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ABSTRACT

I develop tools to amplify our mental senses: our intuition and reasoning abilities. The first
five chapters—based on the Order of Magnitude Physics class taught at Caltech by Peter
Goldreich and Sterl Phinney—form part of a textbook on dimensional analysis, approxi-
mation, and physical reasoning. The text is a resource of intuitions, problem-solving meth-
ods, and physical interpretations. By avoiding mathematical complexity, order-of-magnitude
techniques increase our physical understanding, and allow us to study otherwise difficult or
intractable problems. The textbook covers: (1) simple estimations, (2) dimensional analysis,
(3) mechanical properties of materials, (4) thermal properties of materials, and (5) water
waves.

As an extended example of order-of-magnitude methods, I construct an analytic model
for the flash sensitivity of a retinal rod. This model extends the flash-response model of Lamb
and Pugh with an approximate model for steady-state response as a function of background
light I1,. The combined model predicts that the flash sensitivity is proportional to I, 13 This
result roughly agrees with experimental data, which show that the flash sensitivity follows
the Weber—Fechner behavior of I, ! over an intensity range of 100. Because the model is
simple, it shows clearly how each biochemical pathway determines the rod’s response.

The second example is an approximate model of primality, the square-root model. Its
goal is to explain features of the density of primes. In this model, which is related to the
Hawkins’ random sieve, divisibility and primality are probabilistic. The model implies a
recurrence for the probability that a number n is prime. The asymptotic solution to the
recurrence is (logn)~!, in agreement with the prime-number theorem. The next term in
the solution oscillates around (logn)~! with a period that grows superexponentially. These
oscillations are a model for oscillations in the density of actual primes first demonstrated by
Littlewood, who showed that the number of primes < n crosses its natural approximator,
the logarithmic integral, infinitely often. No explicit crossing is known; the best theorem,
due to te Riele, says that the first crossing happens below 7 x 1037, A consequence of the
square-root model is the conjecture that the first crossing is near 10%7.
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1 CONTRIBUTIONS

Human hands are weak, and human arms are short. Tools—such as the wedge, the crane,
and the waterwheel—strengthen our grasp and lengthen our reach. To extend our mind’s
reach, we need mental tools. This dissertation is a resource of such tools. It is in two parts:
a textbook on order-of-magnitude physics, and original research in biophysics and number
theory that illustrates order-of-magnitude methods.

In an order-of-magnitude analysis, we approximate because “an approximate answer is
not only almost as useful as the exact answer, it’s more useful.” An approximate answer,
because it is simple, shows us the important principles in a physical problem. Thirty thou-
sand pages of detailed velocity and temperature tables might give us accurate knowledge of
the winds, but we would rather know that a hurricane with 100 mph winds is approaching
from sea. An approximate model, because it is compact, fits in our limited brains; once it
is in there, we can refine it, and reason from it to new problems.

No exact, analytic solutions exist for many problems, such as hurricane motion or river
turbulence. Even when solutions exist, they are often so complicated that they teach us
little about the physical principles important in the problem. It is these principles that
have general value, because we can use them to understand new pieces of the world. Often,
these principles remain hidden behind a maze of mathematical manipulations; the prin-
ciples determine the scaling laws—the functional form of the solution—and the complex
mathematics determines a dimensionless constant that multiples the functional form. An
order-of-magnitude analysis reverses the traditional approach: You forget about the dimen-
sionless constant, and hope that it is close to unity. You make estimates using procedures
no more complicated than high-school algebra and geometry. If your scaling law is grossly
wrong, you find out quickly, and can begin looking for new physics to create a new model;
if it is accurate, you know what physical principles to include in the next, more refined
analysis, and you have added a physical picture to your mental toolbox.

The textbook teaches such techniques. You learn how to identify important factors,
how to combine the factors into an approximation, and how to appraise and refine an
approximation. The theme woven throughout the chapters is successive approximation, be-
cause all order-of-magnitude techniques are derivatives of this one, and because an order-of-
magnitude analysis is itself a first approximation to a more accurate analysis. The biophysics
chapter (Chapter 7) shows how to apply these methods to a problem more in-depth than a
typical textbook problem. The number-theory chapter (Chapter 8) shows how to use order-
of-magnitude methods to create a series of successively more accurate, yet still tractable,
models of primality; and how to use more standard methods to solve these models.

1.1 Textbook

The textbook is based on the Physics 103 class taught at the California Institute of Tech-
nology by Peter Goldreich and Sterl Phinney. My contribution has been to make explicit
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the methods of approximation, and to show how to use physical reasoning to complement
the methods of dimensional analysis.

Many books—for example those by Bridgman [4], Pankhurst [45], and Ipsen [26]—
describe the method of dimensional analysis: how to combine physical quantities into groups
that have no units. This textbook begins earlier and ends later than most texts. Chapter 2
introduces methods to estimate everyday numbers, such as city budgets or annual diaper
production. If dimensional analysis is the first method of approximation, these methods
are the zeroth. Chapter 3 introduces dimensional analysis. The discussion goes beyond
the discussion in most textbooks: You learn how to use physical reasoning to complete
dimensional-analysis arguments. With a repertoire that includes simple estimation methods,
dimensional analysis, and physical reasoning, we then study the mechanical and thermal
properties of materials (Chapters 4 and 5); the calculation of boiling points (Section 5.2.1)
is an extended example of successive approximation, a method that the text introduces in
successively more complicated problems. The final textbook chapter studies the properties
of water waves. It analyzes one function, the dispersion relation, in all its limits. The chapter
combines dimensional analysis and successive approximation with a physical model of wave
propagation: the slab model.

1.2 Original research

I apply this style of reasoning to a problem in biophysics, the flash sensitivity of a retinal
rod; and to a problem in number theory, the distribution of primes.

1.2.1 Retinal Rod

Imagine that we want to analyze the flash sensitivity of a retinal rod, to determine how the
sensitivity varies as a function of background light I},. (The flash sensitivity is the maximum
change in membrane current divided by the flash strength.) To make an accurate model, we
would model the biochemistry with a bundle of nonlinear differential equations that contain
a slew of rate and time constants. We would throw up our hands and integrate the equations
numerically; if we set up the equations correctly, our simulation would match reality. We
could then get a valuable check on the completeness of our experimental knowledge. But
what insight would this model give us about how the rod works? We would not know what
function the various biochemical pathways perform. We could explain the response to light
by saying only, “It works as the computer says.”

Instead, Chapter 7 develops an analytic model of the flash sensitivity. This model
compactly represents important features of rod biochemistry; it shows how negative feedback
and cooperative binding compute a flash sensitivity that approximates the Weber—Fechner
sensitivity of I, ! The model predicts that the flash sensitivity is I % where 671 = m +
14 1/n. The m results from cooperativity of calcium—the feedback signal—on the enzyme
guanylate cyclase; and the 1 results from cooperativity of calcium on the phosphodiesterase
hydrolytic rate. The two feedback paths are driven by the forward path—cooperativity of
cyclic GMP on channel gating—which produces the 1/n.

1.2.2 Primes

Although their definition is simple, prime numbers exhibit exotic properties, particularly
in their distribution. For example, primes thin out: The density of prime numbers near n
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is roughly (logn)~!. The journey from the definition of primality to the deduction of this
density is arduous. Gauss began the journey; Riemann nearly completed it; and Hadamard
and de la Vallée Poussin, in the proofs of the prime-number theorem, finished it. The journey
becomes more arduous if we want to prove more stringent asymptotic statements about the
density of primes.

The purpose of order-of-magnitude methods is to identify important features of a sys-
tem; to incorporate them into a tractable model; and, from that model, to deduce properties
of the original system. Why not treat prime numbers with these methods? To analyze the
distribution of primes, Chapter 8 makes a series of successively more accurate probabilistic
models of divisibility. One model is similar to the Hawkins’ random sieve [21, 22], and one,
the square-root model, turns out to be an extension of it. For the density of primes, the
square-root model produces a recurrence; after we transform the recurrence properly, it
becomes a delay—differential equation. The deduction and solution of this equation occupy
much of the chapter. These apparently non-order-of-magnitude parts of the analysis show
how to use order-of-magnitude reasoning to begin an analysis and to generate models, and
how to complete the analysis using more standard methods.

The model predicts that the density of primes oscillates around (logn)~! with a period
that grows superexponentially. I believe that these oscillations model oscillations in the
density of actual primes: Littlewood [39] showed that m(n) (the number of primes < n)
crosses its natural approximator, the logarithmic integral Li(n), infinitely often. Littlewood’s
proof is nonconstructive. We still do not know an explicit n for which 7(n) > Li(n); all
explicit computations of 7(n) have produced m(n) < Li(n). Te Riele [51] showed that the
first crossing occurs below 7 x 1037, The square-root model leads to the conjecture that
the first crossing is near 1027. In perhaps one decade, computers will be fast enough to
determine whether this prediction is valid.

1.3 Words to the reader

Although I can verify complicated derivations, my limited brain cannot understand them
sufficiently well to use in other problems. So I search for pictures and for methods simple
enough to treat as a mental unit and compact enough to transport to other problems.
This dissertation—which combines simple models, teaching, and research—has matched
my interests. I hope that you enjoy the content and the informal style, which reflects the
pleasure that I have found in this work.

I want the textbook to converge to one that is letter perfect, and is fun and instructive
to read; your comments are welcome. You can send paper mail to

Sanjoy Mahajan

8824 S. Poplar St

Tempe, AZ 85284

USA
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or email to one of (in likeliest-to-unlikeliest order)
mahajan@alumni.cs.cmu.edu
sanjoy@hope.caltech.edu
sanjoy@neuron.princeton.edu
sanjoy@alumni.caltech.edu

until those addresses stop working. For as long as I can, I will place on the World Wide
Web revised, electronic versions of these textbook chapters, as well as of newly written ones.
With luck, you can find them at one of the following locations:

http://www.neuron.princeton.edu

http://hope.caltech.edu

http://www.alumni.caltech.edu

http://www.pcmp.caltech.edu

Eventually, the textbook will be officially published; it will then be more widely available
(though maybe no longer electronically, alas).



2 WETTING YOUR FEET

Most technical education emphasizes exact answers. If you are a physicist, you solve for
the energy levels of the hydrogen atom to six decimal places. If you are a chemist, you
measure reaction rates and concentrations to two or three decimal places. In this book,
you learn complementary skills. You learn that an approximate answer is not merely good
enough; it’s often more useful than an exact answer. When you approach an unfamiliar
problem, you want to learn first the main ideas and the important principles, because these
ideas and principles structure your understanding of the problem. It is easier to refine this
understanding than to create the refined analysis in one step.

The adjective in the title, order of magnitude, reflects our emphasis on approxi-
mation. An order of magnitude is a factor of 10. To be “within an order of magnitude,”
or to estimate a quantity “to order of magnitude,” means that your estimate is roughly
within a factor of 10 on either side. This chapter introduces the art of determining such
approximations.

Writer’s block is broken by writing; estimator’s block is broken by estimating. So we
begin our study of approximation using everyday examples, such as estimating budgets or
annual production of diapers. These warmups flex your estimation muscles, which may have
lain dormant through many years of traditional education. After the warmup, we introduce
a more subtle method: scaling relations.

2.1 Warmup problems

Everyday estimations provide practice for our later problems, and also provide a method to
sanity check information that you see. Suppose that a newspaper article says that the annual
cost of health care in the United States will soon surpass $1 trillion. Whenever you read any
such claim, you should automatically think: Does this number seem reasonable? Is it far too
small, or far too large? You need methods for such estimations, methods that we develop in
several examples. We dedicate the first example to physicists who need employment outside
of physics.

2.1.1 Armored cars

How much money is there in a fully loaded Brinks armored car?

The amount of money depends on the size of the car, the denomination of the bills,
the volume of each bill, the amount of air between the bills, and many other factors. The
question, at first glance, seems vague. One important skill that you will learn from this text,
by practice and example, is what assumptions to make. Because we do not need an exact
answer, any reasonable set of assumptions will do. Getting started is more important than
dotting every 7; make an assumption—any assumption—and begin. You can correct the
gross lies after you have got a feeling for the problem, and have learned which assumptions
are most critical. If you keep silent, rather than tell a gross lie, you never discover anything.
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Let’s begin with our equality conventions, in ascending order of precision. We use
for proportionalities, where the units on the left and right sides of the o< do not match;
for example, Newton’s second law could read F' «x m. We use ~ for dimensionally correct
relations (the units do match), which are often accurate to, say, a factor of 5 in either
direction. An example is

kinetic energy ~ Muv?. (2.1)

Like the o sign, the ~ sign indicates that we’ve left out a constant; with ~, the constant is
dimensionless. We use ~ to emphasize that the relation is accurate to, say, 20 or 30 percent.
Sometimes, ~ relations are also that accurate; the context will make the distinction.

Now we return to the armored car. How much money does it contain? Before you try
a systematic method, take a guess. Make it an educated guess if you have some knowledge
(perhaps you work for an insurance company, and you happened to write the insurance
policy that the armored-car company bought); make it an uneducated guess if you have
no knowledge. Then, after you get a more reliable estimate, compare it to your guess: The
wonderful learning machine that is your brain magically improves your guesses for the next
problem. You train your intuition, and, as we see at the end of this example, you aid your
memory. As a pure guess, let’s say that the armored car contains $1 million.

Now we introduce a systematic method. A general method in many estimations is to
break the problem into pieces that we can handle: We divide and conquer. The amount
of money is large by everyday standards; the largeness suggests that we break the problem
into smaller chunks, which we can estimate more reliably. If we know the volume V' of the
car, and the volume v of a US bill, then we can count the bills inside the car by dividing the
two volumes, N ~ V/v. After we count the bills, we can worry about the denominations
(divide and conquer again). [We do not want to say that N ~ V/v. Our volume estimates
may be in error easily by 30 or 40 percent, or only a fraction of the storage space may be
occupied by bills. We do not want to commit ourselves.?]

We have divided the problem into two simpler subproblems: determining the volume of
the car, and determining the volume of a bill. What is the volume of an armored car? The
storage space in an armored car has a funny shape, with ledges, corners, nooks, and crannies;
no simple formula would tell us the volume, even if we knew the 50-odd measurements. This
situation is just the sort for which order-of-magnitude physics is designed; the problem is
messy and underspecified. So we lie skillfully: We pretend that the storage space is a simple
shape with a volume that we can find. In this case, we pretend that it is a rectangular prism
(Figure 2.1).

To estimate the volume of the prism, we divide and conquer. We divide estimating the
volume into estimating the three dimensions of the prism. The compound structure of the
formula

V ~ length x width x height (2.2)

1. “Once at a Fourth-of-July celebration, a reporter wondered and later asked why Mr. Murphy
(he was always Mr. Murphy even to his closest associates) did not join in the singing of the
National Anthem. ‘Perhaps he didn’t want to commit himself,” the boss’s aide explained.” From
the Introduction by Arthur Mann, to William L. Riordan, Plunkitt of Tammany Hall (New
York: E. P. Dutton, 1963), page ix.
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Figure 2.1. Interior of a Brinks armored car. The actual shape is irregular, but
to order of magnitude, the interior is a cube. A person can probably lie down or
stand up with room to spare, so we estimate the volume as V ~2mx2mx2m ~
10m?®.

suggests that we divide and conquer. Probably an average-sized person can lie down inside
with room to spare, so each dimension is roughly 2m, and the interior volume is

V~2mx2mx2m ~ 10m?® = 107 cm?. (2.3)

In this text, 2x2x 2 is almost always 10. We are already working with crude approximations,
which we signal by using ~ in N ~ V/v, so we do not waste effort in keeping track of a
factor of 1.25 (from using 10 instead of 8). We converted the m® to cm?® in anticipation of
the dollar-bill-volume calculation: We want to use units that match the volume of a dollar
bill, which is certainly much smaller than 1 m?3.

Now we estimate the volume of a dollar bill (the volumes of US denominations are
roughly the same). You can lay a ruler next to a dollar bill, or you can just guess that
a bill measures 2 or 3 inches by 6 inches, or 6cm x 15cm. To develop your feel for sizes,
guess first; then, if you feel uneasy, check your answer with a ruler. As your feel for sizes
develops, you will need to bring out the ruler less frequently. How thick is the dollar bill?
Now we apply another order-of-magnitude technique: guerrilla warfare. We take any piece
of information that we can get.? What’s a dollar bill? We lie skillfully and say that a dollar
bill is just ordinary paper. How thick is paper? Next to the computer used to compose this
textbook is a laser printer; next to the printer is a ream of laser printer paper. The ream
(500 sheets) is roughly 5cm thick, so a sheet of quality paper has thickness 1072 cm. Now
we have the pieces to compute the volume of the bill:

v~ 6cm x 15em x 1072 cm ~ 1em?®. (2.4)

The original point of computing the volume of the armored car and the volume of the bill
was to find how many bills fit into the car: N ~ V/v ~ 107 cm?®/1 ¢cm?® = 107. If the money
is in $20 bills, then the car would contain $200 million.

2. “I seen my opportunities and I took ’em.”—George Washington Plunkitt, of Tammany Hall,
quoted by Riordan [52, page 3].
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The bills could also be $1 or $1000 bills, or any of the intermediate sizes. We chose the
intermediate size $20, because it lies nearly halfway between $1 and $1000. You naturally
object that $500, not $20, lies halfway between $1 and $1000. We answer that objection
shortly. First, we pause to discuss a general method of estimating: talking to your gut.
You often have to estimate quantities about which you have only meager knowledge. You can
then draw from your vast store of implicit knowledge about the world—knowledge that you
possess but cannot easily write down. You extract this knowledge by conversing with your
gut; you ask that internal sensor concrete questions, and listen to the feelings that it returns.
You already carry on such conversations for other aspects of life. In your native language,
you have an implicit knowledge of the grammar; an incorrect sentence sounds funny to you,
even if you do not know the rule being broken. Here, we have to estimate the denomination
of bill carried by the armored car (assuming that it carries mostly one denomination). We
ask ourselves, “How does an armored car filled with one-dollar bills sound?” Our gut, which
knows the grammar of the world, responds, “It sounds a bit ridiculous. One-dollar bills are
not worth so much effort; plus, every automated teller machine dispenses $20 bills, so a
$20 bill is a more likely denomination.” We then ask ourselves, “How about a truck filled
with thousand-dollar bills?” and our gut responds, “no, sounds way too big—never even
seen a thousand-dollar bill, probably collectors’ items, not for general circulation.” After
this edifying dialogue, we decide to guess a value intermediate between $1 and $1000.

We interpret “between” using a logarithmic scale, so we choose a value near the geo-
metric mean, v/1 x 1000 ~ 30. Interpolating on a logarithmic scale is more appropriate and
accurate than is interpolating on a linear scale, because we are going to use the number in
a chain of multiplications and divisions. Let’s check whether 30 is reasonable, by asking our
gut about nearby estimates. It is noncommittal when asked about $10 or $100 bills; both
sound reasonable. So our estimate of 30 is probably reasonable. Because there are no $30
bills, we use a nearby actual denomination, $20.

Assuming $20 bills, we estimate that the car contains $200 million, an amount much
greater than our initial guess of $1 million. Such a large discrepancy makes us suspicious of
either the guess or this new estimate. We therefore cross-check our answer, by estimating
the monetary value in another way. By finding another method of solution, we learn more
about the domain. If our new estimate agrees with the previous one, then we gain confidence
that the first estimate was correct; if the new estimate does not agree, it may help us to
find the error in the first estimate.

We estimated the carrying capacity using the available space. How else could we es-
timate it? The armored car, besides having limited space, cannot carry infinite mass. So
we estimate the mass of the bills, instead of their volume. What is the mass of a bill? If
we knew the density of a bill, we could determine the mass using the volume computed in
(2.4). To find the density, we use the guerrilla method. Money is paper. What is paper? It’s
wood or fabric, except for many complex processing stages whose analysis is beyond the
scope of this book. Here, we just used another order-of-magnitude technique, punt: When
a process, such as papermaking, looks formidable, forget about it, and hope that you’ll be
okay anyway. Ignorance is bliss. It’s more important to get an estimate; you can correct the
egregiously inaccurate assumptions later. How dense is wood? Once again, use the guerrilla
method: Wood barely floats, so its density is roughly that of water, p ~ 1gem™3. A bill,
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which has volume v ~ 1cm?, has mass m ~ 1g. And 107 cm? of bills would have a mass of
10" g = 10 tons.?

This cargo is large. [Metric tons are 10° g; English tons (may that measure soon perish)
are roughly 0.9-10° g, which, for our purposes, is also 10° g.] What makes 10 tons large?
Not the number 10 being large. To see why not, consider these extreme arguments:

= In megatons, the cargo is 10~° megatons, which is a tiny cargo because 107° is a tiny
number.
= In grams, the cargo is 107 g, which is a gigantic cargo because 107 is a gigantic number.

You might object that these arguments are cheats, because neither grams nor megatons is
a reasonable unit in which to measure truck cargo, whereas tons is a reasonable unit. This
objection is correct; when you specify a reasonable unit, you implicitly choose a standard
of comparison. The moral is this: A quantity with units—such as tons—cannot be large
intrinsically. It must be large compared to a quantity with the same units. This argument
foreshadows the topic of dimensional analysis, which is the subject of Chapter 3.

So we must compare 10 tons to another mass. We could compare it to the mass of a
bacterium, and we would learn that 10 tons is relatively large; but to learn about the cargo
capacity of Brinks armored cars, we should compare 10 tons to a mass related to transport.
We therefore compare it to the mass limits at railroad crossings and on many bridges, which
are typically 2 or 3 tons. Compared to this mass, 10 tons is large. Such an armored car could
not drive many places. Perhaps 1ton of cargo is a more reasonable estimate for the mass,
corresponding to 10° bills. We can cross-check this cargo estimate using the size of the
armored car’s engine (which presumably is related to the cargo mass); the engine is roughly
the same size as the engine of a medium-sized pickup truck, which can carry 1 or 2 tons of
cargo (roughly 20 or 30 book boxes—see Example 4.1). If the money is in $20 bills, then the
car contains $20 million. Our original, pure-guess estimate of $1 million is still much smaller
than this estimate by roughly an order of magnitude, but we have more confidence in this
new estimate, which lies roughly halfway between $1 million and $200 million (we find the
midpoint on a logarithmic scale). The Reuters newswire of 18 September 1997 has a report
on the largest armored car heist in US history; the thieves took $18 million; so our estimate
is accurate for a well-stocked car. (Typical heists net between $1 million and $3 million.)

We answered this first question in detail to illustrate a number of order-of-magnitude
techniques. We saw the value of lying skillfully—approximating dollar-bill paper as ordinary
paper, and ordinary paper as wood. We saw the value of waging guerrilla warfare—using
knowledge that wood barely floats to estimate the density of wood. We saw the value of
cross-checking—estimating the mass and volume of the cargo—to make sure that we have
not committed a gross blunder. And we saw the value of divide and conquer—breaking
volume estimations into products of length, width, and thickness. Breaking problems into
factors, besides making the estimation possible, has another advantage: It often reduces the
error in the estimate. There probably is a general rule about guessing, that the logarithm is
in error by a reasonably fixed fraction. If we guess a number of the order of 1 billion in one

3. It is unfortunate that mass is not a transitive verb in the way that weigh is. Otherwise, we
could write that the truck masses 10 tons. If you have more courage than we have, use this
construction anyway, and start a useful trend.
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step, we might be in error by, say, a factor of 10. If we factor the 1 billion into four pieces,
the estimate of each piece will be in error by a factor of v = 10'/4. We then can hope that
the errors are uncorrelated, so that they combine as steps in a random walk. Then, the error
in the product is ’y\/z = 10%/2, which is smaller than the one-shot error of 10. So breaking
an estimate into pieces reduces the error, according to this order-of-magnitude analysis of
error.

2.1.2 Cost of lighting Pasadena, California

What is the annual cost of lighting the streets of Pasadena, California?

Astronomers would like this cost to be huge, so that they could argue that street lights
should be turned off at night, the better to gaze at heavenly bodies. As in Section 2.1.1, we
guess a cost right away, to train our intuition. So let’s guess that lighting costs $1 million
annually. This number is unreliable; by talking to our gut, we find that $100,000 sounds
okay too, as does $10 million (although $100 million sounds too high).

A ~ 100 km?

Pasadena 10 km

=

a~ (50m)?

f——10km ——

Figure 2.2. Map of Pasadena, California drawn to order of magnitude. The
small shaded box is the area governed by one lamp; the box is not drawn to scale,
because if it were, it would be only a few pixels wide. How many such boxes can
we fit into the big square? It takes 10 min to leave Pasadena by car, so Pasadena
has area A ~ (10km)? = 10® m?. While driving, we pass a lamp every 3s, so we
estimate that there’s a lamp every 50m; each lamp covers an area a ~ (50m)?.

The cost is a large number, out of the ordinary range of costs, so it is difficult to
estimate in one step (we just tried to guess it, and we're not sure within a factor of 10 what
value is correct). So we divide and conquer. First, we estimate the number of lamps; then,
we estimate how much it costs to light each lamp.

To estimate the number of lamps (another large, hard-to-guess number), we again
divide and conquer: We estimate the area of Pasadena, and divide it by the area that each
lamp governs, as shown in Figure 2.2. There is one more factor to consider: the fraction
of the land that is lighted (we call this fraction f). In the desert, f is perhaps 0.01; in a
typical city, such as Pasadena, f is closer to 1.0. We first assume that f = 1.0, to get an
initial estimate; then we estimate f, and correct the cost accordingly.

We now estimate the area of Pasadena. What is its shape? We could look at a map,
but, as lazy armchair theorists, we lie; we assume that Pasadena is a square. It takes, say,
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10 minutes to leave Pasadena by car, perhaps traveling at 1km/min; Pasadena is roughly
10km in length. Therefore, Pasadena has area A ~ 10km x 10km = 100 km? = 108 m?. (The
true area is 23mi?, or 60 ka.) How much area does each lamp govern? In a car—say, at
1km/min or ~ 20 ms~*—it takes 2 or 3s to go from lamppost to lamppost, corresponding
to a spacing of ~ 50m. Therefore, a ~ (50m)? ~ 2.5-10% m?, and the number of lights is
N~ AJa ~103m?/2.5-10> m? ~ 4-10%.

How much does each lamp cost to operate? We estimate the cost by estimating the
energy that they consume in a year and the price per unit of energy (divide and conquer).
Energy is power x time. We can estimate power reasonably accurately, because we are
familiar with lamps around the home. To estimate a quantity, try to compare it to a related,
familiar one. Street lamps shine brighter than a household 100 W bulb, but they are probably
more efficient as well, so we guess that each lamp draws p ~ 300 W. All N lamps consume
P~ Np~4-10* x 300W ~ 1.2-10*kW. Let’s say that the lights are on at night—8 hours
per day—or 3000 hours/year. Then, they consume 4-10” kW-hour. An electric bill will tell
you that electricity costs $0.08 per kW—hour (if you live in Pasadena), so the annual cost
for all the lamps is $3 million.

Figure 2.3. Fraction of Pasadena that is lighted. The streets (thick lines) are
spaced d ~ 100m apart. Fach lamp, spaced 50 m apart, lights a 50m X 50m area
(the eight small, unshaded squares). The only area not lighted is in the center of
the block (shaded square); it is one-fourth of the area of the block. So, if every
street has lights, f = 0.75.

Now let’s improve this result by estimating the fraction f. What features of Pasadena
determine the value of f?7 To answer this question, consider two extreme cases: the desert
and New York city. In the desert, f is small, because the streets are widely separated, and
many streets have no lights. In New York city, f is high, because the streets are densely
packed, and most streets are filled with street lights. So the relevant factors are the spacing
between streets (which we call d), and the fraction of streets that are lighted (which we
call f1). As all pedestrians in New York city know, 10 north—south blocks or 20 east—west
blocks make 1 mile (or 1600m); so d ~ 100m. In street layout, Pasadena is closer to New
York city than to the desert. So we use d ~ 100 m for Pasadena as well. If every street were
lighted, what fraction of Pasadena would be lighted? Figure 2.3 shows the computation; the
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result is f ~ 0.75In New York city, fi, ~ 1; in Pasadena, fr, ~ 0.3 is more appropriate. So
f ~0.75x 0.3 ~ 0.25. Our estimate for the annual cost is then $1 million. Our initial guess
is unexpectedly accurate.

As you practice such estimations, you will be able to write them down compactly,
converting units stepwise until you get to your goal (here, $/year). The cost is

10 m? 1lamp 8 hrs
7 X 103 2}
1km 25-103m? 1lday

cost ~ 100km? x

S~—— —_— =
A a night
365 days $0.08 (2.5)
0.3kW x 0.25
% 1 year % 1kW-hour . %
v
price

~ $1 million.

It is instructive to do the arithmetic without using a calculator. Just as driving to the
neighbors’ house atrophies your muscles, using calculators for simple arithmetic dulls your
mind. You do not develop an innate sense of how large quantities should be, or of when you
have made a mistake; you learn only how to punch keys. If you need an answer with 6-digit
precision, use a calculator; that’s the task for which they are suited. In order-of-magnitude
estimates, 1- or 2-digit precision is sufficient; you can easily perform these low-precision
calculations mentally.

Will Pasadena astronomers rejoice because this cost is large? A cost has units (here,
dollars), so we must compare it to another, relevant cost. In this case, that cost is the
budget of Pasadena. If lighting is a significant fraction of the budget, then can we say that
the lighting cost is large.

2.1.83 Pasadena’s budget

What fraction of Pasadena’s budget is alloted to street lighting?

We just estimated the cost of lighting; now we need to estimate Pasadena’s budget.
First, however, we make the initial guess. It would be ridiculous if such a trivial service as
street lighting consumed as much as 10 percent of the city’s budget. The city still has road
construction, police, city hall, and schools to support. 1 percent is a more reasonable guess.
The budget should be roughly $100 million.

Now that we’ve guessed the budget, how can we estimate it? The budget is the amount
spent. This money must come from somewhere (or, at least, most of it must): Even the
US government is moderately subject to the rule that income &~ spending. So we can es-
timate spending by estimating income. Most US cities and towns bring in income from
property taxes. We estimate the city’s income by estimating the property tax per person,
and multiplying the tax by the city’s population.

Each person pays property taxes either directly (if she owns land) or indirectly (if
she rents from someone who does own land). A typical monthly rent per person (for a two-
person apartment) is $500 in Pasadena (the apartments-for-rent section of a local newspaper
will tell you the rent in your area), or $6000 per year. (Places with fine weather and less
smog, such as the San Francisco area, have higher monthly rents, roughly $1500 per person.)
According to occasional articles that appear in newspapers when rent skyrockets and interest
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in the subject increases, roughly 20 percent of rent goes toward landlords’ property taxes.
We therefore estimate that $1000 is the annual property tax per person.

Pasadena has roughly 2-10° people, as stated on the road signs that grace the entries
to Pasadena. So the annual tax collected is $200 million. If we add federal subsidies to
the budget, the total budget is probably double that, or $400 million. A rule of thumb in
these financial calculations is to double any estimate that you make, to correct for costs or
revenues that you forgot to include. This rule of thumb is not infallible. We can check its
validity in this case by estimating the federal contribution. The federal budget is roughly
$2 trillion, or $6000 for every person in the United States (any recent almanac tells us the
federal budget and the US population). One-half of the $6000 funds defense spending and
interest on the national debt; it would be surprising if fully one-half of the remaining $3000
went to the cities. Perhaps $1000 per person goes to cities, which is roughly the amount
that the city collects from property taxes. Our doubling rule is accurate in this case.

For practice, we cross-check the local-tax estimate of $200 million, by estimating
the total land value in Pasadena, and guessing the tax rate. The area of Pasadena is
100km? ~ 36 mi2, and 1 mi? = 640 acres. You can look up this acre-square-mile conversion,
or remember that, under the Homestead Act, the US government handed out land in 160-
acre parcels—known as quarter lots because they were 0.25 mi?. Land prices are exorbitant
in southern California (sun, sand, surf, and mountains, all within a few hours drive); the
cost is roughly $1 million per acre (as you can determine by looking at the homes-for-sale
section of the newspaper). We guess that property tax is 1 percent of property value. You
can determine a more accurate value by asking anyone who owns a home, or by asking City
Hall. The total tax is

640 acres  $1 million

W ~ 36 miZ x — X % 0.01
1mi 1 acre
area land price tax

~ $200 million.

This revenue is identical to our previous estimate of local revenue; the equality increases
our confidence in the estimates. As a check on our estimate, we looked up the budget
of Pasadena. In 1990, it was $350 million; this value is much closer to our estimate of
$400 million than we have a right to expect!

The cost of lighting, calculated in Section 2.1.2, consumes only 0.2 percent of the city’s
budget. Astronomers should not wait for Pasadena to turn out the lights.

2.1.4 Diaper production

How many disposable diapers are manufactured in the United States every year?

We begin with a guess. The number has to be at least in the millions—say, 10 million—
because of the huge outcry when environmentalists suggested banning disposable diapers
to conserve landfill space and to reduce disposed plastic. To estimate such a large number,
we divide and conquer. We estimate the number of diaper users—babies, assuming that all
babies use diapers, and that no one else does—and the number of diapers that each baby
uses in 1 year. These assumptions are not particularly accurate, but they provide a start
for our estimation. How many babies are there? We hereby define a baby as a child under
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2 years of age. What fraction of the population are babies? To estimate this fraction, we
begin by assuming that everyone lives exactly 70 years—roughly the life expectancy in the
United States—and then abruptly dies. (The life expectancy is more like 77 years, but an
error of 10 percent is not significant given the inaccuracies in the remaining estimates.)

How could we have figured out the average age, if we did not already know it? In the
United States, government retirement (Social Security) benefits begin at age 65 years, the
canonical retirement age. If the life expectancy were less than 65 years—say, 55 years—
then so many people would complain about being short-changed by Social Security that
the system would probably be changed. If the life expectancy were much longer than 65
years—say, if it were 90 years—then Social Security would cost much more: It would have
to pay retirement benefits for 90 — 65 = 25 years instead of for 75 — 65 = 10 years, a factor
of 2.5 increase. It would have gone bankrupt long ago. So, the life expectancy must be
around 70 or 80 years; if it becomes significantly longer, expect to see the retirement age
increased accordingly. For definiteness, we choose one value: 70 years. Even if 80 years is a
more accurate estimate, we would be making an error of only 15 percent, which is probably
smaller than the error that we made in guessing the cutoff age for diaper use. It would
hardly improve the accuracy of the final estimate to agonize over this 15 percent.

4 N /J\/\A

\/ v

Order-of-magnitude age distribution

People (10°)

\ 5
Area ~ - x 3-10% ~ 107 True age distribution

2 70
Age (years)

Figure 2.4. Number of people versus age (in the United States). The true age
distribution is irregular and messy; without looking it up, we cannot know the
area between ages 0.0 years and 2.0 years (to estimate the number of babies).
The rectangular graph—which has the same area and similar width—immediately
makes clear what the fraction under 2 years is: It is roughly 2/70 ~ 0.03. The
population of the United States is roughly 3 - 10%, so the number of babies is ~
0.03 x 3-10° ~ 10".

To compute how people are between the ages of 0 and 2.0 years, consider an analogous
problem. In a 4-year university (which graduates everyone in 4 years and accepts no trans-
fer students) with 1000 students, how many students graduate in each year’s class? The
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answer is 250, because 1000/4 = 250. We can translate this argument into the following
mathematics. Let 7 be lifetime of a person. We assume that the population is steady: The
birth and death rates are equal. Let the rates be N. Then the total population is N = N,
and the population between ages 71 and 75 is

T2 —T1

N - :N(TQ—Tl). (27)

So, if everyone lives for 70 years exactly, then the fraction of the population whose age is
between 0 and 2 years is 2/70 or ~ 0.03 (Figure 2.4). There are roughly 3-108 people in the
United States, so

Npabies ~ 3-10% x 0.03 ~ 107 babies. (2.8)

We have just seen another example of skillful lying. The jagged curve in Figure 2.4 shows a
cartoon version of the actual mortality curve for the United States. We simplified this curve
into the boxcar shape (the rectangle), because we know how to deal with rectangles. Instead
of integrating the complex, jagged curve, we integrate a simple, civilized curve: a rectangle
of the same area and similar width. This procedure is order-of-magnitude integration.
Similarly, when we studied the Brinks armored-car example (Section 2.1.1), we pretended
that the cargo space was a cube; that procedure was order-of-magnitude geometry.

How many diapers does each baby use per year? This number is large—maybe 100,
maybe 10,000—so a wild guess is not likely to be accurate. We divide and conquer, dividing
1 year into 365 days. Suppose that each baby uses 8 diapers per day; newborns use many
more, and older toddlers use less; our estimate is a reasonable compromise. Then, the
annual use per baby is ~ 3000, and all 107 babies use 3-10'? diapers. The actual number
manufactured is 1.6-10'° per year, so our initial guess is low, and our systematic estimate
is high.

This example also illustrates how to deal with flows: People move from one age to
the next, leaving the flow (dying) at different ages, on average at age 70 years. From that
knowledge alone, it is difficult to estimate the number of children under age 2 years; only
an actuarial table would give us precise information. Instead, we invent a table that makes
the calculation simple: Everyone lives to the life expectancy, and then dies abruptly. The
calculation is simple, and the approximation is at least as accurate as the approximation
that every child uses diapers for exactly 2 years. In a product, the error is dominated by
the most uncertain factor; you waste your time if you make the other factors more accurate
than the most uncertain factor.

2.1.5 Meteorite tmpacts

How many large meteorites hit the earth each year?

This question is not yet clearly defined: What does large mean? When you explore a
new field, you often have to estimate such ill-defined quantities. The real world is messy. You
have to constrain the question before you can answer it. After you answer it, even with crude
approximations, you will understand the domain more clearly, will know which constraints
were useful, and will know how to improve them. If your candidate set of assumptions
produce a wildly inaccurate estimate—say, one that is off by a factor of 100,000—then you
can be sure that your assumptions contain a fundamental flaw. Solving such an inaccurate
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Earth’s surface // T

A~5. 1014 m2 \/ \\\

[ Locations where impact wouldl]

[ / be reported, N ~ 10°

Reported meteor impact
a ~ 10m?

Figure 2.5. Large-meteorite impacts on the surface of the earth. Over the sur-
face of the earth, represented as a circle, every year one meteorite impact (black
square) causes sufficient damage to be reported by Sky&Telescope. The gray
squares are areas where such a meteorite impact would have been reported—for
example, a house or car in an industrial country; they have total area Na ~
10'°m?2. The gray squares cover only a small fraction of the earth’s surface. The
expected number of large impacts over the whole earth is 1x A/Na ~ 5-10*, where
A~ 5-10"m? is the surface area of the earth.

model exactly is a waste of your time. An order-of-magnitude analysis can prevent this
waste, saving you time to create more realistic models. After you are satisfied with your
assumptions, you can invest the effort to refine your model.

Skyéd Telescope magazine reports approximately one meteorite impact per year. How-
ever, we cannot simply conclude that only one large meteorite falls each year, because
SkyédTelescope presumably does not report meteorites that land in the ocean or in the
middle of corn fields. We must adjust this figure upward, by a factor that accounts for
the cross-section (effective area) that SkyéfTelescope reports cover (Figure 2.5). Most of
the reports cite impacts on large, expensive property such as cars or houses, and are from
industrial countries, which have N ~ 10° people. How much target area does each person’s
car and living space occupy? Her car may occupy 4m?, and her living space (portion of a
house or apartment) may occupy 10m?. [A country dweller living in a ranch house presents
a larger target than 10m?, perhaps 30m?. A city dweller living in an apartment presents
a smaller target than 10m?, as you can understand from the following argument. Assume
that a meteorite that lands in a city crashes through 10 stories. The target area is the area
of the building roof, which is one-tenth the total apartment area in the building. In a city,
perhaps 50m? is a typical area for a two-person apartment, and 3m? is a typical target
area per person. Our estimate of 10m? is a compromise between the rural value of 30 m?
and the city value of 3m?.]

Because each person presents a target area of a ~ 10m?, the total area covered by the
reports is Na ~ 101° m2. The surface area of the earth is A ~ 47 x (6-10°m)? ~ 5-1014 m?
so the reports of one impact per year cover a fraction Na/A ~ 2-107° of the earth’s surface.
We multiply our initial estimate of impacts by the reciprocal, A/Na, and estimate 5-10*
large-meteorite impacts per year. In the solution, we defined large implicitly, by the criteria
that SkyéfTelescope use.
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2.2 Scaling analyses

In most of the previous examples, we used opportunistic tricks to determine what numbers
to multiply together. We now introduce a new method, scaling, for problems where simple
multiplication is not sufficient. Instead of explaining what a scaling argument is, we first
make one, and then explain what we did. The fastest way to learn a language is to hear
and speak it. Physics is no exception; you hear it in the examples, and you speak it in the
exercises.

2.2.1 Gravity on the moon
What is acceleration due to gravity on the surface of the moon?

First, we guess. Should it be 1cms™2, or 10°cms™2, or 102 cms™2? They all sound
reasonable, so we make the guess of least resistance—that everywhere is like our local
environment—and say that gmoon ~ Gearth, Which is 1000 cm s~2. Now we make a systematic

estimate.

M ~ pR3
GMm
F—Tochm

Density p
Mass M

Figure 2.6. Order-of-magnitude astronomical body. The body—taken to be a
sphere—has uniform density p and radius R. A block of mass m sits on the sur-
face and feels a gravitational force F = GMm/R?, where M ~ pR® is the mass
of the astronomical body. The resulting acceleration is g = F/m = GpR x pR; if
p s the same for all astronomical bodies in which we’re interested, then g x R.

This method that we use eventually shows you how to make estimates without knowing
physical constants, such as the gravitational constant . First, we give the wrong solution,
so that we can contrast it with the right—and simpler—order-of-magnitude solution. The
acceleration due to gravity at the surface of the moon is given by Newton’s law of gravitation
(Figure 2.6):

_F GM

S e

In the wrong way, we look up—perhaps in the thorough and useful CRC Handbook of

Chemistry and Physics [38]—M and R for the moon, and the fundamental constant G, and
get

(2.9)

6.7-10%cm3g 1s72 x7.3-10%°¢g
fmoon (1.7-10° cm)?

~ 160cms™2. (2.10)

Here is another arithmetic calculation that you can do mentally, perhaps saying to yourself,
“First, I count the powers of 10: There are 17 (—8 + 25) powers of 10 in the numerator,
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and 16 (8 +8) in the denominator, leaving 1 power of 10 after the division. Then, I account
for the prefactors, ignoring the factors of 10. The numerator contains 6.7 x 7.3, which is
roughly 7 x 7 = 49. The denominator contains 1.72 ~ 3. Therefore, the prefactors produce
49/3 ~ 16. When we include one power of 10, we get 160.”

This brute-force method—looking up every quantity and then doing arithmetic—is
easy to understand, and is a reasonable method for an initial solution. However, it is not
instructive. For example, when you compare ¢moon ~ 160 cm s~ with geartn, you may notice
that gmoon is smaller than geartn by a factor of only ~ 6. With the huge numbers that we
multiplied and divided in (2.10), gmoon could easily have been 0.01cms=2 or 10° cms=2.
Why are gmoon and gearth nearly the same, different by a mere factor of 67 The brute-force
method shows only that huge numbers among G, M, and R? nearly canceled out to produce
the moderate acceleration 160 cm s™2.

So we try a more insightful method, which has the benefit that we do not have to know
G; we have to know only geartn. This method is not as accurate as the brute-force method,
but it will teach us more physics. It is an example of how approximate answers can be more
useful than exact answers.

We find gmoon for the moon by scaling it against geartn- [It is worth memorizing gearth,
because so many of our estimations depend on its value.] We begin with (2.9). Instead
of M and R, we use density p and radius R as the independent variables; we lose no
information, because we can compute density from mass and radius (assuming, as usual, that
the astronomical body has the simplest shape: a sphere). We prefer density to mass, because
density and radius are more orthogonal than mass and radius. In a thought experiment—and
order-of-magnitude analyses are largely thought experiments—we might imagine a larger
moon made out of the same type of rock. Enlarging the moon changes both M and R, but
leaves p alone. To keep M fixed while changing R requires a larger feat of imagination (we
shatter the moon and use scaffolding to hold the fragments at the right distance apart).

For a sphere of constant density, M = (47/3)pR3, so (2.9) becomes

g X pR. (2.11)

This scaling relation tells us how g varies—scales—with density and radius. We retain
only those variables and factors that change from the earth to the moon; the proportionality
sign o< allows us to eliminate constants such as GG, and numerical factors such as 47 /3.

If the earth and moon have the same radius and the same average density of rock, then
we can further simplify (2.11) by eliminating p and R to get g o 1. These assumptions
are not accurate, but they simplify the scaling relation; we correct them shortly. So, in this
simple model, gmoon and geartn are equal, which partially explains the modest factor of 6 that
separates gmoon and gearth- Now that we roughly understand the factor of 6, as a constant
near unity, we strive for more accuracy, and remove the most inaccurate approximations.
The first approximation to correct is the assumption that the earth and moon have the
same radius. If R can be different on the earth and moon, then (2.11) becomes g x R,
Whereupon Jearth /gmoon ~ Rearth/Rmoon-

What is Ryoon? Once again, we apply the guerrilla method. When the moon is full, a
thumb held at arms length will just cover the moon perceived by a human eye. For a typical
human-arm length of 100 cm, and a typical thumb width of 1cm, the angle subtended is
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0 ~ 0.01rad. The moon is L ~ 4-10'° cm from the earth, so its diameter is L ~ 0.01L;
therefore, Rimoon ~ 2-10% cm. By contrast, Reartn ~ 6-10% cm, so Gearth/Gmoon ~ 3. We
have already explained a large part of the factor of 6. Before we explain the remainder,
let’s estimate L from familiar parameters of the moon’s orbit. One of the goals of order-of-
magnitude physics is to show you that you can make many estimates with the knowledge
that you already have. Let’s apply this philosophy to estimating the radius of the moon’s
orbit. One familiar parameter is the period: T' ~ 30 days. The moon orbits in a circle because
of the earth’s gravitational field. What is the effect of earth’s gravity at distance L (from
the center of the earth)? At distance Reartn from the center of the earth, the acceleration
due to gravity is g; at L, it is @ = g(Reartn/L)?, because gravitational force (and, therefore,
acceleration) are proportional to distance 2. The acceleration required to move the moon in
a circle is v? /L. In terms of the period, which we know, this acceleration is a = (2wL/T)?/L.

So ) )
Rearth o 27TL 1
g<—L ) (T) T (2.12)

N

Qgravity Qrequired
The orbit radius is
2 2\ 1/3
I = gRearthT
472

<1000cms—2 % (6-10% cm)? x (3106 s)2>1/3 (2.13)
40

~ 5-10'% em,

which closely matches the actual value of 4-10° cm.

Now we return to explaining the factor of 6. We have already explained a factor of 3.
(A factor of 3 is more than one-half of a factor of 6. Why?) The remaining error (a factor of
2) must come largely because we assumed that the earth and moon have the same density.
Allowing the density to vary, we recover the original scaling relation (2.11). Then,

Jearth ~ Pearth Rearth

(2.14)

gl’l’lOOl’l pl’l’lOOl’l Rmoon

Typically, perust ~ Pmoon ~ 3&cm >, whereas pearth ~ Hgem ™3 (here, perust is the density
of the earth’s crust).

Although we did not show you how to deduce the density of moon rock from well-known
numbers, we repay the debt by presenting a speculation that results from comparing the
average densities of the earth and the moon. Moon rock is lighter than earth rock; rocks in
the earth’s crust are also lighter than the average earth rock (here “rock”
all materials that make up the earth, including the core, which is nickel and iron); when
the earth was young, the heavier, and therefore denser, elements sank to the center of the
earth. In fact, moon rock has density close to that of the earth’s crust—perhaps because the
moon was carved out of the earth’s crust. Even if this hypothesis is not true, it is plausible,
and it suggests experiments that might disprove it. Its genesis shows an advantage of the

is used to include
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scaling method over the brute-force method: The scaling method forces us to compare the
properties of one system with the properties of another. In making that comparison, we
may find an interesting hypothesis.

Whatever the early history of the moon, the density ratio contributes a factor of 5/3 ~
1.7 to the ratio (2.14), and we get gearth/Gmoon ~ 3 X 1.7 ~ 5. We have explained most of
the factor of 6—as much of it as we can expect, given the crude method that we used to
estimate the moon’s radius, and the one-digit accuracy that we used for the densities.

The brute-force method—looking up all the relevant numbers in a table—defeats the
purpose of order-of-magnitude analysis. Instead of approximating, you use precise values
and get a precise answer. You combine numerous physical effects into one equation, so
you cannot easily discern which effects are important. The scaling method, where we first
approximate the earth and moon as having the same density and radius, and then correct
the most inaccurate assumptions, teaches us more. It explains why gmoon ~ Geartnh: because
the earth and moon are made of similar material and are roughly the same size. It explains
WhY Gmoon/gearth =~ 1/6: because moon rock is lighter than earth rock, and because the
moon is smaller than the earth. We found a series of successive approximations:

9moon ™ Yearth,

Rmoon
~

ngOH

Rearth Jearth (215)

meOH Rmoon

Pearth Rearth

~

9moon Jearth -

Each approximation introduces only one physical effect, and is therefore easy to understand.
Another benefit of the scaling method is that it can suggest new theories or hypotheses.
When we considered the density of moon rock and earth rock, we were led to speculate
on the moon’s origin from the earth’s crust. Order-of-magnitude reasoning highlights the
important factors, so that our limited brains can digest them, draw conclusions from them,
and possibly extend them.

2.2.2 Collisions

Imagine that you work for a government safety agency testing how safe various cars are in
crashes. Your budget is slim, so you first crash small toy cars, not real cars, into brick walls.
(Actually, you might crash cars in computer simulation only, but, as the order-of-magnitude
analysis of computer programs is not the topic of this example, we ignore this possibility.)
At what speed does such a crash produce mangled and twisted metal? Metal toy cars are
still available (although hard to find), and we assume that you are using them.

For our initial guess, let’s estimate that the speed should be roughly 50 mph or 80 kph—
roughly the same speed that would badly mangle a real car (mangle the panels and the
engine compartment, not just the fenders). Why does a crash make metal bend? Because
the kinetic energy from the crash distorts the metallic bonds. We determine the necessary
crash speed using a scaling argument.

Figure 2.7 shows a car about to hit a brick wall. In an order-of-magnitude world, all
cars, toy or real, have the same proportions, so the only variable that distinguishes them
is their length, L. (Because we are assuming that all cars have the same proportions, we
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Figure 2.7. Order-of-magnitude car about to hit a brick wall. It hits with speed
v, which provides kinetic energy ~ Muv?, where M is the mass of the car. The
energy required to distort a fized fraction of the bonds is proportional to the num-
ber of bonds. If toy and real cars are made of the same metal, then the number
of atoms, and the total bond-distortion energy, will be proportional to M, the
mass of the car. The available kinetic energy also is proportional to M, so the
necessary crash velocity is the same at all masses, and, therefore, at all sizes.

could use the width or height instead of the length.) The kinetic energy available is
Exinetic ~ Muv?. (216)

The energy required to distort the bonds is

Erequired ~ X €c X fa (217)

atom

no. of atoms

where €. is the binding, or cohesive, energy per atom; and f is a fractional fudge factor
thrown in because the crash does not need to break every bond. We discuss and estimate
cohesive energies in Section 4.2.2; for now, we need to know only that the cohesive energy
is an estimate of how strong the bonds in the substance are. Let’s assume that, to mangle
metal, the collision must break a fixed fraction of the bonds, perhaps f ~ 0.01. Equating
the available energy (2.16) and the required energy (2.17), we find that

€c

Mv? ~ M x x f. (2.18)

Matom
We assume (reasonably) that e., f, and maiom are the same for all cars, toy or real, so once
we cancel M, we have v &< 1. The required speed is the same at all sizes, as we had guessed.
Now that we have a zeroth-order understanding of the problem, we can improve our
analysis, which assumed that all cars have the same shape. The metal in toy cars is propor-
tionally thicker than the metal in real cars, just as roads on maps are proportionally wider
than real roads. So a toy car has a larger mass, and is therefore stronger than the simple
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scaling predicts. The metal in full-size cars mangles in a 80kph crash; the metal in toy cars
may survive an 80 kph crash, and may mangle only at a significantly higher speed, such as
200 kph.

Our solution shows the benefit of optimism. We do not know the fudge factor f, or
the cohesive energy ¢., but if we assume that they are the same for all cars, toy or real,
then we can ignore them. The moral is this: Use symbols for quantities that you do not
know; they might cancel at the end. Our example illustrated another technique: successive
approximation. We made a reasonable analysis—implicitly assuming that all cars have the
same shape—then improved it. The initial analysis was simple, and the correction was
almost as simple. Doing the more accurate analysis in one step would have been more
difficult.

2.2.8 Jump heights

We next apply scaling methods to understand how high an animal can jump, as a function
of its size. We study a jump from standing (or from rest, for animals that do not stand);
a running jump depends on different physics. This jump-height problem also looks under-
specified. The height depends on how much muscle an animal has, how efficient the muscles
are, what the animal’s shape is, and much else. So we invoke another order-of-magnitude
method: When the going gets tough, lower your standards. We cannot easily figure out
the absolute height; we estimate instead how the height depends on size, leaving the con-
stant of proportionality to be determined by experiment. In Section 2.2.3.1, we develop a
simple model of jumping; in Section 2.2.3.2, we consider physical effects that we neglected
in the crude approximations.

f]
1

Figure 2.8. Jumping animal. An animal of mass m (the block) stores energy
in its muscles (the compressed, massless spring). It uses the energy to jump a
height h off the ground. The energy required is Ejump ~ mgh.

Eiump ~ mgh

2.2.3.1 SIMPLE MODEL FOR JUMP HEIGHT. We want to determine only how jump height
scales (varies) with body mass. Even this problem looks difficult; the height still depends
on muscle efficiency, and so on. Let’s see how far we get by just plowing along, and using
symbols for the unknown quantities. Maybe all the unknowns cancel. We want an equation
for the height h, such as h ~ f(m), where m is the animal’s mass. Jumping requires energy,
which must be provided by muscles. [Muscles get their energy from sugar, which gets its
energy from sunlight, but we are not concerned with the ultimate origins of energy here.| If
we can determine the required energy, and compare it with the energy that all the muscles
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in an animal can supply, then we have an equation for f. Figure 2.8 shows a cartoon version
of the problem.

A jump of height h requires energy Fjump ~ mgh. So we can write
Ejump < mh. (2.19)

The o sign means that we do not have to worry about making the units on both sides
match. We exploited this freedom to get rid of the irrelevant constant g (which is the same
for all animals on the earth, unless some animal has discovered antigravity). The energy
that the animal can produce depends on many factors. We use symbols for each of these
unknowns. First, the energy depends on how much muscle an animal has. So we approximate
by assuming that a fraction, «, of an animal’s mass is muscle, and that all muscle tissue can
store the same energy density, £ (we are optimists). Then, the energy that can be stored in
muscles is

Egiored ~ ma€ o< m. (2.20)

Here we have derived a scaling relation, showing how energy stored varies with mass; we
used the freedom provided by o to get rid of a and &, presumed to be the same for all
animals. Equating the required energy from (2.19) with the available energy from (2.20),
we find that mh o m, or that h o 1; this proportionality says that h is independent of
mass. This result seems surprising. Our intuition tells us that people should be able to
jump higher than locusts. Table 2.1 shows measured jump heights for animals of various
sizes and shapes; the data are also plotted in Figure 2.9. Surprising or not, our result is
roughly correct.

60 — Logust eHuman
Height (cm) 30 — ¢ Click beetle
*Flea
10— | |
103 101 108

Mass (g)

Figure 2.9. Jump height versus body mass. This graph plots the data in Ta-
ble 2.1. Notice the small range of variation in height, compared to the range of
variations in mass. The mass varies more than 8 orders of magnitude (a factor
of 10%), yet the jump height varies only by a factor of 8. The predicted scaling
of constant h (h o 1) is surprisingly accurate. The largest error shows up at
the light end; fleas and beetles do not jump as high as larger animals, due to air
resistance.
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Animal Mass (g) Height (cm)
Flea 0.5-1073 20
Click beetle 0.04 30
Locust 3 59
Human 7-10* 60

Table 2.1. Jump height as a function of mass. Source: Scaling: Why Animal
Size is So Important [54, page 178].

2.2.3.2 EXTENSIONS OF THE SIMPLE MODEL. Now that we have a crude understanding
of the situation—that jump height is constant—we try to explain more subtle effects. For
example, the scaling breaks down for tiny animals such as fleas; they do not jump as high
as we expect. What could limit the jump heights for tiny animals? Smaller animals have
a larger surface-to-volume ratio than do large animals, so any effect that depends on the
surface area is more important for a small animal. One such effect is air resistance; the
drag force F on an animal of size L is F' oc L?, as we show in Section 3.3.3. The resulting
deceleration is F/m oc L™!, so small animals (small L) get decelerated more than big
animals. We would have to include the constants of proportionality to check whether the
effect is sufficiently large to make a difference; for example, it could be a negligible effect
for large animals, and 10 times as large for small animals, but still be negligible. If we made
the estimate, we would find that the effect of air resistance is important, and can partially
explain why fleas do not jump as high as humans. The constant jump height also fails for
large animals such as elephants, who would break their bones when they landed if they
jumped as high as humans.

You might object that treating muscle simply as an energy storage medium ignores
a lot of physics. This criticism is valid, but if the basic model is correct, it’s simpler to
improve the model one step at a time, instead of including every effect in the early stages.
As an example of successive refinement, let’s consider the power requirements for jumping.
How does the power required scale with animal size, and do limitations on power prevent
animals from attaining their theoretical jump height?

Power is energy per time; in this case, it is energy required for the jump divided by time
during which the energy is released. In (2.19) we found that E o mh; because h is constant,
E « m. [Successive refinement, which we are doing here, depends on an at least rudimentary
understanding of the problem. If we had not already solved the problem crudely, we would
not know that E o< m or that h o< 1.]

We now need to estimate the time required to release the energy, which is roughly
the time during which the animal touches the ground while launching. Suppose that the
animal blasts off with velocity v. The animal squats to zero height, the clock starts ticking,
and the animals starts to push. At the end of the push, when the clock stops ticking, the
animal is moving with speed v; we assume that it moves with the same speed throughout
its launch (the rectangle assumption). The clock, therefore, stops ticking at time 7 ~ L/v.
The takeoff speed v is roughly the same for all animals, because v x /gh x Vh, and h is
roughly constant. So 7 o< L.



2. WETTING YOUR FEeT 25

How does the energy vary with L7 We make the simplest assumption—that all animals
have the same density and the same cubical shape. Then, E o« m, and m o< L3, so F oc L3.

From our estimates for the energy and the time, we estimate that the power required
is P ~ E/T oc L% Per unit volume, the power required is Preq ~ L~ If there is a
maximum power per unit volume, Pp,.., that an animal can generate, then sufficiently tiny
animals—for whom P, is large—might not be able to generate sufficient power. Click
beetles overcome this problem by storing energy in their exoskeleton, and jumping only
after they have stored sufficient energy: They increase the effective 7, and thus decrease
Preq-

The analysis of this extreme case—tiny animals—and the analysis of the power re-
quirements show the value of making a simple analysis, and then refining it. To complete
the more detailed analysis, we required results from the simple analysis. If we had tried to
include all factors—such as air resistance, bone breakage, power consumption, and energy
storage—from the beginning, we would have cooked up a conceptual goulash, and would
have had trouble digesting the mess. The approximate model provides a structure on which
we can build the more detailed analyses.

2.3 What you have learned

You now know a basic repertoire of order-of-magnitude techniques:

» Divide and conquer: Split a complicated problem into manageable chunks, especially
when you must deal with tiny or huge numbers, or when a formula naturally factors
into parts (such as V ~ [ x w x h).

= Guess: Make a guess before solving a problem. The guess may suggest a method of
attack. For example, if the guess results in a tiny or huge number, consider using
divide and conquer. The guess may provide a rough estimate; then you can remember
the final estimate as a correction to the guess. Furthermore, guessing—and checking
and modifying your guess—improves your intuition and guesses for future problems.

» Talk to your gut: When you make a guess, ask your gut how it feels. Is it too high?
Too low? If the guess is both, then it’s probably reliable.

» Lie skillfully: Simplify a complicated situation by assuming what you need to know to
solve it. For example, when you do not know what shape an object has, assume that
it is a sphere or a cube.

= Cross-check: Solve a problem in more than one way, to check whether your answers
correspond.

» Use guerrilla warfare: Dredge up related facts to help you make an estimate.

» Punt: If you're worried about a physical effect, do not worry about it in your first
attempt at a solution. The productive strategy is to start estimating, to explore the
problem, and then to handle the exceptions once you understand the domain.

» Be an optimist: This method is related to punt. If an assumption allows a solution,
make it, and worry about the damage afterward.

» Lower your standards: If you cannot solve the entire problem as asked, solve those
parts of it that you can, because the subproblem might still be interesting. Solving the
subproblem also clarifies what you need to know to solve the original problem.

Use symbols: Even if you do not know a certain value—for example, the energy density
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stored in muscle—define a symbol for it. It may cancel later. If it does not, and the
problem is still too complex, then lower your standards.

We apply these techniques, and introduce a few more, in the chapters to come. With a little
knowledge and a repertoire of techniques, you can estimate many quantities.
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3 DIMENSIONAL ANALYSIS

In this chapter, you learn a general method of coping with complicated equations without
actually solving them: dimensional analysis. Because the method is fast—much faster
than finding an honest solution would be—you can use it to discard unpromising approaches
early, sparing you time to think of new approaches. Rather than bore you with a theoretical
discussion of dimensional analysis, we illustrate the method with examples.

The idea of dimensional analysis is that units—be they meters, feet, seconds, pints, fort-
nights, or furlongs—are artificial. The universe cares not for our choice of units. Valid phys-
ical laws must have the same form in any system of units. Only dimensionless quantities—
pure numbers—are the same in every unit system, so we write equations in a universe-
friendly, dimensionless form. Often, there is only one such form. Then, without doing any
work, we have solved the problem.

3.1 Newton’s law

For example, suppose that we live in Newton’s time. Lacking his insight, we do not realize
that force (F'), mass (m), and acceleration (a) are related by F' = ma. We know, perhaps
from experiments, only that F', m, and a are related. Our problem is to find that way. The
most general relation between the three variables is

h(F,m,a) =0, (3.1)

where h is a function that we must find.

We use dimensional analysis to find h. Dimensional analysis tells us that we can rewrite
the general form (3.1) using only quantities without units. With luck, there is only one such
form: If we find it, we obtain a law of nature.

3.1.1 Finding dimensionless groups

To get rid of the units, we need first to know them. In cgs units, the units of force are
gems™?; in a general mass-length-time system of units, the units are

[F] = [M][L][T] 2. (3:2)

We introduce the useful notation that [M] stands for a unit of mass, [L] for a unit of length,
and [T] for a unit of time. Also, [z] stands for the units of the enclosed variable x; context
distinguishes the two usages of [-]. Similarly, the units of acceleration are

and the units of mass are
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We can combine the three variables into a dimensionless group—a quantity with no
units. An example of an illegal group is F'/a, which has units of mass. Legal groups include

F F\? F
— <—> ,  sin <—> , and ma. (3.5)
ma ma ma F

These legal groups—all legal groups—are functions of F'/ma. They are also functions of
ma/F or 2F /ma. It does not matter which base form we choose, so we choose F'/ma. This
form does not contain an arbitrary constant (a weakness of 2F'/ma), which is superfluous in
a dimensional analysis. This form also makes later manipulations most familiar. The general
form of a dimensionless group is therefore

(o) (3.

where f is a dimensionless function: It takes in dimensionless numbers and spits out a
dimensionless number.

3.1.2 Finding the dimensionless relation

The most general relation using (3.6) is

f <i> = 0. (3.7)

ma

This form is the dimensionless version of (3.1). To make sure that we have not gone astray,
let’s check that (3.7) does not exclude what we know to be the right answer: F' = ma. If
we choose f(z) =z — 1, then (3.7) becomes F'/ma = 1, or F' = ma.

We have made progress. The function h has three parameters; f has only one.! We
can further simplify (3.7), because we need to find only the zeros of f; we do not need to
find f itself. We have sketched a dimensionless function in Figure 3.1. Its six zero-crossings
determine the possible values of F/ma.

Which zero is correct? In some problems, more than one zero is possible; for example, an
electron in a hydrogen atom can have an infinity of possible energies. In this problem, only
one zero is possible—a fact that we could discover from experiment; dimensional analysis
cannot decide this question for us. We call the unknown zero II, in honor of the Buckingham
Pi theorem (Theorem 3.1). The solution of (3.7) is F//ma = 1II, or

F = TIma. (3.8)
This result is Newton’s second law. We deduced it without knowing much physics. [This

example is unfair to Newton, because it implies that he was dense for not instantly realizing
that F' = ma. However, we took for granted much knowledge that was unknown in Newton’s

1. “A good table of functions of one variable may require a page; that of a function of two variables
a volume; that of a function of three variables a bookcase; and that of a function of four variables

a library.”
—H. Jeffries [45, p. 82]
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x=F/ma

Figure 3.1. Zero-crossings of a random function f. They are located at 4.894,
5.61392, 1.01346, 1.9288, 2.4041, and 4.12762 and are marked with dots.

time. At that time, the concept of force—let alone its units—was not clearly understood, and
it was the great triumph of Newton that he gave an implicit definition of force in F' = ma.]
Even with our extra knowledge, we have not matched Newton. Dimensional analysis does
not tell us the value of II. It cannot, because numbers, such as II, have no units; they are
therefore invisible to dimensional analysis, which cares about only the units of a quantity,
not its magnitude. We could do an experiment to determine IT; if we did, we would find that
IT = 1. Much of this text assumes (or hopes) that II is near 1. We often use dimensional
analysis to solve problems for which we cannot easily determine II; at the end, we pretend
that II = 1. The closer II is to unity, the more accurate is the resulting estimate.

3.1.8 Summarizing the argument

Let’s extract the general style of argument that we used in this example; we use a similar
pattern in many order-of-magnitude analyses. What did we have to know before we could
begin? We had to know which variables were important: F'; m, and a. In this example, the
variables were given by fiat, as part of the thought experiment. In more realistic examples,
we have to think carefully to choose the variables: Choosing them is the hardest part in
dimensional analysis. Aristotle thought that force, mass, and velocity were the relevant
variables; it took almost 2000 years before scientists realized that acceleration, rather than
velocity, was the relevant variable.

If we leave out a necessary variable, we invite trouble. For example, suppose that we
use only F' and a. No combination of F' and a is dimensionless; this failure is a clue that
we’ve left out a necessary variable—in this case, the mass. We can also make more subtle
mistakes. Suppose that we correctly realize that mass should be a variable, but we incorrectly
think that the relevant mass is the mass of the earth mg, because of a vague hunch about
gravity. We form the dimensionless group F/mga, and find that F' = IImga. Although
dimensionally correct by construction, this equation is empirically bogus. Newton’s law is
accurate in far regions of the solar system, where the earth’s gravity, and mg, are irrelevant.
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You must think physically, appeal to experiment, and make lucky guesses if you are to
include all relevant variables.

We do not want to include every possible variable, however, because irrelevant variables
multiply the possibilities for dimensionless relations. For example, suppose that, to hedge
our bets, we include both m and mg. Then, there are two dimensionless groups, F'/ma and
F/mga. The most general relation using these groups is

/ <i F ) =0, (3.9)

ma’ mga

where f is a dimensionless function of two variables. We now have to use physics knowledge
to restrict the form of f. Here, we add the knowledge that the mass of the earth is irrelevant,
because Newton’s law works in the far solar system; then, we recover the simpler relation
f(F/ma) = 0 that we derived before, but, this time, we had to work harder. Section 3.3.2
contains another example of the excess-variable problem; there, we use knowledge of fluid
mechanics to simplify the resulting relations. We know of no recipe for choosing the right
set of variables, except to practice.

[We sloppily used the same letter f to denote two different functions: In (3.7), it
is a function of one variable, yet in (3.9), it is a function of two variables. The number
of parameters disambiguates the two uses. For maximum clarity, we should call the two
functions by different names, such as f; and f,. In dimensional-analysis problems, however,
we often start with, say, a three-variable function; then use physics knowledge to reduce it
to a two-variable function; then use more knowledge to reduce it to a one-variable function.
The sloppy notation is therefore convenient. We avoid redundant subscripts, and we do not
need to invent arbitrary names such as f, g, and h.]

Once we chose the variables, we found the only dimensionless group (apart from trans-
formations) F'/ma. The general relation, f(F/ma) = 0 simplified to F' = IIma. The un-
known constant IT we can determine by experiment, or from other knowledge. Figure 3.2
illustrates the steps of the argument.

F, [M][L][T]*
F
i = (ina) =0
; ma _
? m, Grouper |14 Relation Simplifier F =IIma
. finder
a, [L] [T]?

Figure 3.2. The Pi machine. After lucky guessing, we decide what variables to
feed the grouper. We feed them in, along with their units. The grouper hunts
for combinations that have no units (for dimensionless groups), and spits them
out (here, there is only one group). That group enters the relation finder, which
produces the most general dimensionless relation from its inputs. The simplifier
simplifies this equation, presenting the answer F' = Ilma.
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3.1.4 Generalizing the argument: the Buckingham Pi theorem

The art of dimensional analysis lies in choosing the right set of relevant variables; a computer
would find this stage difficult, if not impossible. The part that we could program—finding
the dimensionless groups—we normally do by guessing. In this example, we started with
three relevant variables, composed of two basic units, [M], and [L][T] 2. It looks like the
variables contain units—[M], [L], and [T]—but the single combination [L][T]~2 suffices to
replace [L] and [T]. As an analogy, imagine three functions—a, b, and c—with the forms

a(z,y,z) = zyz"?,
b(z,y,2) =z, (3.10)
co(x,y,2) =yz 2.

Here, a, b, and c play the roles of [F], [m], and [a], respectively; and z, y, and z play the
roles of [M], [L], and [T], respectively. The variables y and z occur in only the combination
yz~2. So there are only two independent variables: x and yz~2. In the F' = ma example,
there are only two independent units: [M] and [L])[T]~2. From n = 3 variables, composed of
r = 2 units, we found n — r = 1 dimensionless group. This pattern is general, and is stated
in Theorem 3.1.

Theorem 3.1 (Buckingham Pi theorem) A system described by n variables, built from r
independent dimensions, is also described by n — r independent dimensionless groups.

We also call the groups II variables. Now we apply this method to examples with more
than one dimensionless group, where the argument is more complex.

3.2 Pendula

The next example is familiar to many of you from freshman-physics problem sets. A pen-
dulum bob hangs at the end of a massless rope, and, from a resting state, the bob starts
oscillating (Figure 3.3). What is the oscillation period?

3.2.1 Finding dimensionless groups

Following the pattern of Section 3.1, we first choose the relevant variables. We make sure to
include the variable for which we’re trying to solve, the period 7; a common mistake is to
forget the goal variable, and thus to end up one variable short. The period may depend on
the initial angle, so we include 6y. To decide which other variables to include, we imagine
life as a pendulum bob. Why do we move at all? We move because of gravity, so g belongs
on our list. A more massive bob feels a stronger gravitational force, so we include m in our
list. 2

From 7, g, and m, 0g—four variables with three units—we can form one dimensionless
group, 6y. We cannot form one that includes 7 (try to do so); so we really have only three

2. You may object that we have personified the pendulum bob, that we have endowed it with the
capacity for feeling, at least, for feeling forces. Even worse, we have become a pendulum bob.
We plead guilty, with an explanation. We personify the bob, because picturing an active bob
enhances our intuition for how it behaves; to make a vivid picture of an active bob, we even
pretend to be a bob. Similarly, looking for a lost marble, we often ask ourselves, “If I were
a marble and somebody dropped me, where would I roll?” This style may not enhance your
intuition; try it for month as an experiment.
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variables, and zero dimensionless groups. We must have left out a variable. A parameter
of the system that we have not mentioned is the length of the rope. Perhaps that variable
will rescue us, so we include it in our list. Table 3.1 contains the variables that we have
collected. (From previous experience with this problem, you know that m does not matter,
and that [ does; we will use those facts as a sanity check on our solution.)

F = mgsinfy

Figure 3.3. A pendulum bob of mass m hangs from a massless rope of length .
The bob is released from rest at an angle 6.

Var. Units Description

0o — angle of release

m [M] mass of bob

T [T] period

g [L][T]™2 acceleration due to gravity
l [L] length of rope

Table 3.1. Variables that may determine a pendulum’s oscillation period.

We now form dimensionless groups. Finding these groups requires that we have handy
the units of the variables, which is why we listed the variables in a table. These n = 5 vari-
ables contain r = 3 basic dimensions: length, mass, and time. The Buckingham Pi theorem
says that we can form n —r = 2 independent dimensionless groups from this set. Guesswork
is the easiest way to find them. One original variable, 6y, is already dimensionless (why are
angles dimensionless?), so we start with II; = 6. Only one original variable, m, contains
a unit of mass. Therefore, no dimensionless group can contain m. [To be dimensionless,
the group has to contain another variable that cancels the unit of mass contributed by m;
however, m is the only mass in this problem, so m must cancel itself from any group that
3

]

it tries to join.°] We form the second independent dimensionless variable using g, [, and 7.

3. “Any club that would admit me as a member, I wouldn’t want to join.”
—Groucho Marx
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[If we did not require that the n — r II variables be independent, then we could choose, for
example, the useless pair 0y and 62.] The units of g show us how to form the group: Cancel
the length in g with /=1, and cancel the time with 72, to make Il = g72/I. The two groups
are then

I, = 907
2 (3.11)
o= 9
l
3.2.2 Finding dimensionless relations
The most general relation using the groups in (3.11) is
f(H17H2) = 07 (312)

where f is a dimensionless function. What is f7 Figure 3.4 outlines the argument that we
use find it.

7, [T]
607 - 90
f (9 gT2> 0 g’7'2 -
m, [M] Relation o . . l = 1(0)
Grouper finde Simplifier ——»
[ ] n T

g, L)1) g

l
L, [L]

Figure 3.4. Dimensional analysis for the pendulum period. After thinking, we
choose five relevant variables. They enter the grouper. It counts the inputs (five)
and the number of independent units in the inputs (three), and spits out two
dimensionless groups. The relation finder produces the most general relation
using the two groups. The simplifier transforms the relation into a form more
convenient for solving for .

In Section 3.1.2, we rewrote f(II;) = 0 as II; = II, where II; = F/ma was the di-
mensionless group, and Il was an unknown constant—the zero of f that is experimentally
correct. With the more complicated relation (3.12), we can make the same transformation.
The two-parameter function f is equivalent to a family of one-parameter functions, f,,
indexed by II; (Figure 3.5). The general form (3.12) is then

fr, (Ilz2) = 0. (3.13)

In Section 3.1.2, where f was a one-parameter function, we transformed f(II;) = 0 to
IT; = II. Here, we transform fi, (II3) = 0 to

I, = f(IL), (3.14)
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-1 0 1 2
11,

Figure 3.5. The two-parameter function f(IIy,1ls) = "2 + IIy — Iy, plotted for
various I11. The result is a family of functions, fr, (I12). Their zero-crossings are
marked with dots, and labeled with the values of 11;.

where f(II;) is the zero of fr, (Figure 3.6). (This transformation is valid when fr, has
only one physically valid zero, which we assume for simplicity.) We have extracted II5 from
its hiding place in f. Alternatively, we could have written f(Il;,II3) = fr,(II1), and have
defined f(II,) as the zero of fr1,. Then, we could have extracted II;:

I, = f(ILy). (3.15)

We choose which form to use by the location of the goal variable. If it belongs to I3, we
use (3.14). If it belongs to Iy, we use (3.15). If it belongs to both, then we have to think.
If it belongs to neither, then we have too few starting variables and dimensionless groups.

Zero of
fnl (x) 0.5

—0.5 —

Figure 3.6. Zero of fri, (Il2), as a function of II;. The function f(Il1,I12) is
from Figure 3.5.
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We wish to solve for the period, which is contained in IIy = g72/I, so we use the form
(3.14). In terms of the original variables, (3.14) is g2/l = f(6p), or

- f<eo>\/§ (3.16)

So 7 depends on [ but not on m (the promised sanity check). We do not know the function
f(6p). When we derived Newton’s law in Section 3.1.2, we could not, using dimensional
analysis, determine the constant (or zero-parameter function) IT. Here, we cannot determine
the one-parameter function f. We can determine it by experiment: We release a pendulum

at various y, and measure 7(fg). Then, f is

7(00) = T<eo>\/§ (3.17)

We do not have to repeat the experiments for different [ (say, for another pendulum) or g
(say, on another planet), because f is universal. All pendulums—long or short, on the earth
or on Mars—obey the same f.

In the small-amplitude limit (6y — 0), we can simplify (3.16):

Y
= f(O)\/;, (3.18)

where f(0) is a constant. In speaking of f(0), we are tacitly assuming that lim, .o f(x)
exists. Dimensional analysis makes no promises that it does; we have to appeal to physics.
Here is a scaling argument that makes the existence of the limit plausible. We estimate the
oscillation time by estimating the acceleration and the oscillation distance. The pendulum
feels a force F' ~ mgsinfy (see Figure 3.3), which makes it accelerate at a ~ gsin#fy. For
small 0y, the acceleration is a ~ gfy, because sinfy ~ 0y for small 0y. In time 7, it travels
2 ~ g0g7?. Tt needs to travel a distance d ~ 16, (neglecting constants) to
complete a cycle, so

a distance art

G072 ~ 160. (3.19)

The amplitude 6y cancels, which is the physical equivalent of the mathematical statement
that f(0) exists. We even get an estimate for 7:

T~ =, (3.20)

which is a physical derivation of (3.18). Alternatively, we can estimate a typical velocity
for the bob, and from the velocity, estimate the period. The maximum potential energy is
PE ~ mgh, where the change in height is h = [(1 — cosf) ~ (3. The maximum kinetic
energy is equal to the maximum potential energy. So the maximum velocity is given by
mv? ~ mglf?. (This relation equates two energies, potential and kinetic. This method is

an example of balancing; we discuss balancing more fully in Section 4.1.2.) The maximum
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velocity is then v ~ y+/gl; we use this value as an estimate for a typical velocity. The time
to complete a cycle is 7 ~ d/v ~ /l/g, as we found using the acceleration method.
We call f(0) the constant II, and (3.18) becomes

l
T=1I4/-. 3.21
g ( )

We cannot evaluate II with dimensional analysis. It turns out to be 27, but we would either
have to solve an equation to determine it—and solving equations is beyond the scope of the
text—or have to determine it experimentally, by timing one pendulum swing. We release
the pendulum from a small angle—say, 8y = 0.1 rad—and measure the period, 7. Knowing
7, [, and g, we use (3.21) to determine II.

3.3 Drag in fluids

Every freshman-physics course solves the pendulum differential equation to find (3.21). The
freshman course usually continues beyond where dimensional analysis can compete: The
solution to the differential equation contains the value of II. The pendulum problem does not
show the benefit of dimensional analysis. So we try our hand at fluid mechanics—a subject
notorious for its mathematical and physical complexity; Chandrasekhar’s books [6, 7] show
how complex the mathematics can become. As usual, we study examples. The examples are
a marble falling through corn syrup (Section 3.3.2), and a person falling from the sky after
being thrown from an airplane (Section 3.3.3). We calculate the terminal velocity: The
velocity that the object reaches after falling for sufficiently long. The examples illustrate
two extremes of fluid flow: oozing and turbulent.

Density pg

Viscosity v

T~

Figure 3.7. Sphere falling in a liquid. Its terminal velocity is v.

We begin by solving the partial-differential equations of fluid mechanics (for the in-
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compressible flow of a Newtonian fluid):

ov 1 9
— +(vV)v=—-Vp+rvV-<y,
o T V) p ! (3.22)

Vv =0.

Here, v is the fluid velocity field, p is the fluid density, v is the kinematic viscosity, and p is
the pressure. We have to solve six coupled, nonlinear partial-differential equations, and to
find the velocity of the marble as ¢ — oco. A miserable task.

Do not worry—we will not solve these equations. We put them there to scare you into
using dimensional analysis, to show you that it is easier than solving equations.

So let’s use dimensional analysis to find the terminal velocity, v. We could start with
our usual method: Choose a group of variables that includes v, form dimensionless groups,
and then solve for the velocity. This direct approach would gives us too many dimensionless
groups; we would have to add physics knowledge at the end, to simplify the resulting
dimensionless relations. Instead, we use physics knowledge at the beginning, to simplify the
derivation early on. You save effort if you simplify early. If you simplify later, you carry
around baggage that you eventually discard. If you're going on holiday to the Caribbean,
why pack snow shoes?

The adjective terminal in the phrase terminal velocity hints at the physics that de-
termines the velocity. It indicates that the velocity is constant, which can happen only if
there is no net force on the marble. What forces act on the marble? There is gravity, which
speeds it up. There is drag, which slows it down. To find the terminal velocity, then, we
find the drag and gravitational forces, and equate them. We have split the terminal-velocity
problem into two simpler problems (divide and conquer). The gravitational force is mg (or
close to that, as we will see), where m is the mass of the marble. What is the drag force?

3.3.1 Dimensional analysis for the drag force

We use dimensional analysis to find the drag force, Fyq. The first step is to choose the
relevant variables. We begin by including the variable for which we’re solving, Fy. What
characteristics of the sphere are relevant to the drag force? The drag force has no idea
what is inside the sphere. Picture the fluid as a huge computer that implements the laws
of fluid dynamics. How can it know how dense the sphere or person is? It cannot see inside
the object. To the drag force, the parameters v and R are the only relevant attributes of
a sphere moving through the atmosphere. What lies underneath the person’s surface does
not affect the fluid flow.* So the computer can determine the flow (if it has tremendous
processing power) knowing only v and R. Therefore, pgp, is irrelevant. What characteristics
of the fluid are relevant? The fluid supercomputer needs to know the density of the fluid,
to determine how fast the pieces of fluid move because of the object. So we include pg.
What about viscosity? Viscosity is a measure of the tendency of a fluid to smear
velocity differences in the flow. You can observe an analogue of viscosity in traffic flow on
a multilane highway. If one lane moves much faster than another, drivers switch from the
slower to the faster lane, eventually slowing down the faster lane. Local decisions of the
drivers reduce the velocity gradient. Similarly, in a fluid, molecular motion transports speed

4. Viscosity is only skin deep.
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(really, momentum) from fast- to slow-flowing regions. This transport reduces the velocity
difference between the regions. Thicker, oozier (more viscous) fluids probably cause more
drag than thin fluids do. So we include viscosity in our list.

Fluid mechanicians® have defined two viscosities, dynamic viscosity u, and kinematic
viscosity v. They are related by u = pgv. Life in Moving Fluids [59, pp. 23-25] discusses
the two types of viscosity in detail. In Section 5.5, we estimate the viscosity of gases by
examining the molecular origin of viscosity. For the analysis of drag force, we need to
know only that viscous forces are proportional to viscosity. Which viscosity should we use?
Dynamic viscosity hides pg inside the product vpq; equations that contain pg, and p then
look less dimensionless than they are, because pg, has no partner. So we use the kinematic
viscosity, v.

Var. Units Description

Fy [M][L][T]~2? drag force

R [L] marble radius

v [L]?[T]* kinematic viscosity
of M][L] 3 fluid density

v [L][T]* terminal velocity

Table 3.2. Variables that determine the drag force.

Table 3.2 lists the variables that we have collected. The drag force does not depend
on pgp or g; it is simpler to estimate than is the terminal velocity (which does depend on
g and pgp). The five variables in the list are composed of three basic dimensions; we look
for two dimensionless groups. We find one group by the method of divide and conquer. The
list already includes a velocity, v. If we can concoct another quantity, V', also with units of
velocity, then we can form the dimensionless group v/V. The viscosity v almost works. It
has an extra length, which R can eliminate: V' = v/R. The dimensionless group is
vR

v
— 2
o (3.23)

II;

which is the Reynolds’ number, Re. It is a dimensionless measure of the flow speed. [In
Section 3.3.3, we give a more detailed physical interpretation of Re.] The velocity alone
cannot distinguish fast from slow flow, because v is not dimensionless (see the discussion
of large cargos in Section 2.1.1). If you hear that a quantity is small, or fast, or large,
or whatever, your first reaction should be, “compared to what?” To distinguish fast from
slow flow, we have to use a dimensionless quantity related to v—the Reynolds’ number. It
compares v to V. Low values of Re indicate slow, viscous flow (cold honey oozing out of a
jar); high values indicate turbulent flow (a jet flying at 600 mph). We once again refer you to

5. Sadly, we could not use the more mellifluous term fluid mechanics to signify a host of physicists
agonizing over the equations of fluid mechanics; it would not distinguish the toilers from their
toil.
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the excellent Life in Moving Fluids [59], this time for more details on dimensionless ratios
in fluid mechanics. We introduce another dimensionless ratio—the Froude number—when
we discuss speedboating in Section 6.2.1.2.

What is the second dimensionless group? The drag force is absent from IIq, so it has
to be part of IIy (else how can we solve for Fy?). Instead of dreaming up the dimensionless
group in one lucky guess, we construct two quantities with the same units, and divide them
to get a dimensionless quantity. Notice that FyR is an energy. We construct another energy
(call it E), then form the dimensionless ratio FqR/E. Energy contains one power of mass;
the only variable other than Fy that contains mass is pg. So E contains one power of pg.
How can we make an energy from pg? We start with pg R?, which is a mass. Kinetic energy is
mv? /2, so it has units of [M] [V]?. [A formula is a reliable and simple method for determining
the units of a quantity. Even if the formula is approximate—muv? /2 is valid at speeds only
much less than the speed of light—it still tells you the correct units.] The second energy is
therefore

E = pgR® v*. (3.24)
——
mass

The group Il is the ratio of the two energies:

_RR Ry

115 = = . 3.25
2 E paR2v? (3:25)

The most general relation is f(Il;,II5) = 0. We want to solve for Fy, which is contained
in II,, so we use the (3.14): Il = f(II;). In terms of the original variables, the drag force is

Fd = pﬂRQv2 f (?) . (326)

Now we are stuck; we can go no farther using only dimensional analysis. To learn the form of
f, we specialize our problem to extreme conditions: to turbulent, high-speed flow (Re > 1),
or to viscous, low-speed flow (Re < 1).

3.3.2 Viscous limit

We first analyze the low-speed limit: a marble falling in corn syrup. You may wonder how
often marbles fall in corn syrup, and why we bother with this example. The short answer to
the first question is, “not often.” However, the same physics that determines the behavior
of marbles in syrup also determines, for example, the behavior of fog droplets in air, of
bacteria swimming in water, or of oil drops in the Millikan oil-drop experiment. We study
the marble problem because it illustrates the physical principles, and because we can check
our estimates with a home experiment.

In slow, viscous flows, the drag force comes from viscous forces, which are proportional
to v. Therefore, Fy ox v. The viscosity appears exactly once: in the argument of f, and in
the denominator. So that v flips into the numerator, we choose f(z) ~ 1/x. [We used ~ to
avoid writing the II constant repeatedly. The ~ symbol means that the two sides have the
same units (none in this case), but that they may differ by a dimensionless constant.] With
this f(x), the drag force (3.26) becomes

Fy = paR*v? H% = MvpguR, (3.27)
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where II is a dimensionless constant.

Sadly, we cannot compute the magic II factor using dimensional analysis. We must call
a fluid mechanic to do the messy work of calculating it; but we can hope that her burden is
light, because we have worked out the solution except for one number. Stokes first derived
the value of II, and found that IT = 67 (for a sphere). With this value, (3.27) becomes

Fy4 = 6mparvR. (3.28)

Let’s pause to sanity check this result. Larger or faster marbles should feel more drag; and
a denser or more viscous fluid should produce more drag. The drag force (3.28) passes these
tests.

We can make a more detailed check by explaining the result physically. The argument
is similar in style to the argument that we made in Section 3.2.2 to justify 7 ~ \/l/_g for
a pendulum. In the viscous limit, drag is caused by viscosity only: The drag force is the
viscous force. To estimate the viscous force, we have to introduce more knowledge about
viscosity. We also work in the reference frame of the sphere. Viscosity is a consequence of the
no-slip boundary condition: At the surface of the sphere, the fluid is stationary (relative
to the sphere). Far away from the sphere, the fluid does not know about the sphere: The
fluid moves as if the sphere were not there, with velocity v (relative to the sphere). Viscosity
reduces this velocity difference by transporting momentum from the sphere to the distant
fluid: It slows the sphere. The momentum transport produces a stress ‘@ (roughly, a force
per area) that is proportional to dynamic viscosity and to velocity gradient:

T ~ pav x Vu, (3.29)

where u is the fluid velocity as a function of distance from the sphere’s center. The velocity
gradient Vu is a complicated object: a tensor. We can pretend that it is an ordinary number
(a scalar), and approximate its magnitude using two data points: © = 0 near the sphere, and
u = v far away from the sphere. How far is far away? Equivalently, we can ask: Far relative
to what length? The natural length to use as a standard of comparison is R, the radius of
the sphere. So let’s say that u(R) = 0 and u(2R) = v. We could also use u(10R) = v or
u(8R) = wv; the constant that exactly characterizes “far away” is not important, because
we are going to ignore it anyway. Because u changes by v in a length R, its gradient is
approximately v/R. This result is a consequence of a general order-of-magnitude rule of

thumb:
typical value of f

Vi (3.30)

~ length over which f changes significantly

This rule of thumb is the method of order-of-magnitude differentiation. [One way to
remember it is to write
a  f

<~ 3.31
Frkadon (3.31)

once we cancel the ds.] The viscous stress is therefore o ~ pgrv/R. The viscous force is the
stress times the surface area over which it acts:

Fliscous ~ PHVU/R X R2 ~ pﬂVUR- (332)
—_— =~

o area



3. DIMENSIONAL ANALYSIS 41

This result agrees with the estimate result (3.27), which we got from dimensional analysis.
We neglected constants throughout this physical argument, which is therefore incapable of
justifying the factor of 67 in (3.28).

This magic factor of 67 in (3.28) comes from doing honest physics, here, from solving
the Navier—Stokes equations (3.22). In this book, we wish to teach you how to avoid suffering,
so we do not solve such equations. Occasionally, we quote the factor that honest physics
produces, to show you how accurate (or sloppy) the order-of-magnitude approximations
are. The honest-physics factor is usually of order unity. Such a number suits our neural
hardware: It is easy to remember and to use. If we know the order-of-magnitude derivation
and remember this one number, we can reconstruct the exact result without solving difficult
equations.

We now return to the original problem: finding the terminal velocity, which we estimate
by balancing drag against gravity. The gravitational force is F, = mg, where m is the mass
of the marble. Instead of using m, we use ps,—the density of the marble. We can recover
the mass from pg, and R if we need it. We prefer to use density, because the drag force
contains a density, pg. We therefore write the gravitational force as

Fy ~ pspgR3> (3-33)

where we have neglected the 47/3 factor. We equate the drag force from (3.27) with the
gravitational force:

vpavR ~ prgR3. (3.34)
The terminal velocity is
= @ @_ (3.35)
v.oopa

We can increase our confidence in this expression by checking whether the correct
variables are upstairs (a pictorial expression meaning in the numerator) and downstairs (in
the denominator). Denser marbles should fall faster than less dense marbles, so pg, should
live upstairs. Gravity accelerates marbles, so g should also live upstairs. Viscosity slows
marbles, so v should live downstairs. The terminal velocity (3.35) passes these tests. We
therefore have more confidence in our result (although the tests did not check the exponents,
or the location of R).

Our result is correct, except that we neglected an important physical effect: buoyancy.
Equivalently, we forgot one dimensionless group: II3 = pg/psp. Buoyancy reduces the ef-
fective weight of the marble. Equivalently, it reduces the value of g. If ps, = pa, then the
effective g is 0; if pg = 0, then gravity retains its full effect. Between these two limits, the
effective g varies linearly with pg. Why must the variation be linear? Gravity makes pres-
sure in a fluid increase with depth; this increase causes buoyancy (Figure 3.8). So gravity is
responsible for buoyancy. Gravitational force—and therefore buoyant force—is proportional
to pa. So the effective g should vary linearly with pg. Therefore, we make the transformation

PR g(l—pﬂ>. (3.36)
Psp

The gravitational force (3.33) becomes

Fy ~ (psp — pn)gR’, (3.37)
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Lower p

Buoyant force

Higher p

Figure 3.8. Gravity causes buoyancy. Because of gravity, the pressure at the
bottom of the sphere (submerged in a fluid that is not shown) is greater than the
pressure at the top. The result is an upward force: buoyancy.

and the terminal velocity becomes

2
v~ % <’;ﬂ - 1> . (3.38)
f

If we had carried through the constants of proportionality, starting with the magic 67 from
the drag force (3.28) and including the 47 /3 that belongs in the gravitational force (3.33),
then we would have found that the missing constant of proportionality in the terminal
velocity (3.38) is 2/9.

Using (3.38), we tried a home experiment to determine the viscosity of corn syrup.
We dropped a glass marble with (R = 0.8cm) in a tube of corn syrup, and measured
v~ 2cms~ ! With the magic 2/9 factor, the viscosity is

2 gR* (pyp
= | = —-1]. 3.39
y= 29 (pﬂ (3.39)

The density of glass is ps, ~ 2gem™3, and that of corn syrup is ps, ~ 1gem™3. With all
the numbers, the viscosity estimate is

1000cm s™2 x (0.8 cm)?

p— x 1~ 60cm?s . (3.40)

v~02x

Many tables list p, for which we predict 60gcm ™' s™! (because pg, ~ 1gecm™3).

A search on the World Wide Web for a site listing the viscosity of corn syrup yielded
60gcm~!s™! for deionized corn syrup, and 25gcm~!s~! for regular corn syrup. Presum-
ably, the corn syrup that we purchased from the grocery store was merely regular corn
syrup. Our estimate is therefore in error by roughly a factor of 2. The modest size of the
factor indicates that we have included much of the relevant physics in our model. In this
case, we have captured much of the physics (although we did insert the 2/9 by fiat); the
major uncertainty is in the viscosity of our corn syrup. (Another source of error is the effect
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of the tube wall; this order-of-magnitude analysis assumed that the tube is infinitely wide,
so that the marble feels no effects from the wall.)

In deriving the drag force (3.28), we assumed that the drag force was proportional to
v—which it is indeed in slow flows, or in highly viscous liquids. Is our flow sufficiently slow?
The Reynolds’ number—defined in (3.23)—is the correct measure of flow speed. Let’s make

sure that Re is small:

VR 2cms~ ! x 0.8cm
¢ v 60cm?2s—! ’ ( )

which is <« 1. The flow oozes; so our assumption is self-consistent.

3.3.8 Turbulent limit

We now compute drag in the other flow extreme: high-speed, or turbulent, flow. We esti-

mate the terminal velocity for a person thrown from a high-flying airplane. How high is the
airplane flying? High enough so that the person reaches terminal velocity. You may reason-
ably question whether people frequently get thrown from airplanes. Fortunately, they do
not. However, our results are generic. For example, even when a child rises from a chair, the
airflow around her is high-speed flow. Say that the child is 20 cm wide, and that she rises
with velocity 50 cms~!. Then,

vR  50cms™! x 20cm

Re ~
Vair 0.2cm2s1

~ 5000, (3.42)

which is > 1. The flow is turbulent. Larger objects, such as adults and cars, create turbu-
lence even when they travel only 10cms~!. Most fluid flow—large raindrops falling in air,
ships traveling in water, cyclists racing in air—is turbulent.

We now specialize the results of Section 3.3.1 to high-speed flow. To begin our analysis,
we lie: We assume that a person is a sphere. It is a convenient approximation. Even if people
are cylindrical in everyday life, a person thrown out of an airplane might, from a sensible
fear reflex, tuck into fetal position, and vindicate our approximation. At high speeds (more
precisely, at high Re), the flow is turbulent. Viscosity—which affects only slow flows, but
does not influence the shearing and whirling of turbulent flows—becomes irrelevant. Let’s
see how much we can understand about turbulent drag, knowing only that drag is nearly
independent of viscosity. The viscosity appears in only II;. If viscosity disappears, so does
II;. This argument is slightly glib. More precisely, we remove v from the list in Table 3.2,
and search for dimensionless groups. From four variables, we can find one dimensionless
group: the Il; from the marble example.

Why is drag independent of Re at high speeds? Equivalently, why can we remove v
from the list of variables and still get the correct form for the drag force? The answer is
not obvious. Our construction of Re in (3.23)—as a ratio of v and V—provides a partial
answer. A natural length in this problem is R, so from each velocity, we can form a quantity
with units of time:

R
Ty = —,
v
[ (3.43)
TV = = Y —

o
Note that Re = 7y /7,. The quantity 7, is the time that fluid takes to travel around the
sphere (apart from constants). As we discuss in Section 5.5, kinematic viscosity is the
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diffusion coefficient for momentum, and the time for momentum to diffuse a distance x is
2?/v. So Ty is the time that momentum takes to diffuse around the sphere (apart from
constants). If 7y < 7,—in which case, Re < 1—then momentum diffuses before fluid
travels around the sphere. Momentum diffusion equalizes velocities, if it has time. In this
low-Re limit, it does. It prevents flow at the front from being radically different from the flow
at the back. There is no turbulence. In the other limit—ry > 7, or Re > 1—momentum
diffusion gets soundly beaten by fluid flow, so the fluid is free to do whatever it wants:
It is turbulent. The degree to which fluid flow beats momentum diffusion does not affect
the flow; the flow is already unconstrained by viscosity. (This statement is a lie, but it’s
reasonably accurate.)
The dimensionless group that remains is

Fy
Il = ——. 3.44
? paR?v? (3:44)
The most general relation is f(Ilz) = 0, so Il = II, and
Fy ~ paR*v%. (3.45)

We computed the drag force for a sphere; what about other shapes? So that the drag
force generalizes to more complex shapes, we express it using the cross-sectional area of
the object—here, A = mR?, so Fy ~ pgAv?. The constant of proportionality is called cq/2,
where cq is the drag coefficient. The drag coefficient is a dimensionless measure of the
drag force, and it depends on the shape of the object (on how streamlined the object is).
Table 3.3 lists ¢q for various shapes. (The drag coefficient is proportional to our function

f(Re).) With the drag coefficient, the drag force is
1 2
Fd ~ §Cd,0ﬂ1) A. (346)

We For most purposes, we can assume that c¢q ~ 1. The drag coefficient varies slightly
with Re, so we lied a little when we said that, at high Re, drag is independent of viscosity
(which appears in the Reynolds’ number). The lie is sufficiently accurate for most order-of-
magnitude purposes.

Object cq

Sphere 0.5
Cylinder 1.0
Flat plate 2.0
Car 0.4

Table 3.3. Approzimate drag coefficients (ca) of various objects at high speeds
(Re > 1). The cylinder moves perpendicular to its axzis; the flat plate moves
perpendicular to its surface.
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Now that we have an expression for the drag force, we estimate the gravitational force;
computing it requires far less work. The gravitational force—including the buoyant force—
does not care whether the flow is turbulent. So the result for viscous flow (3.37) applies
here. For your convenience, we restate that result:

Fy ~ (psp — pr)gR’. (3.47)
To find the terminal velocity, we equate Fy with the drag force (3.45):

paR*v* ~ g(psp — pn) R. (3.48)

v /gR'OSpp%pﬂ. (3.49)

We pause to sanity check this result. Are the right variables upstairs and downstairs?
We consider each variable in turn.

The terminal velocity is

= pg: The terminal velocity is smaller in a denser fluid (try running in a swimming pool),
so pg should be in the denominator.

» ¢: Imagine a person falling on a planet that has a gravitational force stronger than that
of the earth.® The drag force does not depend on g, so gravity wins the tug of war, and
v increases: g should be upstairs.

» psp: Imagine a person who has twice normal density (but has normal size). The grav-
itational force doubles. The drag force stays the same, as we saw using the fluid-is-a-
computer argument in Section 3.3.1. So ps, should be upstairs in (3.49).

» R: To determine where the radius lives, we require a more subtle argument, because
changing R changes the gravitational force and the drag force. The gravitational force
increases as R?; the drag force increases as R2. At larger R, gravity wins; greater gravity
means greater v, so R should be live upstairs.

» v: At high speeds, viscosity does not affect drag, so v should appear neither upstairs
nor downstairs.

The velocity (3.49) passes all tests.

At last, we can compute the terminal velocity for the (involuntary) skydiver. We assume
that he tucks into a fetal position, making him roughly spherical, with, say, R ~ 40cm.
3, s0
pa < psp; buoyancy is not an important effect. In (3.49), we can neglect pg in pgp, — pa. We

put these numbers into the terminal velocity (3.49):

A person is mostly water, so psp, ~ 1gem™. The density of air is pg ~ 1072 gem™

lgem™3

1/2
3 -1

v~ (1000cm s72 x 40cm x

or 120 mph (200 kph).

6. Gravity partially determines atmospheric pressure and density. Holding the atmospheric density
constant while increasing gravity might be impossible in real life, but we can do it easily in a
thought experiment.
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This calculation assumed that Re > 1. We now check that assumption. We do not
need to calculate Re from scratch, because, as we worked out in (3.42), a child (R ~ 20 cm)
rising from her chair (v ~ 50cms™1) creates a flow with Re ~ 5000; this flow is turbulent.
The flow created by the skydiver is faster by a factor of 100, and the skydiver is larger by
a factor of 2, so the flow is certainly turbulent. Scaling the Reynolds’ number from (3.42),
we get
Uskydiver % Rskydiver

VUrising Rchild (351)
~ 5000 x 100 x 2 = 10°,

Re ~ Rechﬂd X

which is > 1. The flow is extremely turbulent.

Now that we have found the terminal velocity, let’s extract the pattern of the solution.
The order that we followed was assume, derive, calculate, and check (Figure 3.9). This order
is more powerful than the usual order of derive and calculate. Without knowing whether the
flow is fast or slow, we cannot derive a closed-form expression for Fy (such a derivation is
probably beyond present-day understanding of turbulence). Blocked by this mathematical
Everest, we would remain trapped in the derive box; we would never determine Fy; and we
would never realize that Re is large (the assume box), which is the assumption that makes
it possible to estimate Fy. We used the same, correct order when we solved for the terminal
velocity in corn syrup; Figure 3.10 shows how similar the logic is.

Assume Derive
Re>1 1 Fyq ~ pv2R2
4 2
Re ~ ﬁ 3 v~y gR'O2

v 1%
Check Calculate

Figure 3.9. Correct solution order for terminal velocity in turbulent flow. We
simplified the solution procedure by starting in the assume box. Step 1: On that
assumption, we estimated the drag force (the derive box). Step 2: From the drag
force, we estimated the terminal velocity (the calculate boz). Step 3: From the
terminal velocity, we estimated the Reynolds’ number (the check box). Step 4:
To close the loop, we verified the starting condition. Note: For compactness, the
terminal-velocity formula ignores the normally small effect of buoyancy.

3.8.4 Combining solutions from the two limits

We computed the drag force in two limits. Let’s compare the results, to see whether we can
combine them. We can write the solution for viscous flow (3.28) in terms of the Reynolds’
number and cross-sectional area:

Fy= %pﬂA’L)Q f(Re). (3.52)
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Assume Derive
Rexk1 1 Fy~ pﬂl/Rv
4 2

R? p,
Re~ PR L3 |, 9t
v v pa

Check Calculate

Figure 3.10. Correct solution order for terminal velocity in viscous flow. Note
the similarities with Figure 3.9.

We showed that f(x) = IT/z, where the magic constant II = 67 comes from honest physics,
which we did not do.” So 6

Fy= EpﬂAv2. (3.53)
Compare this viscous drag force to the turbulent drag force (3.46). If we substitute cq =
12/Re, then (3.46) becomes (3.53). So we can use the drag formula (3.46) for both high-
and low-speed flow, provided that we let c¢q vary with Re. For high Re, we quoted cq ~ 1/2.
If the low-Re approximation were valid at all Reynolds’ numbers, then c¢q would cross 1/2
near Re ~ 24, at which point we would expect the high-Re approximation to take over.
The crossing point is a reasonable estimate for the transition between low- and high-speed
flow. Experimental data place the crossover nearer to Re ~ 5, at which point ¢q ~ 2.
If a dimensionless variable, such as Re, is close to unity, calculations become difficult.
Approximations that depend on a quantity being either huge or tiny are no longer valid.
When all quantities are roughly the same size, you cannot get rid of many terms in your
equations. To get results in these situations, you have to do honest work: You must solve
the nonlinear equations (3.22) numerically or analytically.

3.4 What you have learned

« Every valid physical equation can be written in a form without units. To find such
forms, you follow these steps:

1. Write down—by magic, intuition, or luck—the physically relevant variables. For
illustration, let’s say that there are n of them.

2. Determine the units of each variable. Count how many independent dimensions
these variables comprise. Call this number r. Usually, length, mass, and time are
all that you need, so r = 3.

3. By playing around, or by guessing with inspiration, find n —r independent dimen-
sionless combinations of the variables. These combinations are the dimensionless
groups, or Pi variables—named for the Buckingham Pi theorem.

7. We agree with the Fowlers [17] and Dupré [12]: that is restrictive, which is not. If we had said
...from honest physics that we did not do, we would imply that, somewhere in this book, we did
do honest physics. We plead not guilty.
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4. Write down the most general relation that uses these groups. Then try to elimi-
nate dimensionless groups, or to restrict the form of the relation, using physical
arguments.

5. Using physical arguments, simplify the dimensionless relation by eliminating di-
mensionless groups, or by otherwise constraining the form of the relation.

= In dimensionless form, even fluid mechanics is simple.

= The Reynolds’ number is a dimensionless measure of flow speed; it distinguishes viscous
from turbulent flow, and compares the momentum transport time to the fluid transport
time.

» When you solve a difficult problem—such as computing the drag force—simplify by
assuming an extreme case: Assume that one or more of the dimensionless variables are
nearly zero or nearly oo.

» Using your solution, check your assumption!

In the next two chapters, we use these dishonest methods, along with physical reasoning,
to estimate the properties of materials.
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4 MATERIALS [

Why are there are no 100 km mountains on earth (Section 4.3.2)7 Why must a Thanksgiving
turkey cook all morning (Example 5.2)? How large are white dwarfs (Section 4.4)? The
answers to these questions depend on the mechanical and thermal properties of materials.
We estimate these properties by using the techniques of the previous chapters, and introduce
a new technique, balancing. In this chapter, we study mechanical properties of materials:
their density, strength, and surface tension. In Chapter 5, we study thermal properties of
materials.

Our estimates of material properties depend on the atomic theory. In Feynman’s
words:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence
passed on to the next generations of creatures, what statement would contain the most
information in the fewest words? I believe it is the atomic hypothesis (or the atomic fact, or
whatever you wish to call it) that all things are made of atoms—little particles that move
around in perpetual motion, attracting each other when they are a little distance apart, but
repelling upon being squeezed into one another. In that one sentence, you will see, there is
an enormous amount of information about the world. .. [15, p. 1-2]

The atomic theory was first stated by Democritus. Bertrand Russell, himself a scientist
and philosopher, describes early Greek science and philosophy with wit, sympathy, and
insight in his History of Western Philosophy [53]. Democritus could not say much about the
properties of atoms. With our modern knowledge of classical and quantum mechanics, we
can go farther. We begin by determining how large atoms are. After we understand what
forces determine the sizes of atoms, we extend our understanding to molecules: We divide
and conquer.

4.1 Sizes

We begin our study of atoms with a simple picture—always draw a simple picture—of the
simplest atom, hydrogen (Figure 4.1). What is the radius of the orbit?

4.1.1 Dimensional analysis

We estimate the radius first using dimensional analysis. We make a list of relevant variables
by considering what physics determines the properties of hydrogen. The electrostatic force
holds the electron in orbit, so e, the charge on the electron, is certainly on the list. We
use e? instead of e, because, in cgs units, e? has familiar dimensions: [E][L]. If we had
used e, then we would wonder how to combine esu with more familiar dimensions. [In
mks units, we would have to introduce the permittivity of free space, €g, along with the
charge. Symbolic results in electrostatics often easier to understand in cgs units than in
mks units. Numerical estimates are often simpler in mks units, because tables quote values
in ohms, or Coulombs, rather than in statohms or esu. If you want both to think and to
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Figure 4.1. Hydrogen. A proton (the “+7) holds an electron in jail. The jail
radius is ag, the Bohr radius.

calculate, become comfortable with both systems.] The mass of the electron m, determines
the acceleration that the electrostatic force produces, so we include me. The mass of the
proton, m,,, might also be relevant. From these four variables—ay, e?, me, and mp—Wwe can
form one dimensionless group,

I, = —. (4.1)

That group does not contain ag; we are stuck. Our failure to find a suitable dimensionless
group tells us that we’ve left out physics that determines aq.

Var. Units Description

ao [L] radius

e? [E][L] charge®

h [E][T] quantum mechanics
mp  [M] proton mass

me  [M] electron mass

Table 4.1. Variables that determine the size of hydrogen. The notation [E] is a
shorthand for [M][L]?[T]~2.

We get a clue to this missing physics, because the picture of hydrogen in Figure 4.1
cannot be classical. A classical electron, moving in a circle, would radiate, lose energy, and
spiral into its doom as the proton swallowed it; classical atoms cannot exist. Fortunately,
quantum mechanics comes to the rescue. Unfortunately, quantum mechanics is a large,
fearsome subject. Thanks to dimensional analysis, we do not have to understand quantum
mechanics to compute results based on it. For the purposes of dimensional analysis, the
whole content of quantum mechanics is contained in another constant of nature: i, whose
value is 1.05-10727 ergs. By adding /& to our four variables, we get the list in Table 4.1.

One more variable produces one more dimensionless group. We are sunk if this group
does not contain ag, so let’s assume that it does. How can we make a length from the other
four variables, to cancel the length in ag? We divide and conquer. Because [e?] is [E][L], we
make an energy from e?, h, and m, (we could also have used m,, but using both m, and
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m, allows us no additional units), and use the constructed energy to cancel the energy in
[E][L]. Notice that e?/h is a velocity, so me(e?/h)? is an energy, with which we can cancel
energy from e?. We do so, and construct the length

62

7me(62/h)2’ (4.2)

which simplifies to h%/mee?. The new dimensionless group is ag divided by this length:

ag

Iy = —.
27 B2 /mee?

(4.3)

The other group is II; = me/mp, so we write II; = f(II;), where f is a dimensionless
function, or, equivalently,
h? m,
apg = f < e) . (44)
The proton is much more massive than the electron, so we exaggerate and pretend that

me/m, = 0; we simplify by exaggerating. If f(z) has a limit as # — 0, then (4.4)
becomes

hQ

mee?’

apg = II (45)
where the constant IT is f(0). This important result deserves a cross-check, which we perform
in Section 4.1.2.

Before we do the cross-check, we discuss the validity of assuming that f(0) exists. If
we had constructed II, from my instead of from m,, then f(z) would be ~ 1/x, which
does not have a finite limit. How can you decide which mass avoids this problem, short of
trying both, or getting lucky? There is no foolproof procedure, but we can formulate rules
of thumb.

First, choose dimensionless groups with minimal overlap. In the definition of Ils, we
could have used my + m. instead of m.. This choice would make m; and m, appear in
two dimensionless groups; the choice that we made—to use m, in Ily, and m, and m; in
II;—has less overlap among the original quantities. When we consider the limit of f, we
usually hope to eliminate one dimensionless group. This elimination is more likely if there
are fewer overlaps.

Second, decide which variable is likely to vanish, and segregate it in one dimensionless
group. In this example, the proton and electron mass are so disparate (their ratio is ~ 2000)
that we immediately imagine a world where the disparity is more pronounced. There are
many such imaginary worlds; m, ~ 1000kg and m. ~ 1g, or perhaps m, ~ 107°° g and
me ~ 10790 g. These examples are unreasonable. If possible, we vary only one quantity, so
as to tell the fewest lies about the actual world. In our imaginary world, should we reduce
m. or increase m,? To decide, we use physical reasoning. The momenta of the proton and
the electron are equal (and opposite) with, say, magnitude P. A typical kinetic energy is
E ~ P?/m. The mass is downstairs, so the heavier particle (the proton) contributes much
less energy than the lighter particle contributes. We therefore imagine that m, gets larger;
that choice eliminates only a minor contributor to the total energy. This argument shows
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that hydrogen has a physical limit when m, — oo and m, stays fixed. Therefore, f(m./my)
has a limit at 0. What would happen if we had not segregated m,? Suppose, for example,
that we chose II; = aomp62 / B2 and Iy = me /mp. As with our previous pair of dimensionless
groups, we would have IT; = g(II;), where g is a dimensionless function, or

h2
ap = Wg(me/mp)- (4.6)

Now g behaves badly. As m, — oo, the factor in front goes to 0; so g must go to infinity. To
make progress in spite of ¢’s intransigence, we import the knowledge that ag is independent
of m, as mp — oo. Therefore, we must have g(z) ~ 1/x, so that g(z) can cancel the m,
that sits in front. If we segregate m,, to begin with-—as we did in (4.1) and (4.3)—then we
can simply discard II; without going through this more involved argument.

4.1.2 Physical meaning

For the second computation of ag, we use a method that substitutes physical reasoning for
dimensional analysis. We get a physical interpretation of the result (4.5). We want to find
the orbit radius with the lowest energy (the ground state) of hydrogen. The energy is a
sum of kinetic and potential energy: kinetic from motion of the electron, and potential from
electrostatic attraction.

What is the origin of the kinetic energy? The electron does not orbit in any classical
sense. If it did, it would radiate its energy and spiral into the nucleus. Instead, according
to quantum mechanics, the proton confines the electron to some region of size r.! Confine-
ment gives the electron energy according to the uncertainty principle, which says that
AxAp ~ h, where Az is the position uncertainty, and Ap is the momentum uncertainty of
the electron. In hydrogen, Az ~ r, as shown in Figure 4.2, so Ap ~ h/r. The kinetic energy
of the electron is ) )

KE~ B2 N

Me mer2’

(4.7)

This energy is the confinement energy, or the uncertainty energy. We use this idea
many times in this book; our next application for it is in Section 4.4.
The potential energy is the classical expression

62

PE ~ ——. 4.8
; (4.8)
Here the ~ sign indicates the electron is not precisely at a radius r; rather, its typical, or
characteristic, distance is r.
The total energy is the combination

2 2
E—PE+KE~-— "
T

(4.9)

Mer?’

1. In an order-of-magnitude estimate, we ignore details, such as the precise path that an object
follows, and replace them by a typical size and, perhaps, speed. Quantum mechanics justifies
this slothfulness as a principle of physics.
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— E=0

Figure 4.2. Order-of-magnitude hydrogen. We replace the Coulomb potential
(dashed curve) by a box potential (solid line) with the same characteristic width
and height. This rectangle trick is familiar from Section 2.1.4. The total energy
of the electron (thick line) is the sum of the potential energy, —e*/r, and the
kinetic energy, €*/2r.

The two energies compete. At small 7, kinetic energy wins, because of the 1/r2; at large r,
potential energy wins, because it goes to zero less rapidly. Is there a minimum combined
energy at some intermediate value of r? There has to be. At small r, OE/Or is negative;
at large r, it is positive; at an intermediate r, the dF/Or must be zero. The potential has
a minimum at this r. The location is easy to estimate if we write (4.9) in dimensionless
form; such a rewriting is not necessary in this example, but it is helpful in more complicated
examples. In deriving (4.3), we constructed a length, | = h%/m.e?. So let’s define scaled
length as 7 = r/l. Furthermore, €2/l is an energy, so let’s define scaled energy as F =

E/(e*/1). Then (4.9) becomes

= T 1
E'\‘—j‘F,—T
r r

(4.10)
We can find the minimum-energy 7 by calculus, which gives 7,y = 2. Or, we can use order-
of-magnitude minimization: When two terms compete, the minimum occurs when the
terms are roughly equal (Figure 4.3). We therefore equate 7! and #~2; we get i, ~ 1. In
normal units, the minimum-energy radius is rmin = [Fmin = h? / mee?, which is exactly the
Bohr radius; in this case, the sloppiness in definition cancels the error in order-of-magnitude
minimization.
To justify this method, consider a reasonable general form for E:

E(r)=—=-—. (4.11)
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This form captures the important feature of (4.9): The two parts compete. To find the
minimum, we solve E’(ryi,) = 0, or

A B
-n ] + mrm+1 =0. (4.12)
The solution is 4 B
. (4.13)
Tmin m Tmin

The order-of-magnitude method minimizes (4.11) by equating A/r™ and B/r™, so it lacks
the n/m factor in (4.13). The ratio of the two estimates for ry;, is

order-of-magnitude estimate ( n )1/(7”7") : (4.14)

calculus estimate m

which is < 1 if n > m. So the order-of-magnitude method underestimates minima and
overestimates maxima (for maxima, the same argument carries through, except that m and
n change places).

The potential between nonpolar atoms and molecules is well approximated with m =6

and n = 12:
A B

U(r) ~ r R (4.15)

This potential is known as the Lennard—Jones potential. It describes the interaction of two
nonpolar atoms (or molecules). Such atoms (for example, helium or xenon) have no perma-
nent dipole moment. However, the charge distribution around the nucleus (and therefore
the dipole moment) fluctuates. This fluctuation favors opposite fluctuations in the other
atom. The induced dipole moments have opposite directions; therefore, the atoms attract
each other, no matter what the sign of the fluctuation. Let’s use this physical picture to
explain the % dependence in the attractive part of the potential. We begin by estimating
the force on a dipole of moment p sitting in an electric field E. (In this paragraph, F is an
electric field, not an energy. Sorry!) A dipole is an ideal version of a positive and a negative
charge (4+¢q and —q) separated by a small distance d; the dipole moment is the product
1 = qd. The force on a dipole is therefore a sum of the force on the positive charge and on
the negative charge. So

F~q(E(r+d) —E(r)). (4.16)

Here, E(r) is the field at a distance r from the other atom. Because d is small, this force is
approximately qdE'(r), or uE'(r), where E'(r) = 0E/0r. We assume that E o r?, for some
constant b; then E'(r) ~ E(r)/r and F ~ pE/r. What is the dipole moment? The dipole is
induced by the field of the other atom; that field polarizes this atom. So 4 = aF, where a is
the polarizability of the atom (a characteristic of the atom that is independent of field, as
long as the field is not too strong). Then F' ~ aE?/r. What is the field E? The field from a
dipole is proportional to 73, so F' o< 7. Therefore, U o %, which explains the attractive
part of the Lennard-Jones potential. The r~'? term represents short-range repulsion; it is
a fit to experimental data, and cannot be estimated with these simple arguments.

For the Lennard—Jones potential, the ratio n/m is 2, so the order-of-magnitude estimate
of Tmin 18 in error by a factor of 21/6 ~ 1.1. Here is another example: Minimize the function
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f(r) = e 4+ 1/r2. The minimum is at 7o ~ 0.925 (the solution of e” = 2/r?), whereas the
order-of-magnitude method predicts that ro ~ 0.7 (the solution of e” = 1/r?). So even
when the two contributors to f are not power laws, the order-of-magnitude method gives a
reasonable answer. [To understand the range of validity of this method, construct functions
for which it is grossly inaccurate.]

2 —
1.5
1 —
E
0.5 —
0— Estimate KE
Actual Total
\ \ \ \ \
1 2 3 4 5

Figure 4.3. Order-of-magnitude calculus: minimizing scaled energy E versus
scaled bond length 7. The scaled energy is the sum of potential and kinetic en-
ergy. In absolute value, potential and kinetic energy are equal at Tmin = 1, so the
order-of-magnitude minimum is at Fmin = 1. Honest calculus produces Tmin = 2.

Now we return to the original problem: determining the Bohr radius, for which order-
of-magnitude minimization predicts the correct value. Even if the minimization were not so
charmed, there would be no point in doing the a calculus minimization; the calculus method
is too accurate. The kinetic-energy estimate uses a crude form of the uncertainty principle,
ApAx ~ h, whereas the true statement is that ApAx > h/2. It uses a crude definition of
Az, that Ax ~ r. It uses the approximate formula KE ~ (Ap)?/m. This formula not only
contains m instead of 2m in the denominator, but also assumes that we can convert Ap
into an energy as though it were a true momentum, rather than merely a crude estimate
of the root-mean-square momentum. After making these approximations, it’s pointless to
minimize using the elephant gun of differential calculus. The order-of-magnitude method is
as accurate as the approximations that we used to derive the energy.

Our name for this method of equating competing terms is balancing; we balanced the
kinetic energy against the potential energy and found that ag ~ h%/mce?. Nature could have
been unkind: The potential and kinetic energies could have been different by a factor of 10
or 100. But she is kind: The two energies are roughly equal, up to a constant that is nearly
1. “Nearly 1”7 is also called of order unity. This rough equality occurs in many examples
that we examine; we often get a reasonable answer if we pretend that two energies (or, in
general, two quantities with the same units) are equal. When the quantities are potential
and kinetic energy, the virial theorem, which we discuss in Section 4.2.1, protects us against
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large errors.

4.1.8 Numerical evaluation

Now that we have derived .

mee?

apg ~ (417)

in two ways, we evaluate ag: We put in numbers. You might think that we need to know or
look up A, e, and m,. Not so. We can avoid looking up h, me, and e, by using three useful
combinations of fundamental constants. The first two are round values that use eV as the
unit of energy:

hic ~ 2000eV A, (4.18)
mec? =~ 500keV. (4.19)

The third combination is 2 .
= =2 os ~ 0.0L (4.20)

This combination is the fine-structure constant, a dimensionless measure of the strength
of the electrostatic force. Dimensionless numbers, such as «, are worth memorizing, because
their value is the same in any unit system.
The Bohr-radius estimate (4.17) contains e? downstairs, so we multiply by fc/hc to
manufacture o~
h?  he
meohc €2’

ag ~ (4.21)
This expression contains m., so we multiply by ¢?/c?. After canceling one fc in the numer-
ator and in the denominator, we find that

he he

—_— . 4.22
mec? 2 ( )

ag ~

We could have gone directly from (4.17) to (4.22) by multiplying by ¢?/c2. We wrote

out the individual steps to distinguish two tricks that often go together. The first trick is

to insert hic/hc. The second trick is to insert ¢?/c? to make mec?, which has the round

value 500keV. Often, if you add enough powers of ¢ to convert every & into Ac, you also

convert every me into mec?. In such cases, the two tricks combine into one, which here is
multiplication by ¢?/c2.

Now we can put easy-to-remember numbers into (4.22) and determine the Bohr radius:

(2000eVA)

ag ~

Knowing the size of hydrogen, we can understand the size of more complex atoms.
Hydrogen is the simplest atom; it has one electron, and therefore one energy shell. The
second row of the periodic table contains elements with two shells; the third row contains
elements with three shells. The most abundant elements on earth (oxygen, carbon, silicon)
come from the second and third rows. As a rule of thumb, the diameter of an atom with n
shells is n A, for n < 3; for n > 3, the diameter is still 3 A, because the extra nuclear charge
in those atoms drags the electrons closer, and makes up for the increased number of shells.
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The following argument expands on this statement about extra nuclear charge. Consider
an atom with atomic number Z; it has Z protons and Z electrons. The outermost electron
moves in a potential created by the Z protons and the Z — 1 other electrons. We cannot
easily calculate the charge distribution, so we need to simplify. Imagine that the other
electrons orbit inside the outermost electron. This assumption is a crude approximation; it
does not account for important facts from quantum mechanics, such as the Pauli exclusion
principle,? nor does it accurately represent atoms in which two or more electrons are in
the outermost shell. However, it is a simple assumption, and has truth in it, so let’s use
it. What charge distribution does the outermost electron see? It sees a nucleus with charge
e (effectively, a single proton): The Z protons and the Z — 1 electrons almost cancel. An
outermost electron orbits a single proton—this configuration is the description of hydrogen.
So the environment of the outermost charge is independent of Z, and every large-Z atom is
the size of hydrogen. Part of this conclusion is reasonably accurate: that every large-Z atom
is a similar size. Part of the conclusion is not correct: that the size is the size of hydrogen.
It is incorrect because of the extreme approximation in assuming that every other electron
orbits inside the outermost electron, and because it neglects the Pauli exclusion principle.
We retain the reasonably correct part, and use a ~ 3 A for a typical atomic diameter.

-
w

Figure 4.4. Packing of atoms in a solid or liquid. For clarity, we draw only a
two-dimensional slice of the substance. In this crude picture, each atom occupies
a cube of side length a ~ 3 A, or a volume of ~ 30 A% or3-1072 cm®.

4.1.4 Densities

From atomic sizes, we can estimate densities. An atom is a positive nucleus surrounded by
a cloud of negative charge. A solid or liquid contains atoms jammed together. The electron
cloud limits how closely the atoms can approach each other, because the repulsive force
between the electron clouds is large when the clouds overlap. At large distances (relative to
the Bohr radius), two atoms hardly interact. Between these extremes, there is a minimum-
energy distance: a, the diameter of the electron cloud. So a ~ 3 A is also a typical interatomic
spacing in a solid or liquid.

2. See any textbook on quantum mechanics for an explanation of the Pauli principle; Gasiorowicz’s
text [18] is particularly compact and clear.
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Let A be the atomic mass of the atom; A is roughly the number of protons and neutrons
in the nucleus. Although it is called a mass, A is dimensionless. Each atom occupies a cube
of side length a ~ 3 A (Figure 4.4), and has mass Amy,. The density of the substance is

mass Amy
— ~ 4.24
p volume (3 A)?” ( )
or, with m, ~ 2000m, ~ 2-10"** g,
Ax2-107%4 A
pr~ axs 28 2 gcmf?’. (4.25)

3.10-25cm® 15

In Table 4.2, we compare this estimate against reality. This estimate explains why most
densities lie between 1 and 10 g cm™3: Most everyday elements have atomic masses between
15 and 150.2 We even threw into the pack a joker—water, which is not an element—and
our estimate was accurate to 20 percent. In Example 4.1, we answer a question that may
be painfully familiar if you have moved house or apartment.

p(gem™?)

Element FEstimated Actual
Li 0.47 0.54
H>0O 1.2 1.0
Si 1.87 2.4
Fe 3.73 7.9
Hg 13.4 13.5
Au 13.1 19.3
U 15.9 18.7

Table 4.2. Actual and estimated densities of solids and liquids. The estimate is

from (4.25).

Example 4.1 How heavy is a small box filled with books?

Books are mostly paper; as we reasoned in Section 2.1.1, paper has
the same density as water, so ppook ~ 1gcm™>. In the United States, the
canonical book box is the small United Parcel Service box. Its volume is
60 cm x 30 cm x 30 cm ~ 5-10% cm?, so its mass is m ~ 50 kg—approximately
the mass of a person. It is no wonder that these boxes are so heavy, and no
wonder that they are no larger.

3. This density estimate also shows why, for materials physics, cgs units are more convenient than
mks units. A typical cgs density is 3, which is a modest, easy-to-work with number. A typical
mks density is 3000, which is unwieldy.
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4.2 Energies

Part of the order-of-magnitude picture of materials is the spacing between atoms (bond size);
another part is the force or interaction energy between atoms (bond energy). Following the
pattern of Section 4.1, we first estimate the binding energy of hydrogen, and then extend
our understanding to more common materials.

4.2.1 Binding energy of hydrogen

In hydrogen, the binding energy is the energy required to drag the electron infinitely far
from the proton. In more complex atoms, it is the energy to remove all the electrons. We
can estimate the binding energy by first estimating the potential energy in hydrogen. The
potential energy of an electron and a proton separated by the Bohr radius is

e? mee?

PE~—— ~ —
ap h?

(4.26)

The binding energy is — FEiotal, Where Eiota1 is the total energy—it includes kinetic as well
as potential energy. What is the kinetic energy? The virial theorem says that, in a 1/r"
potential (n = 2 for hydrogen),

PE = —nKE. (4.27)

Therefore, Eiota1 = PE + KE = PE/2, and the binding energy is

1 meet
Eo = —FEiotal = = 4.28
0 total = 53 (4.28)
To evaluate this energy, we create (hic)? and mec? by multiplying Fy by ¢?/c:
et 1
Ey~ = mec2—2 = —mecta?

=13.6€V.

1
Tk 5.1-10° eV x BVe
By luck, the errors in our approximations have canceled: The honest-physics factor is 1.
Equation (4.29) is the correct ground-state energy of hydrogen (neglecting relativistic effects,
such as spin). We can rewrite the binding energy as me(ac)?/2, which is the kinetic energy
of an electron with v = ac: the fine-structure constant is the velocity of an electron in
atomic units, where charge is measured in units of e, length in units of ag, and velocity
in units of c.
For future reference, we quote useful energy conversions:

1eV~1.6-10"2erg

4.30
~1.6-10717J, (4.30)
lcal ~ 417, (4.31)
and
1 eV /molecule ~ 25 kcal mole™!
(4.32)

~ 100kJ mole ™.
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4.2.2 Covalent- and ionic-bond energies

Covalent and ionic bonds are formed by attractions between electrons and protons; the
hydrogen atom is a crude model of this interaction. The main defect of this model is that
the electron—proton distance in a hydrogen atom is much smaller than it is in most materials.
In most materials, the distance is roughly a ~ 3 A, rather than ag ~ 0.5 A. For covalent and
ionic bonds—their binding energy is from the electrostatic attraction of monopoles—the
binding energy is smaller than Ey by a factor of 6: Fpong ~ 2eV. The factor of 6 occurs
because a ~ 6ag, and electrostatic energy scales as F o< 1/r. [Scaling E is more direct than
is evaluating e?/a from scratch. It does not clutter the derivation, or our thinking, with
irrelevant information, such as the value of i or a.] Table 4.3 lists bond energies. For bonds
that include carbon, oxygen, or hydrogen—which have a ~ 1.5 A—we expect Epong ~ 4€V.
This expectation is confirmed by the tabulated values. Van der Waals bonds are much
weaker than covalent or ionic bonds, as you would expect from the high reciprocal powers
of r in the Lennard—Jones potential (4.15).

Bond  Energy (eV)

Cc-C 6.3
H-H 4.5
Na—Cl 4.3
H-O 4.4
Fe-O 4.0
C-H 3.5
Si—Si 3.3
Hg—S 2.2
Cd-S 2.1
7Zn—S 2.1

Table 4.3. Approximate covalent and ionic bond energies. Source: CRC Hand-
book of Chemistry and Physics [88, pages 9-123-9-128].

The cohesive energy is the energy required to break the weakest type of bond in an
object. In water, it is the energy required to remove a water molecule from the liquid into
the vapor. In hydrogen, it is the energy required to break the electron—proton bond (given
by (4.29)). We denote the cohesive energy by €.. The typical magnitude of e. indicates why
the electron—Volt is a convenient unit in materials physics: Cohesive energies measured in
eV are of order unity (for strongly bonded substances).

4.3 Elastic properties

The size of white dwarfs or of raindrops, the speed of sound—these quantities we can
estimate using our knowledge of atomic sizes and energies, and the methods that we have
developed. We begin with the speed of sound. It illustrates a method that we use frequently:
approximation by springs.

4.8.1 Speed of sound
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In a gas at pressure P, the speed of sound is roughly
cs ~\/P/p, (4.33)

where P is the pressure and p is the density. We pretend that the gas is an ideal gas, even
though this pretense introduces a theoretical difficulty: Sound cannot travel in an ideal
gas, because sound waves require molecular collisions to propagate, and in an ideal gas,
molecules do not collide. A more detailed analysis shows that sound waves with frequency
v can propagate provided that each molecule has a collision frequency f > v. In air, which
for most purposes can be treated as an ideal gas, the collision frequency is roughly 10° Hz.
This frequency is high enough to include most sound waves that we are interested in. The
slight deviation from ideal-gas behavior is sufficient to make sound possible, so we will not
worry about this theoretical incompatibility between sound propagation and the ideal-gas
approximation.

The sound-speed formula (4.33) is the only dimensionally correct combination of ¢g, P,
and p. For a solid or liquid, we expect a similar relation, but we need to replace pressure
with an analogous quantity. The units of pressure are force per area, or energy per volume:
Pressure is energy density. We already have a volume: the interatomic volume a?. We have
an energy: the cohesive energy €.. An analogue of pressure could be

energy €e
~ —= .
volume a3

/ M | €c | €c
CS ~ 7 ~ pa3 ~ E (435)

where pa® ~ m is the mass of an atom.

~

(4.34)

The speed of sound is then

Al

Figure 4.5. Wire stretched by a force. The force F stretches the wire by Al from
its relaxed length l; it has cross-sectional area A.
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The quantity M is the elastic modulus. It is analogous to the spring constant, but
it is more useful. Imagine a wire (Figure 4.5) stretched by a force. Its spring constant
determines how far it stretches: F' = kyAl. A thicker wire (of the same material)—with,
say, area 4A—has a correspondingly larger spring constant: k; = 4k,,. A longer wire—with,
say, length 21 (and the same area)—has a correspondingly smaller spring constant: ky, /2.
The spring constant is not a property of the wire alone; it depends on the wire’s length and
area as well. The elastic modulus fixes this problem; it depends on only the substance.

How can we define such a quantity macroscopically, in terms of lengths, areas, and
forces? (Equation (4.34) is a microscopic definition.) One dependence is on area: k/A is
independent of area. The other is on length: k! is independent of length. The combined
quantity kyl/A is independent of area and length. In terms of this quantity, F' = kyAl

becomes LN A
o F o kol Al
v = o 1 (4.37)
S N~
o M €

where o is stress (or pressure), M is elastic modulus, and € is fractional change in length,
or strain. The strain is the dimensionless measure of extension. We show shortly that

M = kyl/A (4.38)

is the macroscopic equivalent of (4.34).

m k
MY OO
e df

(OMWWWOIAMAAAANNB)

Figure 4.6. Small piece of a solid. The atoms, with mass m, are connected by
bonds approximated as ideal springs of spring constant k. Att = 0, atom 1
gets a kick, and moves a distance d (second row). When does atom 2 follows in
atom 1’s footsteps?

We just imagined a wire as a spring. We can apply to the spring picture to the atomic
scale as well. On the atomic scale, the bonds are springs. Imagine a line of atoms, each
connected to its neighbors by complex forces: electrostatics and kinetic energy in delicate
balance. We replace the complexity of a bond with the simplicity of a spring (Figure 4.6).
We can use this picture to estimate the sound speed, and then compare the microscopic
estimate with the dimensional guess (4.35). A sound wave transmits atomic motion from
one location to another. To idealize the complex motion of the atoms, imagine that atom 1
gets a swift kick (an impulse) that moves it a distance d to the right. When does atom 2
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hear the news, and move a distance d? Before the kick, the atoms rested peacefully in their
equilibrium positions. Right after atom 1 moves, the force on atom 2 is F' ~ kd, where k
is the spring constant, so atom 1’s acceleration is a = F/m ~ kd/m. After time ¢, atom 2
has traveled a distance at?> ~ kt?d/m. This distance reaches d at 7 ~ y/m/k. The sound
speed is then ¢ ~ a/T ~ \/ka?/m. To estimate the spring constant, k, we use e, ~ ka?.
This approximation is equivalent to assuming that a bond breaks when its length is doubled
(Figure 4.7). With this approximation, cs ~ \/€./m, as we derived in (4.35) by analogy with
gases.

a
|
|
|
|
|
|

Figure 4.7. Bond energy versus separation. As two atoms approach, electron
repulsion contributes a large positive energy. As they separate, electrostatic at-
traction weakens (becomes less negative). In between is a happy compromise, the
energy minimum, a. Around that minimum, we fit a parabola: We assume that
the bond is spring (we discuss the near-universal value of modeling physical pro-
cesses with springs in Section 6.1).

We can count bond springs to justify the macroscopic expression M = kyl/A from
(4.38). The wire of Figure 4.5 is a bundle of filaments, where each filament is a line of
atoms. Each filament has N; ~ [/a springs; the spring constant of a filament is therefore
reduced by [/a compared to the spring constant of a bond. The wire contains Ny ~ A/a?
filaments; this factor increases the spring constant of the wire compared to the spring
constant of a filament. The spring constant of the wire is then ky, = kN;/N; ~ kA/la. With
this expression, the macroscopic definition of elastic modulus (4.38) becomes M ~ k/a. We
need to estimate k, for which we use ka? ~ e.. Then we have M ~ ¢./a®, which is the
microscopic estimate (4.34).

To estimate a typical sound speed, we first evaluate a typical elastic modulus using
(4.34):

€c 2¢V 2x1.6-1072erg
a3 T 3APF T 310 B e’ (4.39)

~ 10" ergem 3.

This estimate for M is reasonable for many materials (Table 4.4). A “typical” solid has



4. MATERIALS I 64

M

Substance (1011 erg cm_3)
Steel 20
Cu 11
Ice (—=5°C) 0.9
Al 7.9
Pb 1.8
C (diamond) 44
C (graphite)

1 to planes 3.5

|| to planes 100
Ash (white) 12
Glass 6£0.5

Table 4.4. Elastic moduli. There are numerous elastic moduli. We list for each
substance the Young’s modulus, which is a combination of the shear modulus
and the bulk modulus. Note how strong M for graphite depends on direction,
because result of graphite’s layered structure. If M1 were as high as M, then
lead pencils would be diamond styluses. Source: Smithsonian Physical Tables

[16].

atomic mass, say, 40; from (4.25), it has density p ~ 3gcem ™3, so

1011 -3
o M IO e e T (4.40)
p 3gem—3

This estimate is reasonably accurate (Table 4.5), indicating that we have included the
important physics.

4.3.2 Yield strength

How strong are materials? To break a perfect material (for example, diamond or carbon
filament with no flaws), we would have to apply a stress ~ M. Most materials break long
before the stress reaches M, because flaws in their crystal structure concentrate stress, so
locally the stress may reach M even if the global stress is much less than M. A typical
breaking stress (or yield stress) is between 0.001M and 0.01M. The dimensionless factor
is the yield or breaking strain, €,, which we list in Table 4.6. A typical yield stress is
10° erg cm 3. We now apply these estimates to mountain climbing.

4.83.2.1 MOUNTAIN HEIGHTS ON THE EARTH. How much energy does it take to climb the
tallest mountain on a planet? We first determine the height of such a mountain (Figure 4.8).
The strength of the rock limits its height. The mass of the top conical block is ph3, where
p is the density of rock; it produces a force F ~ pgh3. The resulting stress is

0~ — ~ —— = pgh. (4.41)



4. MATERIALS T 65

Substance v (kms™!)

Glass 5.5
Steel 5.0
Brick 3.7
Pine 3.3
Water 1.5
Hg 1.5
Cu 3.6
Cork 0.5
Granite 4.0

Table 4.5. Speed of sound at room temperature. Qur generic estimate is that
v~ 1.7kms™ . It is a useful rule of thumb; but the rule of thumb underestimates
the speed in metals (and stiff substances such as glass), and overestimates the
speed in soft substances such as cork. Source: Smithsonian Physical Tables [16,
p. 306].

Substance €y

Steel 0.005
Cu 0.002
Al 0.001
Rock 0.001

Table 4.6. Approzimate breaking strains, €.

The strain is L
o Py
- B 4.42
CTMTM (442)

For rock, M ~ 10'2 ergcm™3. When € ~ €y, the rock yields, and the mountain shrinks until
e falls below €,. Therefore, the maximum height for a mountain on the earth is
Me,

Pmax ~ . 4.43
Py (4.43)

For a typical rock, €, ~ 1073 and p ~ 3gem™3, so

102 ergem ™3 x 1073

3gcem—3 x 1000 cm s—2

Pmax ~ ~ 3km. (4.44)
In this estimate, we neglected many numerical factors; not surprisingly, some mountains,
such as Mount Everest (where h ~ 10km), are larger than our estimated hApax. (Perhaps
Everest is made of extra-hard rock, such as granite.)

4.3.2.2 MOUNTAIN HEIGHTS ON OTHER PLANETS. Is it more difficult to climb the highest
mountains on Mars, or Mercury, or the asteroid Ceres, compared to the highest mountains
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A~ h?

Figure 4.8. Mountain. This approzimate mountain is a cone with 45° slopes.
The shaded top block with mass m squeezes the hatched chunk (whose footprint
is the lightly shaded ring). When the mountain gets too high, the squeeze becomes
greater than the mountain rock can withstand.

on the earth? We assume that all astronomical objects are made of the same type of rock.
The energy required to climb to the top is E ~ mghmax ~ mMe,/p, where m is the mass
of the climber. For a typical climber, m ~ 50kg, so

5-10*g x 1012 ergem =3 x 1073
~ 3gem—3
~1.7-103 erg
~ 400 kcal,

E
(4.45)

or one chocolate bar (at perfect efficiency). This energy is independent of g. People do not
climb with perfect efficiency; no one could climb Everest on 1 or even 10 chocolate bars.

How high are these mountains? The energy to the climb the mountains does not depend
on g, but the maximum height does. As we found in (2.2.1), g & R. SO hmax x R,
and the fractional size of mountains, hpax/R is R~2. For the earth, hymax ~ 3km and
Rg ~ 6000km, so h/Rg ~ 1073, For an asteroid of radius R ~ Rg /30 (roughly 200km),
the fractional height is roughly 1. This estimate is reasonably accurate. Asteroids with
R ~ 200km have mountains roughly their own size; these mountains make the asteroids
look oblate. In Section 4.4, we estimate mountain heights on white dwarfs.

4.3.83 Surface tension

Water droplets are spherical, because spheres have the smallest surface area for a given
volume. This mathematical explanation hides a physical question: Why do water droplets
minimize their surface area? The reason is that water has surface tension. Surface tension
is the energy required to create one unit of new surface (surface tension has units of energy
per area). On our picture of a solid, every atom in the interior is bonded to six neighbors.
Each atom at the surface has only five neighbors. In a surface of area A, there are N = A/a?
atoms. To make such a surface, we must break N bonds, one for each atom. The cohesive
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energy is the energy to break all six bonds, so Fyong ~ €./3. To avoid counting each bond
twice, we divide by 3 instead of by 6. So the surface energy is E ~ AFyonq/a® ~ Aec/3a>.
The surface tension is the ratio E/A:

€c
3a2’

(4.46)

Il
|

v

We can estimate cohesive energies from heats of vaporization, as we discuss in Section 5.2.
For water, e, ~ 0.5eV. Using our standard spacing a ~ 3 A, we get

0.5eV x 1.6-10 2 ergeV !
Twater 3% (3-10-8 cm)? (4.47)

~ 300 erg cm ™2,

Although our basic model is sound, this estimate is large by a factor of 4, partly because
of the crudity of our six-neighbor picture of solids.

Surface-tension forces

Circumference ~ 27r

Drag force Fy l Drag force Fy

Velocity v

Figure 4.9. Falling raindrop of density pw and radius r. The drop has reached
terminal velocity v. Surface tension (the facing arrows) binds the two halves of
the drop along the circumference. The shaded area shows a cross section of the
drop.

Surface tension determines the size of raindrops. Falling raindrops feel a drag force,
which tries to split the drop into smaller droplets. Many small raindrops cost extra surface
energy, which fights the splitting. There is a happy, intermediate size, which we estimate
by balancing the surface tension (as a force, F)) and the drag force, Fyag (Figure 4.9).

We first estimate the surface-tension force. Surface tension is energy per area, which
is also force per length. To obtain a force, we multiply v by the only length involved:
the circumference, which is roughly r. So F, ~ rv. The drop moves at constant velocity
(terminal velocity), so we equate the drag force and the weight: Fyag = prig, where pr? is
the mass of the drop. Equating the drag and surface-tension forces, we get pr3g ~ rv, or

[
Tmax =2 1| ——. 4.48
Pw9 ( )
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For water, 7 ~ 70dynecm™1!, so

70 dynecm—1!
max " ~ 0.25 . 4.49
" \/1gcm‘3 x 103 cms—2 o (4.49)

The terminal velocity is given by the high-speed result (3.49):

U~ 4 [ 9T max Puater, (4.50)
Pair

Because pyater/pPair ~ 1000, we get v ~ 10m/s, which is the speed of slow driving, or fast
sprinting. This velocity seems about right; if you drive slowly in a rainstorm, the drops
strike at roughly a 45° angle.

4.4 Application to white dwarfs

White dwarfs are small, dense stars in which the pressure is high enough to completely
ionize the atoms. They are dead stars; there is no nuclear fusion in their interiors. We apply
our estimation methods to this bizarre state of matter, to show you that the principles have
wide use.

4.4.1 Size of a white dwarf

How large is a white dwarf? In a white dwarf, the atoms live in a sea of electrons. What pre-
vents gravity from squeezing the white dwarf to zero size? You could ask a similar question
about hydrogen: What prevents the electrostatic force from squeezing the radius to zero?
In hydrogen, and in white dwarfs, confinement energy prevents collapse. For a white dwarf,
we can find the minimum-energy radius by balancing gravitational and confinement energy.
[The concept of confinement energy is a simple version of a more complicated argument
that uses the Pauli exclusion principle; see Section 5.6.2.]

We first work out the confinement energy. Imagine a star of radius R and mass M,
composed of atoms with atomic number Z and atomic mass A. We define the dimensionless
ratio # = Z/A, because this factor shows up often in the derivation. The star contains
M/Am, atoms, and N = (M/my)(Z/A) = M/m, electrons. The number density of
13, (We shamelessly
/ 3, and

/me. This result is valid for nonrelativistic

electrons is ne, so each electron is confined to a region of size Ax ~ ne
neglect numerical factors such as 47/3.) The electron’s momentum is Ap ~ hne
its confinement energy is (Ap)?/me ~ n2n2/?

electrons. The total confinement (or kinetic) energy is this value times N,:

h2n3/3 h2N5/3
KE ~ e Ne ~ W, (451)
2/3 2/3 ) a2 . .
because ne'” = Ng’°/R?. In terms of M and m,, this energy is
h2M5/3
memp "R

We next work out the gravitational (potential) energy, which is the sum of all pairwise
interactions between all particles in the star (protons, electrons, and neutrons). What a
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mess! We first try a dimensional argument. We construct an energy using the variables m,,
mp, M, and R. Any expression of the form

PE ~ G x mas}z X mass’ (4.53)

where G is the gravitational constant, is an energy. Unfortunately, there are three masses

from which to choose, and two slots in which to put them. The possibilities are numerous.
Fortunately, we can restrict the freedom. Gravity does not care about the composition of
the star; muons, quarks, electrons, and protons all obey universal gravitation. So m. and

my are irrelevant, and

2
PENGM .

(4.54)

A physical argument also gives us this result. Two random points in the white dwarf have
a separation of ~ R. Imagine one-half of the star clumped at one point, and one-half
clumped at the other point. The gravitational potential energy between the two clumps
is ~ —G(M/2)?/R. Once we neglect the numerical factors, we get PE ~ —GM?/R, in
agreement with (4.54), but with the correct sign.

Now we equate PE and KE (in absolute value) to solve for R:

GMQ h2ﬁ5/3M5/3

, (4.55)
R 77”Lernfr1;/3R2
>0 2 35/3
hp
~ MV
R Mo, (4.56)
eMp

This expression contains two factors of A, which suggests that we multiply it by ¢?/c? to
manufacture two factors of fic. After regrouping, we find that the radius is

he  he rmp\Y/3 os
R agm () 7 (4.57)

This expression contains factors familiar from our computation of the Bohr radius. The
factor hic/mec? is also in (4.22). This parallel suggests that we compare the second fac-
tor, hic/Gm?2, to the second in (4.22), which is hc/e® (the reciprocal of the fine-structure
constant). We therefore call Gm% /he the gravitational fine-structure constant. Its value is
6-10739: Gravity is much weaker than electrostatics. The remaining factors in (4.57), which
are dimensionless, have no analogue in the hydrogen calculation.

If our sun were a white dwarf, how large would it be? We use (4.57) and scale the result
against M. For most atoms, § = Z/A ~ 0.5. The radius is

1/3 ~1/3
R~ e _Te (mp> 35/3 <£> . (4.58)

2 2
mec? Gmg \ Mg Mg

The numerical factors combine to give

M -1/3
~2-10°km [ — ) 4.
R 0 m<M®> (4.59)
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When M = Mg, R is roughly 0.3 earth radii. A more exact calculation—honest physics—
produces a factor of 4.5 in front: The actual radius is roughly one earth radii. White dwarfs
are dense.

Our computation of the mass—radius relation followed the same procedure as did the
computation of the Bohr radius. Both systems have a potential energy source: gravity in
the star, electrostatics in hydrogen. Without opposition, the potential energy would be a
minimum at zero size (R = 0 or ag = 0). In both systems, confinement energy fights collapse.

Note that the radius of a white dwarf is oc M ~/3, so the volume is inversely propor-
tional to the mass. For fixed Z and A, the electron density is therefore oc M?. At a certain
mass, ne becomes large enough that the electrons become relativistic (this derivation as-
sumed that the electrons are nonrelativistic). We can estimate this critical mass equating
the kinetic energy per electron to mec?, and solving for the white-dwarf mass. The kinetic
energy per electron is KE/N,, where KE is given in (4.51):

h2NZ®
Eo~v ——. 4.
meR? (4.60)
We equate this energy to mec?:
h2NZ®
™ mec?. (4.61)

We now use the expression for R in (4.57), and the expression N, = BM /m, for the number
of electrons. With these substitutions, (4.61) becomes

h2ﬁ2/3M4/3 ) M_Q/thﬂlg/g

(4.62)
mf,/?’me ‘ Gngméo/?’
N—_— ————
R2
After canceling common factors and rearranging, we find that the critical mass is

he \3/2

Mcritical ~ ﬂQ (Gm2> my. (463)
P

With an honest-physics factor of 3.15 in front, this mass is the Chandrasekhar mass, which
he derived in 1931; it is the largest mass that a white dwarf can have, and its value is roughly
1.4M¢,. We did not try to calculate this mass—we tried to calculate only the transition mass
between nonrelativistic and relativistic regimes—but we found it anyway. The reason that
the transition mass and the maximum mass are related is that a relativistic white dwarf is
less stiff than a nonrelativistic one (it does not withstand compression as well). Imagine a
nonrelativistic white dwarf to which we slowly add mass. As the mass increases, the radius
decreases (R oc M 1), and so does the electron velocity. As the electron velocity approaches
¢, however, the less-stiff relativistic behavior begins to dominate, and the radius decreases
faster than M ~!. The electron velocity then increases even more than we would expect from
the nonrelativistic relation, and the less-stiff relativistic behavior dominates even more. You
can see positive feedback in this description. At a large enough mass, this feedback makes
the radius go to zero. The mass at which this collapse occurs is the Chandrasekhar mass.
(The radius does not actually go to zero—the white dwarf becomes instead a much denser
object, a neutron star.) Because the same physics determines the Chandrasekhar mass and
the transition mass, our estimate is also an estimate of the Chandrasekhar mass.
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4.4.2 Mountains on white dwarfs

How high are the tallest mountains on white dwarfs? The energy density is the elastic
modulus: M ~ PE/R3 ~ GM?/R*. The mass density is p ~ M/R3. And the acceleration
due to gravity is g ~ GM/R?. The height estimate (4.43) becomes

ey x GM?/R*
(M/R?) x (GM/R?)

~ e R. (4.64)

hmax ~

The morass of proton and electron masses, 3, and so on, have canceled. All that remains
is the yield strain and the white-dwarf radius. Perhaps white-dwarf matter has e, ~ 0.01
(because the high pressures squash imperfections in the lattice). We use (4.59) for R. The
mountain height is then

~1/3
Rmax ~ 20k —_— . 4.65
" <M®> (4.65)

If M = Mg, the mountain is ~ 20 km tall. It would be a many-chocolate-bar climb.

4.5 What you have learned

= Quantum mechanics: We can understand many of the consequences of quantum me-
chanics by simply adding & to the list of relevant variables for dimensional analysis.
Quantum mechanics, through £, introduces a new momentum scale, the uncertainty
momentum Ap, and indirectly, the uncertainty energy. This energy is also called the
confinement energy.

» Balancing: Many physical systems contain one process that competes with another.
For example, one energy (perhaps gravity) competes with another energy (perhaps the
uncertainty energy). The energies usually are equal near the minimum-energy state.
Look for these competitions!

« Atomic sizes: Atoms have a diameter of a few A.

= Binding energies: Typical covalent and ionic bond energies are a few eV, as a conse-
quence of electrostatic attraction.
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How fast does a turkey cook? How quickly do the ground and the air cool on a cloudless
night? How high a fever do you run after 30 minutes in a hot tub? At what temperature does
water boil? We can answer such questions by estimating the thermal properties of materials.
When we estimate boiling temperatures, we introduce an extended example of successive
approximation—the main technique of order-of-magnitude physics. As a warmup, we begin
with thermal expansion.

5.1 Thermal expansion

Most materials expand when they get hotter, and contract when they get cooler. If bridge
designers forget this fact, and design a bridge so that its joints exactly mate in the summer,
then it will fall down in the winter. We would like to understand why materials expand,
and by how much.

Let’s look at the potential of an atomic bond, and see what it implies about thermal
expansion. In Section 4.3.1, we approximated a bond as a spring. We can use this ap-
proximation to estimate a typical thermal-expansion coefficient—the fractional length
change per unit change in temperature. At a temperature T, the bond spring vibrates with
average energy k7T (actually, k¥7'/2, but we ignore the 2). How far does that energy stretch
the bond? The bond energy is, in this approximation,

mmN—%+%@@—@{ (5.1)

where FEj is the bond energy, ks is the spring constant, a is the equilibrium bond length,
and r is the bond length. We can factor out Ejy:

E(r) ~_14 ks(r — a)2/2‘
Ey Ey

(5.2)

We can write Ey = fksa®/2, where f is a dimensionless constant of order unity. Then

E(r)
Ey

~ 1+ (2 - 1)2 f. (5.3)

To simplify the algebra, let’s do the calculation in a dimensionless unit system. We measure
energy in units of Fy and distance in units of a. Then

E(r) ~—1+(r—1)f. (5.4)
For now, let’s simplify by assuming that f = 1. Then

E(r) ~ =1+ (r—1)2 (5.5)
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If we define z = r — 1, so z is the change in length (which is what we are interested in), then
the change in energy is AE(x) ~ x2. To find x, we equate AE(x) to T' (we use also units in
which k = 1, so temperature is energy). We find that 22 ~ T, or x ~ VT. [In normal units,
this distance is Tpormal ~ a+/kT/Eg, but that value is irrelevant for the coming surprise.|
How far does the bond shrink? It shrinks exactly the same distance as it expands, because
a spring potential is symmetric. (Even if we had retained f, this conclusion would still
hold.) So the average separation in a spring potential is independent of temperature: The
thermal-expansion coefficient is zero!

We know that this result is not correct. We made too drastic an approximation when we
replaced the bond with a spring. An actual interatomic potential is asymmetric, as shown
in the cartoon potential-energy curve of Figure 5.1. The asymmetry produces a nonzero
thermal-expansion coefficient.

a
|
|
|
|
|
|

Figure 5.1. Potential energy versus separation. The potential energy, E, is
plotted on the vertical azis (in arbitrary units); the equilibrium spacing, a, is
marked on the horizontal axis. At higher energies (higher temperatures), the
curve skews toward positive r, making the material expand as temperature rises.
The parabola, although an adequate approzimation to E(r) for small deviations
from a, gives a totally incorrect thermal-expansion coefficient: zero.

A more accurate approximation to E includes terms up to z3:
AE(z) ~ z* + Ba?, (5.6)

where (3 is a constant that measures the asymmetry of the potential. (We do not have to
include the z* contribution, because it is symmetric, and therefore contributes no average
length change). With the more refined bond energy (5.6), how much does the bond stretch
or shrink? The change in energy is

AE(x) ~ z* + B3 (5.7)

We equate this energy to T"
2?4 pa2d =T. (5.8)
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If « is small, we can solve this equation by successive approximation. Can we assume that x
is small? Although the analysis using a spring potential does not explain thermal expansion,
it does give us the estimate that  ~ /T (in dimensionless units). A typical T is 0.025eV; a
typical covalent bond energy is Fy ~ 2.5eV, so in dimensionless units, 7' ~ 0.01 and « ~ 0.1.
For order-of-magnitude calculations, x ~ 0.1 is small, and we can solve (5.8) by successive
approximations. For the first approximation, we ignore the Bx3 term, and recover the old
result: z; ~ 4+/T’; the plus sign represents bond stretching, the minus sign represents bond
shrinking. For the next approximation, we replace 8z3 by Bz3:

2+ BT =T (5.9)

The solution is
x = +/T F BT3/2. (5.10)

(We have to carefully distinguish + from F, by carefully tracking bond stretching and bond
shrinking. For expansion, take the top sign; for contraction, take the bottom sign. Remember
that 8 will be negative for most potentials, such as for the potential in Figure 5.1.) The
average x is (if we neglect a factor of 2)

Tavg = VT — BT3/2 — \/T + BT3/2. (5.11)
We factor out v/T and use the approximation that 1+ h ~ 1+ h/2:
Tavg = VT <\/1 — BTV — 1+ BT1/2>

~ VT((1 - BTY2/2) = (1+ BT/2 /2)) (5.12)
= 8T
The thermal-expansion coefficient is dz,yg /dT’, which is —3. What is the value in a normal
unit system? Let’s restore normal units to z,,s = —37. The quantity z,ys is really zavg/a.

The temperature 7T is really the energy kT, and the energy kT is really kT/Ey. So (5.12)
becomes Tayg/a ~ —BkT/Ey. If we had carried the f through, then we would find

Tavg 6 kT
~ 5.13
. 7B (5.13)
The thermal-expansion coefficient is the fractional change in length per change in temper-
ature: d( Ja) 8k
Tavg /0
=—>2 L N — 5.14
“ dT 7 Eo (5.14)

The Boltzmann constant is roughly k ~ 1074 eV K™!; a typical bond energy is Ey ~ 3eV.
For many interatomic potentials, 3 ~ 1. For example, for the potential E(r) = 4r =% — 4r~2
(in dimensionless units), f ~ 2. With 8 ~ 1, a typical thermal expansion coefficient is
3-1079K ™.

Table 5.1 contains thermal-expansion data for various materials. Our estimate seems
to be an overestimate, although we can partially explain the trends. For example, stiff
materials such as quartz and diamond have a particularly low «. Stiff materials are stiff,
because their bonds are strong, so «, which is inversely proportional to bond strength,
should be low. (Quartz has silicon—oxygen bonds, and diamond has carbon—carbon bonds;
both bonds are strong.) Perhaps quartz and diamond also have particularly symmetric
potentials (low (), which would also lower the expansion coefficient.
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Substance a(107°K™)

Cu 1.6
Si 0.5
Quartz 0.05
Diamond 0.1
Wood

along gr. 0.5

against gr 5
Glass 0.9
Pyrex 0.3
Vycor 0.08

Table 5.1. Thermal-expansion coefficients (at room temperature).

5.2 Phase changes

Tvap (K)
Substance €. (eV) actual A B
Water 0.50 373 577 533
NH3 0.31 240 374 347
HCI 0.21 188 263 244
O 0.071 90 99 93
Au 3.35 3130 3293 3022
Xe 0.13 165 171 159
He 0.00086 4.2 2.2 2.5
Hg 0.61 630 691 638
No 0.058 it 83 78

Table 5.2. Cohesive energy, €., per atom or molecule; actual and predicted boil-
ing temperatures (at 1atm). We estimate the cohesive energy as Lvap/Na, where
Lyap—the heat of vaporization—is taken from experimental data. We use the co-
hesive energy to predict the boiling temperature. Column A is the prediction from
(5.24). Column B is the prediction from (5.27). Source: [38, 6-103—-6-106]

5.2.1 Boiling

To vaporize, or boil, a liquid, we must supply energy to move molecules from the liquid into
the gas phase. How much energy is required? Per molecule, the energy required is roughly
the cohesive energy, €.. The molar heat of vaporization (or enthalpy of vaporization) is the
energy required to boil one mole of a substance, and we can estimate it as

Lyap ~ €N ~ 23 keal mole ™! (%) . (5.15)
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For water, for example, €, ~ 0.5€eV, 80 Lya, ~ 10kecal mole™!. This estimate of the enthalpy
leaves out a small contribution: the energy to make room in the vapor for the evaporating
molecules. This energy is PV in the expression H = E + PV for the enthalpy. The heat of
vaporization is the change in H:

Lvap = AH = AE + A(PV). (5.16)

As we see shortly, after we estimate the boiling temperature, A(PV) is small compared to
AFE.

Predicting Ly,p, from €. is straightforward. Let’s instead use L.,,—for which accurate
experimental data are available—to determine €. (the second column of Table 5.2). Now we
have a microscopic quantity, for which we can make order-of-magnitude pictures. What can
we do with it? An essential feature of boiling is the boiling temperature. So let’s try to predict
the boiling temperature using the cohesive energy. We first define boiling temperature. As a
substance heats up, more molecules leave the liquid and become vapor; the pressure of the
vapor increases. The boiling temperature is the temperature at which the vapor pressure
reaches atmospheric pressure (at sea level, roughly 10° dynecm ™2, or 1atm). Atmospheric
pressure is arbitrary; it is less on Mount Everest, for example, and far less on Mars. It is
unrelated to the properties of the substance being boiled—although it helps to determine
the boiling temperature. A more general question is how boiling temperature depends on
atmospheric pressure. You can generalize the methods that we introduce to answer this
question.

5.2.1.1 SIMPLEST MODEL. For our first guess for the boiling temperature, we convert the
cohesive energy into a temperature using Boltzmann’s constant: T\,, = Ile./k, where II is
a dimensionless constant. The conversion factor k is 1eV ~ 10* K (accurate to 20 percent).
The data in Table 5.2 shows how inaccurate this guess is. For example, for water, the
predicted boiling temperature would be 5000 K, instead of 373 K: Even on Mercury, oceans
would freeze solid. Or, for gold, the predicted temperature would be 30,000 K instead of
~ 3000 K. If we by fiat insert a factor of 10, and assert that

€

Tya N—ca 1

then our prediction would be reasonably accurate for both gold and water. If T\,,, €,
and k are the only relevant variables in this situation, then there is some constant II such
that Tyap = Ile./k. A few minutes with the data in Table 5.2 will convince you that there
is no such constant, although (5.17) provides a reasonable approximation. Using this ap-
proximation, we can check that we were justified in neglecting the PV term in the heat
of vaporization (5.16). From the ideal gas law, for one molecule in a gas at the boiling
temperature, PV = kT\,p. Using (5.17), we find that PV is €./10. For order-of-magnitude
purposes, PV is small compared to €.

5.2.1.2 VOLUME CONTRIBUTION TO THE ENTROPY: PART 1. Now let’s explain the approx-
imate factor of 10. The factor arises because we left out entropy, which is a fancy word
for counting; the meaning of entropy will become clear as we calculate it. At the boiling
point, vapor is in equilibrium with liquid: A molecule is equally happy in either phase. In
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thermodynamic language, the Gibbs’ free energy is the same in the two phases. Instead of
analyzing the problem using thermodynamic variables, which obscure the simplicity of the
mechanism, we analyze the feelings of one molecule deciding where to go (the statistical-
mechanics approach). If we consider only energy, the molecule is more likely to be in the
liquid than in the vapor, by the Boltzmann factor e®/*Tvar. So we have deduced that the
liquid does not boil at any temperature. However, we must also include the entropy; that
is, we must count the number of accessible states in the vapor and in the liquid. We could,
using quantum mechanics, compute the number of accessible states in the liquid; compute
it in the solid; and then take the ratio. Instead, we estimate the ratio directly, without
stopping at the waystation of quantum mechanics.

We assume that the vapor is an ideal gas, so that PV = NET. At atmospheric pressure,
and at the boiling temperature, one molecule is free to wander in a volume Vg5 = kTvap /P,
where Py = 1atm. In the liquid, the free volume for one molecule is a factor times a?, but the
factor is difficult to determine, because liquids are poorly understood. One simple model
of a liquid is a solid with some atoms replaced by holes. How many holes should there
be? If no atom is surrounded by holes, then the substance is a solid, not a liquid. If each
atom is surrounded by six holes (all its neighbors are holes), then the substance is a gas.
A reasonable compromise is that, on average, one or two holes surround each atom. Each
hole is shared among its six neighboring atoms (if none of them are replaced by holes), so
the free volume per atom is perhaps a3/6 or a®/3. Let’s be more general and say that the
free volume is Viiquia ~ (fa)?, where 0 < f < 1.

The ratio of allowed volumes is

Vgas k Tvap

~ . .1
Viiquia ~ Poad f3 (5.18)

Tv

This ratio is > 1, as we will find out in a moment; therefore this entropy factor encourages
the molecule to move to the vapor. This factor is independent of temperature, whereas
the Boltzmann factor depends strongly on temperature. The factors balance at the boiling

temperature:
ece/ ke = p | (5.19)

or

€ kT,
< —logry =1 b 2
o ogr og <P0a3f3> (5.20)

[All logs are natural logs.] This equation is transcendental; we can solve it by successive
approximation, or by drawing a graph.

Var. Name Value

E internal energy

H enthalpy E+ PV
F Helmholtz free energy E —TS
G Gibbs free energy H-TS

Table 5.3. Thermodynamic energies.
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Let’s first connect the result (5.20) to the (perhaps more familiar) thermodynamic
quantities of Table 5.3. We are neglecting the PV term, so the internal energy and the
enthalpy are, in this approximation, identical, as are the Gibbs and the Helmholtz free
energies. With T constant, which is what equilibrium means, AF = AE —TAS. When the
liquid and gas are in equilibrium, the free energy change going from liquid to gas is zero,
so AE = TAS. Matching this equation against (5.20), we find that €. corresponds to E iff
AS = klogr,. Here we see the value of the free energy. It is the energy with an adjustment
TS; the adjustment includes the counting of states.

Before solving by successive approximations, we should get a qualitative feel for the
sizes of the terms in (5.20), and see whether the temperatures that it predicts are reasonable.
According to (5.20), the boiling temperature is given by

€c

Toap ~ (5.21)

klogr,’

So let’s evaluate ry for a couple substances using (5.18) and then compute log . For water
(with f = 1), we get

1.4-107 0 erg K™ ! x 374K
106 dynecm=2 x (3-10=8 cm)3

Ty ~ ~ 200, (5.22)
and logr, ~ 5. For gold, we get logr, ~ 7.4. So we can explain most of the factor of 10 in
our first guess (5.17): It comes from entropy.

The first step in solving a transcendental equation with a (natural) logarithm is to
assume that any logarithm is 10. This rule is due to Fermi, who was a master of order-
of-magnitude physics. A log could also be —10, although not in this case because €./kT\ap
is positive. At first glance, this rule of 10 seems ridiculous, but it has the following justi-
fication. Initially, most order-of-magnitude arguments assume power laws for the unknown
functional forms; this assumption excludes logarithms as solutions. If there is a logarithm
in the solution, it often arises in a later, more refined stage of the analysis. In what cir-
cumstances would we refine the analysis? Only when the original analysis was at least
moderately accurate. If it is wildly inaccurate, then we would throw out the whole analysis
and start again. If it is extremely accurate, then a refinement is not likely to introduce a
new function, such as a logarithm. So, if a logarithm arises, we can be reasonably certain
that the original estimate was only moderately accurate, and that the logarithm introduces
a correction factor of at least 5, perhaps even as high as 20 or 30. We can further narrow this
range. The logarithm takes a dimensionless argument. How large can a dimensionless argu-
ment become? For example, Avogadro’s number, N5y ~ 6-10%3, is huge, and log Ns ~ 55.
However, this example is not relevant, because Avogadro’s number is not dimensionless. Its
units are mole™ !, and the mole is an arbitrary unit whose size depends on the size of the
gram. A dimensionless argument must be the ratio of two quantities with the same units;
in this boiling-temperature problem, the two quantities are Vijquia and Vgas. In other prob-
lems, they might be two characteristic lengths or energies. The ratio of two characteristic
quantities is almost never larger than r, = 108, in which case log 7, ~ 20. So the logarithm
typically lies between 5 and 20; a reasonable starting estimate is 10. With this starting
estimate, we recover (5.17).
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Starting with log(-) ~ 10, let’s predict Ty,p for water. The argument of the logarithm
is
Elvap €
€e P0a3f3 '
To continue, we need a value for the fudge factor f. Should it be 0 (the substance is
virtually a solid) or 1 (the substance is virtually a gas)? It’s difficult to decide; both values

(5.23)

are extreme, but we have no clear argument favoring one extreme or the other. In such
situations of ignorance, we choose the middle value f = 0.5; this rule is the rule of one-
half. We can estimate the spacing a from the density and molar mass, but for simplicity
we use our usual estimate a ~ 3 A. Then Pya® f3 ~ 3.3-107% V. For convenience, we write
F for logry; so F' = €./kTyap. In terms of F', the transcendental equation is

F=1 (F*1#> . 5.24
e\" 3310 %ev (5:24)

For water, e, ~ 0.5eV. We start with Fy = 10. The next iteration produces
Fy =log (1.5-10%) ~ 9.62. (5.25)

Because F} ~ Fy, we do not need to compute Fy; we might as well use ' = 10. Then
Tvap ~ €./10k ~ 576 K. On the Celsius scale, the error in this estimate is over 100 percent.
However, the Celsius scale is irrelevant for physics. It has an arbitrary offset; why should
the universe care about the boiling temperature of water? On the Kelvin scale, which has
a natural definition for the zero point, the error is ~ 50 percent.

5.2.1.3 VOLUME CONTRIBUTION TO THE ENTROPY: PART 2. Can we reduce it? The most
arbitrary input was the factor f = 0.5. If we can understand its origin, we can choose
it more accurately. It is a dimensionless measure of the molecular vibration amplitude.
Let’s estimate this amplitude. The vibrations are thermal, with a typical energy at the
boiling temperature of kTyap,/2. In the model for surface tension in Section 4.3.3, each
molecule had six neighbors, and each bond had energy Eyong ~ €./3. When we estimated
thermal expansion in Section 5.1, we made a spring model in which the vibration energy
(the change in bond energy relative to the equilibrium bond energy) is Eyong(7/a)?, where
x is the vibration amplitude. Let’s solve for = as a function of £Ty,,. The bond vibration
gets kT\yap/2 from thermal motion, so

ETvap  €c (2\2

2 T3 (E) '
The solution is * ~ ay/1.5kTyap /€. If we take = as an estimate for fa, then we find
that f ~ \/1.5kTyap/€c. The factor kTyap /€. is familiar: It is F~!, which is roughly 0.1.

Therefore, f ~ 0.4. If we use this f in the successive-approximation procedure for Ty,,, we

(5.26)

get Tiap ~ 540K for water. This new Ty, gives us a new estimate for F', and thus a new
estimate for f, which changes Ty,,. We are solving the equation

F=log F! e 2
°g< 2.6-10-5 eV x f3)’ (5:27)

with f itself given in terms of F'

f=V15F-1L (5.28).(5.29)

We can continue with further iterations; the succeeding iterations converge to 533 K. This
value is in error by 45 percent; our effort has not reduced the error significantly.
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5.2.1./ ROTATIONAL CONTRIBUTION TO THE ENTROPY. Before despairing, we should check
our predictions on other, less peculiar substances; water has many strange properties. The
prediction is accurate for many substances, as you can see from column B of Table 5.2.
The exceptions are water, ammonia, and hydrochloric acid. They share a feature, hydrogen
bonds, and a common discrepancy, a lower boiling temperature than we expected. What
effect do hydrogen bonds have? Let’s see what effect they should have to correct our pre-
dictions, and see whether we can find a physically justify the effect using hydrogen bonds.
We predicted the boiling temperature by calculating, or estimating, the entropy change. If
our prediction for Ty, is too high, then we must have underestimated the entropy increase
from liquid to gas. What physical effect could add to the entropy increase? Because our
prediction is accurate for many substances, with widely differing bond types, our volume
estimate in the liquid is probably reliable, even for hydrogen-bonded substances. So hydro-
gen bonds must restrict the freedom in a way that we have not yet included. They can do
so if they have a direction—if they are dipolar. And they are; hydrogen bonds are like weak
covalent bonds, so they have a preferred direction. In a water molecule, the electron around
hydrogen is dragged toward the oxygen, so the oxygen end of the molecule is negatively
charged, and the hydrogen end is positively charged. Thus hydrogen ends tend to attract
oxygen ends. The bond is not as strong as a covalent bond, because the electron is not
dragged all the way to the oxygen.

In neglecting the rotational contribution to the entropy, we implicitly, and incorrectly,
assumed that a molecule in the liquid could rotate as freely as a molecule in the gas;
hydrogen bonds prevent this easy rotation in the liquid. We need to compute a new ratio,

allowed solid angle of rotation in gas

(5.30)

"ot = Zllowed solid angle of rotation in liquid’
and include klog r.; in the entropy. The solid angle in the gas is 47. To compute the liquid
solid angle, we estimate the vibration angle of a water molecule, using the following crude
model of hydrogen bonding. We concentrate the cohesive energy into a single hydrogen
bond (the energy is actually spread over many hydrogen bonds). The resulting bond energy
is Fy ~ 2¢.. Let’s also assume that the bond is well approximated as the interaction of
two dipoles. Keep one dipole (one molecule) fixed. Through what angle, 6, does the unfixed
molecule rotate, because of thermal motion? For small 6, the dipole-dipole potential can
be written

U(#) ~ —Eo(1 — 6?). (5.31)

To find 0, we equate AU(0) to kTyap, and find Egf? ~ kTyap, or 0% ~ kTyap/2€., which is
0.5F 1. The solid angle is roughly 762, so the ratio of solid angles is
a7

ot ~ ————— ~ 8F. 5.32

Trot ™ 0. 5F 1 (5:32)
This result has a strange feature: The hydrogen-bond strength appears only indirectly,
through F'. The quantity F' remains roughly 10, so the hydrogen bond strength hardly alters
the rotational correction factor. This invariance has to be wrong. To see why, consider a
nonpolar substance; we can say that it has hydrogen bonds, but that they are extremely
weak. Should we then add k log r..; to the entropy? If we do, we spoil the excellent agreement
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between theory and experiment for those substances. There’s a way out of our dilemma:
This estimate of r..¢ is valid for only small 6. If the hydrogen bond is too weak, then we
cannot rely on it; in such a case, the available solid angle in the liquid is 47, and r.o; ~ 1.

Reassured that our result is not nonsense, we use it to estimate the boiling temper-
ature of water. For water, the preceding theories gave F' ~ 10; more precisely, successive
approximation applied to (5.27) gave F' ~ 10.9. So log 7ot ~ 4.46, and we should adjust F’
to 10.9 + 4.46 = 15.36 (because F' is the entropy without Boltzmann’s constant). Then we
recalculate .., and from that, recalculate F', and so on; the procedure quickly converges to
F = 15.7; the predicted boiling temperature is 368 K. Our prediction is in error by only 1
percent! You are invited to make the calculations for the other hydrogen-bonded substances.

5.2.2 Melting

The heat of fusion—the energy released in freezing—is more difficult to estimate than
the heat of vaporization is. We have a clear picture of what happens when a liquid boils:
Molecules leave the liquid, and join the vapor; boiling destroys the short-range order in
the liquid. What happens when a solid melts? The short-range order does not change
significantly; atoms in a solid are closely packed, as are atoms in a liquid. Only the weaker
long-range order changes; the structured lattice of the solid becomes the chaos of the liquid.
This change is difficult to quantify. We can make an attempt by using the hole model to
estimate the entropy change.

5.2.2.1 ENTROPY OF FUSION OR MELTING. We assume that, at the melting point, every
atom is surrounded by 1 hole: We replace one-sixth of the atoms with holes. Let there be N
atoms. What is the entropy of this configuration? Equivalently, how many arrangements of
(5/6)N atoms and N/6 holes are there? The entropy is the logarithm of this number (times
Boltzmann’s constant). For generality, let 3 be the fraction 1/6. There are

W <N > B N!
BN/ (BN)Y((1 - B)N)!
possible arrangements. We have used the symbol W for the number of states in honor of
Boltzmann, whose epitaph reads S = klog W. To compute S, we need log W:

logW =log N! — log{(BN)!} — log{((1 — B)N)!}. (5.33)
For large N, we can use Stirling’s formula, that log z! ~ zlog x. A more accurate statement
is that log z! ~ z log x—x, but the —x term always cancels in the log of a binomial coefficient.
Then

logW ~ Nlog N — NBlog(BN) — N(1 — 3)log{(1 — B)N}. (5.34)
Many terms cancel after we expand the logarithms. What remains is
log W ~ —N(Blog 8 + (1 — B) log(1 — ). (5.35)
The entropy per atom is
klogW
s="2T ~ Blogf— (1 )log(1 - ). (5.36)

For = 1/6, the entropy of liquid is Sjiquia ~ 0.5k (per atom). In this model, a solid is a
liquid with 8 = 0, S0 Sgo1ia = 0. Then As =~ 0.5k. Experimentally, As ~ k is more accurate;
the hole model accounts for only one-half of the entropy change. As we noted before, liquids
are poorly understood. In what follows, we use As ~ k, or, per mole, AS ~ R.
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5.2.2.2 MELTING TEMPERATURE. The entropy is difficult to calculate, and the melting
temperature even harder. T}, must be less than the boiling temperature, but how much
less? We make the simplest assumption, that Tieir ~ Tvap. From the entropy and the
melting temperature, we can estimate the heat of fusion:

qus ~ TmeltAS ~ RTmelt ~ RTvap- (537)
Equation (5.17) gives us an estimate for Ly, per molecule: Ly, ~ 10kTyap,. Per mole,
Luap ~ 10RTap. (5.38)

When we substitute this estimate into (5.37), we get the estimate

L
Liys ~ —22, .
f 10 (5.39)
Then, using (5.15) with €. ~ 0.5eV (for water), we find the estimates
Lius ~ 103 cal mole_l7
! (5.40)

Lyap ~ 10* cal mole ™.

Table 5.4 compares heats of fusion and vaporization.

Lvap qus
Property (10" calmole™')  (10® cal mole™ ")
Water 1.0 1.5
He 1.5 0.6
Au 8 10

Table 5.4. Comparison of heats of fusion and of vaporization. The estimate

in (5.40) is reasonably accurate. That rule compares the second and the third
columns. We can also compare values within a column, and try to understand the
variation. Water and mercury are liquids at room temperature, so their bonds are
weak compared to the bonds in gold, which is a solid at room temperature. Not
surprisingly, gold has higher heats of vaporization and of fusion.

5.3 Specific heat

How much energy does it take to heat water to bath temperature? How many days of solar
heating can the oceans store? The answers to these questions depend on the energy that
the substance stores per unit temperature change: the specific heat. We approximate this
quantity for metals and for insulators (dielectrics).

Before thinking about the physics of specific heats, we make the usual dimensional
estimate. The units of specific heat are

energy

[specific heat] = (5.41)

temperature X amount of substance’
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The amount can be whatever size is convenient: one mole, one molecule, one gram, and
so on. For our dimensional estimate, we choose the molecule, because it is a natural size:
It involves the fewest arbitrary parameters. A mole, or a gram, for example, depends on
human-chosen sizes. We already know one quantity with units of energy per temperature:
the Boltzmann constant. So our first estimates are

specific heat

~

molecule (5.42)

specific heat ~kNs = R,
mole
Table 5.5 lists the specific heat of various substances.

We now estimate the missing constant of proportionality using physical reasoning.

Substance cp/k

I 4.4
Cls 4.1
O2 3.5
Ny 3.5
Ni 3.1
Au 3.1
Zn 3.1
Fe 3.0
Xe 2.5
He 2.5
C (diamond)
0°C 0.6
223°C 1.6
823°C 2.6

Table 5.5. Specific heats at constant pressure. All data are for room temperature
(unless otherwise noted) and atmospheric pressure. We have listed the specific

heats in dimensionless form—in units of k per atom or molecule—because we al-
ready know that the specific heat must contain a factor of k. Source: [16, p. 155].

5.8.1 Ideal gases

We first study ideal gases, because they illustrate the basic ideas of thermal modes, the im-
portance of quantum mechanics, and the difference between constant-pressure and constant-
volume calculations. We choose the simplest ideal-gas atom: helium. Hydrogen, though con-
taining fewer protons and electrons per atom, is diatomic: It exists as Hy. Helium, an inert
gas, is monoatomic, and so more suited for beginning our study.

5.3.1.1 HEL1UM. What is the specific heat of helium? Imagine a collection of helium atoms.
In three dimensions, it has three degrees of freedom, one for each dimension. A degree of
freedom corresponds to a quadratic contribution to the energy of a molecule (here, quadratic
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means quadratic in a position or velocity coordinate). The translational energy is m(v2 +
vg +1v2)/2; each term corresponds to a degree of freedom. At temperature T, each degree of
freedom contributes energy kT'/2 to the internal energy of the atom; so the internal energy
per atom is u = 3kT'/2, and the specific heat per atom is u/T = 3k/2. The kT /2-per-degree-
of-freedom rule holds for only classical degrees of freedom; the meaning of this distinction
will become clear when we discuss nitrogen in (5.3.1.2). The specific heat should therefore
be 1.5k. However, the value given in Table 5.5 is roughly 2.5k. We somehow neglected a
contribution of k7" per atom. What went wrong?

Specific heat measurements are of two types: constant pressure (the more common) and
constant volume, depending which quantity is held fixed as the temperature changes. If the
volume of the gas is held constant, then the specific heat is indeed 1.5k; this specific heat
is denoted ¢,. However, if the pressure is constant, we must include another contribution.
Consider NV atoms of the gas in a container of volume V. To measure the specific heat, we
increase the temperature by AT. If we leave the volume unchanged, the pressure increases
by AP = nkAT, where n = N/V is the number density of atoms. To keep the pressure
constant, we must increase the volume by the same fraction that 7" increased: by AT/T.
So AV = AT(V/T). Let A be the surface area of the box. Then Adrx = AV, where dx
is how far the walls move. As the walls recede, the gas does work F'dx = PAdx = PAV.
Thus, the heat required to raise the temperature must include PV (AT/T), which, for an
ideal gas, is NEKAT. This energy contributes k to the specific heat per atom. The specific
heat at constant pressure is therefore ¢, = ¢, + k, which explains the formerly mysterious
cp = 2.5k. From the two specific heats, we can form a dimensionless group:

y=2, (5.43)

Cv

which is 5/3 for helium (and any other monoatomic ideal gas).

The value of v determines how the temperature changes in an adiabatic change of
state. An adiabatic change of state is a transformation that is rapid enough so that no heat
flows to or from the substance. Such changes include the change that a parcel of air flowing
up the side of a mountain experiences. As the parcel rises, it moves into regions with lower
pressure, so it expands. This expansion is adiabatic; in an adiabatic expansion, the relation
between pressure and volume is PV? = constant. So the value of v determines how P and
V' change, which determines, via the ideal-gas law, how T changes. For air, v ~ 7/5, as we
see when we estimate ¢, for nitrogen (the main constituent of air).

5.3.1.2 NITROGEN. Nitrogen is more complicated than helium, because it has two atoms in
a molecule. How many degrees of freedom does the molecule have? Its center of mass can
translate in three dimensions, which gives three degrees of freedom. The bond can vibrate,
which could give two degrees of freedom, one for the potential energy in the bond, one for
the relative motion of the atoms; it actually gives none, for reasons that will become clear
shortly. The molecule can rotate about any of three axes; three axes could contribute three
degrees of freedom (but actually contribute only two, as we see shortly). The total is five
degrees of freedom (if we count none for vibration and two for rotation). Then u = 5kT'/2,
so ¢y = bk/2 and ¢, = Tk/2, which agrees with the tabulated value.
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What justifies neglecting the two vibrational degrees of freedom, and one of the rota-
tional degrees of freedom? Each evidently contributes much less energy than k£7'/2. The rea-
son why is quantum mechanics. The k7'/2 rule is valid only for classical degrees of freedom.
Consider, for example, a rotational degree of freedom (or mode). What makes it classical?
In an exact analysis, there are only certain allowed rotations: Rotation is quantized. When
does the quantization become irrelevant? Suppose that the spacing of the rotational energy
levels is €; then mode is classical if kT > e. In that case, the energy levels are effectively
continuous, and we can treat the mode with classical statistical mechanics. What happens if
kT < €? Then the mode is mostly in the lowest energy level; the probability that the mode
is in a higher level is roughly the Boltzmann factor e~¢*T which is minute. The average
energy in the mode is roughly ee~¢/*7 which is < kT/2 when kT < e. Let’s estimate
e for bond vibrations in nitrogen. We first estimate the bond-vibration frequency w. The
spring constant of the bond is roughly given by ksa?/2 ~ Ey. The vibration frequency is
w ~ +/2k/M, where M is the mass of a nitrogen atom. (We are being careful with factors
of 2 in this derivation, because the result is equivocal if we are not careful, as you can check
by neglecting the factors of 2.) So

Ey
Ma?’
In a spring, the energy-level spacing is € = hw, so
hEO
Ma?’
To evaluate the spacing, we introduce c?/c? inside the square root:
(he)* Eo
€~ 2 7(Mc2)a2' (5.46)
The nitrogen molecule contains a triple bond, so Ej is substantial, perhaps 7eV; and a
is short, perhaps 1 A (triple bonds are shorter than double bonds, which are shorter than
single bonds). The mass of a nitrogen atom is M ~ 14m. So

€~ 2\/4-1066V2A2 x TeV

14109V x 1A
because he ~ 2000eV A and mpc® ~ 10%eV. After the dust clears, we find € ~ 0.1eV.
The thermal energy is k17" ~ 0.025eV, so k1" < e: The vibration mode is not classical.
We say that the vibrations are frozen out: Room temperature is cold compared to their
intrinsic energy (or temperature) scale. A similar calculation shows that rotation about the

interatomic axis is also frozen out. So quantum mechanics explains why ¢, ~ 5k/2. Then
¢p should be 7k/2, and it is.

w2 (5.44)

€~ 2

(5.45)

; (5.47)

5.3.1.3 IODINE. Iodine is also diatomic, but it is more massive than nitrogen (larger M);
and its bond is weaker (lower Ey) and longer (larger a). We estimate € by scaling the result
for nitrogen. Relative to nitrogen, the mass of an iodine atom is larger by roughly a factor
of 10; let’s say that the bond is weaker by a factor of 2, and longer by a factor of 2. Then
€1 ~ ex/6 ~ 0.015eV. Now kT > €, so the two bond degrees of freedom unfreeze. (The
interatomic-axis rotational mode is still frozen out.) We therefore expect that, for iodine,
¢y ~ Tk/2, and ¢, ~ 9k/2. We are not disappointed: The tabulated value is ¢, ~ 4.4k.



5. MATERIALS IT 86

5.3.2 Liquids and gases

We now estimate specific heats of liquids and solids. Liquids and solids hardly change
volume, even if the volume is not held constant, so ¢, ~ c,. If each molecule sits in a
three-dimensional harmonic potential produced by the rest of the lattice, each molecule has
3 potential-energy degrees of freedom. Combining them with the three translational degrees
of freedom produces 6 total degrees of freedom. The energy per molecule is therefore 35T,
and ¢, ~ 3k. The specific heat per mole is

J 6 cal
mole K mole K’

Cp~3R~24 (5.48)
which is a useful number to remember. This value is the lattice specific heat. The prediction
is quite accurate for most of the solids and liquids (Ni, Au, Zn, and Fe) in Table 5.5. For
diamond, the prediction is accurate at only high temperature. As in Section 5.3.1.2, we have
an example of frozen modes. The bonds in diamond are extremely strong, and therefore
have a high vibration frequency, and large level spacing. At room temperature, the thermal
energy is not large compared to the energy-level spacing, so most bond vibration is frozen
out. Only at T' ~ 800 °C is kT large enough to make bond vibration a classical mode; at that
temperature, c, is 2.6k, which is close to our prediction of 3k. The other curious fact is that
nickel, gold, and zinc have ¢, slightly greater than 3k! These substances are all metals; we
neglected a contribution to the specific heat that occurs in metals: the specific heat of the
electrons. In metals, the electrons are not bound to an atom, but are free to move through
the lattice; a small fraction of the electrons can store thermal energy. Electrons therefore
make a small contribution to the specific heat. In Section 5.6.2, we explain why the fraction
of contributing electrons is small.

5.4 Thermal diffusivity of liquids and solids

We would like to estimate the rate of heat transport—the thermal conductivity. One piece
in that calculation is the specific heat: how much heat one molecule, or one mole, stores.
The other piece, which is the topic of this section, is the thermal diffusivity. The thermal
diffusivity determines how rapidly heat spreads—say, into the center of a turkey, where
it denatures (cooks) the proteins. Heat is the vibration of atoms. In a solid, the atoms
are confined in a lattice, and the vibrations can be represented as combinations of many
sound waves. More precisely, the waves are phonons, which are sound waves that can have
polarization (just as light waves have polarization). Heat diffusion is the diffusion of phonons.

Let’s estimate how long it takes for phonons (or heat) to diffuse a macroscopic distance
L. Phonons act like particles: They travel through lattice, bounce off impurities, and bounce
of other phonons. The phonon mean free path A measures how far a phonon travels before
bouncing (or scattering), and then heading off in a random direction. In a solid without
too many defects, at room temperature, typically A\ ~ 10 A. After a scattering, the phonon
heads off in a random direction; so at each scattering, the phonon takes one step of a random
walk with step size \. After N steps, it has gone an average distance Av/N; this square-
root dependence is characteristic of random walks. See the classic book Random Walks in
Biology [2], which has an excellent treatment of random walks, illustrated with fascinating
examples. So it needs L?/)\? steps to travel a distance L. How long does each step take? A
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typical phonon velocity is given by the velocity of sound ¢, (the e indicates elastic wave);
for most solids or liquids, ¢, ~ 3kms™!, as we found in Section 4.3.1. (We treat a liquid
as a disordered solid—as a solid with low A.) The time between scatterings is A/c.. So the
time 7 to travel a distance L is ) )

L= A L

Ao Aee
The factor in the denominator is a characteristic of the substance, and—with a magic factor
of one-third—is the thermal diffusivity:

1 1
K~ g)\ce ~ g% 107"cm x 3-10°cms™! ~ 1072 cm?s L. (5.50)

The magic one-third comes from doing honest physics—from solving messy differential
equations, from worrying about boundary conditions, from not treating every object as a
sphere, and so on. In terms of our new constant x, the diffusion time is

T~ L?/k. (5.51)
Let’s look at two examples of (5.51).

Example 5.2 Cooking a turkey

We apply our knowledge to Thanksgiving, an American holiday in which
large turkeys are cooked, and many people give thanks once all the turkey
leftovers are finished. How long does it take to cook a R ~ 20 cm turkey?

(20 cm)?

5
m ~ 10 S v 0.5 days. (552)

Tturkey ™~
Start cooking early in the morning! A similar example that you can try is
to predict the cooking time for an egg.
This estimate ignored an important parameter: the oven temperature.
We showed that diffusion equalizes the central temperature to the oven tem-
perature after roughly 0.5 days. However, the inside must still cook (the
proteins must denature) after reaching this temperature. So now we have
the explanation of why the oven must be hot: A cold oven would not cook
the meat, even after the meat reached oven temperature. What oven tem-
perature is hot enough? Protein physics is complicated; we cannot expect to
estimate the temperature from theory, so we rely on experiment. We know
from cooking meals that a thin piece of meat next to a hot skillet (perhaps
at 200 °C) cooks in a few minutes; we also know that if the skillet is at 50 °C,
the meat will never cook (50 °C is not much hotter than body temperature).
So if we set the oven to 200 °C, the turkey will cook in a few minutes after
attaining oven temperature; most of the cooking time is spent attaining oven
temperature, which is the assumption that we made when we estimated the
cooking time as L?/k.
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Example 5.3 Cooling the moon
How long does it take for the moon (R ~ 1.7-10% cm) to cool? For the
moon, we find that

(1.7-10%cm)?  3-10'6

18 11
Tmoon ™~ T0ZemZ ol 192 §~3-10°°s ~ 10" yr. (5.53)

[Another useful number: 1yr ~ 3-107s.] The universe has been around for
only 10'° yr; so why is the moon cold already, especially if heat is generated
at its core by radioactive heating? Because of solid-state convection: Rock
flows slowly (on a billion-year timescale), and transports heat to the surface
much faster than molecular motions could.

In this moon example, we see one use of order-of-magnitude physics.
We could—with lots of computer time—solve the diffusion equation for a
mostly-spherical body like the moon. We might find that the more accurate
cooling time is 6.74 - 101 yr. What would that result gain us? The more
accurate time is still far longer than the age of the universe; we would still
conclude that convection must be responsible. Order-of-magnitude analysis
allow you to determine quickly which approaches are worth pursuing; you
can then spend more time refining productive approaches, and less time
chasing unproductive ones.

5.5 Diffusivity and viscosity of gases

Before estimating the thermal conductivity of liquids and solids, we pause to harvest results
that follow easily from our understanding of the mechanism of diffusivity: We estimate the
thermal diffusivity and the viscosity of a gas. In a solid or liquid, the atoms themselves
do not transport the heat that they store; phonons, which are much more mobile than the
atoms, do. In a gas, the analogue of phonons is sound waves, but sound waves do not carry
the heat in a gas; the atoms (or molecules) themselves carry the heat. We can estimate the
thermal diffusivity using (5.50), but with parameters for a gas:

1
Kgas ~ g)\v. (5.54)

Now, A is the mean free path of a gas molecule, and v is the velocity of the molecule. The
velocity we can estimate easily—it is the thermal velocity. The mean free path is given by
A ~ (no)~t, where n is the number density of molecules, and o is the cross-sectional area
of a molecule. This result is dimensionally correct (a useful sanity check), and it has the
right quantities downstairs: Larger molecules scatter after a shorter distance than smaller
molecules do, and denser gases cause a molecule to scatter sooner than a less dense gas
does. So

~ (5.55)

Rgas

For air at room temperature and atmospheric pressure, the cross section is o ~ aQ, where

a ~ 3 A; the number density is n ~ 3102 cm~3; and the thermal velocity is v ~ 3-10* cm s~ ?
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(roughly the speed of sound). Then

1 3-10*cms!
Kgas ~ =
8% 33-10% cm—3 x 10~15 cm? (5.56)

~ 0.3cm?s 1.

This result is too large by a factor of only 1.5: the measured value is k ~ 0.2cm? s~ 1. Most
of the error is in our estimate of o.

What about kinematic viscosity, ¥7 Thermal diffusivity is the heat- or energy-diffusion
coefficient, and viscosity is the momentum-diffusion coefficient. In a gas, momentum and
energy are transported by the same mechanism: molecular motion. So we estimate that
v ~ K, and we are rewarded: v ~ 0.15cm?s~!. Kinematic viscosity and thermal diffusivity
have the same units. A natural dimensionless group is therefore

Pr

RN

, (5.57)

which is the Prandtl number. It is close to unity in gases, and even in many solids and
liquids (for water, it is 6).

5.6 Thermal conductivity

Why can people (who are not too confident) walk on hot coals without getting burned?
How long does the 3-inch layer of frost in the freezer take to melt? The answers to these
questions depend on the thermal conductivity—how fast a material can transport heat.
Now that we have estimated the specific heat and the thermal diffusivity, we can estimate
the thermal conductivity.

5.6.1 Dielectrics

We first study the simpler case of dielectrics, where we can neglect the electronic contribu-

tion to thermal conductivity. The thermal conductivity is defined as the constant K in the

heat-flow equation

iy
dx

where F' is the heat flux (power per area), and T is the temperature. We can estimate

F= (5.58)

the value of the constant using our understanding of specific heat and thermal diffusivity.
Consider a rectangle of material, with length x and cross-sectional area A. Heat one half
(measuring along the length) to temperature 7', and start the other at 7" = 0. One half
contains a quantity of heat H ~ CI’DTxA, where C’I’3 is the heat capacity per volume. After a
time 7 ~ 22/, the temperature of the two halves equalizes (because of diffusion); thus, heat
must flow from the hot to the cold half at a rate dotH ~ H/7 ~ C) ATx/z. The heat flux is
F~HJA or F ~ CprT'/z. Now we match terms with the defining equation (5.58); dT'/dx
corresponds to T'/z, so C{)/i corresponds to K. In fact, this relation is exact: K = C{)/ﬁ
The specific heat per volume is Cp,/Vino1, where Vi1 is the molar volume. Therefore,

_ Cok

K .
Vmol

(5.59)
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In our order-of-magnitude world, the volume of one molecule is a®, where a ~ 3A. So
Vinol ~ Naa3, which is 16 cm® mole . We also substitute x from (5.50), and C} from
(5.48), and we find

mole _o cal

6 cal
10~2 em?2 =1 - '
mole K X 107 emTs T X 16 cm3 cms K

~

(5.60)

We neglected a factor of 2.5 so that the answer comes out in a round number. This value
includes only the lattice transport of heat; it applies to dielectrics, but not to metals, where
the electrons transport most of the heat. Table 5.6 contains thermal conductivities for

dielectrics.

K
Substance (10_3 cal )

cms K
Water 5
Glass 3
Rock 2
Wood 0.3
Asbestos 0.2

Table 5.6. Thermal conductivities for common dielectrics. Note that we chose
the typical dielectric thermal conductivity as the unit size: We scaled the value
relative to a reasonable estimate. Scaled means that we measure the physical
quantities in units that we expect to be reasonable: in units that should yield a
number near unity.

5.6.2 Metals

Metals feel colder to the touch than, say, concrete does because metals transport heat faster
than concrete does. If lattice conduction is the only factor responsible for heat conduction,
then metals and concrete should not have such a great disparity in conductivity. That they
do is a consequence of the large contribution to the thermal conductivity from free electrons
in a metal. [A related example: A slab of granite feels much colder than a slab of cork does.
Why does granite carry heat more efficiently than cork, even though both substances are
dielectrics, and therefore carry heat via lattice conduction? The answer is that granite is
much denser than cork, so its specific heat per volume is much larger than cork’s.]

Let’s estimate the ratio of electronic to lattice thermal conductivity. Because the con-
ductivity factors into diffusivity X specific heat, we first estimate the ratio of electronic to
lattice diffusivities. Diffusivity is

velocity X mean free path, (5.61)

so we subdivide the estimate of the diffusivity ratio into estimates of the velocity ratio and
of the mean-free-path ratio.
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Phonons move at speeds similar to the speed of sound—a few kilometers per second.
Electrons move at the Fermi velocity vp. We have seen this concept in disguise when we
studied white dwarfs in Section 4.4. In a white dwarf, the electrons are confined by gravity:;
in a metal, they are confined by electrostatics (a metal is like a giant hydrogen atom). In
both systems, the electrons are confined, which gives them a velocity. We could modify the
white-dwarf analysis to account for these changes; instead, we just redo the relevant part.
Let ne be the number density of free electrons in the metal. Then Ap ~ h/Ax ~ hné/ 3,
where Ap is the momentum uncertainty produced by confinement, and Ax is the position
uncertainty. The velocity is the Fermi velocity: vgp ~ hné/ 3 /me. A typical metal has two
free electrons per atom, and an interatomic spacing of a ~ 3 A. So Ne ~ 2/ a’® ~ 10% ecm 3.
Then vp ~ 8cms~ ! = 1000 km s—!. This velocity is much faster than a typical elastic wave
So the velocity ratio is ~ 300 (electrons move faster).

Electrons also have a much longer mean free path than do phonons; in copper, Ao ~
100a, where a ~ 3 A is a typical lattice spacing. The phonon mean free path is Ap ~ 10 A.
So the mean-free-path ratio is ~ 30, and the diffusivity ratio is 300 x 30 ~ 10* in favor of
the electrons.

We now have to compute the specific-heat ratio. Here, the phonons win, because only
a small fraction of the electrons carry thermal energy. To understand why, we have to
improve the Fermi-sphere argument that we used to compute vg. A more accurate picture
is that the metal is a three-dimensional potential well (the electrons are confined to the
metal). There are many energy levels in the well, which we can label by the momentum of
the electrons that occupy it. The free electrons fill the lowest levels first (two per level);
the Pauli principle forbids more than two electrons from being in the same energy level.
The electrons in the highest levels have velocity vg (that part of the previous argument
was correct), or momentum mevg. As vectors, the momenta of the highest-energy electrons
are uniformly distributed over the surface of a sphere in momentum space; the sphere has
radius mevp, and is called the Fermi sphere. How is this sphere relevant to specific heat? To
carry thermal energy, an electron has to be able to absorb and deposit energy; the typical
package size is kT. Consider an electron that wants to absorb a thermal-energy package.
When it does so, it will change its energy—it will move outward in the Fermi sphere. But
can it? If it is in most of the sphere, it cannot, because the sphere is packed solid—all
interior levels are filled. Only if the electron is near the surface of the sphere can it absorb
the package. How near the surface must it be? It must have energy within kT of the Fermi
energy & (the Fermi energy is ~ mevi). The fraction of electrons within this energy range
is f ~ kT /Ep. Typically, kT ~ 0.025¢eV and g ~ few eV, so f ~ 10~2. This fraction is also
the specific-heat ratio. To see why, consider the case where f = 1 (every electron counts).
Each atom contributes 3k to the specific heat, and each electron contributes one-half of
that amount—3k/2—because there is no spring potential for the electrons (they contribute
only translational degrees of freedom). The number of free electrons is typically twice the
number of atoms, so the total electron and phonon contributions to specific heat are roughly
equal. When f ~ 1072, the contributions have ratio 1072.

Now we have all the pieces. The conductivity ratio is

Kmetal

~10* x 1072 = 102 (5.62)
Kdielectric
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We use (5.60) to estimate Kgieloctric, and find that

cal

Ketal ~ 1 (5.63)

ecms K’
Note that this estimate is for a good conductor, such as copper, with a large electron mean
free path. Table 5.7 contains data on the thermal conductivities of common metals. Our
estimate in (5.63) is quite accurate for copper—more accurate than it ought to be given the
number of approximations that we made to derive it.

Substance K( cal )

cms K
Al 0.5
Cu 1.0
Fe 0.2
Hg 0.02
w 0.5

Table 5.7. Thermal conductivities for common metals at room temperature.
Metals should have thermal conductivities of roughly 1ergem™'s ' K™, so0

we measure the actual values in that unit. We are being gentle with our neural
hardware, giving it the kind of numbers that it handles with the least difficulty:
numbers close to 1. Copper has a large thermal conductivity, because the electron
mean free path is long (which is the same reason that copper has a high electrical
conductivity). Mercury has a low thermal conductivity, because it is a liquid at
room temperature, so the electron mean free path is short (only one or two lattice
spacings).

5.7 What you have learned

» The method of successive approximation: How to solve complicated equations one step
at a time. We saw two examples of this method: in estimating the thermal-expansion
coefficient, and in solving for the boiling point as a function of cohesive energy.

» How to handle logarithms: Every (natural) log is 10. This rule is often helpful for
beginning a successive-approximation solution.

» The microscopic basis of thermal diffusivity and viscosity: Particles (or phonons) move
in steps whose size is equal to the mean free path, A. The particles’ velocity v determines
the time to take one step, and therefore the diffusion constant, which is kK ~ vA.
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6 WAVES

Ocean covers most of the earth, and waves roam most of the ocean. What makes waves move,
and what determines their speed? We now apply and extend our techniques of approximation
to answer such questions, as we study water waves. The theme of this chapter is: Consider
limiting cases.

6.1 Dispersion relations

We study waves using dispersion relations. A dispersion relation states what values
of frequency and wavelength a wave can have; see for example, Crawford’s book [8] for
more information on dispersion relations. In their usual form, dispersion relations connect
frequency w, and wavenumber k. Wavenumber is defined as 27 /A, where A is the wavelength.
As an example, for electromagnetic waves in a vacuum, the frequency and wavenumber are
related by the dispersion relation w = ck, which states that waves travel at velocity w/k = c,
independent of frequency. Dispersion relations contain a vast amount of information about
waves. They tell us, for example, how fast crests and troughs travel: the phase velocity.
They tell us how fast wave packets travel: the group velocity. They tell us how these
velocities depend on frequency: the dispersion. And they tell us the rate of energy loss:
the attenuation.

You usually find a dispersion relation by solving a wave equation, which is an unpleas-
ant partial differential equation. For water waves, you obtain a wave equation by linearizing
the Euler equation of hydrodynamics. This procedure is mathematically involved, partic-
ularly in handling the boundary conditions. Being impatient and lazy, we instead derive
dispersion relations with dimensional analysis, then complete and complement the deriva-
tion with physical arguments. We cannot evaluate the dimensionless constants with our
sloppy methods, but the beauty of studying waves is that these constants are often unity.

How can we connect frequency and wavenumber? The two quantities have dimensions
[T]~! and [L]7!, respectively. As glue, we need to include more variables, with various
dimensions. So, as usual, we consider what physical properties of the system determine
wave behavior, and thereby form a set of relevant variables. Waves on the open ocean are
different from waves in your bathtub, presumably because of the difference in the depth of
water, which we call h. The width of the tub or ocean could matter, but we neglect such
effects, and consider waves that move in only one dimension, perpendicular to the width.

To determine what other variables are important, we note use the principle that waves
are like springs, because every physical process contains a spring. This blanket statement
cannot be strictly correct. However, as a broad generalization, it is useful. We can get a
more precise idea of when this assumption is useful by considering the characteristics of
spring motion. First, springs have an equilibrium position. If your system has an undis-
turbed, resting state, consider looking for a spring. For example, for waves on the ocean,
the undisturbed state is a calm ocean. For electromagnetic waves—springs are not confined
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to mechanical systems—the resting state is an empty vacuum, with no radiation. Second,
springs oscillate. In mechanical systems, oscillation depends on inertia carrying the mass
beyond the equilibrium position. Equivalently, it depends on kinetic energy turning into
potential energy, and vice versa. Water waves store potential energy in the disturbance of
the surface, and kinetic energy in the motion of the water. For electromagnetic waves, en-
ergy sloshes (oscillates) between the electric field and the magnetic field. A magnetic field
can be generated by moving charges, so we call the magnetic field the reservoir of kinetic
(motion) energy. An electric field can be generated by static charges, so we call the electric
field the reservoir of potential energy. With these identifications, the electromagnetic field
is a set of springs, one for each frequency. These examples are positive examples. A negative
example—a marble oozing its way through corn syrup, which we studied in Section 3.3.2—
illustrates when springs are not present. The marble moves so slowly that the kinetic energy
of the corn syrup, and therefore its inertia, is miniscule and irrelevant. In such a system,
there is no reservoir of kinetic energy, so a spring is not present.

We now return to the problem of waves, which have the necessary reservoirs. In its
lowest-energy state, the surface of the water is level; deviations from flatness—waves—are
opposed by a restoring force. In a real spring, the restoring force comes from interatomic
bonds. Once we know the origin of a spring constant, we can calculate it; from the spring
constant, we can calculate the oscillation frequency. Our model that waves are springs
suggests that we study the restoring force in a wave. Distorting the surface is like stretching
a rubber sheet; the surface tension of water opposes the distortion. Distorting the surface
also requires raising the average water level, a change that gravity opposes. The restoring
force is therefore a combination of gravity and surface tension. In our list of variables, then,
we include surface tension, 7, and gravity, g. We consider how gravity (or surface tension)
restores the water level when we introduce a simple physical model in Section 6.2.1.

In a wave, like in a spring, the restoring force fights inertia, represented here by the
fluid density p. Gravity does not care about density, because gravity’s stronger pull on
denser substances is exactly balanced by their greater inertia. This exact cancellation is a
restatement of the equivalence principle, on which Einstein based his theory of general
relativity. In pendulum motion (Section 3.2), the mass of the bob drops out of the final
solution for the same reason. However, surface tension does not grow stronger in proportion
to density. So we expect p to determine the properties of waves in which surface tension
provides the restoring force. We therefore include p in the list of variables. For concreteness,
we often refer in this chapter to water waves; the results are general, and work for any
fluid. We pretend that waves are lossless, and exclude viscosity from the set of variables.
For simplicity, we also exclude cg, the speed of sound in the medium (usually water); with
this approximation, we ignore sound waves. We also exclude the wave amplitude £ from
our dimensional analysis by assuming that £ is small compared to the other length scales
(wavelength and depth): We study only small-amplitude waves. Table 6.1 shows the list of
variables that we have collected.

These six variables consist of three fundamental dimensions. We therefore hunt for
6 — 3 = 3 dimensionless groups. One group is easy: k is an inverse length, and h is a length,
so we can form
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This group is the dimensionless depth of the water: II; <« 1 means shallow and II; > 1
means deep water. A second dimensionless group comes from gravity. Gravity, represented
by ¢, has the same units as w?
deficit:

, except for a factor of length. The wavenumber fixes this

w2

I, = o (6.2)
Notice that this group does not contain density. If we exclude surface tension, then II;
and Il are the only dimensionless groups that we can form; without surface tension, the
waves propagate because of gravity alone. The equivalence principle tells us that the way
in which gravity affects motion is independent of density. Therefore, density cannot—and
does not—appear in either group.

Now we consider what happens when we allow surface tension back into the playpen of
dimensionless variables. It must belong in the third group. Knowing only that + belongs to
113, we still have great freedom in choosing the form of II3. We choose it so that it measures
the relative importance of gravity and surface tension in determining the wave motion.
Surface tension has units of force per length, whereas pg has units of force per volume, or
force per length cubed. So the ratio vv/pg has units of length squared. We can neutralize
the two excess lengths with two factors of k:

= . (6.3)

We could also have built this group without using gravity, choosing II3 = vk3/pw?. There
are many possibilities for dimensionless groups. The choices that we made, which emphasize
gravity over surface tension, are convenient for studying waves restored by gravity; most
ocean waves are of that ilk.

Var. Dimensions Description

w [T]* angular frequency

k L]~ wavenumber

g [L][T] 2 acceleration due to gravity
h [L] depth of water

P M][L] 3 density

~y [M][T] 2 surface tension

Table 6.1. Variables that determine the behavior of water waves.

We want to solve for frequency, w, as a function of wavenumber, k. We could also
solve for k versus w, but the relations for phase and group velocity are simpler with w as
a function of k. Only the group Il; contains w, so we write the most general dimensionless
relation as

Iy = f(I1y,113), (6.4)

“’_Z —f <I<:h, 7—’“2> . (6.5)

g P9

or
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Solving for w?, we find that
2

W2 = gh - f(kh, %). (6.6)

This relation is valid for waves in shallow or deep water; for waves propagated by surface
tension or by gravity; and for waves in between. Figure 6.1 shows how the two groups II;
and I3 divide the world of waves into four regions. Figure 6.2 shows how wavelength and
depth partition the world, and gives examples of different types of waves.

PY

A

10* 7
Shallow water Deep water

Surface tension 102 + Surface tension
| | } —II; = hk
10~ 1072 102 10*
Shallow water 10777 Deep water
Gravity Gravity
107 1

Figure 6.1. Map of the world of waves. The dimensionless groups 111 and I3
partition the world into four regions. We study them in turn, and combine our
analyses to understand the whole world (of waves). The group I11 measures the
depth of the water: Are we in a puddle or an ocean? The group 113 measures
the relative contribution of gravity and surface tension: Are the waves ripples or
gravity waves?

The division into deep and shallow water (left and right) follows from the
interpretation of Il = kh as dimensionless depth. The division into surface-
tension- and gravity-dominated waves (top and bottom) is more subtle. You can
understand the division by looking at the form of I3, which is vk*/pg. Large
g, or small k, result in the same consequence: small I13. Therefore, the physical
consequence of longer wavelength is similar to that of stronger gravity: Longer-
wavelength waves are gravity waves. The large-Ils portion of the world (top) is
therefore labeled with surface tension.



6. WAVES 97

wavelength (m)
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*Tide
106 +
I, =1
Shallow water 4l
Gravity waves
]
Storm wave at sea
10% T

Storm wave at shore? Deep water

/ Gravity waves

: : % +— depth (m)
1074 1072 102 10*
;=1
. . —2 I o 3
Ripple on thin puddlee 10 Ripple on pond
Shallow-water Deep water
Ripples 10-4 + Ripples

Figure 6.2. Water waves on the earth. Here, we partition the world using the
familiar variables of depth and wavelength for the axes. The thick dividing lines

are based on the dimensionless groups Iy = hk and I3 = vk*/pg. Each region

L and

contains one or two examples of its kind of waves. With g = 1000cms™
p ~ lgem™32, the border wavelength between ripples and gravity waves is just

over A ~ lcm (the horizontal, II3 = 1 dividing line).

We do not as yet know the form of the magic function f in any region, let alone for
all regions. To determine its form, and to understand its consequences, we make a simple
physical model, by considering limiting cases. Like a jigsaw-puzzle-solver, we work out
the corners of the world first, because the physics is simplest there. Then, we connect the
solutions along the edges, where the physics is the almost as simple. Finally, we crawl our
way inward to assemble the complicated, more complete solution. This chapter is a large
example of the divide-and-conquer approach to solving problems, where limiting cases are
the pieces.

6.2 Deep water

We first study deep water, where kh > 1, as shaded in the map in Figure 6.3. Deep water is
defined as water sufficiently deep that waves cannot feel the bottom of the ocean. How deep
do waves’ feelers extend? The only length scale in the waves is the wavelength, A = 27 /k.
We expect, therefore, that the feelers extend to a depth d ~ 1/k (as always, we neglect
constants, such as 27). We can justify this guess by using Laplace’s equation, which is the
spatial part of the wave equation. Suppose that the waves are periodic in the = direction,
and z measures depth below the surface, as shown in Figure 6.4. Then, Laplace’s equation
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Shallow water Deep water
Surface tension 102 4 Surface tension
| L, = hk
1074 1072 102 10*
Shallow water 1072 T Deep water
Gravity Gravity

0t

Figure 6.3. Deep-water portion of the world of waves.

Figure 6.4. Piece of an infinite wave. The wave, with a sinusoidal profile, has
wavelength X. The water has depth h, and we study a width w in the y direction.

becomes

0? 0?

7o 0% _ 0, (6.7)

ox? 022
where ¢ is the velocity potential. It’s not important what exactly ¢ is. You can find out more
about it in a fluid mechanics textbook. Our favorite is Faber’s Fluid Dynamics for Physicists
[13]; Lamb’s Hydrodynamics [35] is a classic, but more difficult. For this argument, all that
matters is that ¢ measures the effect of the wave; that where ¢ = 0, there’s no wave; and
that ¢ satisfies Laplace’s equation. The wave is periodic in the x direction, with a form such

as sin kx. We take
¢ ~ Z(z)sinkx. (6.8)

The function Z(z) measures how the wave decays with depth.
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The second derivative in x brings out two factors of k, and a minus sign:

¢

Ik A S .
=k (6.9)
So that ¢ satisfies Laplace’s equation, the z-derivative term must contribute +k2¢. There-
fore,
0%¢
= k? 6.10
= k%, (6.10)

so Z(z) ~ et*2 The physically possible solution—the one that does not blow up expo-
nentially at the bottom of the ocean—is Z(z) ~ e~¥. Therefore, relative to the effect of
the wave at the surface, the effect of the wave at the bottom of the ocean is ~ e~**. When
kh > 1, the bottom might as well be on the moon. The dimensionless factor kh—it has to
be dimensionless to sit alone in an exponent as it does—compares water depth with feeler
depth d ~ 1/k:

water depth h

-  ~ —— =hk A1
feeler depth — 1/k ’ (6.11)

which is the dimensionless group II;.

In deep water, where the bottom is hidden from the waves, the water depth h does not
affect the waves’ propagation, so h disappears from the list of relevant variables. When h
goes, so does II; = kh. There is one caveat. If II; is the only variable that contains &, then
we cannot blithely discard it, just because we no longer care about h. Fortunately, k appears
in I3 = vk?/pg as well. So it’s safe to toss I1; for deep water. We have just argued that h
is irrelevant based on a physical argument. This argument has a mathematical equivalent
that we can express in the language of dimensionless groups and functions. The statement
that h is large is meaningless, because h has units. The question that remains is, “large
compared to what length?” When we choose 1/k as the standard of comparison—based on
the Laplace’s-equation argument—we can rephrase the meaningless “h is large” statement
to “II; = kh is large.” Using the Laplace’s-equation argument, we drop II; because h is
irrelevant. Mathematically, we are assuming that the function f(kh,vk?/pg) from (6.6) has
a limit as kh — oo.

Without Iy, the general dispersion relation (6.6) simplifies to

k.2
W2 = gk facen( ). 6.12
d p(pg) (6.12)

This relation describes the deep-water edge of the world of waves. The edge has two corners,
labeled by whether gravity or surface tension provides the restoring force. Although we do
not know the form of fgecp, it is a function simpler than the original f. To determine the
form of fyeep, We partition deep-water waves into its two limiting cases: gravity waves and
ripples.

6.2.1 Gravity waves on deep water

Now we specialize to regions of the wave world where water is deep and gravity is strong
(Figure 6.5). This category includes most waves generated by wind, and wakes generated
by ships. With gravity much stronger than surface tension, the dimensionless group vk?2/pg
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limits to O (pretend that we cranked up g, or, by dumping soap on the water, that we turned
down 7). So the general deep-water dispersion relation (6.12) simplifies to

w? = faeep(0)gk = C1 gk, (6.13)

where fgeep(0) is an as-yet-unknown constant, C;. [We do not know that fgeep(z) has a
limit as  — 0. The slab argument, which follows shortly, shows that it does.] The constant
remains unknown to our lazy methods, because the methods trade evaluation of dimen-
sionless constants for comprehension of physics. We usually assume that such constants are
unity. In this case, we get lucky: An honest calculation does produce C; = 1. Therefore,

w? = gk. (6.14)

Shallow water Deep water
Surface tension 102 4 Surface tension

10, = hk

Shallow water 1072 T Deep water
Gravity Gravity

0t

Figure 6.5. Deep-water—gravity-wave portion of the world of waves.

Such results from dimensional analysis seem like rabbits jumping from a hat. The
relation (6.14) is correct, but our gut is not happy with this magical derivation; it asks,
“Why is the result true?” We can understand the origin of the dispersion relation by making
a simple physical model of the forces or energies that drive the waves. The first step is to
understand the mechanism: How does gravity make the water level rise and fall? Taking a
hint from the Watergate investigators,! we follow the water. The water in the crest does
not move into the trough. Rather, the water in the crest, being higher, creates a pressure
underneath it higher than that of the water in the trough, as shown in Figure 6.6. The
higher pressure forces water that is underneath the crest to flow toward the trough, making
the water level there rise. Like a swing sliding past equilibrium, the surface overshoots the
equilibrium level, to produce a new crest, and the cycle repeats.

Our next step is to make this model quantitative, by estimating sizes, forces, speeds,
and energies. In Section 2.1.4, we replaced a messy mortality curve with a more tractable

1. When the reporters Woodward and Bernstein [3] were investigating coverups during the Nixon
administration, they received help from the mysterious “Deep Throat,” whose valuable advice
was that they “follow the money.”
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Figure 6.6. Higher pressure under the crest. The crest is higher than the trough
by roughly &, the wave amplitude. This extra water creates a pressure underneath
the crest larger than that under the trough, by roughly Ap ~ p€g. This pressure
difference makes water flow from under the crest to under the trough: The wave
advances.

Higher
pressure

Lower
pressure

1/k

Figure 6.7. Slab of water. The pressure is higher under the crest (left shaded
side) than toward the trough (right shaded side). The shaded sides have area

A ~ w/k. From Figure 6.6, this extra pressure is Ap ~ p€g, and it acts on

an area A ~ w/k to produce a force F ~ AAp ~ pwég/k. The slab has mass
m ~ pw/k?. In the text, we use this mass to compute the acceleration and kinetic
energy of the slab.

shape: a rectangle. We use the same trick repeatedly for this model. Water underneath
the surface moves quickly because of the pressure gradient. Farther down, it moves more
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slowly. Eventually, it does not move at all. We replace this falloff with a step function,
and pretend that water down to a certain depth moves as a block, and deeper water stays
still (Figure 6.7). How deep should this slab of water extend? By the Laplace-equation
argument, the pressure variation falls off exponentially with depth, with length scale 1/k.
So we assume that the slab has depth 1/k. (What choice do we have? On an infinitely
deep ocean, there is no length scale other than 1/k.) How long should the slab be? Its
length should be roughly the peak-to-trough distance, because the surface height changes
significantly in that distance. This distance is 1/k. Actually, it’s 7/k, but we ignore the
constants, such as w. All such constants combine into a constant at the end, which we
cannot determine with dimensional analysis anyway, so why not discard it now? The width
of the slab, w, is arbitrary. It drops out in all the analyses.

So the slab of water has depth 1/k, length 1/k, and width w. What forces act on it?
We can determine the forces by estimating the pressure gradients. Across the width of the
slab (the y direction), the water surface does not vary, so there are no pressure variations
in that direction. Across the depth (the z direction), the pressure varies because of gravity,
but that variation is just sufficient to prevent the slab from sinking. We care about only the
pressure difference across the length. This difference depends on the height of the crest, &,
and is Ap ~ pg€ (see Figure 6.6). This pressure difference acts on a cross-section with area
A ~ w/k, to produce a force

F ~w/k x pg¢€ = pgwé/k. (6.15)
~
area Ap
The slab (Figure 6.7) has mass
m=px w/k®, (6.16)
——
volume

so this force produces an acceleration

w w
gy ~ P8 ) L e (6.17)
k k
~
force mass

The factor of g says that the gravity produces the acceleration. Full gravitational accelera-
tion is reduced by the dimensionless factor £k, which is roughly the slope of the waves.
From the acceleration of the slab, we can calculate the acceleration of the surface. If
the slab moves a distance x, it sweeps out a volume of water V ~ xA. This water moves
under the trough, and forces the surface upward a distance V/Ay,p,. Because Agop ~ A (both
are ~ w/k), the surface moves the same distance, x, that the slab moves. Therefore, the
acceleration of the slab, agap, given in (6.17), is equal to the acceleration a of the surface:

a ~ aglap ~ g&k. (6.18)

As we discover in Section 6.3, this equivalence of slab and surface acceleration does not hold
in shallow water, where the bottom at depth h cuts off the slab before 1/k.
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With this slab argument, we hope to obtain the deep-water dispersion relation that we
derived by dimensional analysis in (6.14). That equation contains frequency; the accelera-
tion relation (6.18), however, does not. So we massage it until w appears. The acceleration
relation contains a and £, whereas the dispersion relation does not. We therefore manufac-
ture an alternative expression for the acceleration. With luck, the expression will contain
w? and also £, so that we can cancel ¢ and insert w?. In simple harmonic motion (springs!),
acceleration is a ~ w?€, where £ is the amplitude. In waves, which behave like springs, we
can use the same expression for a. We can also derive it for waves: In time 7 ~ 1/w, the
surface moves a distance d ~ £, so a/w? ~ &, or a ~ w?¢. Then (6.18) becomes

W ~ gtk, (6.19)
~—~—~—
a
or
w? ~ gk, (6.20)

which is the dispersion relation (6.14).

This equation, as usual, lacks the dimensionless constant, which we assume is unity.
Fortunately, an exact calculation confirms this lucky guess. Our luck suggests that our
procedures for choosing how to measure the lengths were reasonable. We made two approx-
imations:

» We replaced an exponentially falling variation in velocity potential by a step function
with size equal to the length scale of the exponential decay.

= By taking the length of the slab to be 1/k instead of 7/k, we used only 1 radian of the
cycle as the characteristic length, instead of using a half cycle.

Both approximations are usually accurate in order-of-magnitude calculations. Rarely, how-
ever, you get killed by a factor of (27)%, and wish that you had used a full cycle instead of
only 1 radian.
The derivation that resulted in (6.20) analyzed the motion of the slab using forces.
We can also derive the dispersion relation using energy, by balancing kinetic and potential
energy as we did for the Bohr atom in Section 4.1.2. To make a wavy surface, we require
energy, as shown in Figure 6.8. The crest rises a characteristic height ¢ above the zero of
potential, which is the level surface. The volume of water moved upward is {w/k. So the
potential energy is
PEgravity ~ P&w/k ng ~ Pgwa/k (621)
m

The kinetic energy is contained in the sideways motion of the slab and in the upward motion
of the water pushed by the slab. Because slab and surface move at approximately the same
speed, the sideways and upward motions contribute similar energies. We evaluate the energy
for just the sideways motion. Because we are ignoring constants, such as 2, we do not need
to compute the energy contributed by the upward motion. The surface, and therefore the
slab, moves a distance £ in a time 1/w, so its velocity is w¢. The kinetic energy is

KEdeep ~ pw/k? x w?€? ~ puw?&w/k>. (6.22)

Mslab 1)2
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1/k . -

Figure 6.8. Energy required to make a wave. The shaded block of water has

to be lifted up (and over, but sliding over takes no energy) a height ~ £. As
explained in the text, water does not actually move from trough to crest, but
assuming that it does makes a convenient picture, and does not affect the energy
calculation.

We balance this energy against the potential energy (6.21):

pw 2w /k? ~ pgwé? [k . (6.23)
—_——— ——
KE PE

Canceling the common factor of pwé?, we find, once again, that
w? ~ gk. (6.24)

The energy method agrees with the force method, as it should, because energy can be
derived from force (by integration). The energy derivation tell us what the dimensionless

group I, means:

kinetic energy in slab w?

I, ~ (6.25)

gravitational potential energy ~ g_k

The gravity-wave dispersion relation, w? = gk, is equivalent to II, ~ 1, or to the assertion
that kinetic and gravitational potential energy are comparable in wave motion. This rough
equality is not a surprise for waves, because waves are like springs; in spring motion, kinetic
and potential energies have equal averages (which is a consequence of the virial theorem,
which we discussed in Section 4.2.1).

We have now derived the same dispersion relation in three ways: with dimensional anal-
ysis, and with two physical arguments applied to a simple model. Using multiple methods
increases our confidence not only in our result, but also in our methods. We gain confidence
in our methods of dimensional analysis, and in our slab model for waves. Were we to study
nonlinear waves, for example, where we cannot assume that the wave height is infinitesimal,
we would be able to use our techniques and model with more confidence.
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Now that we believe the dispersion relation, let’s study its consequences. We first
determine the phase and group velocities. The crests move at the phase velocity: vpn = w/k.
For deep-water gravity waves, this velocity becomes

Uph = \/%, (6.26)

or, using the dispersion relation to replace k by w,
9
Uph = a (627)

In an infinite, single-frequency wave train, the crests and troughs move at this speed. How-
ever, a finite wave train contains a mixture of frequencies, and the various frequencies move
at different speeds, as given by (6.27): Deep water is dispersive. Dispersion makes a finite
wave train travel with the group velocity, given by v, = Ow/0k, as explained in Fluid Dy-
namics for Physicists [13]. Within a wave train, the crests move at the phase velocity, which
can be different from the group velocity, shrinking and growing to fit under the envelope of
the wave train. The group velocity is

0 1 jg 1
Ug = %\/gk = 5\/; = §Uph- (628)

The group velocity is one-half of the phase velocity. The everyday consequence is that ship
wakes trail a ship. A ship, moving with velocity v, creates gravity waves with vp, = v.
(Wind also generates waves, and the wind speed corresponds roughly to the phase velocity,
as we discover shortly.) The waves combine to produce wave trains that propagate forward
with the group velocity, which is only one-half of the velocity of the ship. From the ship’s
point of view, these gravity waves travel backward. In fact, they form a wedge, and the
opening angle of the wedge depends on the factor of 1/2.

6.2.1.1 SURFING. Let’s apply the dispersion relation to surfing. Following one winter storm
reported in the Los Angeles Times—the kind of storm that brings cries of “Surf’s up”—
waves arrived at Los Angeles beaches roughly every 18s. How fast were the storm winds
that generated the waves? Wind pushes crests, as long as they move more slowly than the
wind. After a long-enough push, the crests move with nearly the wind speed. Therefore,
the phase velocity of the waves is an accurate approximation to the wind speed. The phase
velocity, from (6.27), is g/w. In terms of the wave period T, the velocity is vy, = ¢g7'/2m, so

9 T
10ms > x 18
X
Uwind ™~ Uph ™~ % ~ 30111871. (629)

In units more familiar to Americans, this wind speed is roughly 60 mph—a hefty storm.
The wavelength is given by

A =vpuT ~30ms~! x 18s ~ 500m. (6.30)
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The crests are separated by half a kilometer. They bunch up near shore, because they feel
the bottom; this bunching is a consequence of the shallow water dispersion relation, which
we discuss in Section 6.3.1.

In this same storm, the following day’s waves arrived more frequently, at 17 s intervals.
Let’s first check that this decrease in period is reasonable. This precaution is a simple sanity
check. If our theory is wrong about a physical effect as fundamental as this sign—whether
the period should decrease or increase—then we have certainly neglected important physics.
Fortunately, our theory passes the test. Group velocity varies as 1/w, which is proportional
to the period. The storm winds generate waves of different wavelengths and periods, and
the different wavelengths sort themselves in the trip from the far ocean to Los Angeles.
Longer-period waves move faster, so the 18 s waves should arrive before the 17s waves, and
they did. We can extract a surprising piece of information from the decline in the interval;
we can determine the distance to the storm. In their long journey, the 18s waves raced
ahead 1 day. The ratio of speeds is

velocity (18 s waves) 18 1
=—=14+— 6.31
velocity (17s waves) 17 * 17 (6:31)

so the race must have lasted roughly ¢ ~ 17 days ~ 1.5-10%s. The wave train moves at the
group velocity, vy = vpn/2 ~ 15ms~!, so the storm distance was d ~ tvg ~ 2- 10* km, or
roughly halfway around the world (Figure 6.9)!

6.2.1.2 SPEEDBOATING. Our next application of the dispersion relation is to speedboating;:
How fast can a boat travel? We exclude hydroplaning boats from our analysis (even though
some speedboats can hydroplane). Longer boats generally move faster than shorter boats,
so it is likely that the length of the boat, [, determines the top speed. The density of water
might matter. From only v (the speed), p, and [, however, we cannot form any dimensionless
groups. So we need to add at least one more variable. Viscosity is irrelevant because the
Reynolds’ number (Section 3.3) for boat travel is gigantic. Even for a small boat of length
5m, creeping along at 2ms~1,

N 500 cm x 200 cm s~ ?

R
¢ 1072 cm?2s~!

~ 10", (6.32)

At such a huge Reynolds’ number, the flow is turbulent, and independent of viscosity.
Surface tension is also irrelevant, because boats are much longer than a ripple wavelength
(roughly 1cm). Our search for new variables is not meeting with success. Perhaps gravity
is relevant. From v, p, g, and [, we can form one dimensionless group (four variables, three
dimensions), which is v?/gl, also called the Froude number:

1)2

Fr=—. .
T p (6.33)

The critical Froude number, which determines the maximum boat speed, is a dimensionless
constant. As usual, we assume that the constant is unity:

v~ /gl (6.34)
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eLos Angeles

distance ~ 20, 000 km

travel time ~ 17 days

Figure 6.9. Map of the actual world (roughly drawn). A storm, almost at the
south pole, generates waves that propagate outward (like ripples in a pond). Some
waves make it to Los Angeles, to gladden the hearts of surfers and textbook writ-
ers.

A rabbit has just jumped out of our hat. What mechanism justifies this formula?
Consider what happens when a boat plows through water, and follow the waves. The moving
boat generates waves (the wake), and it rides on one of those waves. Let’s analyze this bow
wave: It is a gravity wave with vpn ~ Upoat. Because Ugh = w? / k2, the dispersion relation

tells us that
2

w g
Ul?)oat ~ ﬁ = E = gA, (635)
where X = 1/k = \/2w. So the wavelength of the waves is ~ v ., /g. The other length in
this problem is the boat length; so we can interpret the Froude number (6.34) as

v /g  wavelength of bow wave
Fr = boat ~ . .
g l length of boat (6.36)

Why is Fr ~ 1 the critical number? Interesting—and often difficult—physics occurs
when a dimensionless number is near unity. In this case, the physics is as follows. The wave
height changes significantly in a distance A; if the boat’s length [ is comparable to A, then
the boat rides on its own wave and tilts upward. It then presents a large cross-section to
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the water, and the drag becomes huge.? So the top speed is given by

Upoat ™~ \/a (637)

For a small motorboat, with length [ ~ 5m, this speed is roughly 7ms~!, or 15mph. Boats
can go faster than the nominal top speed given in (6.37), but it takes plenty of power to
fight the drag, which is why police speedboats have huge engines.

We meet the Froude number in surprising places. It determines, for example, the speed
at which an animal’s gait changes from a walk to a trot or, for animals that do not trot, to
a run. Here, it determines maximum boating speed. The Froude number is, in a sense, the
ratio of potential energy to kinetic energy, as we can see by massaging v2/gl:

v? mo? kinetic energy

Fr=— = ~ - . (6.38)
gl mgl potential energy

In this case, the length [ is a horizontal length, so gl is not a potential energy. In the Froude
number for walking speed, [ is leg length, and gl is a potential energy. Then, for a human
with leg length [ ~ 1m, the condition Fr ~ 1 implies that v ~ 3ms~! or 6 mph; this speed
is a rough estimate for the top speed for a race walker (the world record for men’s race
walking is held by Bernado Segura of Mexico, who walked 20km in 1:17:25.6, for a speed
of 4.31ms™1).

Shallow water Deep water
Surface tension 102 4+ Surface tension

11, = hk

10~ 1072 10? 104

Shallow water 107> T Deep water
Gravity Gravity

1074 T

Figure 6.10. Deep-water—ripple portion of the world of waves.

6.2.2 Ripples on deep water

For small wavelengths (large k), surface tension provides the restoring force: We are now
studying the shaded region in Figure 6.10. If surface tension, rather than gravity, provides
the restoring force, then g drops out of the final dispersion relation. We could argue, as

2. Catamarans and hydrofoils skim the water, so this kind of drag does not limit their speed.
The hydrofoil makes a much quicker trip across the English channel than the ferry makes, even
though the hydrofoil is much shorter.



6. WaveEs 109

we did in Section 6.2.1, that g shows up in the dimensionless group I3 = vk?/pg, so I3
is irrelevant. In that argument, however, lies infanticide. It throws out the variable that
determines the restoring force: surface tension. To retrieve the baby from the bathwater,
we do not throw out vk?/pg directly. We instead choose the form of fgeep so that gravity,
represented by g, vanishes from the dispersion relation.

The deep-water dispersion relation (6.12) contains one power of g in front. The argu-
ment of fqeep also contains one power of g, in the denominator. To cancel g, we choose fgecp
to have the form fgeep(z) ~ 2. Then w? ~ “/T’fg. By luck, the dimensionless constant is unity,
which we would have assumed anyway, so

L
p

Let’s try to derive this relation (up to a dimensionless constant) using the slab argument.
In the slab picture, we replace gravitational by surface-tension energy, and again bal-
ance potential and kinetic energies. The surface of the water is like a rubber sheet. A wave
stretches the sheet and creates area. This stretching requires energy. To estimate the en-
ergy, we first estimate the extra area that a wave of amplitude £ and wavenumber k creates.
The extra area depends on the extra length in a sine wave compared to a flat line. The
typical slope in the sine wave £ sin kx is £k. Instead of integrating to find the arc length, we

(6.39)

approximate the curve as a straight line with slope £k (Figure 6.11). Relative to the level
line, the tilted line is longer by a factor 1 + (£k)2, for small slopes. As before, we study

0 ~ slope ~ &k
lo~1/k

Figure 6.11. Approzimating a sine wave by a straight line. We want to compute
the arc length of the sine wave so that we can compute the extra surface area
required to make a wave. We’re too lazy to integrate to find arc length. (“We”
here means “the authors”—our readers may be more diligent; the purpose of this
text is to correct that habit.) So we replace the curve by a straight line with the
same characteristic slope. The characteristic slope of the sine wave is £k (which
happens to be the exact slope at the origin): In a distance of roughly 1rad—
which is a length 1/k—it rises a height . The length of the hypotenuse isl ~
lo/ cos 0, which is roughly lo(1 + (€k)?) for small slopes €k.

a piece of a wave, with characteristic length 1/k in the x direction, and width w in the y
direction. The extra area is
AA~ w/k X (€k)? ~ w3k, (6.40)

~—~ ~——
level area fractional increase
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The potential energy stored in this extra surface is
PEripple ~ ’VAA ~ ’7?,U£2]€ (641)

The kinetic energy in the slab is the same as it is for gravity waves, which is given in (6.22):

KE ~ pw?&%w/k?. (6.42)
We balance the energies,
p? 2wk ~ ywék, (6.43)
—_—— N —
KE PE
and find that
w? ~ k3 /p. (6.44)

This dispersion relation agrees with the one that we found in (6.39) using dimensional
analysis. For deep-water gravity waves, we used energy and force arguments to rederive the
dispersion relation. For ripples, we have just worked out the force argument; you are invited
to work out the corresponding force argument.

We have already interpreted the first two dimensionless groups: I1; is the dimensionless
depth, and I, is ratio of kinetic energy to gravitational potential energy. We described 113 as
a group that compares the effects of surface tension and gravity. Having computed potential
energy for gravity waves in (6.21), and for ripples in (6.41), we can make the comparison

more precise:
potential energy in a ripple

I3 ~ . . :
potential energy in a gravity wave
ywé?k
~n —— -4

pgwé? [k (645

vk?

pg

Alternatively, 113 compares vk?/p with g:
/{72
1, = 2K/, (6.46)

g

This form of II3 may seem like a trivial revision of vk?/pg. However, it suggests an interpre-
tation of surface tension: that surface tension acts like an effective gravitational field with
strength

Gsurface tension — '7k72/,07 (647)

In a balloon, the surface tension of the rubber implies a higher pressure inside than outside.
Similarly, in wave, the water skin implies a higher pressure underneath the crest, which is
curved like a balloon; and a lower pressure under the trough, which is curved opposite to a
balloon. This pressure difference is what a gravitational field with strength ggurface tension-
We have met this idea of effective gravity already, when we studied marbles falling in corn
syrup (Section 3.3.2); in that problem, we replaced g by an effective g that included the
effect of buoyancy.
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If we replace ¢ in the gravity-wave potential energy (6.21) with this effective g, we get
the ripple potential energy (6.41):

g—k?/p

pgwé? [k =0 qwélk . (6.48)
~— S——
PE(gravity wave) PE(ripple)

The left side becomes the right side after we make the substitution above the arrow. If we
make the same replacement in the gravity-wave dispersion relation (6.14), we get the ripple
dispersion relation (6.39):
w? = gk % w? = 7—k3 (6.49)
P

The interpretation of surface tension as effective gravity is useful when we combine our
solutions for gravity waves and for ripples, in Sections 6.2.3 and 6.3.3. We could have
reversed the analysis and interpreted gravity as effective surface tension; however, gravity
is the more familiar force, so we chose to use effective gravity.

As we did for gravity waves, we now use the dispersion relation to calculate phase and
group velocities. The phase velocity is

w k
vpn = = = %, (6.50)
and the group velocity is
ow 3
Vg = % = §Uph' (651)

The factor of 3/2 is a consequence of the form of the dispersion relation: w oc k3/2; for
gravity waves, w o< k'/2, and the corresponding factor is 1/2. In contrast to deep-water
waves, a train of ripples moves faster than the phase velocity. So, ripples steam ahead of a
boat, whereas gravity waves trail behind.

Let’s work out speeds for typical ripples, such as the ripples that we create by dropping a
pebble into a pond. These ripples have wavelength A ~ 1cm, and therefore have wavenumber
k = 27/X\ ~ 6cm™L. The surface tension of water, which we estimated in Section 4.3.3, is
v ~ 72ergcm™2. So the phase velocity, given by (6.50), is

N L 1/2
,_/ﬁ ’—/Hl
72 T x6cm™
e ~ 21 cms L. (6.52)
lgcm
P

The group velocity is vy ~ 30 cms™!. This wavelength of 1cm is roughly the longest wave-
length that still qualifies as a ripple, as shown in Figure 6.2; the third dimensionless group,
which distinguishes ripples from gravity waves, has value

2 k?
2 2 2
k 2 - -
m, = 0 TResem Txdbem T (6.53)
pg lgem™ x 1000 cm s
—_—— e
P g
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With a slightly smaller &, the value of II3 would slide into the gray zone where I3 ~ 1. If
k were yet smaller, the waves would be gravity waves. Other ripples, with a larger k, have
a shorter wavelength, and therefore move faster: 21 cms~! is roughly the minimum phase
velocity for ripples. This minimum speed explains why we see mostly A ~ 1 cm ripples when
we drop a pebble in a pond. The pebble excites ripples of various wavelengths; the shorter
ones propagate faster and the 1cm ones straggle, so we see the stragglers clearly, without
admixture of other ripples.

Shallow water Deep water
Surface tension 102 4 Surface tension
| 10, = hk
1074 1072 102 10*
Shallow water 1072 T Deep water
Gravity Gravity

0t

Figure 6.12. Deep-water portion of the world of waves (same as Figure 6.3).

6.2.3 Combining ripples and gravity waves on deep water

Having studied two corners of the puzzle—gravity waves and ripples in deep water—we
connect the corners, and study the deep-water edge, as shown in Figure 6.12. The dispersion
relations (6.14) and (6.39), for convenience restated here, are

2 | gk, gravity waves;
v vk3/p, ripples.

We would like to combine the relations in these two extreme regimes, to produce a dispersion
relation valid for gravity waves, for ripples, and for waves in between.

Both functional forms came from the same physical argument of balancing kinetic and
potential energies. The difference was the source of the potential energy: gravity or surface
tension. Gravity and surface tension are active in both regimes. On the top portion of the

(6.54)

world of waves (Figure 6.19), surface tension dominates gravity; on the bottom portion
(Figure 6.18), gravity dominates surface tension. You might therefore guess that, in the
intermediate region, the two contributions to the potential energy simply add, and that the
combination dispersion relation is just the sum of the two extremes:

w? = gk +~vk3/p. (6.55)

Your guess would be correct (which is why we used an equality); when in doubt, try the
simplest solution.
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We can restate our reasoning using the effective gravitational field produced by surface
tension, derived in (6.47). The two sources of gravity—real and effective—simply add, to

make
vk?
Gtotal = g + Gsurface tension — g + 7 (656)

When we replace g in w? = gk with giora1, we rederive the deep-water dispersion relation

(6.55): .

k
w? = (g + %) k= gk +7k/p. (6.57)

With this dispersion relation, we can calculate wave speeds for all wavelengths or
wavenumbers. The phase velocity is

k
1%

=&
EIES

Uph (6.58)

As a function of wavenumber, the two terms in the square root compete to increase the
speed. The surface-tension term wins at high wavenumber; the gravity term wins at low
wavenumber. So there is an intermediate, minimum-speed wavenumber, kg, which we can
estimate by balancing the surface tension and gravity contributions:

o 9 (6.59)

This computation is another example of order-of-magnitude minimization, which we in-
troduced in Section 4.1.2 to calculate the Bohr radius. This minimum-speed wavenumber

1S

pg
ko ~ ] —=. 6.60
0 S (6.60)

At this wavenumber, II3 = 1: These waves lie just on the border between ripples and gravity
waves. Their phase speed is

i AN

In water, the critical wavenumber is kg ~ 4cm ™!, so the critical wavelength is A\g ~ 1.5 cm;
the speed is
vg ~ 23cms L. (6.62)

We derived the speed (6.61) dishonestly. Instead of using the maximum-minimum methods
of calculus, we balanced the two contributions. A calculus calculation would agree with
our minimum phase velocity. A tedious calculus calculation shows that the minimum group
velocity is

vg & 17.7cms ™. (6.63)

Let’s do the minimizations honestly. The calculation is not too messy if it’s done prop-
erly, and the proper method is useful in many physical maximum-minimum problems. We
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first find the minimum of the phase velocity (6.58). That equation contains constants—p,
v, and g—which we have to carry through all the differentiations. To simplify the manipu-
lations, we instead choose a convenient set of units, in which

p=y=g=1. (6.64)

Our treatment of waves uses three basic dimensions: mass, length, and time. Choosing
three constants equal to unity is the most freedom that we have; it is equivalent to choosing
canonical mass, length, and time, and thereby making all quantities dimensionless.

We restore the constants at the end of the minimization. In addition to constants, the
phase velocity also contains a square root. So we minimize vgh, which in our new unit system

1S
1
2 _
vph =k + 7. (6.65)

For this minimization, we do not need calculus. The two terms are both positive, so we may
apply the arithmetic-mean—geometric-mean inequality (affectionately known as AM-GM)
to k and 1/k. The inequality states that, for positive a and b,

(a+b)/2 > Vab, (6.66)
X o

with equality when a = b. Figure 6.13 is a geometric proof of this inequality. You are invited
to convince yourself, just for fun, that the figure is a proof. Using a = k and b = 1/k, we
find that the geometric mean is unity, so the arithmetic mean is > 1. Therefore,

1
kit 22, (6.67)

with equality when k = 1/k, or when k = 1. At this wavenumber, the phase velocity is v/2.
In this unit system, the dispersion relation is

w=k?+k, (6.68)

and the group velocity is

Vg = % k3 +k, (6.69)
which is )
1 1
1 3k7 + (6.70)

Vg = = ——.

2Vt k

At k = 1, the group velocity is also v/2: These borderline waves have equal phase and group
velocity.

To convert k = 1 back to our usual units, we multiply it by 1, where we form the 1

using a product of p, v, and g. How can we make a length from p, v, and g7 The form of the

result (6.60) tells us that y/pg/~ has units of [L]7!. So k = 1 really means k = 1 x \/pg/7,
which is just what we found in (6.60), but now we know that the missing constant is 1.
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Figure 6.13. Proof without words: A geometric proof of the arithmetic-mean—
geometric-mean inequality. We leave to you the fun of translating the picture into
a traditional proof. (Hint: Draw a triangle.)

The minimum group velocity is more complicated. We minimize vé, to get rid of the
square root. The derivative is

0 9k +6K*+1 (3K + 13K + 6k - 1)
ok  kKS+k (k3 + k)2
N——

2
g

(6.71)

(%

Equating this derivative to zero, we solve 3k* 4+ 6k? — 1 = 0, which is a quadratic in k2, and
has positive solution

ky = \/—1+ \/4/3 ~ 0.393. (6.72)
At this k, the group velocity is
vg (k1) ~ 1.086. (6.73)

In more usual units, this minimum velocity is
1/4
vg ~ 1.086 <E> . (6.74)
P

When we put in the density and surface tension of water, we get a minimum group velocity
of 17.7cms™1, as we claimed in (6.63).

After dropping a pebble in a pond, you see a still circle surrounding the drop point.
Then, the circle expands at the minimum group velocity given in (6.63). If you do not have
a pond handy, you can try the experiment in your kitchen sink: Fill it with water, and drop
in a coin. The existence of a minimum phase velocity, given in (6.62), is useful for bugs that
walk on water. If they move slower than 23cms™!, they generate no waves, and thereby
reduce the energy cost of walking.
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Figure 6.14. Shallow-water portion of the world of waves.

6.3 Shallow water

In shallow water, the height h, absent in the deep-water calculations, returns to complicate
the set of relevant variables. We are now in the shaded region of Figure 6.14. With this extra
length scale, we have too much freedom; using only dimensional analysis, we cannot deduce
the shallow-water form of the magic function f in the dispersion relation (6.6). However,
by modifying the slab argument, we can.

In deep water, the slab has depth 1/k. In shallow water, however, where h < 1/k,
the bottom of the ocean arrives before that depth. The shallow-water slab has depth h. Its
length is still 1/k, and its width is still w. However, the continuity argument changes. In
deep water, where the slab has depth equal to length, the slab and surface move the same
distance. In shallow water, with a slab thinner by hk, the surface moves more slowly than
the slab, by the factor hk. With wave height £ and frequency w, the surface moves with
velocity w, so the slab moves (sideways) with velocity vgan, ~ §w/hk. The kinetic energy in
the water is contained mostly in the slab, because the upward motion is much slower than
the slab motion. This energy is

pw§2w2

2. (6.75)

KEghatiow ~ pwh/k x (€w/hk)* ~
—— Y
mass U2

We balance this energy against the potential energy, which we compute for the two limiting
cases: ripples and gravity waves.

6.3.1 Gravity waves on shallow water

We first specialize to gravity waves—the shaded region in Figure 6.15, where water is shallow
and wavelengths are long. These conditions include tidal waves and waves generated by
undersea earthquakes. For gravity waves, we already computed the potential energy, in
(6.21), and found that

PE ~ pgwé? /k. (6.76)

This energy came from the distortion of the surface, and it is the same in shallow water
(as long as the wave amplitude is small compared with the depth and wavelength). [The
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dominant force (gravity or surface tension) determines the potential energy. As we see when
we study shallow-water ripples, in Section 6.3.2, the water depth determines the kinetic

energy.]
We balance this energy against the kinetic energy (6.75):

wéw?
phT ~ pgwé? k.. (6.77)
K'E PE
So
w? = ghk?. (6.78)

The equation has an equality, because, once again, the dimensionless constant is unity. So,
for gravity waves on shallow water, the function f has the form

vk?
fshallow (kh, —) = kh. 6.79
hallow ( 7 ) (6.79)

1044

Shallow water Deep water

Surface tension 102 4+ Surface tension

+ + + Iy = hk

10~ 1072 10? 10

Shallow water 107> T Deep water

Gravity Gravity
(U

Figure 6.15. Shallow-water—gravity-wave portion of the world of waves.

The group and phase velocities are equal to each other, and are independent of fre-

Uph:%:\/gihv

Ow
’Ug:%:\/g_h.

Shallow water is nondispersive: All frequencies move at the same velocity, so pulses com-
posed of various frequencies propagate without smearing. Undersea earthquakes illustrate
the danger in such unity. If there is an earthquake off the coast of Chile, and the ocean
bottom drops, it generates a shallow-water wave, which travels without distortion to Japan.
The wave speed is v ~ 1/3000m x 10ms—2 ~ 170ms~!: The wave can cross a 10*km

quency:

(6.80)

ocean in 1 day. As it approaches shore, where the depth decreases, the wave slows, grows
in amplitude, and becomes a large, destructive wave when it reaches land.
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Figure 6.16. Shallow-wave—ripple portion of the world of waves.

6.3.2 Ripples on shallow water

Ripples on shallow water—the shaded region in Figure 6.16—are rare. They occur when
raindrops land in a shallow rain puddle, one whose depth is less than 1 mm. Even then, only
the longest-wavelength ripples, where A ~ 1cm, can feel the bottom of the puddle. What
is the potential energy of the surface?” We have already computed the potential energy, in
(6.41). Although we derived that formula for deep water, the water depth does not affect
the potential energy; the dominant force—here, surface tension—determines the potential
energy. We equate the potential energy from (6.41) with the kinetic energy (6.75):

pw€w? W

s E’Y(kf)Q- (6.81)
—_—— ——
KE PE
We then find that -
2.7 ; (6.82)
The phase velocity is
hk?
I = (6.83)

and the group velocity is vy = 2vp, (the form of the dispersion relation is w o k?). For
h ~ 1mm, this speed is

.84
lgem—3 (6.84)

<72erg ecm™2 x 0.1cm x 36 (31112)1/2 1
v~ ~ 16cms™ .
6.3.3 Combining ripples and gravity waves on shallow water

We have studied the two corners of the world of shallow-water waves: ripples and gravity
waves. Now we connect the corners to make an edge: We study general shallow-water waves.
This region of the world of waves is shaded in Figure 6.17. We can combine the dispersion
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Figure 6.17. Shallow-water portion of the world of waves (same figure as Fig-
ure 6.14).

relations for ripples with that for gravity waves using two equivalent methods. We either
can add the two extreme-case dispersion relations, (6.78) and (6.82); or, can use the effec-
tive gravitational field given in (6.56) in the gravity-wave dispersion relation (6.78). Either
method produces

2
2 2 Yhk
W2~k (gh+ . (6.85)
a2
I3 = i
124
1044
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Figure 6.18. Gravity-wave portion of the world of waves.

6.4 Combining deep- and shallow-water gravity waves
We now examine the gravity-wave edge of the world, as shown in Figure 6.18. The deep-
and shallow-water dispersion relations are, from (6.14) and (6.78):

2 _ 1,  deep water;
W =gk x { hk, shallow water. (6.86)
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To interpolate between the two regimes, we want a function f(hk) that asymptotes to 1 as
hk — oo, and to hk as hk — 0. One such simple function is tanh hk, so we guess that the
One True Gravity Wave Dispersion Relation is:

w? = gk tanh hk. (6.87)

Our guess is plausible, because tanh hk falls off exponentially as h — oo, in agreement with
the argument based on Laplace’s equation. In fact, our guess is correct.

k2
My = 2
rg

10t
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Figure 6.19. Ripple portion of the world of waves.

6.5 Combining deep- and shallow-water ripples

We now examine the final edge: ripples, in both shallow and deep water, as shown in
Figure 6.19. In Section 6.4, we found that tanh kh did the yeoman work of interpolating
between hk and 1, as hk went from 0 to oo (as the water went from shallow to deep).
We guess that the same trick holds for ripples, because the Laplace-equation argument,
which justified the tanh kh, does not depend on the restoring force. The relevant dispersion
relations are (6.82), for shallow water, and (6.39), for deep water:

wh= {fyhk4//7, it kh < 1. (6.88)

If we factor out vk3/p, the necessary transformation becomes clear:

= "V hk, ifkh<1. (6.89)

2 w_k?’X{L if kh > 1;
This ripple result looks similar to the gravity-wave result (6.86), so we make the same
replacement:

{ L, ifkh>1, becomes tanh kh. (6.90)

hk, if kh < 1,
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Then we get the general ripple dispersion relation:
k,B
w? = 77 tanh kh. (6.91)
This dispersion relation does not have much practical interest, because, at the cost of greater
complexity than the deep-water ripple dispersion relation (6.39), it adds coverage of only a
rare case: ripples on ponds. We include it for completeness, so that we have treated all four
edges of the world, in preparation for the grand combination coming up next.

6.6 Combining all the analyses

Now we can replace g with giota) from (6.56), to find the One True Dispersion Relation:

w? = (gk + vk*/p) tanh kh. (6.92)
5 3 2
Shallow water Rinples Deep water
Ripples ]Sf Ripples
5  yhk? w? =" tanhkh W L
w" = P W = —
p P
6 9 3
shallow water K deep water
hk? 2 _ e 3
P g2 (gh+7 ) w (gk+ p )tanhkh W2 — g4 1F°
p
4 . 1
Shallow water Deep water

Gravity waves

Gravity waves
w? = gk tanh kh

Gravity waves
w? = ghk?

w? = gk

Figure 6.20. What we did. Fach box represents a limit. The numbers next to
the bozes mark the order in which we studied that limit. In the final step (9),

we combined all the analyses into the superbox in the center, which contains the
dispersion relation for all waves: gravity waves or ripples, shallow water or deep
water. The arrows show how we combined smaller, more specialized corner boxes
into the more general edge bozes (double ruled), and the edge regions into the
universal center box (triple ruled).

6.7 What we did

We studied water waves by investigating dispersion relations. We mapped the world of
waves, explored the corners, then the edges, and then assembled the results to form an
understanding of the complex, complete solution. We can now draw the whole map, shown
in Figure 6.20. Considering limiting cases, as we did, and then stitching them together,
makes the analysis tractable, and, more important, comprehensible.
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7 RETINAL ROD

7.1 Problem that the rod solves

Try the following experiment, which Hubel [23, p. 56-57] describes. Take a light meter and
a newspaper to your favorite beach. Measure the light reflected from the big black letters.
Go inside and measure the light reflected from the white space. You will find that the black
letters outdoors reflect more light than the white space indoors. Yet to our eye, black is
dark and white is light, no matter the background light.

The eye’s remarkable illumination independence arises because the eye computes con-
trast in the first steps of its image processing, as Shapley, Kaplan and Purpura [55] discuss.
Reflectivity—the fraction of incident light that an object reflects—is an innate property of
an object, determined by the energy levels of the electrons in the object and by the texture
of the surface, rather than by the light level. The light reflected from an object is RI},
where R is the reflectivity and Iy, is the background-light intensity.

When you read indoors or at the beach, the light is bright enough that rods are useless
and cones transduce the signal. The analysis in this paper is for the rod, because we know
more detailed biochemistry for the rod than for the cone. For this newspaper example,
pretend anyway that rods transduce the signal, and consider what one rod sees. As the eye
sweeps (sacccads) across the newspaper title, this rod receives light reflected from white
space, from black print, and then from white space: The black print generates a (negative)
flash. The size of the flash is o« I,AR, where AR is the difference in reflectivity between
black print and white space. If the rod’s flash sensitivity is oc I ! then the signal that the
rod generates as the black letter crosses it is o« AR and is independent of I},.

This I ! flash sensitivity is the Weber—Fechner law, first proposed by Weber [60] and
extended by Fechner [14]. It benefits the visual system in three ways. First, it uses the limited
capacity of the optic nerve efficiently. By removing redundant information—the background
light—the rod frees the optic nerve to carry a larger quantity of useful information: contrast.
Second, it simplifies later stages of image processing: Those stages do not need to change
their algorithms according to light level. Third, it increases the dynamic range of the rod.
Suppose that the rod had constant sensitivity at all light levels. Then the same scene would
produce much larger signals in bright than they would in low light. This needless variation
would hinder the rod, which would have to encode both large and small signals with the
same fractional accuracy. This task is difficult for small signals, for which is relatively
large. The Weber—Fechner sensitivity avoids this problem, and allows the rod to accurately
represent scenes in low and in bright light; it extends the dynamic range of the rod. An
actual rod does not compute exact mathematical functions. However, to the extent that the
rod’s flash response approximates I, ! the rod gains these advantages. The experiments of
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Matthews and coworkers [42] show that the rod’s flash sensitivity approximates I, L over a
light intensity range of a factor of 100.

7.2 Scope of this analysis

This analysis is an approximate model for the flash sensitivity. With one caveat (described in
Section 7.5), this model explains the Weber—Fechner law. Many workers have made detailed
theoretical models of rod biochemistry; see, for example, the papers of Koutalos, Nakatani,
and Yau [31], of Lamb and Pugh [37, 36], of Pugh and Lamb [48], Nikonov, Engheta, and
Pugh [44], of Calvert and coworkers [5], of Tamura, Nakatani, and Yau [58], of Ichikawa
[24], and of Ames [25]. (The paper by Ames describes a particularly interesting graphical
method.) These models—whose predictions closely match experimental data—show that
our understanding of rod biochemistry is nearly complete.

The accuracy comes at a price: numerical solution. The approximate model in this paper
is simple enough that we can solve the equations analytically or, with feedback diagrams,
pictorially. Furthermore, the approximate analysis, because it is simple, shows clearly what
biochemical features are responsible for what properties of the response. The approximate
analysis is therefore easier to generalize; these computational building blocks occur in other
biochemical systems, such as protein synthesis regulation. The simplicity comes at the cost
of accuracy. Both types of models—simple and inaccurate, and complicated and accurate—
increase our understanding of the rod and of biochemical pathways.

The first part of this analysis (Section 7.3) estimates the response of a dark-adapted
rod to a flash of light; it is a simplified presentation of the model of Lamb and Pugh [37].
The second part (Section 7.4) estimates the effect of steady background light. The third
part (Section 7.5) combines the first two estimates to estimate the flash response as a
function of background light level. Tamura, Nakatani, and Yau [58] describe a model that
explains Weber—Fechner flash sensitivity in monkey rods; they evaluate the flash sensitivity
by differentiating the steady-state response with respect to light intensity. That method
is not always correct; the flash response so computed may be in error by a constant that
depends on how rapidly the sensitivity varies with flicker rate. The model in this paper
evaluates the flash sensitivity directly from the flash response. (Differentiating the steady-
state response in this paper does give the correct scaling for the flash response. The result
may be in error by a constant, but that error would be invisible to this model: For simplicity,
this model ignores constants of proportionality.) This model uses data from salamander rods,
the photoreceptors for which we have the most detailed biochemical information.

7.3 Flash response in darkness: The model of Lamb and Pugh

Lamb and Pugh’s model, which they present in [37] and review in [36, 48], explains the
first few hundred milliseconds of the response of a dark-adapted rod to a flash of light. It
assumes that calcium concentration remains constant during the response, an assumption
that fails after roughly 300 ms. This section reviews their model.

Figure 7.1 shows the reactions by which light lowers membrane current. The mathe-
matical analysis follows the same sequence of reactions. At time ¢t = 0, a light flash instantly
activates S rhodopsin molecules:

R* = S'step(t), (7.1)
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(GMP] |

Figure 7.1. From light to current, without feedback. A flash of light activates
rhodopsin molecules (R*). Activated rhodopsin, via G-protein, activates phos-
phodiesterase molecules (increases E*); the 1 on the arrow that connects R* and
E* says that E* is proportional to R*. PDE* molecules hydrolyze cyclic GMP
(cGMP) at a rate 3; the rate is proportional to E*; the linear proportionality is
indicated on the figure with a 1 on the arrow between E* and 3. The -1 between
08 and [cGMP] means that (in the steady state) cyclic GMP concentration is in-
versely proportional to phosphodiesterase hydrolysis rate 3. In the final stage of
transduction, cyclic GMP molecules open channels in the membrane; the mem-
brane current is proportional to the nth power of [cGMP].

where ¢ is the time since the flash, and step(¢) is the step function. [Table 7.1 lists the
symbols and parameters in this analysis.] The activated rhodopsin eventually inactivates,
so the step function describes only the initial change in R* level. The inactivation time
constant is many seconds (as the experiments of Pepperberg and coworkers [46] show);
by then, the constant-calcium approximation is already invalid. In the first few hundred
milliseconds, when the calcium level is roughly constant, the step function is an accurate
description.

Activated rhodopsin activates G-protein, which activates phosphodiesterase. The num-
ber of activated phosphodiesterase molecules increases linearly (it ramps):

E* = SVREt, (72)

where vgg is the rate at which one activated rhodopsin creates (via G-protein) activated
phosphodiesterase. Activated phosphodiesterase hydrolyzes cGMP at a rate

dc
<d_> — —ﬁC — _(ﬁdark + VECE*)C7 (73)
t hydrolysis

where ¢ is the cGMP concentration, vgc is the rate at which one PDE* molecule hydrolyzes
c¢cGMP, and Bqak is the hydrolysis rate in darkness. Cyclase synthesizes cGMP at a rate

dc>
J— = . (7.4)
<dt synthesis

The rate a depends on calcium concentration, but in the first few hundred milliseconds after
the flash, the calcium concentration is nearly constant. So, in this section, we can assume
that « is constant. Hydrolysis and synthesis of cGMP compete:

de < dc> < dc>
— == + | = = o — (Bdark + VEcE")c. (7.5)
dt dt hydrolysis dt synthesis

de
dt

So
= (@ — Baarkc) — vecE"c. (7.6)
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Symbols
Quantity  Units

Description

1 S Light level, as a rate of rhodopsin activation
R* — Number of activated rhodopsin (Rh*) molecules
E” — Number of activated phosphodiesterase (PDE*) molecules
c M Free cyclic GMP (cGMP) concentration
C M Free internal calcium concentration
« Ms~!  Rate at which cyclase synthesizes cGMP
VRE g7t Rate at which one activated rhodopsin molecule creates PDE*
VEC st Rate at which one PDE* molecule hydrolyzes cGMP
I6] st Rate at which all the PDE* molecules hydrolyze cGMP
Bo st Initial rate at which all the PDE* molecules hydrolyze cGMP
«a st Rate at which cyclase synthesizes cGMP
step(t) - Step function: 0 for ¢ < 0, 1 otherwise.
A s2 Amplification constant, equal to vrREVEC
Parameters

Quantity  Value

Description

Cdark <4puM cGMP concentration in the dark

Bdark 055! PDE* hydrolytic rate in the dark

n 2.0 Hill exponent for channel opening

m 2.0 Hill exponent for calcium inhibition of cyclase

w 1.0 Hill exponent for calcium activation of PDE* hydrolytic activity
Kca 90nM  Binding constant for calcium on cyclase

K 20 uM  Binding constant of channels for cyclic GMP

Kg 400nM Calcium concentration for half-maximal PDE* hydrolytic activity
Caark 300nM Internal free calcium concentration in the dark

Table 7.1. Symbols and parameters in this analysis. The symbols are mostly
the same as Lamb and Pugh’s [36]. One exception is that this A is their A/n.
Another is that their Og is vgc here; with this change, all quantities that contain

B are rates, and vgc is a rate per activated phosphodiesterase molecule. The
parameters are an amalgam of those used by Koutalos, Nakatani, and Yau [31],
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by Koutalos and Yau [32], and by Nikonov, Engheta, and Pugh [44].

Before the light flash, the rod was in the steady state, so creation and destruction of cGMP
balanced: o — BqarkCdark = 0, where cgark is the cGMP concentration in darkness. Relative
to the initial cGMP concentration, ¢ = cqark + Ac, SO

dc N

i —BaarkAc — vEcE c.
(The « disappeared, because & = BgarkCdark-) Now substitute the ramp expression (7.2) for
E* into this equation:

(7.7)

dc
% - _ﬁdarkAc - SAtC,

where A = vgcvrg. This equation is simple if the SBgacAc term can be neglected. That
term is negligible for small ¢, because Ac = 0 at ¢t = 0; in that limit, (7.8) is
dc

(7.8)

(7.9)
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For small ¢, the concentration c is roughly the initial concentration cgayk, SO

dc
— = —(SAt)cgark, 1
o =~ (SAt)cdan (7.10)
whose solution is
¢ = caarc(1 — SA?/2). (7.11)

Using this solution, we can determine the relative contribution of the two terms in (7.8).
The change in ¢ is Ac = SAt?cqar /2, so the two terms on the right side of (7.8) have ratio

ﬁdark Ac ~ ﬂdark SAtQCdark
SAtc SAtc

~ ﬁdarkta (712)

as long as cqai =~ c. (Here, the notation a ~ b means that a/b is a dimensionless constant,
generally close to 1.) In the dark, Bgax ~ 0.557%, so the BgaAc term is negligible for
roughly the initial 1s of the response. By then, calcium feedback (which this section neglects)
has already quenched much of the response anyway.

The result (7.11) is valid for small ¢. Small ¢ means until (1) calcium feedback starts to
quench the response, or (2) SAt? ~ 1, whereupon the ¢ & cgax approximation is no longer
valid. Let the current change attain a maximum (and start to recover) at time t, (on the
order of 0.3s), which is related to the time that it takes calcium concentration to change
significantly. Then (7.11) is valid at early times for weak and moderate flashes—flashes for
which SAtIQD < 1.

The next biochemical step is from cGMP to membrane current: cGMP opens channels
in the membrane. Cyclic GMP concentration is highest in the dark, and even then, the level
Cdark 1s well below the channel binding constant K. So the membrane current is given by

ﬁ% - (%) (7.13)

where j(t) is the membrane current, jgark is the membrane current in the dark, and n is
the Hill coefficient for channel opening. The membrane current is therefore

§(t) = jaark (1 — SAnt?/2), (7.14)
and the peak (maximum) current decrease is
Aj(tp) = jdark - ](tp) ~ jdarkSAnt?}/2- (715)

This result is for a dark-adapted rod. The eventual goal of this analysis is to compute the
flash sensitivity as a function of background light. What in (7.15) changes with background
light? The current jga.,x becomes ji,, the membrane current as a function of background
light; the peak time ¢, and the amplification constant A depend on Iy,. With dependences
on background light shown explicitly, the peak current change is

Aj(tp) ~ ju(Iy) SA(Iy)nt, (Iy)? /2. (7.16).

The next section, by including the missing feedback paths, estimates the dependence of j},
and A on I},. The more involved estimate of how ¢, depends on I, is in Section 7.5.
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Figure 7.2. From light to membrane current, with feedback. The two new feed-
back paths depend on calcium concentration: Calcium increases phosphodiesterase
hydrolytic rate B (by increasing A), and decreases cyclic GMP concentration (by
decreasing cyclase velocity). Because of the kinetics of the calcium pump, the
calcium concentration is proportional the membrane current; this linear propor-
tionality is represented by the 1 on arrow from current to calcium. With the ap-
proximations in the model of this paper, the hydrolytic rate is roughly o [Ca**].
The cyclase velocity, and therefore the cGMP concentration, is [Caz+]7m.

7.4 Steady-state response

Figure 7.2 includes feedback paths, which Figure 7.1 lacks. How do these paths make mem-
brane current and hydrolytic rate depend on steady background light level 1,7 The following
steady-state model answers this question. It is similar to the steady-state model of Kouta-
los, Nakatani, and Yau [31], but is even simpler. Although less accurate, it can be solved
analytically.

7.4.1 Equations of the model

The model for the steady-state response has four equations.

The first equation is from the calcium concentration. Calcium flows into the rod as part
of the membrane current. It leaves the rod through the sodium-potassium—calcium pump.
The experiments of Matthews [40] show that calcium current is roughly a fixed fraction (10
percent) of membrane current; the detailed model of Nikonov, Engheta, and Pugh [44] uses
this value. So the inward calcium flux is o j. The experiments of Lagnado, Cervetto, and
McNaughton [34] show that the pump is a first-order pump, with binding constant much
greater than the free calcium concentration, even in the dark when calcium concentration is
the highest. So the outward calcium flux is < C' (where C is the free internal concentration).
The fraction of internal calcium that is free is controlled by a calcium buffer. This fraction is
relatively independent of calcium level, as shown in the experiments of Lagnado, Cervetto,
and McNaughton [34]. In the steady state, the inward and outward fluxes are equal, so
C o j.

The second equation is from PDE* concentration. PDE* hydrolyzes cGMP at a rate
Bc (the same behavior as in the dynamics model). Cyclase synthesizes cGMP at a rate a.
The models of Nikonov, Engheta, and Pugh [44] and of Koutalos and Yau [32] use

1

TR (7.17)

(07

where K¢, is the calcium concentration at which cyclase activity is half maximal, and m
is the cooperativity. This equation (and slightly more complicated forms of it) has been
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adopted by many other investigators as well. The form (7.17) is accurate enough for this
approximate model. Actually, it is too accurate; in low and moderate light, C' > K¢,, and
(7.17) simplifies to o o< C~™. The first measurement of m, by Koch and Stryer [29] in
bovine rods, gave m = 4. The current consensus—based, for example, on the experiments
of Koutalos and coworkers [30], and on the experiments and model of Nikonov, Engheta,
and Pugh [44]—is that, for salamander rods, m ~ 2. In the steady state, hydrolysis and
synthesis balance, so fc oc C~™, or ¢ ocxc C~™ 371

The third equation is from phosphodiesterase hydrolytic rate. Background light, by ac-
tivating rhodopsin, creates PDE*, which hydrolyzes cGMP. The experiments of Kawamura
and Murakami [28], Lagnado and Baylor [33], Jones [27], Matthews [41] and others have
shown that calcium increases the hydrolysis rate, by increasing either the production of
PDE" (increasing vgg) or the activity of PDE™ (increasing vgc). (Detwiler and Gray-Keller
[10] review the studies on this effect of calcium.) For this model, it does not matter at
which stage calcium acts, because the current change (7.16) contains vgc and vrg as the
product A = vgavrg. The experiments on calcium modulation of hydrolytic rate show that
A o C" when C <« Kpg. (The Hill exponent w is approximately 1.0 and Kz ~ 400nM.)
In low background light, when C' is near its dark value of ~ 250nM, this approximation is
not accurate, but it becomes increasingly accurate in brighter light. The feedback diagram
places the feedback on vgc, by placing it on the 3 block; it could have placed it on the E£*
block with equivalent effect. In either case, with w = 1, the hydrolytic rate is 8 «x C1}.

The fourth equation, familiar from the dynamics model, is from cyclic GMP opening
channels: j, o c”.

7.4.2 Solution of the equations

The four equations are

8 x L,C, (7.18)
cx prteTm, (7.19)
Jp ox c”, (7.20)
C  jp. (7.21)

The feedback diagram is equivalent to these equations: one block for one equation. For
example, the [cGMP] block has one arrow from [Ca%] labeled with —m; this value is
exponent of C' in (7.19). The [cGMP] block also has an arrow from [ labeled with —1; this
value is the exponent of 5 in (7.19).

A solution to these four equations in five variables is an equation between two variables.
Which equations do we need to generalize the dynamics model of Section 7.3 to nonzero
background light? The change in current (7.16) contains the amplification constant A,
which depends calcium concentration; it also contains the steady-state membrane current,
Jb, which depends on background light. So we solve for membrane current (ji,) and calcium
concentration (C') as functions of I,.

First, use (7.18) to eliminate § from the cGMP equation (7.19):

¢ X IglC_(mH). (7.22)
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Using this result, eliminate ¢ from (7.20):
g o< I nonmth), (7.23)
Then, eliminate C' using (7.21), and combine powers of jy:
gt o, (7.24)

The membrane current is
v o I, (7.25)

where § = 1/(m + 1 + 1/n). Because C  jp, the calcium concentration obeys the same
scaling as the membrane current:
CoI°. (7.26)

The calcium concentration and the membrane current are, because of calcium feed-
back, compressive functions of the background light. (A compressive function—for example,
log z—is one that grows more slowly than z, or falls more slowly than 1/x. Such functions
are ubiquitous in psychophysics and sensory transduction.) The form of 1/6 shows which
feedback paths contribute the most compression. The major contributor to 1/ is m, the
cooperativity of calcium binding on cyclase. The next largest contributor, 1, is from cal-
cium feedback on the first stages of amplification. The smallest contributor, 1/n, is from
channel cooperativity. Control theory (see for example Siebert’s text [56]) formalizes these
intuitions. The rod system is a negative feedback system with one forward path. As long
as the gain in the forward path is large enough, it becomes irrelevant, and the feedback
paths dominate the closed-loop gain. The general principle is: If an ideal (infinite-forward-
gain) feedback loop contains f(x) in the feedback path, the full circuit computes f~!(z)
(Figure 7.3). The rod places 2 in the feedback path, and computes approximately z~ /3,
The response deviates from z~!/3 because the forward gain is not infinite (it’s m, which is
merely 2).

xyy @)

Figure 7.3. Computation of f~' using a feedback loop. The triangle is a high-
gain differential amplifier (for example, an operational amplifier): Its output is
G(vy —v_), and G is large. The input voltage is x (on the noninverting ter-
minal). The amplifier, because of its high gain (and the correct feedback sign!)
maintains the inverting (—) and noninverting (+) terminals at the same volt-
age. So the input to the f(y) box must be f~*(x), which is the output. In this
representation of the rod system, the gains are the exponents on the arrows in
Figures 7.1 and 7.2, rather than multiplicative constants, such as vrg or vec,
which this model ignores.
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7.4.8 Similarity to the logarithm

Matthews and coworkers [42], Koutalos, Nakatani, and Yau [31, Figure 9|, and others have
shown that the rod’s steady-state response is approximated by log I}, over an intensity range
of a factor of 100.

The functional form of (7.25)—a high-order root—is an approximation to a logarithm,
as the following argument shows. Consider the function a™; then [ a™ da < a" . Asn — —1,
the right side tends to 2, while the left side becomes [ a~! da, whose integral is In a. There-
fore, Ina o a’; a high-order root (represented by a zero exponent) approximates a logarithm.
This heuristic argument neglected the constants of integration and of proportionality. Here
is a more careful argument, which shows that q(al/ 7 — 1) = loga, for large n. Replace al/d
by e(l°8)/4 and then approximate the exponential with the Taylor series e* = 1 +24+0(2?):

2
(a1 — 1) = g(elos®/a _ 1) ~ q{loia ) <10§a> } (7.27)

The last expression is roughly log a, when (loga)? < ¢. In this model, ¢ is 1/6, or roughly
3.5, which implies that a < 6 for the approximation to work.

Empirically, the rod’s steady-state response approximates a logarithm over a larger
range than what this model predicts. This model might lack pathways that would increase
the order of the root at higher light levels. Also, these drastic approximations neglect effects
that might increase the effect order of the root. Saturation is one such effect. The maximum
change in membrane current is limited by the dark current. At high light levels, the current
suppressed is less than proportional to the dark current (because Aj cannot exceed jqark)-
This model neglects this kind of compression.

7.5 Flash sensitivity
The flash sensitivity is the peak current change, Aj(t,,), divided by the flash size, S. Equa-

tion (7.16) gives the peak current change; with that result, the flash sensitivity becomes

Sp = % ~ o At2. (7.28)

The ~ notation (meaning “correct except for a dimensionless constant”) gave us the freedom
to discard the n/2 factor. The steady-state model shows that A o< I} % and ji, I % One
ingredient is missing: How does ¢, depend on I},?

What determines ¢,7 After a flash of light, the PDE* hydrolytic rate increases; this in-
crease reduces ¢ (the concentration of cGMP), and therefore reduces the membrane current.
As the membrane current falls, less calcium enters the rod, so the internal calcium concen-
tration falls. As the calcium concentration falls, the cyclase rate increases, which increases
the rate of cGMP synthesis. Eventually, the increase in synthesis balances the increase in
hydrolysis. At that moment—the peak time—c is constant (more precisely, dc/dt = 0), so
the membrane current is constant (the membrane channels respond within milliseconds—
that is, almost instantly—to changes in cGMP concentration). Let’s translate this argument
into mathematics.

The first step is to compute the rate of decrease in cGMP concentration due to the
increase in hydrolysis. The increase in E* is given by (7.2): AE* = Svgrgt. The contribution
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to dc/dt is vpc(AE*)c (in absolute value), or SAct. For weak and moderate flashes, the initial
cGMP concentration ¢ is an adequate approximation for ¢. Then the contribution to dc/dt

is
d
(—c> ~ SAcot. (7.29)
dt hydrolysis

The initial cGMP concentration is oc jé/ ". The result (7.25) turns this proportionality into
Co X Ige/n; then

d —0/n
<—c> o —SAtIZO™. (7.30)
dt hydrolysis

The next step is to compute rate of increase in ¢cGMP synthesis due to the increase
in cyclase velocity. The cyclase velocity increases because calcium concentration decreases.
So let’s determine the change in calcium concentration. The calcium concentration changes
because the membrane current decreases. Equation (7.14) gives the change in membrane
current: Aj(t) = —SAt?j, (we have to replace jqar by jp, and we explicitly include the
sign, because it is crucial). The calcium influx is proportional to the membrane current, so
the change in inward calcium current is

Ajca = —SAyjs, (7.31)

where 7y is a constant that converts membrane current into calcium current (the constant will
soon disappear). This current change causes a calcium-concentration change. The calcium
pump has first-order kinetics. A more intuitive version of this fact is that the calcium pump
integrates the calcium current to produce calcium concentration. For example, a spike in
calcium current produces a step in calcium concentration; a step in calcium current produces
aramp in calcium concentration. In general, the integrator turns a current change o t* into a
concentration change o< t**1. In particular, a t? change in calcium current—which is what
the light flash causes—produces a t3 change in calcium concentration. So the fractional
change in calcium concentration is

% ~ —SAt3 /T, (7.32)

where 7 is the time constant of the calcium pump (7 is roughly 0.7s). [This expression is
valid for t < 7; when ¢ ~ 7, the pump ceases to be an ideal integrator.] The cyclase rate is
o« C7™ so the fractional change in cyclase rate is

B nSAE - ~ SAE 7. (7.33)
[0

(The ~ notation allows us to discard the constant m.) What we need is the change in cyclase

rate itself:
Aa ~ SAt3a/T. (7.34)

The calcium concentration determines the cyclase rate: a oc C~™. From (7.26), C' < I 0
SO @ X I{)”e. Then the increased-cyclase-velocity contribution to de/dt is

(%) ) o SAB T /7. (7.35)
synthesis
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To find the peak time, we find when the two contributions to dc/dt, given in (7.30) and
(7.35), cancel:
—0/n m
SAt, I, ™ o SAB I . (7.36)

The peak time is therefore
ty oc I /MO _ [ m(=0)/2, (7.37)

The experiments of Donner and coworkers [11] show that, for amphibian rods, ¢, o I{,,

where | ~ —0.17. With the cooperativities n = 2 and m = 2, as given in Table 7.1,

—(m+1/n)8/2 = —0.37. This model, in its drastic approximations, must neglect compressive

effects that would make the estimated exponent closer to the experimentally observed value.
With the dependence in (7.37), the flash sensitivity (7.28) is

Spoc I 0 x 150 < 1 oc 1 09 (7.38)
~ ~ ——
Jb A t2

Note that if we differentiate the steady-state response, ji, o< I, 9 with respect to I, then
we also get this expression for the flash sensitivity. With the values n ~ 2 and m = 2, the
prediction is that

Spoc I 12, (7.39)

This exponent is a reasonable approximation to the Weber—Fechner exponent of —1. Over
a range of light intensity range of 100, it deviates from Weber—Fechner behavior by a factor
of 4.

Although this model explains the exponent, it has a flaw: the assumption that Got <
1. In the dark, where §Byt, < 1, the assumption is accurate. However, background light
increases f[y. In background light, By o Iéfe. More precisely,

Bolly) _ ( Iv e
Bo(dark) <Idark> ! (7.40)

where I,k is the dark light (typically 20 Rh* s~! for a salamander rod). At the moderate
light intensity of 200 Rh*s™?, the basal hydrolysis rate becomes 3.5s~!, whereupon Syt is
no longer < 1. I do not yet see how to repair this flaw. It hints that either a reaction is
missing from this model; or that the approximations are too drastic, and neglect important
features of the kinetics.

7.6 Conclusion

I made an inexact, but analytically solvable, model of flash sensitivity that explains the
Weber—Fechner behavior in a salamander rod. The model combines the dark-adapted flash-
response analysis of Lamb and Pugh [37] with an analytic model of steady-state sensitivity,
to derive the flash response—and hence the flash sensitivity—as a function of background
light. The simplicity of this model comes at a price: It predicts a response that roughly,
but not exactly, matches the experiment. However, because the model is simple, it shows
clearly how each biochemical pathway contributes to the flash response.
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& DENSITY OF PRIMES

8.1 Approximate primality by stages

The prime-number theorem states that p,,, the density of primes around n, is ~ (logn)~*.
The proof is difficult, and when it is complete, we may still wonder, “But why is it true?”
We want to understand what features of primeness cause what features of prime behavior.
To tease apart these behaviors and their causes, we make a model of primality, where model
is used the physicists’ sense, as a simplification that still explains interesting features of the
original phenomenon.

The first behavior to explain is why p, ~ (logn)~!. First, let’s consider a simpler
question: Why do primes thin? A number n is prime if and only if no prime < /n divides
n. As n grows, so does the number of primes that might divide n; therefore, n is less likely to
be prime. Already, by invoking likelihood, we have sinned. Hardy and Littlewood [19] write
that “Probability is not a notion of pure mathematics, but of physics or philosophy.” As a
physicist, I am bathed in sin; a few more transgressions in this chapter will not harm me (you
must decide for yourself how safe you feel). So let’s continue by formalizing the likelihood
argument. Suppose that divisibility is random and independent of other divisibilities: Let
m|n with probability 1/m. For p,,, this model predicts

= ]] <1—%>. (8.1)

p prime

In this chapter, p,, refers to the density given by a model of primality, and p,, refers to the
density of actual primes.

In the preceding paragraph, I did not carefully define the meaning of random divisibility,
because when I created these models, I had no clear notion of its definition. In Section 8.1.2,
I define it carefully, because the careful definitions allow us to prove statements about the
behavior of p,,.

I expected p,, ~ (logn)~! to be the asymptotic solution of the product (8.1). When I
computed p,, for large n (Figure 8.1), I was pleased to see p,, log n approaching a constant,
but I was not pleased that the constant was ~ 1.12 (instead of 1). So this model explains
the crudest feature in the density of primes—the presence of (logn)~!—but its usefulness
stops there. As Hardy and Littlewood [19] and Pélya [47] have pointed out, the discrepancy
is a consequence of Mertens’ theorem (Theorem 429 of Hardy and Wright [20]):

L) 1) 2 )
H < _1_9> ~ logn’ (8:2)

p prime
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Figure 8.1. Predicted prime probability p, compared against the prime-number

theorem value of (logn)™*. The probability p, looks like it approaches (logn)™*

times a constant. The constant, unfortunately, is 2e~7 ~ 1.123, not 1.

where v ~ 0.577 is Euler’s constant, and |a] is the greatest integer < a. The factor 2e~7 is ~
1.123. In other words, actual primes strike out candidates more efficiently than independence
would predict.

In the prediction (8.1), |n'/2] is the upper limit, because the square-root is an impor-
tant feature of actual primes. For example, in actual divisibility, if 3|81, then 27|81. Such
statements are not valid when divisibility is random; in such a world, 3 may divide 81, yet
27 may not divide 81. The [n!/2] limit is an attempt to capture, in a random-divisibility
model, the correlations of actual divisibility. This attempt is worthwhile. If we ignore these
correlations and use n — 1 as the upper limit, instead of [n'/2|, then Mertens’ theorem gives
pn ~ €~ 7 /logn. This result is too small by a factor of 0.56, whereas the preceding method,
though not exact, was too large by a factor of only 1.12. The {nl/ 2| limit captures yet more
correlations.

We could fix the remaining error by improving the independence assumption. However,
I do not know how to improve it in a convincing way. One method is to increase the upper
limit in the product (8.1), but I have no principled way of choosing the new limit, short of
using Mertens’ theorem (varying the limit is the topic of Section 8.6).

An alternative fix is to be more consistent—to drink more deeply from the well of
probabilistic sin. We computed p,,, which implicitly assumes that primality is random, using
actual primes, and got the incorrect 1 — 1/p factor in (8.1). We can fix this inconsistency
by making primality random. How does random primality change the 1 — 1/p factor in the
computation of p,,? Because any number could be prime (in this random world), the product
runs over all k < |n'/2], instead of over only primes. If k is prime (which happens with
probability px), then the algorithm checks whether k|n, giving a factor of 1 —1/k. If k is not
prime, then the factor is 1. The expected factor is px x (1 —1/k) + (1 —pg) x 1 =1 — py/k.
So, in this model,

012

pn= ] (1—%>. (8.3)

1

This recurrence was my second model, which I call the square-root model. T later
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learned! that it is similar to the random sieve proposed by Hawkins’ [21, 22].

8.1.1 Hawkins’ model

The Hawkins’ random sieve (Algorithm 8.1) generates a random sequence of H-primes H,
Hsy, .... Hawkins calls them sieving numbers. I have changed Hawkins’ terminology and
notation slightly, to make them consistent with the notation of this chapter.

Algorithm 8.1 Hawkins’ model

1. Define H; = 2.

2. Strike out each integer with probability 1/H; (that is, with probability 1/2).

3. Define Hs to be the first integer > H; that survived. Strike out each integer with
probability 1/Hs.

4. Define H3z to be the first integer > Hs that survived. Strike out each integer with
probability 1/Hsj.

5. and so on

The sequence of H-primes is different each time that the algorithm is run. Hawkins’
studied h,,, the probability that n is an H-prime. The probability satisfies

i1 = hin <1 - @> . (8.4)

n

To solve this recurrence, define ¢, = 1/h,,:

1 1 1
Gnt+1 = ¢ /< nqﬂ) q +—n+0<n2qn> (8.5)

The error term, which is the tail of a geometric series with positive ratio, is always positive.

Therefore, ¢, > 1, and the recurrence has bounds

1 1 1
S+5<
n n

é dn+1 — Q4n é (86)

n—1"

S

The solution is ¢,, > logn (by an easy induction argument). So h,,, which is 1/¢,,, approaches
(logn)~t. Though this argument does not show it, p,, monotonically approaches (logn)~!.

8.1.2 Square-root model

The heuristic argument that led to the recurrence (8.3) does not specify the process for
which p, is a probability, and thereby leaves vague the notions of random primality and
random divisibility. I now describe such a process, as a modification of Hawkins’ algorithm.
Algorithm 8.2 generates a sequence of random primes (R-primes).

Algorithm 8.2 Square-root model

1. Define Ry = 2.
2. Strike out each integer > 4 with probability 1/R; (that is, with probability 1/2).

1. T thank Warren Smith of NEC for pointing out Hawkins’ work to me.
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3. Define Rs to be the first integer > R; that survived. Strike out each integer > R3 with
probability 1/Rs.

4. Define R3 to be the first integer > Ry that survived. Strike out each integer > R3 with
probability 1/Rs.

5. and so on

The quantity p,, is the probability that n appears on the list of R-primes. This algorithm
is the same as Hawkins’ (Algorithm 8.1), except that it uses > R2 as the least number to
consider striking out. Hawkins [22] briefly mentioned this modification as a natural extension
of his model, but he did not analyze its consequences.

Algorithm 8.3 is an alternative, equivalent version of Algorithm 8.2; it also generates
a sequence of R-primes. It is the form that I use to deduce the recurrence (8.7) for p,.

Algorithm 8.3 Equivalent square-root model

1. Define Ry = 2.

2. For n > 2, check whether any R-prime < /n divides n. Here, divide is random. To
decide whether m|n, roll an m-sided die, with faces labeled 1...m. If the die shows 1,
then m|n and n is not R-prime. If no die roll shows 1 (namely, if no R-prime divides
n), then n is R-prime.

Section 8.1.3 shows that p,, satisfies the product (8.3).

The square-root model more closely models actual primes. Whereas h,, tends mono-
tonically to (logn)~!, the probability p,, oscillates around (logn)~!, as Section 8.3.3 shows.
A heuristic argument shows why the probability oscillates. Consider a perturbation around
the nonoscillating part of the density. For example, suppose that the die in Algorithm 8.3
rolls too many 1s while testing primality in a region around some number A. In that re-
gion, too few numbers are declared R-prime. This perturbation makes itself felt when the
algorithm starts to test numbers around A?; in that region, too many numbers are declared
R-prime, because there are too few candidate divisors (R-primes) around A. The density
displays negative feedback. The excess around A? makes itself felt when the algorithm starts
to test numbers around A*; in that region, too few numbers are declared R-prime, because
there are too many candidate divisors around A. And so on. The feedback points grow by
successive squaring: A to A% to A*, and so on. The oscillation period, which includes two
feedback points, therefore grows by successive fourth powers: A to A% to A'6. As we see in
Section 8.4.1, this heuristic argument is mostly correct: The period does grow superexpo-
nentially, but the growth is closer to A to A% to A%09 . The density has feedback with a
delay; an electrical engineer will confirm that oscillations are a natural consequence of this
combination.

This oscillation models the oscillations in the density of actual primes. I find an asymp-
totic expressions for the oscillatory contribution, and estimate its magnitude. This estimate
leads to a conjecture for where 7(n)—the number of primes < n—first crosses Li(n). (I
use the usual definition: Li(n) = [,'(logz)~' dz.) No n is known for which 7(n) > Li(n).
However, Littlewood [39] showed that m(n) crosses Li(n) infinitely often; Littlewood’s re-
sult shows that the density of actual primes oscillates around (logn)~!. His argument was
nonconstructive—it did not provide a explicit n for any crossing. The most recent, related
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result is partially constructive: Te Riele [51] showed that the first crossing occurs for some
n < 7 x 1037, The oscillations in the density of R-primes leads me to conjecture that m(n)
crosses Li(n) near 1027 (Section 8.4).

The remainder of the chapter analyzes the recurrence and discusses its consequences.

8.1.8 Recurrence for p,

To solve for p,, I need an equation for it, which is given by Theorem 8.1. I already have an
equation for p,,, namely Equation (8.3); however, I arrived at that equation using heuristic
arguments about random divisibility. Theorem 8.1 shows that the heuristically generated
recurrence correctly describes the p,, that results from Algorithms 8.2 or 8.3.

Theorem 8.1 The probability p,, satisfies

if n is not a perfect square;

L,
Pn = Pn—1 X { 1L —pm/v/n, if nis a perfect square. (8:7)

Proof. If n is not a perfect square, then n — 1 and n have the same set of R-primes that
could divide them, so p,, = p,_1, as claimed,

If n is a perfect square, say k2, then there are two cases: k is or is not R-prime. I
compute the conditional probability that n is R-prime in both cases, and combine these
probabilities to verify the recurrence.

Case 1: k is not R-prime. This case occurs with probability 1 — pj. Going from k? — 1
to k? could introduce k as a candidate divisor. However, k is not R-prime, so p,, = pn_1.

Case 2: k is R-prime. This case occurs with probability py. Now k is a new candidate
divisor, and it eliminates k? with probability 1/k. So p, = p,_1(1 — 1/k).

The conditional probabilities combine to give

pn—pn1{(1—pk)><l+pk><<l—%>}. (8.8)

S0 pn, = pn—1(1 — p/k), which verifies the recurrence (8.7). m

Unfolded into a product, the recurrence (8.7) becomes the recursive product (8.3). To
solve the recurrence, I convert it into a delay—differential equation, then solve that equation.

8.2 Convert the recurrence into a delay—differential equation

The square-root model has delayed negative feedback. A delay—differential equation is there-
fore a natural form for the recurrence.
The conversion to a delay—differential equation has four steps:

1. Change variables to [, = logp,. This change converts multiplication into addition,
which converts the recurrence (8.7) into a difference equation.

2. Change to a continuous version of [,,, which I call ¢,, (for continuous). A differential
equation requires functions without jumps, because jumps imply infinite derivatives.
The function [,, jumps when n is a perfect square, and is flat in between; ¢,, distributes
the change continuously.

3. Change to y,, = ¢, + loglogn. If p, ~ (logn)~!, then gy, — 0. Because y — 0 (The-
orem 8.4), this change of variable allows us to linearize the eventual delay—differential
equation.
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4. Change independent variable to ¢ = log, log n. Feedback means, roughly, that y,, affects
Yn2, which affects y,4, and so on. The definition of ¢ changes the superexponential
growth in the feedback points to the more tranquil sequence: y(1) affects y(2), which
affects y(3), and so on. This change of variable is much more convenient in a differential
equation than in a difference equation (which is why the transformations above are
designed to manufacture a differential equation).

8.2.1 Change multiplication to addition

A differential equation needs summation, not multiplication. So define [,, = log p,,. Creeping
toward continuous variables, further define [, = [|,| for nonintegral a. See Figure 8.2 for
a picture of [. It changes at only perfect squares, and is flat in between. So (8.7) becomes
lnz — lp2_p = log(1 — eln /n) for 0 < x < 2n — 1. Now get rid of the logarithm:

eln

L2 — L2 = — - +0 (n*Q) , for 0 <z <2n—1, (8.9)

because el < 1.

-0.5
o< \\\
_C \\

_1.E I I I

i 9 16
n

Figure 8.2. The functions l, and c,. The function l, (the solid lines) is flat,
with jumps at perfect squares, as indicated by the open circles. The discontinuity
in ly, at a perfect square is, from (8.9), O (nfl/Q), 80y —lp—1 = O (nfl/Q).
The function c,, (the dotted line) is the continuous version of l,. When n is a
perfect square, ¢, = l, and c, interpolates linearly between the values at perfect
squares. The distance between perfect squares in the neighborhood of n is > \/n,
$0 |en — cn—1| < |ln — ln—1|/v/n=0 (nfl).
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8.2.2 Make the dependent variable continuous

The function [ jumps at perfect squares, so it is unsuitable for a differential equation,
because discontinuous functions have infinite derivatives. So define ¢,,, a continuous version
of I, (Figure 8.2). [The more common way to make l,, continuous is to round the corners of
the cliffs in [,,, and to leave it flat in between the cliffs. That method produces a function
with huge derivatives, which would make the error estimates difficult.]

From (8.9), compute dc/dn = ¢’ (except when n is a perfect square):

Iz — L2 el"
/ n n?—1 -3
c == = — O(n7), for0 <x<2n-—1. 8.10
n?-w 2n —1 2 (n™) = (8.10)
The conversion is not complete, because the right side still contains [,,, and because the x = 0
case (perfect squares), where ¢’ is discontinuous, still requires discussion. To eliminate [,,,
note that [,, = ¢, + O (n*1/2), so eln = efn (1 +0 (n*1/2)), and
/ ecn

_ —5/2 < B
(e =—55+0 (n2),  for0<wz<on-1. (8.11)

This equation is valid for x = 0, as I show now, even though its ancestor (8.9) was not.
The left- and right-sided derivatives at n? are not equal. Define ¢l » as their average; then
¢ is defined everywhere (although it is not continuous). The right-sided derivative is, for
=0T,

€Cn+1

C;lerm = C/(nJrl)z,m = —m +0 <’I’Li5/2) 5 (8.12)

where T used (8.11) with n replaced by n + 1 to rewrite C/(n+1)2_r. Because ¢, 11 — ¢, =
O (n™1) (Figure 8.2), e+ = ¢ (14 O (n™')). Therefore, ¢/ = —e /2n%2 4+ O (n_5/2)

» “n24p
for x = 0%. This expression for the right-sided derivative is 4i—dentical to the expression
(8.11) for the left-sided derivative. So the average of the left- and right-sided derivatives
also satisfies (8.11), which is therefore valid for x = 0.
Now get rid of the z in (8.11), which I do by defining ¢ = n? — x, so n = ¢+ £, where

0 < &< 1, because x < 2n — 1. And cqre = ¢+ O (¢71), so (8.11) becomes

_ e ~5/2
=510 (a2). (8.13)

8.2.8 Convert to a variable with zero limit

If p, ~ (logn)~!, then cq ~ —logloggq, a value that does not limit to zero. To make
neglecting terms easier, transform to a variable with a (hopefully) small limit by defining
Yq = cq +loglog q, and y; = ¢, +1/qlog q. The definition of y; is valid everywhere, because
cy is defined everywhere (although y;, like ¢, is discontinuous). Then (8.13) becomes

/ eVt —1 —5/2
— - 0 (¢72). 8.14
var <2q2 log q) o (8149
The equation for ¢ is
/ efva —1 —5/4
=—|(— O ( ) . 8.15
Ya < qlogq > RS (819)

This equation is the delay—differential equation.
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8.2.4 Taming the growth of n

The mixed differential-recurrence relation (8.15) has delayed negative feedback, but the
feedback points grow by successive squaring. To tame this wild growth, change variables
from n to t, where ¢ is defined implicitly by y(t) = y_.¢, or t = logylogg. So t counts the
number of successive squarings, and I expect y(t) to oscillate with period roughly 2. With
this change of variable, the delay—differential equation becomes

i(t) = —a (ey@—l) - 1) +0 (2%-2“2) : (8.16)

where a = log 2 and y(t) = dy/dt. We can tell that t = log, log g is a useful definition for
t: It makes the ugly ¢log ¢ factor in (8.15) vanish (because dg = qlog, log g dt), and makes
the delay constant (because y 5 = y(t —1)).

If o < 0, the feedback would reinforce deviations from the correct density, and we could
not expect that p, ~ (logn)~!. So, without further statement, let’s assume that o > 0.
Let’s not restrict ourselves to models with a = log 2, because varying « produces closely
related, and interesting models (the topic of Section 8.6). Note that, by construction, y(t)
is continuous; its derivative ¢(t) has discontinuities, but those discontinuities are swallowed
in the error term. Because (8.16) contains a delay, the initial conditions have to specify y(t)
on an interval of length > 1 (because of the y(t — 1) term), instead of at a point, as they
would for a typical differential equation.

8.2.5 Related equations

Wright [65] discusses
w'(t) = —aw(t —1){1 +w(t)}, (8.17)

where w(t) = p,, logn—1 and o = log 2. He defines t = log, log n, which is nearly identical to
our definition, ¢ = log, log ¢, because ¢ = n+ O(1). For small y, w(t) ~ y(t). The linearized
forms of (8.17) and (8.16) are identical, as are the asymptotic solutions. Wright was led
to (8.17) first by the (unpublished) work of Lord Cherwell on the distribution of primes,
and later by de Visme’s [9] heuristic equation for the density of primes. Wright’s studies of
nonlinear delay—differential equations [61, 62, 63, 64] were inspired by his study of (8.17).
To solve the closely related delay—differential equation (8.16), I use many of these methods
that Wright developed, most particularly those in [64].

8.3 Solve the delay—differential equation

Delay—differential equations are difficult to solve, because their initial conditions are func-
tions, not merely numbers; making statements about functions is more difficult than is
making statements about numbers. We can solve (8.16) by successive refinement, using a
method that works with minimum restriction on the initial conditions:

1. Show that y — 0 as t — oo, independent of initial condition.
2. Use y — 0 to show that y = O(e~“?), where C > 0.
3. Use y = O(e~“?) to find a more detailed asymptotic expression for y.

8.8.1 Show that y — 0
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To show that y — 0, consider two cases: The zeros of y are either bounded or unbounded.
Here, bounded zeros means that y(t) is never zero for all ¢ greater than some tq; unbounded
zeros means there is no such ty. First tackle the easier, bounded-zero case.

Theorem 8.2 If the zeros of y are bounded, then y — 0.

Proof. Suppose that y has a finite limit—say, y*. Take the limit ¢ — oo in the delay—
differential equation (8.16), to get lim; .o §(t) = —a (e¥” — 1), which is some constant.
That constant must be zero for y to have a finite limit. If § — 0, then (8.16) requires that
y — 0 as well. So we need to show only that y has a finite limit, which we now do.

Let to be the final zero of y, so y(t) has one sign for ¢t > to. Suppose that y is positive.
If we could show that y < 0, then we could conclude that y has a finite limit, because y
would be bounded from below and would be monotonic decreasing. Therefore, compute the
upper bound on ¢. For t > to 4 1, use e?“~Y —1 > 0 to get the bound g(t) < O (t*2)
(using a much weaker error statement than what is available). For large enough t—say, for
t > t;—the error term is < A/t? (in absolute value), for some A > 0. Then, 3(t) < A/t? for
t > max(t1,tp + 1). Unfortunately, y(t) can be slightly positive, because of the error term
in (8.16). The method almost works, but does not quite succeed.

Therefore, define the related function ¢(t) = y(t) + A/t (for ¢ > 0). Then, ¢(t) > 0
and ¢'(t) = y(t) — A/t?> < 0. So q(t) has a limit—say, Q—and y has the same limit. If y is
negative, then the same method works, except that I define ¢(t) = y(t) — A/t, and conclude
that y(t) — @ again. In either case, y has a finite limit, soy — 0. =

The unbounded-zero case is more subtle. I first explain the proof intuitively, forgetting
about the error term. The most negative y limits the maximum positive 3, which limits how
fast y can rise. Furthermore, y cannot rise for longer than one time unit, because if y(t) = 0,
then g(t + 1) = 0, so y reaches a maximum at ¢ + 1. This maximum in turn determines the
most negative g, and, therefore, the new minimum. Thus, we get sequences of upper and of
lower bounds, and it turns out that both sequences converge to zero (to take the limit, we
need to know that the zeros are unbounded). The following proof formalizes this procedure,
and is careful about the error term.

Theorem 8.3 If @ < 1 and the zeros of y are unbounded, then y — 0.
Proof. First, formalize maximum and minimum, by defining u(t) = sup; o) y(2) and v(t) =
inf(; ») y(2). Because y never runs out of zeros, u(t) > 0 and v(t) < 0. We wish to show
that u* = lim;_ o u(t) = 0 and that v* = lim;_, o, v(¢t) = 0. We allow the functions u(¢) and
v(t) and the quantities u* and v* to be oo (but they will not be, as subsequent results
show).

Find how v(t) determines u(t) by computing an upper bound on y. Let T' be any
maximum of y. Integrate (8.16) to get

y(T)=y(T —-1) — a/T_l (ey(z) - 1) dz+0(T7?), (8.18)

T—2
again using the weaker, yet sufficiently strong, error form O(t_Q). To get an upper bound
for y(T'), we need an upper bound for y(7T" — 1). We already have an equation that contains

y(T — 1): the frequently cited (8.16), which relates y(7T'— 1) and y(7"). We must be slightly
careful, however. Even though 7' is a maximum, we cannot use y(7') = 0, because ¥ is
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discontinuous. Fortunately, all the discontinuity lives in the error term, so y(7') = O (T_Q).
From (8.16), 9(T) = —a (e*T=Y — 1) + O(T~2). With §(T) = O(T~?), this equation for
y(T') simplifies to

y(T—1)=log (1+0(T7?%)) =0(T7?). (8.19)

Furthermore, —« f;:; (ey(z) — 1) dz <1—e"T=2) because y > v(T —2) in the integration
range and o < 1. Therefore, y(T) < 1 —e(T=2) + O(T*Q). We can apply this same formula
at a subsequent maximum—say 77—to find that y(77) <1 — e?(T1=2) 4 O(TfQ). Because
v(t) is nondecreasing, and O (71 2) < O(T~2), We have also y(T1) < 1—e"T=2 +O(T72).
The right side is therefore a bound on wu:

wT) <1-e"T=2 +0(T72). (8.20)

Note that, even if v(t) = —oo, then e*?=2) < 0, and w(T') < 14+O(T~2), which is bounded.
Because u is nonincreasing, this bound implies that u(t) < oo for t > T as well.

As T — oo, the bound (8.20) becomes u* < 1 — e . This limit step is valid as long
as y never runs out of maxima. Because y is continuous, between zeros it attains either a
maximum or a minimum. However, y might attain only minima beyond a certain point—say
ts—in which case, we cannot take the limit 7" — oo. In that case, however, we do not need
to take the limit, because y(t) < 0 for ¢t > ¢3, so u* = 0. Thus, either

uwr<1—e” or u* =0. (8.21)

If 4 has a minimum at 7", we find, by similar reasoning, that v(7”) > 1 — e*(T" =2 4
O(T/72). Because u(T” — 2) is bounded, so is v(T”). The relation for v(7”) has limit v* >
1 —e*", as long as y never runs out of minima; if it does run out, then v* = 0. So, either

vt >1—e? or v* = 0. (8.22)

The inequalities (8.21) and (8.22) imply that, if either u* or v* is zero, so is the other,
in which case the proof is done. Therefore, in the remainder of the proof, we can neglect
the u* = 0 or v* = 0 part of each inequality.

The inequalities then combine into

u* <1—exp (1 - e“*) . (8.23)

One solution is u* = 0, when the inequality becomes an equality. That solution is unique,
because the left side grows faster than the right for any u* > 0, as we can show by taking
the derivative with respect to u*. The right side has derivative exp (u* +1—ev ) However,
e* > 14 u* for u* > 0, so the derivative is < 1. Therefore, u* = 0 is the only solution
(because u* > 0), whereupon v* > 1 — e*" and v* < 0 imply that v* = 0 as well. Thus,

y—0. m

This theorem, combined with the one on bounded zeros (Theorem 8.2), results in
Theorem 8.4.
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Theorem 8.4 If o < 1, then y — 0.

Inverting the myriad variable changes from p,, to y(t), we first y,, = o(1); then, ¢, =
—loglogn + o(1); then, I,, = —loglogn + o(1); and, finally, p,, = e!» ~ (logn)~!. The only
subtle point is the use of [,, — ¢, = O (n_1/2) =o(1).

I suspect that Theorem 8.4 holds for a < 7/2, rather than for only a < 1. It is certainly
possible to show that ¥ is always bounded, for all & > 0. However, in bounding the integrals,
we assumed the worst—that y(¢) is a step function. However, y(t) can be bounded by a
triangle; with this more careful bound, the range of validity of Theorem 8.4 might increase
to, say, a < 1.3. The analysis is messier, and is not necessary for this model of prime
numbers. (Compare the proof lengths for o < 1 and for @ < 3/2 in Theorem 3 of [64].)

8.3.2 Show that y is exponentially small

To refine the estimate for p,,, show that y is exponentially small. If the delay—differential
equation equation (8.16) had no error term, and were linear, then the job would be done,
because 2'(t) = —az(t — 1) is a standard equation [1, 63], which can be solved with the
Laplace transform, and it has only exponentially decaying solutions (for a@ < 7/2). If we
could only linearize (8.16)! We can, roughly because y — 0, so the nonlinear terms eventually
become negligible.

We rewrite (8.16) as

o0 = —a (L Y ute- 40 (7). (3.21)

As t — o0, y — 0, so the factor in parentheses limits to unity; also, as ¢ — oo, the error
term limits to zero. Delay—differential equations with asymptotically constant coefficients
have been treated extensively by Wright [62], whose results I quote.

Wright’s results about such equations will make more sense if we first discuss the
solution of the linearized equation [1]:

Z(t) = —az(t — 1). (8.25)
Try the substitution z(t) = e, which gives
se’ +a =0. (8.26)

Making this substitution is equivalent to solving (8.25) with the Laplace transform. Let
{sk}x>1 be the solutions of (8.26), arranged in order of nonincreasing real part (nonincreas-
ing instead of decreasing, because there can be complex-conjugate solutions). Then,

2(t) =) Ag(t)e, (8.27)

where the coefficients Ay (t) are polynomials and are determined by the initial conditions. If
sk is an mth-order root of (8.26), then Ag(t) is a polynomial of degree m — 1, as discussed
in [1]; this result is a consequence of the Laplace inversion formula and Cauchy’s residue
theorem.

The most common case is a first-order root, whereupon Ay (t) is a constant. At a higher-
order root, (se®*+a)’ =0, so e*(s+ 1) = 0, which implies that s = —1. But s = —1 is a root



8. DENSITY OF PRIMES 144

iff « = 1/e as well. In that case, m = 2, so the corresponding coefficient would be linear.
Even for a = 1/e, only the s = —1 root has m > 1; all other roots are simple (m = 1).

For large enough ¢, the term corresponding to s; (and to sg, if s1 and s, are complex
conjugates) dominates. If the root is simple, we can write z(t) ~ O(e?*!), where s =
ok + iwg; if = 1/e and s; = —1, then z(t) ~ O(el?+9%), for any € > 0

For a < m/2, Wright’s [64] Theorem 5 shows that o) < 0 for all k. For the particular
case of a = log 2,

51,2 ~ —0.571624 £ 1.08646 ¢, (8.28)

which I found using Newton’s method. A minute with a calculator will convince you that
s1 satisfies (8.26); however, it’s more tricky to show that no other solution has greater real
part. Because Wright [64] proves the behavior of the roots for all «, here I give only a
graphical argument (for a = log2), which illustrates the principles.

15—

|

10 —

w (Im s)

o (Re s)

Figure 8.3. The roots of se® + a = 0, shown graphically, for o = log2. Here

s = o +iw. I have drawn only the w > 0 region, because the w < 0 region adds no
new information. The dotted line is the magnitude constraint (8.29). The set of
solid lines (including the o axis) is the phase constraint (8.30). The magnitude
constraint introduces spurious roots—those of se® = a. I have marked the actual
roots with a circle. The actual and spurious roots alternate along the dotted line.
Note that all roots have o < 0 and w # 0, so all solutions of the linear equation
(8.25) oscillate and decay exponentially.

If s is a solution, so is §, so consider only the case w > 0. The magnitude equation is

(0% +w?)e? =a?, or
w=+Va2e 20 —g2. (8.29)
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The phase equation is arg(s) +arg(e®) = (2n+ 1), or {mn +arctan(w/o)}+w = (2n+ 1),
where m and n can be any integer. This equation is equivalent to

0c=—-w/tanw or w=0. (8.30)

Figure 8.3 plots the magnitude and phase constraints, and shows their simultaneous solution.
In taking the magnitude, a calculation that involves squaring, we introduce spurious roots:
the roots of se® = a. Get rid of them with a restriction on w. If ¢ < 0, then arg(s) € (7/2, 7.
Because w = arg(e®), I find that w = 2nmw + 0, where 6 € [0,7/2). Similarly, if ¢ > 0, then
arg(s) € [0,7/2 and w = 2nmw + 0, where 0 € [1/2, 7w|. These restrictions eliminate alternate
intersections along the dotted line. Note that all roots have negative real part, so all terms
in (8.27) decay exponentially to zero, and that there are roots with arbitrarily negative real
part.

Following Wright [64], define the set M to be the real parts of s, with their limit
points; and define the characteristic number w; (y) of a solution as the greatest lower bound
of the real ¢ such that

/ TP + 15OP) et dr (8.31)

converges. By Theorem 1 of Wright [62], either w;i(y) € M or wi(y) = w(error term),
where w(f) is defined by the greatest lower bound of the real o such that [ |f(t)[?e~27" dt
converges. The error term is superexponentially small, so w(error term) = —o0. So, w1 (y) €
M, because M already contains —oo as one of its limit points. Therefore, wy(y) < o;. From
(2.1) of [62],

y = O(e”). (8.32)

Wright’s results justify the natural procedure of replacing the coefficients in (8.24) by their
limits, and solving the resulting constant-coefficient equation, to get (8.32).
This more refined result for y in (8.32) becomes

_ 1
~logn

Pn (1 +0 ((log n)—0.824679m)) ’ (8.33)

because o1 /log 2 ~ 0.824679.

8.3.3 Find an asymptotic expression for y

With y exponentially small, as given by (8.32), the delay—differential equation (8.16)
becomes y(t) = —ay(t — 1) + O (e*'*). So we need to solve

y(t) = —ay(t = 1) + f(1), (8.34)

where f(t) = O (e*'*). We can write any solution of (8.34) as a sum of the particular
solution, which is any solution of (8.34) with initial conditions y = 0 for 0 < ¢ < 1; and of
the general solution, which is any solution of 3(t) = —ay(t—1). The general solution is given
by (8.27). It is a series of exponentials, all decaying (and possibly oscillating, depending on
Q).
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We can obtain the asymptotics of the particular solution with the Laplace transform.
Multiply (8.34) by e~ %!, and integrate from ¢ = 1 to ¢ = oo (which is the range of validity
of (8.34)):

/ Tyt tdt = —a / Tyt — De =t dt+ f(s), (8.35)
1 1

where f(s) = [ f(t)e~*!. The left side becomes (after an integration by parts) —y(1)e™*+
sy(s) = sy(s), because y(1) = 0 for the particular solution. The integral on the right is

e’ /OO y(t)e st dt = e *y(s), (8.36)
0
because y(t) = 0 for 0 < ¢ < 1. So (8.35) becomes sy(s) = —ae *y(s) + f(s), or
_f(s)
y(s) = puiperl (8.37)

Because y(t) = O(e?'"), the transformed function y(s) is analytic for s > 1. The Laplace
inversion formula says that

ct100 s
y(t) = / Leé’t ds, (8.38)

s+ ae*

for any ¢ > 0. Close the contour in the left half-plane (equivalent to assuming positive ),
and find that

y(t) =Y Br(t)e™', (8.39)
where ¢, are the poles of y(s), arranged in order of nonincreasing real part, and By(t) are
the residues (which will depend on ¢ for only nonsimple poles). I have used ¢y, instead of sy,
because the poles of y(s) are not identical to the roots of se™* + a = 0 (which are the sy).
Because f(t) = O(e??1!), the transformed function f(s) is analytic for Rs > 20;; in that
region, qr = si. For a = log 2, the first two zeros are complex conjugates o1 +iw; given by
(8.28). Because y is real,

y(t) = Acos(wit + ¢)e” " + O (e*") + O (e*), (8.40)

where A and ¢ are determined by the initial conditions (in a complicated way, because
the delay—differential equation is nonlinear). This result is the particular solution, but it is
also the general solution, as a quick inspection of (8.27) will convince you. For oo = log 2,
02 ~ —2.43658, which is < 207. So

y(t) = Acos(wit + ¢)e” " + O (7). (8.41)

Because the error term in (8.16) is superexponentially small, we can get an asymptotic
series with superexponentially small error term by modifying the methods of [61]. The result
(8.41) suffices for prime numbers. We have now shown Theorem 8.5.

Theorem 8.5 For a = log 2,
1
~ logn

where f = —o;/log2 ~ 0.824679 and w = w;/log2 ~ 1.56743, and where A and ¢ are
determined by the initial conditions.

D {1+ A(logn)~" cos (wloglogn + ¢) + O(logn) 2"}, (8.42)
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8.4 Analyze the oscillations

The most interesting feature of this model is the oscillations in p,, around (logn)~!. Let’s
take a closer look at these oscillations, and speculate about their implications for real primes.

8.4.1 Bogus initial conditions

I computed p,, numerically using (8.7), and used several of the data to fit the prediction
(8.41) without the error term. Figure 8.4 shows the excellent agreement between the fit and
the remainder of the numerical data. Notice that y(¢) oscillates around 0 (so p,, oscillates
around (logn)~1), with period approximately 6. I had expected the period to be 2, because
of the feedback argument in Section 8.1.2. The argument is basically correct, but it was too
sloppy, because p,,2 depends not just on p,, but also on pj for k < n.

0.02 :
R
£ o
-0.02f | ]
2 4 6 8 10

= log2 log n

Figure 8.4. Theory and experiment, starting with p1 = 0 and p2 = 1. With
those initial conditions, I computed p, numerically using (8.7), for various n
up to 1.15 x 102, and thereby computed y(t). I fit the dominant term in the
solution, Ae'" cos(wit + ¢), using the two data points marked with circles. The
only free parameters in the fit are A and ¢, whose fitted values are A = 0.3091
and ¢ = 1.0733. Note that the fitted curve goes through the remainder of the
numerical data, indicating that, by t = 3, the transients have died out.

8.4.2 More realistic initial conditions

The y(t) in Figure 8.4 does not accurately model the density of actual primes, because
the initial conditions (p; = 0 and py = 1) are lousy estimates of the density p,,; there are
not enough data at low n to define p,, accurately. So I estimated p,, for actual primes, for
various n € [10%?,10%]. T used those estimates as the initial y(¢) and extrapolated y using
(8.16), without the error term. The resulting curve is shown in Figure 8.5. I estimated p(P,,)
as k/(Ppn+x — Pn), where P, is the mth prime, and I chose & = max (1000, [m/100]). (I
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have temporarily used the notation p(f(n)) instead of pg(,), because p(P,) written with
subscripts is hard to distinguish from pP,,.) A reasonable alternative would be the estimate
pn = k/(m(n+ k) —m(n)).

The scatter in p,, is small when n is large, because k£ becomes huge, and the estimate
becomes reasonably reliable. I could not use such a huge k for the smaller n, because
that would introduce too much error in determining p,: I would not know whether I was

determining p,x Or pp.

0 [ .
-0.1r 1
R
N—
) /
-0.2f |
&
2 4 6 8 10 12 14 16

t

Figure 8.5. Predicted density, initialized using actual density. I estimated Dy,
for actual primes, using the method described in the text. This computation gave
y(t) for 3.35 < t < 4.57 (the points). I computed the curve for y(t) using (8.16)
without the error term, and marked the zero crossings with circles. The first
zero crossing in y(t) is located at t ~ 5.92, orn ~ 2 X 1026, The cumulative

distribution, [ pndn, crosses Li(n) around 6 x 10°°.

8.4.3 Predictions
We can use the square-root model to make predictions about the density of actual primes.
According to Ribenboim [50], Gauss and Riemann believed that 7(n) < Li(n) for all n > 3.
Their conjecture is reasonable: For all 7(n) thus far computed, 7(n) < Li(n) (also according
to Ribenboim’s fascinating book [50]). However, Littlewood [39] showed that 7(n) crosses
Li(n) infinitely often, but he did not show where the first crossing was. By computing a
huge number of zeros of the zeta function, te Riele [51] showed that 7(n) > Li(n) for some
n <7 x 1037,

In the square-root model, p,, oscillates around (logn)~!, and 7(n) = an Py, dn oscillates
around Li(n), where 7(n) is the estimate of m(n) given by the square-root model. From
Figure 8.5, @(n) < Li(n) until n gets huge (remember that n = e2'). How huge? The
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function y(t) crosses zero for the first time at ¢ ~ 5.92, or n ~ 2 x 10%%; 7(x) crosses Li(z)
a bit later, at n ~ 6 x 10%° (I found this crossing using numerical integration), because it
takes a while for the excess density to overcome the accumulated deficit. I suggest looking
near 6 x 10%° for sign changes in 7(n) — Li(n). This estimate is sensitive to the initial
conditions, so “near 1027” is probably all the accuracy that I can claim. The current record
[50] for computing 7(n) is 7(10'8), so an exact calculation of 7(10%7) may be unattainable
for another decade. However, an accurate approximation to 7(n) may suffice to show that
m(n) —Li(n) > 0, because Li(n) can be approximated accurately with an asymptotic series.

One argument against this prediction (and against the square-root model) is the kink
in y(t) where the estimated densities end and the theoretical extrapolation begins. I have
not found an explanation for this behavior.

8.5 Speculate on the Riemann hypothesis

Section 8.4.3 described a prediction of the square-root model for properties of m(n). The
model also suggests, heuristically, other properties of actual primes. For sequences generated
by the Hawkins’ sieve, a random analogue of the Riemann hypothesis holds [43]. Suppose
that this analogue also holds for these R-prime sequences, with their oscillations. That
result would not be so interesting. If the analogue did not hold, however, we would have
a reason to doubt, although not a disproof of the actual Riemann hypothesis. The failure
would suggest that oscillations in the density of actual primes—an important feature of the
square-root model—perturb the density enough to invalidate the Riemann hypothesis.

8.6 Go beyond the square root

The original reason for the square-root model was the too-high prediction for p,, in (8.1),
because actual primes are more efficient at sieving than random divisibility would predict.
We fixed the excess by making primality random. An alternative fix is to extend the range
of the product, as Pélya [47] suggested:

/"]

= ]I (1 - %) , (8.43)

p prime

where 7 = €7 ~ 1.781. Now, by Mertens’ theorem, p,, ~ (logn)~1.
The success of this alteration makes me wonder what would happen if we combine it
with random primality. Then,

[n'/"]

=] (1 - %) . (8.44)

1

The square-root model has r = 2 and ¢t = log, logn. With the definition ¢t = log, logn, the
product (8.44) results in the same delay—differential equation (8.16), but with o = log . For
r = €7, the dominant solution of the characteristic equation (8.26) is s12 = —0.696647 +
10.925611. The density approaches (logn)~!, and oscillates as for the r = 2 case. Perhaps a
generalized random-primality model, for some r # 2, models actual primes more accurately
than the r = 2 model does.
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Wild behavior occurs if r is too large. Then, one solution of the characteristic equation
se® + a = 0 has positive real part, and the oscillations around (logn)~! grow without
bound. (Actually, they would grow if the delay—differential equation (8.16) were linear; the
nonlinear terms keep y bounded.) This qualitative change happens when the solution s;
has zero real part, at s = iwy. So iwe™t +a = 0, or w; = (n + 1/2)7, for some integer
n. The smallest « allowed under this restriction is « = 7/2, or r &~ 4.81. At this value of
a, the system is critically damped (r = 2 is in the underdamped regime; your car’s shock
absorbers are tuned for critical damping). In a world where numbers are either prime or
split into at least five factors, we would need to check R-primes up to only n'/5. In such a
world, the R-prime-number theorem (that p,, ~ (logn)~!) would no longer be true; perhaps
the actual prime-number theorem would not be valid either.

The same instability occurs in negative-feedback electric circuits. Such a circuit becomes
unstable if the loop gain is too large or the delay too long (Nyquist’s theorem [57]); either
condition turns negative into positive feedback. These primality models also have negative
feedback and a delay. With t as the independent variable, the delay is always unity. The
parameter analogous to gain is «, the coefficient in front of the integral in (8.16), and it
increases as r increases. When o > m/2, the loop becomes unstable. Equivalently, with n
as the independent variable, the delay—from n'/” to n—increases as r increases. For large
enough r, the loop is unstable. In a linear system, the oscillations would grow without
bound. This model is nonlinear; when y becomes sufficiently large, nonlinear terms take
effect. In this model, the nonlinear terms probably prevent y from growing without bound
(however, I have not proved this statement).

The Hawkins’ model, p,+1 = pp(1 — p,/n), is the overdamped extreme. The delay is
almost exactly zero, because n + 1 and n hardly differ for large n. This low delay leaves
no time for oscillations to arise, and the density converges monotonically to (logn)~!, as
shown in [21]. Equivalently, we can take v — 0 in the characteristic equation (8.26). In that
regime (actually, for o < €!/¢), the zeros are purely real and negative: y decays without
oscillating.

8.7 Lower the temperature

R-primes could be generated by a noisy computer. Take a computer that computes
remainders properly, and use the sieve to find primes. The computer generates just the
sequence of actual primes. Now pour acid on the CPU, in a way that damages only the cir-
cuitry that computes a mod b, and makes the result random. Then, the computer generates
R-prime sequences, as described in Section 8.1.2.

What if the acid damages the CPU only partly (dump, say, vinegar instead of nitric
acid)? Then the computer generates sequences that partly resemble the sequence of actual
primes, and partly resemble sequences of R-primes. One way to parameterize some of these
intermediate models is to borrow the idea of temperature from statistical mechanics [49].
Suppose that the computer has to compute a mod b, with M (a random variable) as the
result. Let M be correct with relative probability 1, and let each wrong answer have relative
probability e~/T, where T is the temperature. Then Pright = 1/Z, and the probability of
each of the wrong answers is e /7 /Z, where Z = 1 + (b — 1)e™'/T. T call this normalizer
“Z” in analogy with the partition function from statistical mechanics. I do not know how
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well that part of the temperature analogy holds. At 7' = 0 (the frozen state), the computer
produces the sequence of actual primes. At 7' = oo (the completely melted state), the
computer produces a sequence of R-primes (a different sequence on each run). What happens
at intermediate temperatures? We could study p,(T), even if only for high 7', and obtain
a power series in 1/7', similar to the high-temperature expansions in statistical mechanics
[66]. Perhaps the first few terms of p,,(7") would suggest properties of actual primes. For
example, let

Pa(T) = foln) + ()T~ 4+ (8.45)

If fi(n) is positive, then probably n is prime. I doubt that it’s possible to determine f;
with such resolution, but less accurate bounds on f; may still result in rigorous statements
about the distribution of actual primes.

8.8 Finish

We studied the square-root model, a probabilistic model of primality that is similar to the
Hawkins’ random sieve. The model results in a density p,, ~ (logn)~!, as expected by the
prime-number theorem, but it also exhibits oscillations around that density, which I believe
are related to the crossings of w(n) and Li(n) discovered by Littlewood. The analysis of the
square-root model leads to the conjecture that m(n) first crosses Li(n) near n ~ 10%7.
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