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1 Introduction

The Riemann zeta function {(s) serves as an important model in many inves-
tigations in the theory of Quantum Chaos. My aims in these lectures, which
are directed at physicists, are to explain some of the basic properties of {(s), its
importance in Number Theory, introduce generalizations of {(s) used by num-
ber theorists, and discuss the spectral statistics of their zeros in connection with
Random Matrix Theory.

In section 2, I begin by discussing the theory of prime numbers and the con-
nection with the Riemann zeta function and the significance of the Riemann
Hypothesis to the distribution of primes. In section 3, I discuss Dirichlet’s the-
orem on the existence of primes in arithmetic progression. For this purpose, I
introduce Dirichlet L-functions, a generalization of Riemann zeta function, and
survey their basic properties. In section 4, I give two examples of automorphic
L-functions, those attached to the modular discriminant and to eigenfunctions
of the Laplacian on the modular domain. In section 5, after a very brief overview
of Random Matrix Theory, I discuss spectral statistics of the zeros of all these
L-functions. It seems that all of them have GUE statistics. In section 6, I sketch
the argument that the pair correlation of the zeros is that of GUE, in the range
that it can be proved.

2 The Riemann zeta function

We begin by surveying the theory of primes and the basic properties of the
Riemann zeta function. For background reading, see [3], [7].

2.1 Prime Numbers

A prime is a natural number p > 1 which has no factors (other than itself and
1). The sequence of primes is thus p; = 2, p2 = 3, ps = 5,.... A basic fact
concerning integer arithmetic is

Theorem 2.1. (Fundamental Theorem of Arithmetic) Every natural num-
ber is uniquely decomposable into o product of prime powers.
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The primes are thus the building blocks of all the integers. We would like to
study their distribution. The first observation is due to Euclid.

Theorem 2.2. (Euclid) There are infinitely many primes.

Proof Argue by reductio ad absurdum: If there were finitely many primes, say
only M of them, then form the integer @ = p1 - p2 - ... - pym + 1. It is either
a prime or decomposable. Since @ is greater than all the primes p;,...,pun, it
cannot be a prime. However, @ clearly leaves remainder 1 on division by each of
the available primes p;, and thus being divisible by no prime, cannot decompose
into a product of primes! We thus arrive at a contradiction. a

A strengthening of Euclid’s theorem is due to Euler, who showed that the
sum of reciprocals of primes diverges:

2.2 The density of primes

After knowledge that there are infinitely many primes, one can try to assess
their density. Gauss recounted that in 1792, as a boy of 15, he arrived at the
conjecture that the density of primes near z is about 1/logz and so if we denote
by m(z) the number of primes up to z

n(2) = #{n : pn < 2}
then m(z) is asymptotically equal to the logarithmic integral, given for z > 2 by

T odt
Li(z) := /
5 logt

In turn, Li(z) has an asymptotic expansion

T T T T
to—gt it +0

Li(®) = fogz T (loga)? (oga)® O logayit)

To check the strength of Li(z) as an approximation to m(z), we examine
Table 1 (writing [y] := integer part of y). As is seen from this table, Li(z)
is a remarkably good approximation to m(z) in this range. As a measure of
the quality of the approximation, note that the width of the third column is
about a half of the width of the second one, that is to say that the remainder is
approximately square root of the main term!

The statement that m(z) ~ Li(z) is known as the Prime Number Theorem.
It was proved in 1896 by Hadamard and de la Vallée Poussin, by using the
Riemann zeta function. The empirical statement made above from the data in
Table 1 as to the magnitude of the remainder in this approximation is a form
of the celebrated Riemann Hypothesis. The connection between ((s) and the
distribution of primes will be explained in Section 2.5, after we review some of
the properties of {(s).
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Table 1 Comparison between 7(z) and Li(z).

z  (a) [Li(2)] - (=)

108 5,761,455 754
101° 455,052,511 3,104
1012 37,607,912,018 38,263

101 3,204,941,750,802 314,890
1016 279,238,341,033,925 3,214,632

2.3 The product formula for {(s)

The Riemann zeta function is defined for complex s with Re(s) > 1 by the series
o~ 1

(s) =) —

ns
n=1

The first important fact we need to know is Euler’s product formula, which
introduces prime numbers into the study of {(s):

Theorem 2.3 For Re(s) > 1, {(s) can be represented by the convergent product

over all primes:
1
¢(s) = H =

Proof The idea is to expand each of Euler’s factors (1 —p~*)~! as a geometric

series
1 i 1
1 o p_s k=0

pks
and to multiply together the resulting series

1 1
Hl_p—s_Z(pllhp’zﬂz_””‘__ k'r)s

P "Pr

We can write this as a sum

o~ a(n)
>
n=1

where a(n) is the number of ways of expressing the integer n as a product of
prime powers. By the Fundamental Theorem of Arithmetic 2.1, this can be done
in one and only one way, i.e. a(n) = 1, which proves the product formula, once
we check that everything is absolutely convergent if Re(s) > 1. |

As the above argument shows, the product formula is but a form of the Funda-
mental Theorem of Arithmetic.

Remark Since {(s) is given as a convergent product when Re(s) > 1, it is
never zero in this region.
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2.4 Analytic continuation and functional equation of ((s)

To further explore the connection between the theory of primes and {(s), we will
analytically continue ¢(s) to all values of s. We use the Gamma function given
for Re(s) > 0 by the integral representation

o dt
T'(s) = / ettt =
0 t

to define the completed zeta function by
* —$ s
¢*(s)=m /2I‘(§)C(s)

The basic fact about this variant of {(s) is
Theorem 2.4
(1) The completed zeta function (*(s) has a meromorphic continuation to the
entire s-plane.
(2) ¢*(s) is analytic except for simple poles at s =0, 1.
(3) It satisfies the functional equation

Cls)=¢"(1—59)

As an immediate consequence of this fact, we observe that {*(s) has no zeros
outside the critical strip 0 < Re(s) < 1. This holds since I'(s) is never zero, and
¢(s) is analytic and nonzero in the region of convergence Re(s) > 1, so that the
completed zeta function ¢*(s) # 0 in Re(s) > 1; by the functional equation, the
same is true for the symmetric region Re(s) < 0. Moreover, since I'(s) is analytic
except for simple poles at s = 0,—1,—2, ..., {(s) is nonzero in Re(s) < 0 except
for simple zeros at the negative even integers s = —2, —4, ... (to make up for the
simple poles of I'(5) at these points). These are called the trivial zeros of ((s);
the nontrivial ones are the zeros of (*(s) and as we have seen they all lie in the
critical strip.

Proof (Sketch) We start with the integral representation
7T—5/2I\(£)i :/ e—7r11.2tt.s/2ﬂ

2 ns 0 t
which shows that we have an integral representation of {*(s) for Re(s) > 1 as

o= [ e (2.1

where the theta-function is given for £ > 0 by

00

)=y e

n=——00
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By Poisson summation, 8(¢) has a transformation formula
1
6(;) = V(1) (2.2)

Breaking up the region of integration in the integral representation 2.1 to an
integral over (0, 1) and one over (1, c0), we change variables ¢ + 1/t to to trans-
form the integral over (0.1) to one over (1, c0). We then use the transformation
formula 2.2 for 8(¢) to find after some manipulation that

N | 1 COt) =1 (2 L1-s)2) @
CO =yt [ B () E e

Since 6(t) — 1 = O(e™™) as t — oo, the integral is absolutely convergent for
all s and is therefore an entire function of s. Thus from eqn 2.3 we get the
meromorphic continuation, with the only poles being the simple ones at s = 0, 1.
From the symmetry of eqn 2.3 with respect to s — 1 — s we get the functional
equation. a

2.5 Connecting the primes and the zeros of ((s)

Riemann, in his seminal paper of 1858 [18], used {(s) to give a formula for m(z)
in terms of the zeros of {(s). His formula gives a clear understanding as to why
Li(z) is the correct approximation to m(z). Instead of a formula for n(z), it is
more convenient to give a formula for the weighted sum of prime powers p* < =,
each prime power p* weighted by the logarithm log p of the corresponding prime.

One defines
P(z) := E E log p

P kipk<z

The repetitions p* for k > 2 give a contribution of the order of at most v/z. The
primes (k = 1) give a contribution which, if one believes Gauss’ assertion that
the density of primes near z is about 1/logz, is about z. Thus we expect (and
the above argument is easily made rigorous) that the Prime Number Theorem
is equivalent to the assertion that ¢(z) ~ z. This is made transparent by the
formula (due to von Mangoldt)

o !
Ye)=e -3 2~ (0) (24)
P <
where the sum is over all zeros p of {(s). Note that we cannot expect the
formula to converge absolutely, since it would then define a continuous function
of z, while 9(z) is a step function with jumps when z = p* is a prime power.
The contribution of the trivial zeros p = —2, —4, —6, ... is easily summed to
equal 1log(l — z72) and is negligible. The constant term is ¢'/{(0) = log 2.
The important part is the sum over the nontrivial zeros, which we expect to be
of smaller order than z. It is thus crucial to understand the distribution of the
zeros. We will turn to that, after a brief explanation of the origin of Riemann’s
formula.
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2.6 The explicit formula

Riemann’s formula and its variants such as eqn 2.4 are known as the ezplicit
formulae of prime number theory. We give a smooth version which is absolutely
convergent and is easily derived. For this we start with a compactly supported,
smooth test function g € C°(R), which we will usually assume is even (g(—u) =
g(u)), and set

[o¢]

h(r) = / g(u)e ™ du

— 00
which is an entire function of r, exponentially decaying for r real. For notational
convenience we set I'r(s) = ﬂ_’/zf(%). We will denote the nontrivial zeros of
by pn = % +iE,.

Theorem 2.5 For g, h as above we have
1 [ logp
> h(En) — 2h( ) %/_mh(ﬁRe—( +zrdr—2zz /2 g(klog p)

The general shape of this formula is as the formula for ¥(z), the right hand
side of it being a sum over prime powers weighted by their logarithm log p, and
the left hand side is a sum over the zeros. Much has been said of the formal
similarity between such formulae and the trace formulae used in “quantum chaos”
(see e.g. [1], [8]), and this is one of the main reasons for the interest in the zeta
function among people working in this area.

Proof We set

H(s) :/ g(u)e("_%)“du
so that h(r) = H(3 + ir). Consider the integral
1 *1
I(h) := — H(s)>—(s)ds
( ) 23 Re(s)=2 ( )C* ( )

We compute this integral in two ways. First we expand the logarithmic derivative

of ¢*(s) by using Euler’s product ¢*(s) = 'r(s) Hp(l —p~*)~1, which gives
C*l I‘I —k
—(s) )= logp-p~**
¢ FR et

On shifting the contour of integration to Re(s) = 1/2 and integrating term by
term, we find

I(h) = ﬁ H(s) s)ds —ZZlogp/ H(s)p~**ds

Re(s)=1 p k>1 Re(s)=1%

1 [> ¢}
= 5 _wh( )I‘ —}—zrdr—zz k/z logp

R ? k>1 P
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where we have used Fourier inversion in the last step.

On the other hand, by shifting the contour of integration to Re(s) = —1 we
pick up contributions from poles at s = 0,1 and from the zeros p of {*(s) in the
critical strip 0 < Re(s) < 1:

I(h) = —H(1) — H(0)+ Y _ H(p) + % /R s H(s)%,(s)ds

We transform the integral above by using the functional equation of *(s) in the
form o .

()=~ =9)

<‘*
and change variables s — 1 — s to get
1 H (s = [ H1- 9 (o) = —1(h)
— s)=—(s)ds = —— —s)>—(s)ds = —
2m Re(s)=-1 C* 2m Re(s)=2 C*
where 71,(1') = h(—r). Since g is even, h = h and H(0) = H(1) = h(i/2), and so
we get the required formula. a

2.7 The Riemann Hypothesis

As noted in section 2.4, the nontrivial zeros of {(s) all lie in the critical strip
0 < Re(s) < 1. If p is a zero then by the functional equation ¢*(s) = ¢*(1 — s),
so is 1 — p, and since {(3) = @ (z denoting complex conjugation), we get zeros
at p and 1 — p (the two symmetries s — § and s — 1 — s coincide on the “critical
line” Re(s) = 1/2).

The first few zeros were computed by Riemann himself, and all lie on the
critical line Re(s) = 1/2. They are p, = 1/2 + iE, with E; = 14.13...,E; =
21.02...,E3 = 25.01... etc. (by symmetry, we only need to consider positive

Riemann’s Hypothesis (RH): All nontrivial zeros of {(s) lie on the critical
line Re(s) = 1/2.

The Riemann Hypothesis has been checked extensively and is widely believed
to be true, though an explanation and proof are still missing to date. Its sig-
nificance to the theory of primes is immense. For instance, we can use RH to
explain the small size of the remainder term Li(z) — 7(z) in Table 1. To see this,
it suffices to show that ¥(z) — z is small, and in fact we shall argue that it is of
order at most 1/z log® . This is reasonable if we look at the formula for P(z) in
eqn 2.4, which we will write as

p1/2+iEn

¢(m) = — m + e
where the sum is now only over the nontrivial zeros, the omitted terms being

negligible. If we assume the E, are real, so |z}/21*F~| = \/z, it is tempting to
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then use the triangle inequality to deduce

1
[¥(z) — 2| SﬁZm

and so say that ¥(z) — z is of order 4/z. The argument is not quite airtight,
as it transpires that the sum of absolute values diverges: > 1/|1/2+ iE,| = co.
Nevertheless, this argument gives the essence of what is happening, and in fact
taking more care and using the distribution of zeros described below, one can
show that ¥(z) — z « +/zlog’z. This gives m(z) — Li(z) < +/zlogz and so
explains the observation regarding the size of the third column in Table 1.

The Riemann Hypothesis is one of the most important unsolved problems in
Number Theory, and its validity has numerous implications. For instance, there
are algorithms for primality testing of integers which are proved to require poly-
nomial time (that is, testing if n is prime or not requires a number of operations
polynomial in log n), provided we assume RH (and its generalization to Dirichlet
L-functions described in the next section).

As to what was actually proved so far, the significant fact is that there are
no zeros on the boundary of the critical strip: {(1+ i) # 0, so 0 < Re(p) < 1
for all nontrivial zeros. This is enough to prove the Prime Number Theorem, as
was done (independently) by Hadamard and de la Vallée Poussin in 1896. One
has in fact a zero-free region near the boundary of the critical strip, whose width
shrinks to zero as we go up. However, we do not have a proof that there is any
strip of the form Re(s) > 1 — § in which there are no zeros, for any § > 0.

2.8 The distribution of zeros

There are infinitely many nontrivial zeros, in fact > 1/|p| = oo as is clear from
the explicit formula 2.4, otherwise 1(z) would be continuous. We denote by
N(T) their number in the rectangle Rr = {0 < Re(s) < 1,0 < Im(s) < T}.
Riemann stated that N(T') is asymptotic to T'//2m log T'//2m (rigorously proved by
von Mangoldt in 1905). We make this more precise by separating out a smooth
mean growth N () from a fluctuating part, in some form N () = N(t) + Nosc(2),
where Nysc(t) is of smaller order than the mean ]\_/'(t) and oscillates around zero.

This can be done by noticing that N(T') can be computed from the argument
principle as the imaginary part of the integral of (*'/{*(s) around a contour
surrounding the boundary of the rectangle Ry. We denote by ¥(t) the argument
of the gamma factor I'r(1/2 + t) and take as the smooth part the contribution
of this gamma factor to the winding number:

By Stirling’s formula,

1
N(t):ﬂlog%—%—Fg-FO(z)
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The oscillatory part, traditionally denoted by S(2), is given by the winding num-
ber of {(s). It is known to be of smaller order then N(t): S(¢t) = O(logt).

Littlewood showed that it indeed has mean zero, in fact j;:: S(t)dt <« logT.
Selberg proved that S(t)/+/272 loglogt has a normal value distribution.

3 Dirichlet L-functions and primes in arithmetic progres-
sions

In this section we will describe a generalization of the Riemann zeta function
used to capture a certain feature of primes: their distribution in arithmetic
progression. A good reference for this material is Davenport’s book [3].

3.1 Arithmetic progressions and modular arithmetic

An arithmetic progression is a subset of the integers of the form {a,a + ¢,a +
2q,...}. We say that two integers a and b are congruent modulo g if their dif-
ference is divisible by q: a — b = kg, k an integer (not necessarily positive). We
write this as @ = b mod q. The ordinary operations of integer arithmetic respect
the congruence relation modulo a fixed integer ¢, that is if @ = @’ mod ¢ and
b="5b modgqthena+b=a' +b modgq, a-b=a' b modq etc. We say that a is
invertible modulo ¢ if there is some integer b so that ab = 1 mod ¢. This happens
if and only if @ and ¢ have no common factors, that is their greatest common
divisor is 1: gcd(a,q) = 1. We denote the residue classes of integers modulo
g by Z/qZ. As representatives we may take {0,1,...,¢g — 1}. The invertible
residue classes are denoted by (Z/¢Z)*, and the number of such residue classes
is denoted ¢(g) (Euler’s phi-function).

3.2 Primes in arithmetic progressions

An important issue is the existence of primes in a given arithmetic progression:
Given @ and ¢ > 1, to find a large prime p with p = @ mod ¢. Clearly, in some
instances it cannot be done, say the progression {2,4, 6,8, ...} contains no large
primes as all primes except 2 are odd. Likewise, if ¢ and ¢ have a common factor
d > 1 then it divides every element of the progression a,a + ¢,a + 2q... and so
there are no primes in it (excepting perhaps if @ = d is prime). We should thus
restrict attention to the case that a and ¢q are co-prime. It turns out that this is
the only obstruction to the existence of primes in arithmetic progression, as was
proved by Dirichlet in 1837. In fact there are arbitrarily large primes in every
progression not excluded by such reasoning:

Theorem 3.1. (Dirichlet’s Theorem) For g > 1 and any a co-prime to g,
there are infinitely many primes of the form a + kq.

One can try to give an argument for this along the lines of Euclid’s argument
for the existence of infinitely many primes (Theorem 2.2). This works in a few
cases of small ¢, and for some special progressions such as p = 1 mod ¢, but
this line of attack has not yielded Dirichlet’s theorem in its full force. We will
indicate the approach that demonstrates the existence of infinitely many primes
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in every allowable progression by using Dirichlet’s L-functions, a generalization
of {(s). This approach will also show that for fixed ¢ > 1, every progression
a mod ¢ has asymptotically the same density of primes.

3.3 Dirichlet characters
The method for pulling out primes (or arbitrary integers) in a progression uses
“mod ¢ harmonic analysis”, where the fundamental harmonics are called Dirich-
let characters.
Definition 3.2 Given ¢ > 1, a Dirichlet character modulo q is a function x(n)
on the integers satisfying

(1) x is g-periodic: x(n + q) = x(n).

(2) x(n) =0 if n is not co-prime to q.

(3) Multiplicativity: x(nm) = x(n)x(m).

(4) x(1) =1.
Example 3.3 The trivial character x, modulo g is given by xo(n) = 1 if n is
co-prime to ¢, and x,(n) = 0 otherwise.
Before giving further examples, we note one property of Dirichlet characters,
namely x(—1) = +1. This is since by multiplicativity, x(—1)? = x((—1)?) =
x(1) = 1. We say x is even (resp. odd) if x(—1) = +1 (resp. x(—1) = —1).
Example 3.4 We determine the characters modulo ¢ = 3: The invertible
residue classes are (Z/3Z)* = {1, —1}. Since always x(1) = 1, and x(—1) = +1,
we see that there are exactly two characters modulo 3, the trivial one x,, and
the odd character determined by x1(—1) = —1.
Example 3.5 We take the case ¢ = 5. Then (Z/5Z)* = {1, 2, 3,4}. To deter-
mine all possible characters, we start by noticing that all invertible residues are
powers of 2 mod 5: —1 =4 = 22 mod 5, 3 = 23 mod 5. Since x is multiplicative,
this means x(4) = x(2)?, x(3) = x(2)3. Thus x is determined by the number
x(2), which is a 4-th root of unity since x(2)* = x(2%) = x(1) = 1. There-
fore x(2) = +1, 4% and each of these four possibilities gives rise to a Dirichlet
character modulo 5.

In general, there are exactly ¢(g) Dirichlet characters modulo g. They sat-
isfy the fundamental Orthogonality Relations, crucial in their use to sieve out
elements of progressions modulo g:

Lemma 3.6. (Orthogonality Relations)

(1) For any nontrivial character x # x, modulo g

Y x(n)=0

n mod g

(2) For any a € (Z/qZ)* andn € Z/qZ, ,

1 _ | 1 n=amodg
@ E x(a) 1x(n)—{ 0 otherwise

x mod g
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(the sum over all characters modulo q).

3.4 Dirichlet L-functions

Fix ¢ > 1, which for simplicity I will assume is prime, and a nontrivial character
x modulo g. The corresponding L-function is defined for Re(s) > 1 as

L(s,x) = Z Xf:l)

The sum converges conditionally in the region Re(s) > 0. This is because the first
part of the Orthogonality Relations implies the mean value of x(n) is O(1/n).
In particular, L(s, x) is analytic in Re(s) > 0.

By using unique factorization for primes and multiplicativity of x, one shows
(as in the case of {(s)) that there is an Euler product factorization

L(s,x) = [[(1 - X2

s
p p

There is a functional equation, which for brevity we only give in the case that
x is even (x(—1) = 1): The completed L-function

L*(s,x) := 7~ */°L(3)L(s, )

is entire, and we have a functional equation connecting L(s, x) and L(s,x!):
L*(s,x) = T(x)g *L*(1 — s, x~ 1)

Here the pre-factor 7(x) is a “Gauss sum”

r(x) = 3 x(m)erm/a

m=1

We will only need to know its magnitude, which is |7(x)| = /g. Note that the
functional equation is not symmetric, as it relates L(s,x) with L(s,x~!), the
L-function associated to the inverse character to .

The L-function associated to nontrivial x has an analytic continuation, with
no poles, and all its nontrivial zeros (that is, the zeros of the completed L
function L*(s,x)) are in the critical strip 0 < Re(s) < 1. The generalization
of the Riemann Hypothesis is that all nontrivial zeros lie on the critical line
Re(s) = 1/2. This has been tested numerically but as in the case of {(s), an
argument for it is lacking.

As for Riemann’ {-function, for a nontrivial character x modulo g there is an
“explicit formula” relating the oscillatory sums

¥(z,x) = Y, x(p)logp

p*<z
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with the nontrivial zeros p, of L(s, x), which is

@b(z,x):—zmpx +...

Px Px

Note the absence of the “main term” z which occurs if x = x, is the trivial
character, and is due to the presence of the pole at s = 1 in that case.

In smooth form, analogous to Theorem 2.5, the explicit formula for L(s, x)
is given by

zn:h(En,x) = % _0; h(r) <10gq + %(% +ir) + %(% —ir )
—ZZI‘ES Ja(klogp) + x~*(s*)o(—k logp))

where ¢ € C°(R) is a compactly supported, smooth test function, h(r) =

f_°°°o g(u)e™*"™du and the nontrivial zeros of L(s, x) are denoted by 1/2+iE, .
The density of zeros is given as for {(s) by

T T, T

or e 2T

3.5 Application to primes in progressions

N(T) ~

To see how to use the Orthogonality Relations, we fix a € (Z/qZ)* and count
prime powers congruent to a modulo g, weighted with the logarithm of the

corresponding prime:
man=Y Yl
p,k>1p*=g mod ¢

Then using the second orthogonality relation, we can express this in terms of

Y(z, x) = Ep Ekz1 x(p) log p:

1 -1
Y(z;0,q9) = @xmzoqu(a) Y(z, x)
1
= md’(i’hXo Z 9

x#x

The trivial character’s contribution to this sum is
1 z
Y(z,X0) = 7= (¥(z) + O(1)) ~ =
(#:x0) = 3 W) + O ~ 305

by the Prime Number Theorem. To prove Dirichlet’s Theorem, we need to show
that the oscillatory sums ¥(z, x) arising from nontrivial characters give lower
order terms. This will establish that

Y(z;a,q) ~ 3@
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and we thus get Dirichlet’s theorem, with the extra information that every ad-
missible progression to the fixed modulus ¢ contains asymptotically the same
number of primes.

Assuming RH for L(s, x) for all characters modulo g gives that in fact ¢(z)—=z
and each 9¥(z, x) for x # X, is not much bigger than square root of z. This shows
that the number of primes p = a mod g of size < z is Li(z)/$(q) (g fixed, z — o0)
up to an error of size about square root of the main term.

Remark The above argument shows that there are infinitely many primes in
the progression p = @ mod g provided we know that ¥(z) — z and each ¥(z, x)
for x # Xo is of lower order than z, or that there are no zeros with Re(p) = 1.
This is something of an overkill and is not the path that Dirichlet took. What
he did was to argue that it suffices to show that there is never a zero at the point
s = 1, and he then gave proof for this fact. His reduction to the non-vanishing of
L(1,x) is to argue that the sum of reciprocals of the primes in this progression
diverges (so there are certainly infinitely many of them!):

By the orthogonality relation,

1_ 1yt b x(p)
2 T e 2 X

p=a mod g X#Xo

One uses Euler’s argument that Zp 1/p = oo, and then notices that by the Euler
product for L(s, x),

log L(1 Z = + o1
P
Since L(s,x) is analytic at s = 1 for x # X, if we know in addition that

L(1,x) # 0 then Zp x(p)/p is finite and so the sum EpEa mod g 1/p diverges
with > 1/p.

4 Automorphic L-functions

Riemann’s (-function and Dirichlet L-functions all belong to a wide class of
number theoretic objects known as automorphic L-functions. It is outside the
scope of these notes to give a general definition of these; instead, I will present
two examples: The L-functions attached to the modular discriminant and those
attached to eigenfunctions of the Laplacian on the modular domain.

4.1 The modular discriminant
The modular discriminant can be defined through the infinite product
[> ¢}

2miz

1—q g—e

n=1
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Table 2 The Ramanujan tau-function.

n 1 2 3 4 5 6 7

T(n) 1 —24 252 —1472 4830 —6048 —16744

where z = z + iy has positive imaginary part y = Imz > 0, so that |g| < 1. The
infinite product can be expanded in a power series in g:

A(z) =q+7(2)¢* +... + T(n)g" + ...

for suitable integers 7(n). The first few are displayed in Table 2.
Using the coefficients 7(n), we form a Dirichlet series

n

I(s,0)= Y T*(:L)

where 7*(n) are the normalized coefficients

T*(n) := %

This series is absolutely convergent for Re(s) > 1, and has an analytic continu-
ation to the entire complex plane. It satisfies the following functional equation:
The completed L-function

11
L*(s,A) :=Tc¢(s + F)L(s, A), Te(s) := (2m)"°T'(s)
is entire and satisfies
L*(s,A) = L*(1 —s,A)

Remark As a function of z, the modular discriminant has the fundamental
transformation rule [23]

A(—%) = zle(z)

The analytic continuation and functional equation of L(s, A) follow from this
rule and the integral representation

* oo . s d
pon) = [ s
o]

The coefficients 7(n) have many interesting properties. For instance, they
have the multiplicativity property: for m, n co-prime,

7(mn) = 7(m)7(n)
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while for p prime,

(8*)7(p) = (") + p" 7 (2" )
These relations were conjectured by Ramanujan, and proved by Mordell in the
1940’s. As a consequence of the multiplicativity of 7(n), there is an Euler product
expansion:

1
L(s,A) =
(4) 1;[ 1—r*(p)p—* +p~%

An important feature of 7(n) is that there is an asymptotic behavior of their
mean square (Rankin and Selberg [22]):

ZT*(’I’L)zNCX, X — oo, c>0 (4.1)
n<X

As for the size of 7(n), it is dictated (via the multiplicative relations) by their
size at prime arguments. Ramanujan conjectured that

I7(p)| < 2p*/? (4.2)

which was proved by Deligne in the 1970’s [4], [5].

The sign of the coefficients 7(p) is conjectured to be distributed according
to the “Sato—Tate law”: The sequence {7*(p)/2} (p prime) is equidistributed in
the interval [—1, 1] with respect to the semi-circle distribution

du(z) = %\/1 — z2dz

This was discovered numerically in the 1960’s but is as yet not proven.

It will be convenient to write 7*(p) as 7*(p) = tr U, — the trace of a 2 x 2
ap 0
0 o !
to the matrix U, being unitary, and the Sato-Tate law is equivalent to the
equidistribution of the conjugacy classes {U,} in the special unitary group SU(2)
with respect to Haar measure.

The L-function L(s, A) has “trivial” zeros, due to the poles of the Gamma
factor T'c(s + 12—1) = (2m)~(6+11/2)1 (5 4 12—1), at s +11/2=10,—1,-2,.... The
nontrivial zeros p, = 1/2 + iE, are known to be located inside the critical
strip 0 < Re(s) < 1 and it is conjectured that they all lie on the critical line
Re(s) = 1/2. This is the “Riemann Hypothesis” for L(s, A). Their density inside
the critical strip is twice that of the Riemann {-function:

T
2’
The analogue of the Explicit formula (Theorem 2.5) is
1 Ig,11 1 . logp k
> h(En) = o / h(r)2 Rei(?+§+zr)dr—2 ; Ek: /2 tr (U, ) g(klog p)

- (4.4)

matrix Up = ) Then the Ramanujan conjecture 4.2 is equivalent

N(T):=#{pn : 0 <Im(pn) < T} ~2- % log T — o0 (4.3)

[> ¢}
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Fic. 1. The fundamental domain F for the modular group

4.2 Maass waveforms

Our second example of automorphic L-functions are those attached to “Maass
waveforms”. We begin with a brief survey of the spectral theory of the modular
surface. For more details, see H. Iwaniec’s book [10].

The upper half plane model H of the pseudo-sphere is the set of complex
numbers z = z + iy with positive imaginary part y > 0. The metric on H
given by the line element ds? = (dz? + dy?)/y? has constant negative curvature
K = —1. Geodesics are circles/lines in H which are orthogonal to the real axis.
The orientation-preserving isometries of the metric are the linear fractional maps

z = (az + b)/(cz + d) with < ‘Z Z ) a real 2 X 2 matrix of determinant 1.

The volume element of the metric is given by dzdy/y?. The Laplace-Beltrami
operator associated to the metric is A = ;l/z(a':‘)—:2 + aa—;g).

The modular group I' = SL(2,Z) is the group of all such matrices with
a, b, ¢, d integers. The modular surface I'\H is the Riemann surface obtained by
identifying points of H which are translates of each other by elements of I'. A
fundamental domain for T is given by the set (Figure 1)

1 1
}':{z:z—i—iyEH:|z|21,§<Re(z)§§}

Every point of H is a translate of some point in F by an element of I, and no
two distinct points of the interior of F are translates of each other. The volume
of the fundamental domain (with respect to the invariant measure dzdy/y?) is
7/3. The fundamental domain admits a symmetry T_; : z — —Z, which is an
orientation reversing reflection in the imaginary axis Im(z) = 0. The volume of
the desymmetrized fundamental domain is /6.
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The spectrum of A on the space of odd functions on I'\H is purely discrete,
but on the even space there is continuous spectrum (the continuous spectrum is
the interval [1/4, 00)), and, what is less obvious, also discrete spectrum. Maass
waveforms' are nonconstant I'-periodic eigenfunctions of the Laplacian A, which
are square-integrable on F:

P(yz) = ¥(2), vyel,zc H
1
Ay + By =0, E:Z+t2>0

191 = /; (=) 22

d
2y<°°
Y

The space of such forms splits up into odd/even forms under the symmetry
zZ —2Z:

$(-2) = £9(2)

It is known that the discrete spectrum of the modular group is embedded in the
continuous spectrum, so that the eigenvalues satisfy E = 1/4 +t% > 1/4.

Since the translations z + z+1 are in the modular group, an odd/even Maass
form 1(z) has a Fourier expansion ¢(z) = 3, W, (y)e?™"®. Taking into account
the eigenfunction condition At + (1/4 + t2)9 = 0 and the square-integrability
implies a more explicit form of this expansion:

P(z) = Z ay (n)yl/zKit(27r|n|y)ez"i”
n#0

where K;;(y) are modified Bessel functions; as y — oo, Ki(y) < e~ 2™. The
coeflicients ay(n) are the Fourier coefficients of 1(z). For even forms, ay(—n) =
ay(n), while for odd ones ay(—n) = —ay(n).

There are additional symmetries to the space of functions on the modular
domain — the Hecke operators. These are defined for n > 0 as

Z w(a,z;—b)

ad=n

b mod d

Ta(2) :=

=

the sum going over all positive integers a,d with ad = n, and b with 0 < b < d.
The Hecke operators {7, } are a commutative family of Hermitian operators on
L*(T'\H), which in addition commute with the Laplacian and with the reflection
symmetry 71 : z — —Zz. They thus preserve the even/odd eigenspaces of
A, and each eigenspace has a basis consisting of simultaneous eigenfunctions
of all the Hecke operators. Such eigenfunctions are called even/odd Maass—
Hecke eigenforms. Give such an eigenfunction v, with T4 = A(n)¥, its Fourier

lnamed after H. Maass.
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coeflicients are given by
ap(n) = ap(DA(m),  n>0

Thus we can normalize the first Fourier coefficient ay(1) = 1, and then the n-
th coefficient is the Hecke eigenvalue A(n) (recall that for negative n, ay(n) =
+ay(|n|) according to the form ¢ being even/odd).

The Hecke eigenvalues are multiplicative:

A(mn) = A(m)A(n), m, n co-prime
)\(Pk)A(P) = A(pk+1)+)\(pk_1), p prime

i From the boundedness of 9 in the fundamental domain, one can infer that for
any Maass form, ay(n) < n'/2. For Hecke eigenforms, it is conjectured that
the Fourier coefficients are essentially bounded, more precisely that for prime p,
|A(p)| < 2, and consequently |A(n)| < nf for any € > 0. This is the “Ramanujan
conjecture” for Maass forms, and is still open. The best result to-date in this
direction is |A(p)| < 2p%/28 [2]. As for the modular discriminant, one knows that
in the mean-square, the Fourier coefficients are bounded:

Y lag(m) ~egX, X 500, cp= L
/3

n<X

Furthermore, it is believed that the signs of A(p)/,/p are distributed according
to the Sato—Tate law.

The L-function attached to a normalized Maass—Hecke eigenform 1 with
Fourier coefficients a(n) = A(n), a(1) = 1, is defined by

L(s,¢) = Z )\(1:)

n

The series is absolutely convergent for Re(s) > 1. Due to the multiplicativity of
the Hecke eigenvalues A(n), we have an Euler product expansion

1
Haw) = =55

p~*+p

Re(s) > 1

—2s!

The L-function has an analytic continuation and functional equation similar to
that of the modular discriminant. For simplicity, we describe only the case of
even forms. In this case, if E = 1/4 +12 is the Laplace eigenvalue of ¢, then the
completed L-function

L*(s,¢) :=T'r(s + @t)I'r(s — it)L(s, ¢)
is analytic in the entire complex plane, and the functional equation is simply

L(s,9) = L*(1 - 5,9)
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There are trivial zeros of L(s,¢) at s = +it +k, k = 0,—1,-2,.... It is
known that for the modular group all the Laplace eigenvalues lie above 1/4, so
t is real and so there are no trivial zeros in the interior of the critical strip. All
nontrivial zeros p, = 1/2 + iE, lie inside the critical strip 0 < Re(s) < 1, and
the analogue of the Riemann Hypothesis is that they all lie on the critical line
Re(s) = 1/2. As for the modular discriminant, the density of the zeros in the
critical strip is twice that of the Riemann (-function (eqn 4.3), and there is an
Explicit Formula similar to eqn 4.4.

5 Spectral statistics of the zeros

We start with a sequence of numbers z; < z5 < ... < z, < ..., normalized
so that z, ~ n as n — oo. The goal is to understand the fluctuations of the
levels z,, from their mean. For instance, the nearest-neighbor level spacings are

Sp = Zpt1 — &n, Whose mean is unity. The level spacing distribution P(s)
measures the distribution of the spacings sj:
) 1
P(s) = Nh_r)l;o N Z 3(s — sn)
n<N

that is we want that for any test function f € C.(0, 00),

% Z f(sn) = /0°° f(s)P(s)ds, as N — oo

n<N

Our example of such a sequence of levels is to take the zeros p, = 1/2 + iE,
of one of the L-functions described in the previous sections, with the imaginary
parts E, (here we assume the relevant RH) lying in an interval [E,2E], E > 1.
The number of “levels” E, in this interval is asymptotic to Edlog E/27m as
E — oo, where d = 1 in the case of {(s) and Dirichlet L-functions, and d = 2
for the L-functions attached to the modular discriminant or Maass wave-forms.

Thus setting
dlog E
= 2% p

z’fl. L n
2

we get a sequence of normalized levels z,, ~ n (this process is sometime referred
to as “unfolding” the levels).

One model for such a sequence is to take the z, as random (uncorrelated)
numbers. In this case the level spacing distribution is Pranda(s) = e *. Other
models, more relevant for our purpose, are the ones arising in Random Matrix
Theory [14]. For instance, we can take the eigenvalues A; < A3 <...< Ay of an
N x N hermitian matrix H chosen from the Gaussian Unitary Ensemble, that
is the implied probability measure is du(H) = ene T H)GH. The expected
level spacing distribution of the unfolded eigenvalues z, := @)\n is given as
N — oo in terms of a Fredholm determinant:

2

PGUE(S) = j? det(I — Q,)
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Fi1G. 2. The GUE level spacing distribution Pgug(s).
where @, is the operator on L?(—1,1) given by the kernel

sinm(z — y)s/2

R

For small s, Pqug(s) ~ %sz (see Figure 2).

The same level spacing distribution arises if we take the eigenphases of an IV x
N unitary matrix, chosen at random with respect to Haar measure on the unitary
group U(N) — this is Dyson’s Circular Unitary Ensemble. Similarly if we take
any of the families of compact classical groups, such as the unitary symplectic
group USp(2N). In these compact examples it was proved by Katz and Sarnak
[11] that it is not only the ensemble averages that converge to Pgug(s) but this
in fact holds for almost all matrices.

It is usually difficult to directly study the level spacing distribution. Instead
of studying spacing between adjacent levels, one looks at correlations between
all n-tuples of levels — these are the n-level correlation functions [14]. These
determine all local statistics such as the level spacing distribution. For instance,

the pair correlation function (n = 2) of the unfolded sequence {z,} is defined as

Rz(f, N) = % Z f(z] — ilik)

j#k<N

for an even test function f. We want to study the limit as N — oo, expecting a
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Fia. 3. KGUE(T)-

limiting behavior

Ry(f,N) —> /;:"o f(z)Ra(z)dz

For uncorrelated levels, we clearly have R52"d(z) = 1. For the GUE case, F.
Dyson [6] found that R$YE(z) = 1 —(sinwz/mz)?, that is in terms of the Fourier
transform of f,

1 ~ ©
¥ > f(zj—zk)—>f(0)+/:°o f(r)Keug(r)dr

5k<N
where the “form-factor” Kqug(7) is given by (Figure 3)

Il Irl <1
KGUE(T):{l 7| > 1

In the early 1970’s, H. Montgomery studied the clustering properties of the
zeros of (s) in connection with the class-number problem for quadratic fields
[15]. He found that the pair correlation function of the zeros is given by RS VE(z)
at least for test functions whose Fourier transform is supported in the interval
(—1,1). Once the connection with Random Matrix Theory was made, it was
conjectured that the level spacing distribution of the zeros of {(s) are indeed
those of GUE. This has been tested numerically by A. Odlyzko [16], [17], who
found excellent agreement with the GUE predictions. The n-level correlation
functions were also found to be in agreement with GUE for suitable restricted
test functions, by Hejhal [9] for n = 3 and by Rudnick and Sarnak [20] for all n.

In the same manner, one can study the spectral statistics of the zeros of
any of the L-functions described above. Indeed, it was shown by Rudnick and
Sarnak [21] that the n-level correlation functions for the zeros of L-functions for
any cuspidal automorphic form, such as the modular discriminant or a Maass
wave-form, agree with GUE at least for a restricted class of test-functions. Thus
we believe that the spectral statistics of the zeros of any of these L-functions are
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those of GUE. For the modular discriminant, this was also tested numerically —
see [13], [19]. In the next section, I will sketch a derivation of the pair correlation
function of one of these L-functions.

6 Computing the pair correlation function of the zeros

We consider the zeros p, = 1/2+4E, with E, lying in a window such as [E, 2F],
and for these zeros we set

__dlogE
27
to be the “unfolded” levels, where d = 1 for {(s) or Dirichlet L-functions, and
d = 2 in the case of the modular discriminant or Maass wave-forms. Thus the
mean spacing of the sequence z,, is unity as £ — oo.

We need to compute the limit as £ — oo of the quantity

En

Ln

Ra(f, ) = g5 3 ws(a; ws(e)f(z; — )
J#k

where f is a suitable even function, the sum is over all pairs of zeros, wg(z) is
a “window function” which picks out the ones in our window [E, 2E], and n(E)
is the number of zeros in the window.

It is technically convenient to express this in the smoothed form

1 E;. Ei. .dlogE
E)= ———— Y h(L)h(—= E;—E
Ba(f, B) Bdlog B/2m £ (I (= (Bi =~ B))
where we choose as the window function wg(z,) := h(En/E), with h(r) =

f_moo g(uw)e'™dr the Fourier transform of a compactly supported, even function

g(u). We will further choose f to be even and such that its Fourier transform f
is compactly supported.
If we add in the contribution f(0) of the diagonal terms j = k, this becomes

2

Ra(f, E) ~ —f(0) + —2" /_ ” Zh(%)e”dng'E” frydr  (6.1)

+ EdlogE J_

Next we use the Explicit Formula with the test function
b (r) = h()eird 1065

to express the sum over zeros as a sum over prime powers. For definiteness we
concentrate on the case of a Maass wave-form v with Laplace eigenvalue 1/4+t2,
which is a normalized Hecke eigen-form. The explicit formula than gives

En
3 Bt e _
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1 i F' 1 F' 1
Py hE’.,.(r) (I‘R(2 +it+ir) + i(i — it —|—1,r)) dr

—ZApkE leogE—l—logp ) +9(E (leogE—logpk)))

where

1
ogp tr Uk

Apr = =5
P pk/z P

and the Fourier coeflicients of the Maass wave-form 1 are given by A(p) = tr U,
for p prime. Substituting into eqn 6.1, one gets an expression for Ry(f, E) as
a sum of several terms, the important one being the one coming from the sums
over primes in the explicit formula, namely

K(f,E) = (6.2)
Z Z Ap g /; Ezg(E(Td log E + logpk))g(E(Td log E + log ql))_f(T)dT

and the sum is over all 4 possible choices of signs + log p*, +logg’ (this is called
the “semi-classical form-factor” in the Quantum Chaos literature).
In order to recover the GUE result, we need to show that as £ — oo,

% — (k) /_":o KGUE(T)f(T)dT

where k(h) ~ 1 when we let hg approximate a sharp window function for the
interval [E,2E], and the “form-factor” for GUE is given by

7| |7l <1
KGUE(T):{ !l| ITI>1

(Figure 3).

The double sum in eqn 6.2 is over pairs of prime powers p*, ¢! satisfying
1
|7dlog E =+ log p*|, |leogE:i:10gql|<<E

for 7 in the support off (since g is of compact support). This forces log p*,logg! ~
|7|dlog E. Further, g forces the sign of logp* and of log ¢! to be equal: It is —

if 7 > 0 and + if 7 < 0. After changing variables u = E(rdlog E — log p*) and

approximating f( )~ f( ;‘;ngE ), we obtain

logp X .
K(f, B dlogE ;; P,k ‘Llf dlo gE) (E(logp —logg"))
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where g*?(z) is the convolution

g*z(z) = /;°° g(uw)g(z — u)du

[> ¢}

We express K(f, E) as a sum of two terms Kgjag(f, E) and Kog(f, E), where
Kaiag(f, E) is the contribution of the diagonal terms p* = ¢':

1 [o¢]
Kaogl$, EZ e FGER [T awras (69

The diagonal contribution: To evaluate the diagonal contribution, we use
E Ay~ = log z)?
pe<z

In the case d = 1 this is a consequence of the Prime Number Theorem, while in
the case d = 2 it follows from “Rankin-Selberg theory” [22], [21]. Thus replacing
Az & in eqn 6.3 by its mean value (summation by parts) we find

1 ® 4+ logt 1 Rl
S AR ~ [ H GG o) = (@log B [ f(r)rar

Pk

If we further use f_eooo (u)?du = 5 f_moo h(r)?dr, we then find

Kdlag(fa /
Edlog E/27r f(r)Irldr

with k(h) = f_°°°o h(r)%dr.

Eliminating the off-diagonal terms: Suppose now that fis supported in the
interval [-1/d 4+ 6,1/d — 8] C (—1/d,1/d), for some § > 0. Recall that d = 1
for {(s) and Dirichlet L-functions, d = 2 for L-functions attached to Maass
wave-forms or the modular discriminant. We claim then that the off-diagonal
term

_ E logp *2
KOff(f’E)_(dlogEz %:LAPJ“ ‘Llf( gE)g ( (logp _logq))

vanishes because all summands are identically zero. This is because in order
that a term appear in this sum, we need both |logp* —logq'| < 1/E as well as
log p* /dlog E < (1 —4&)/d. Since both p* and ¢! are integers these two condition
cannot be simultaneously satisfied for £ > 1. Thus for f supported inside
(—=1/d,1/d) We find that

dlogE

K(f,E) ~ Kgiag(f, E) ~ / Ff(r)Kaugr(r)dr
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Remark: The restriction Supp(f) C (—1/d,1/d) is made to ensure that the
off-diagonal terms are trivially zero. In the case d = 1, the GUE form-factor
Kgugr(7) changes its behavior right at the edge of this region (figure 3). In the
range |7| > 1, Kgiag # Kqug and we need to understand the contribution of the
off-diagonal terms, which are of the same size as the diagonal ones. This involves
understanding some aspect of the “twin-prime conjectures”, which are beyond
our reach at present (see [12] for a discussion and heuristics). In the case d = 2,
the region 1/2 < |7| < 1 is where we still expect the diagonal terms to dominate,
but at present this too is beyond our reach.
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