z(gn) 2.0000 2.0000
Z(gn)? 27.65 45.47
(=1)"Z(gn)? 0.1415 —0.1945
Z(gn)? 5.539 104.98
|Z(9n)3| 749.8 2240.4
(=1)"Z(gn)? 692.7 1919.1
Z(gn)* 37645 238921
(=1)"Z(gn)* 110.3 31305
Z(gn)® 2.821 x 108 1.062 x 1010
(—=1)%Z(gn)° 1.175 x 108 5.803 x 10°
Z(9n) 7 (gn+1) —3.1387 —3.1606
| Z(9n) 7 (gn+1)| 13.028 22.122
(=1)"Z(9n)Z (gns1) | —7.73 x 1073 0.282
Z(9n)%Z (gny1)? 6068 46070



Table 2.14.1. Number of exceptions to Rosser’s rule.

exceptions per

N no. exceptions | million zeros
1012 38 23.9
1014 87 51.6
1016 1539 93.4
1018 2453 147.1
10%° 2780 166.0
1020 34570 196.9
2 x 10%0 21061 207.9

Table 2.14.2. Relative frequencies of the most frequent types of exceptions to Rosser’s rule.

first

type 1.5 x 10° zeros | N = 102, ...,10%9,2 x 102°
2122 0.0363 0.1040
2R22 0.0373 0.1022
2L3 0.4501 0.0973
2R3 0.4386 0.0965
3R22 - 0.0553
3022 - 0.0553
3R3 0.0101 0.0529
3L3 0.0151 0.0517
20212 - 0.0502
2R212 - 0.0497
30212 - 0.0260
3R212 - 0.0248
4R3 - 0.0217
4L3 - 0.0214
4122 - 0.0207
4R22 - 0.0201
2R2112 - 0.0197
202112 - 0.0187
41212 - 0.0081
302112 - 0.0079

total 0.9892 0.8961




Table 3.2.1. Special points for the zeta function.

index of approx. index

set first zero of first zero | no. zeros special point

A 1789820229889768 1.8 x 10%° 213298 366350755915100.830671
B 3225901860089967 3.2 x 1015 202337 648244850785931.253497
C 4817290207847018 4.8 x 1015 224580 956149582979864.127715
D 5097943069948350 5.1 x 1015 204441 1010102804832220.857487
E 6901069159073074 6.9 x 1015 206276 1354828108521396.144683
F 18950008168234690 1.9 x 106 220040 3609764047662162.288453
G 22460777057881112 2.2 x 1016 221960 4257232978148261.305478
H 42024941452698132 4.2 x 1016 230978 7821904288693735.919567
1 51214985107007070 5.1 x 1016 238512 9478467782100661.935759
J 71764726511399980 7.2 x 1016 221752 13154657441819662.863688
K 76038726777613110 7.6 x 1016 242968 13915273262098117.070642
L 76935378855702384 7.7 x 1016 238556 14074693071712087.957658
M 153808369585296620 1.5 x 1017 228170 27596944669957270.886813
N 233803646149078564 2.3 x 1017 242576 41467826318647943.357194
(0] 253172315703241351 2.5 x 1017 234879 44805187485720884.423354
P 473670769727688896 4.7 x 107 254092 82413269794748757.568756
Q 1250710180558723404 1.3 x 108 246054 212059301707021086.999247
R | 4710265558902545324 4.7 x 1018 254632 771729629469964785.437895
S | 4795416924536726612 4.8 x 1018 250812 785323253967853754.707393
T | 17623088585596705508 1.8 x 10%° 262932 | 2793650241983592679.318477
U | 32220179491036385680 3.2 x 101° 263299 | 5032868769288289111.005891
V' | 35200636070992171652 3.5 x 101° 265396 | b486648117377526447.759269



Table 3.2.2. Zeta function at special points.

set Z(t) large S(t) | maxd, | zero pattern
A —396.2 —2.4235 | 4.5200 22000022
B 459.7 | —2.3202 | 3.7948 301000122
C —663.5 —2.6410 | 5.1454 220000212
D 598.6 2.7575 | 4.9347 | 21120000212
E 571.0 2.3145 | 3.8490 | 22010002112
F | —523.7| —2.4394 | 3.9353 301000212
G 843.9 2.7022 | 5.0612 2210000212
H —555.7 2.3022 | 4.3147 2120000212
1 581.6 —2.1748 | 4.2731 2120000212
J —720.0 2.3142 | 4.4956 2120000212
K —T767.4 2.6654 | 4.8923 2120000122
L —780.0 2.6238 | 4.8025 2120000212
M| —831.3 —2.4475 | 4.4574 220000122
N 724.0 —2.7654 | 4.5515 2111000122
@] —874.6 —2.6160 | 4.7116 2120000122
P —918.8 2.2410 | 4.4529 3110000212
Q —-971.3 —2.6178 | 4.6669 | 221000012112
R 754.7 2.1360 | 3.8989 | 22100010212
S | —1065.2 —2.5178 | 4.4694 2120000122
T 1036.7 2.8747 | 4.8433 3110001022
U 1580.6 | —2.4862 | 4.5683 | 220200001212
V| —1329.5 2.8314 | 4.3214 | 221100002112




Table 4.3.1.  Profile of rational function evaluation algorithm: computations for N =

1029, R = 217,

step time
evaluate Taylor series coefficients | 49.1%
Taylor series expansions, ¢ > 4 6.5%
q = 3 terms 12.2%
q = 2 terms 4.9%
q =1 terms 7.4%
q = 0 terms 3.8%
evaluate dplog(k) 9.6%
compute ay, by, etc. 6.5%




Table 4.5.1. Running times (in minutes) of the main rational function evaluation program.

approx.
R ]{70 k’l T (5 time
217 1500 7,635,871 | 3.7 x 107% | 0.323 24
223 | 100 17,577,894 | 1.9 x 10° | 0.37 438
2171500 35,283,065 | 7.8 x 1015 | 0.319 86
2171 500 114,527,198 | 8.2 x 1016 | 0.3287 261
2171100 164,755,715 | 1.7 x 10'7 | 0.2 380

223 1 200 164,755,715 | 1.7 x 1017 | 0.33 1115
223 | 450 505,829,004 | 1.6 x 1018 | 0.313 2133
217 1500 894,989,353 | 5.0 x 1018 | 0.3067 | 1975
2231 450 | 1,555,488,184 | 1.5 x 1019 | 0.28961 | 5250
2241 450 | 1,555,488,184 | 1.5 x 1019 | 0.2903 | 6099
2251 450 | 1,555,488,184 | 1.5 x 101° | 0.2901 | 7537
2241 450 | 2,181,996,752 | 3.0 x 101 | 0.29025 | 7998
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Table 4.6.1. Large sets of zeros, showing duplication of computed values.

index of first

set zero in set number of zeros
a 10124+ 1 101,053
b 1012 — 6,032 1,592,196
c 1016 — 4,930 1,584,442
d 1016 — 5,946 16,480,973
e 1018 — 8,394 1,419,501
f 1018 — 8,839 16,671,047
g 1018 + 12,333,574 157,608
h 1018 + 12, 345,608 140,684
1 101° — 13,607 16,749,725
Jj 101° — 45,597 135,161
k 102° — 30,769, 710 16,366,702
l 102° — 15, 409, 240 16,341,831
m 1020 — 48,778 16, 388, 741
n 1029 4 15,311, 688 32,811,834
0 1020 — 48,867 132,188
p 102° + 47,110, 546 65,578,910
q 10%2° + 111,678,401 33,139,615
r 2 x 102° — 633, 984 33,330,777
s | 2x10%° 431,673,368 33,199, 868
t | 2x 10%°+ 63,843,862 36,827,479




Table 4.6.2. Comparison of values for zeros obtained in different computations.

sets of zeros | max. difference | rms difference
avs. b 2.5%x 107° 3.7 x 10~11
cvs. d 5.7%x 10~8 3.4 x 10710
evs. [ 4.2x 1078 3.3 x 10710
fvs. g 2.2%x 1078 2.3 x 10710
gvs. h 3.5%x 1078 1.6 x 10710
1VS. j 2.6 x 1078 7.5 x 10710
kovs. 1 7.3x 10~7 3.8x107°
lvs. m 7.6x 10~7 5.9x 107°
mvs. n 5.8 x 10~7 3.9x107°
m vs. 0 2.7 x 1077 4.2 % 107°
n Vs. p 5.7 x 1077 4.4 x107°
pVvs. q 5.2 x 1077 4.1x107°
rVSs. S 1.1 x 10~ 9.5 x 10~°
svs. t 4.7 x 1077 7.5 % 10~°
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Figure Captions

Z(t) near zero number 102°. The horizontal axis extends from Gram point
number 102° — 8 to Gram point number 10%° + 4.

S(t) near zero number 10?°. The range of ¢ is the same as in Fig. 2.1.1,
and the jumps by 1 occur at zeros of the zeta function numbered 10%2° — 6
to 1029 4 5.

Z(t) near zero number 102°. The horizontal axis extends from Gram point
number 102° — 50 to Gram point number 102° 4 50.

Pair correlation of zeros of the zeta function. Solid line: GUE prediction.
Scatterplot: empirical data based on 8 x 108 zeros near zero number 102°,

Pair correlation of zeros of the zeta function. Solid line: GUE prediction.
Scatterplot: empirical data based on 10° zeros near zero number 1012,

Pair correlation of zeros of the zeta function. Solid line: GUE prediction.
Scatterplot: empirical data based on 8 x 10° zeros near zero number 1020,
Scatterplot smoothed.

Probability density of the normalized spacings §,,. Solid line: GUE pre-
diction. Scatterplot: empirical data based on 1,592,196 zeros near zero
number 1012,

Probability density of the normalized spacings §,,. Solid line: GUE pre-
diction. Scatterplot: empirical data based on 78,893,234 zeros near zero
number 1020,

Probability density of the normalized spacings d,, +dp41. Solid line: GUE
prediction. Scatterplot: empirical data based on 1,592,196 zeros near zero
number 102,

Probability density of the normalized spacings d,, 4+ dp41. Solid line: GUE
prediction. Scatterplot: empirical data based on 78,893,234 zeros near
zero number 1027,

Comparison of the scaled distribution of S(¢) for N = 10?° to the asymp-
totic normal distribution.

Initial segment of the quantile-quantile plot of the normalized spacings d,,
against the GUE prediction. Data based on 10% consecutive values of n,
starting with n = 102° — 42, 778. Straight line y = x drawn to facilitate
comparisons.

Initial segment of the quantile-quantile plot of the normalized spacings d,,
against the GUE prediction. Data based on 10° consecutive values of n,
starting with n = 10%° + 15, 316, 087.

Initial segment of the quantile-quantile plot of the normalized spacings d,,
against the GUE prediction. Data based on 112,314,003 values of n from
N =10'8, 10, and 10%° data sets.



Figure 2.6.4.

Figure 2.6.5.

Figure 2.6.6.

Figure 2.6.7.
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Figure 2.8.1.

Figure 2.11.1.

Figure 2.11.2.

Figure 2.12.1.

Figure 2.13.1.

Initial segment of the quantile-quantile plot of the normalized spacings
d, + 8, + 1 against the GUE prediction. Data based on 10% consecutive
values of n, starting with n = 10'2 — 6, 032.

Initial segment of the quantile-quantile plot of the normalized spacings
3, + 8, + 1 against the GUE prediction. Data based on 10% consecutive
values of n, starting with n = 102° — 42, 778.

Find segment of the quantile-quantile plot of the normalized spacings 4,
against the GUE prediction. Data based on 10° consecutive values of n,
starting with n = 102 — 6, 032.

Final segment of the quantile-quantile plot of the normalized spacings 4,
against the GUE prediction. Data based on 10° consecutive values of n,
starting with n = 1020 — 42, 778.

Graph of 2log| " exp(iv,y)|, where n runs over 10?° + 1 < n < 10?° +
40,000, and values < 0 and > 16 are deleted.
Graph of 2log| Y exp(iv,y)|, where n runs over 10?2° + 1 < n < 10?° +

40,000, and values < 0 are deleted.

Graph of 2log|>" exp(ivny)|, where n now runs over 102° + 1 < n <
1029 4+ 400, 000, and values < 0 are deleted.

Variance of the number of zeros in an interval of length L for the GUE
(dashed line), for 5 x 10° zeros near zero number 10%° (scatterplot), and
Berry’s prediction (solid line).

Variance of the number of zeros in an interval of length I based on 5 x 10°
zeros near zero number 10%°.

Variance of the number of zeros in an interval of length I based on 5 x 10°
zeros near zero number 10%°.

Neighborhood of an example of Lehmer’s phenomenon. Graph of Z(t)
between Gram points n — 6 and n + 6, where n = 10'® + 12,376, 778.
The point between Gram points n + 1 and n + 2 where Z(¢) is seemingly
tangent to the zero line represents 2 zeros with d,42 = 0.0011 and the
minimum of Z(t) between those zeros equal to —5 x 10~7. For a smaller
scale picture of this phenomenon, see Fig. 4.6.1. The other point of near
tangency, near Gram point n — 3, has minimum of Z(¢) of —0.0094.

Comparison of the distribution of log |{(1/2 + it)| over two ranges of 10°
zeros each near zeros number 1012 and 10%° to that of the normal distri-
bution.

For each k, plots the logarithm of the fraction of time that |((1/2+it)| €
[k — 1,k). Data obtained from 3 intervals covering 2.8 x 10° zeros near
zero number 10%°.

Scaled distribution of 10° values of log|¢’(1/2+ iv)| for N = 10?° vs. the
conjectured standard normal distribution.

Distribution modulo 1 of 4, on Gram point scale, for two sets of 106 zeros
each. Curves derived by smoothing a histogram.



Figure 3.2.1. Z(t) near the point where the largest known value of S(¢) occurs. The hor-
izontal axis extends from Gram point number n = 17,623, 088, 585,596, 834, 905
to Gram point number n + 30.

Figure 3.2.2. Z(t) near the point where the largest known value of S(t) occurs. The
horizontal axis extends from Gram point number n + 9 to Gram point
number n + 21, where n = 17,623, 088, 585, 596,834, 905. The high peak
of Z(t) has been cut off. This is a smaller scale view of the central part

of Fig. 3.2.1.

Figure 3.2.3. S(t) near the point where its largest known value occurs. The range of ¢
is the same as in Fig. 3.2.2.

Figure 4.6.1. Small neighborhood of an example of Lehmer’s phenomenon. Graph of
Z(t) on a segment of the interval between Gram points n and n + 1
(corresponding to 0 and 1 on the scale of the figure), where n = 108 +
12,376,799. Enlargement of a section of Fig. 2.8.1.

Figure 4.6.2. Small scale view of Lehmer’s phenomenon. Enlargement of a section of
Fig. 4.6.1. The three curves represent three different computations of Z(#)
on this segment.



